
APRON: Authenticated and Progressive System Image Renovation

Sangho Lee
Microsoft Research

Abstract
The integrity and availability of an operating system are im-
portant to securely use a computing device. Conventional
schemes focus on how to prevent adversaries from corrupt-
ing the operating system or how to detect such corruption.
However, how to recover the device from such corruption
securely and efficiently is overlooked, resulting in lengthy
system downtime with integrity violation and unavailability.

In this paper, we propose APRON, a novel scheme to reno-
vate a corrupt or outdated operating system image securely
and progressively. APRON concurrently and selectively re-
pairs any invalid blocks on demand during and after the sys-
tem boot, effectively minimizing the system downtime needed
for a recovery. APRON verifies whether requested blocks are
valid in the kernel using a signed Merkle hash tree computed
over the valid, up-to-date system image. If they are invalid,
it fetches corresponding blocks from a reliable source, veri-
fies them, and replaces the requested blocks with the fetched
ones. Once the system boots up, APRON runs a background
thread to eventually renovate any other non-requested invalid
blocks. Our evaluation shows that APRON has short down-
time: it outperforms conventional recovery mechanisms by
up to 28×. It runs real-world applications with an average
runtime overhead of 9% during the renovation and with negli-
gible overhead (0.01%) once the renovation is completed.

1 Introduction
Ensuring the integrity and availability of an operating sys-
tem is crucial to the security of a computing device which is
repeatedly threatened by adversaries. Specifically, the adver-
saries might compromise the operating system by exploiting
unpatched vulnerabilities contained in its kernel, system ap-
plications, or shared libraries and, if exists, underlying sys-
tems software like a hypervisor. Then, they would perma-
nently tamper with the system image (or files) stored in local
storage to persist their control over the device (i.e., persis-
tent malware [24, 29, 81]) or destroy it (i.e., destructive mal-
ware [53,77,82]). The computing device is no longer available
in a valid form and demands a recovery as soon as the corrup-

tion is recognized [51, 98, 125].
Secure boot is a mechanism to boot a system while check-

ing its integrity [8, 13, 52, 104, 124]. A trusted bootloader—
whose authenticity is ensured by cryptography and hardware-
based mechanisms [9, 102, 122]—measures (i.e., calculates a
cryptographic hash over) the operating system and compares
the measured value with an expected value before loading
and passing control to the operating system. Any mismatch
between them means that the operating system is in an invalid
state. Specifically, the operating system might be (a) manip-
ulated to embed a persistent backdoor, (b) destroyed to no
longer work, or (c) downgraded to run a vulnerable old ver-
sion. All these invalid states require an urgent fix.

Secure boot is suitable for securing devices with image-
based management. They consistently deploy and update de-
vices with read-only immutable system images built on the
server-side and maintain their integrity on devices. However,
such write protection is typically enforced within the kernel
and adversaries can bypass it if they compromise the ker-
nel [46,58,87]. Thus, operating systems require secure boot to
verify the system image integrity, which is straightforward as
expected measurement values are consistent or updated with
coordination in image-based operating systems. Many mod-
ern operating systems for containers [36,39,45,61,86,96,105],
Internet of Things (IoT) and edge devices [25, 37], mobile
phones [6], mixed reality headsets [74], and personal comput-
ers [1, 10, 83, 117] adopt both.

System recovery is a logical next step when secure boot
has found any corruption from a system image. Numerous se-
curity systems [3,4,17,26,51,79,98,108,125] even frequently
reboot and recover (or reprovision) devices to protect them
against persistent security and privacy threats and failures.
However, to the best of our knowledge, all existing recovery
mechanisms suffer from the following problems:

• Downtime. If a system recovery is necessary, a computing
device enters a recovery environment [18,75,94,120]. The
recovery environment does not support any other regular
tasks. That is, the system is unavailable during recovery,
which is especially unacceptable to reboot-based security

systems [3, 4, 17, 26, 51, 79, 98, 108, 125] and mission-
critical tasks like edge computing [12, 84].

• Inefficiency. A recovery is inefficient because it does not
know which files or blocks it must fix in advance. Existing
mechanisms either (a) overwrite the entire system image
to the local storage [40, 50, 51, 98, 125], which not only
takes long but also is bad for storage lifetime [73, 103],
or (b) verify each file or block to selectively fix corrupt
one [54, 91], which is slower than the former.

• Staleness. A recovery typically relies on a system image
backup stored in the local storage [50] which can be out-
dated or corrupt. To avoid this problem, it might fetch
the latest system image from a reliable source, but this
downloading prolongs the overall recovery time.

In this paper, we propose APRON, a novel approach to se-
curely and progressively renovate an operating system image
on a device. Unlike existing recovery mechanisms that fully
repair a corrupt system image in a recovery environment and
then boot into the recovered system, APRON securely boots
into the system while repairing it, minimizing the downtime.
It runs in the fresh kernel context to concurrently and selec-
tively renovate any corrupt blocks which are requested during
the system boot and after the startup of the operating system.

APRON intervenes between applications or kernel threads
and the local storage containing a system image to verify and
renovate invalid blocks on demand. To verify a requested
block, APRON uses a Merkle hash tree [72] which is com-
puted against an up-to-date system image and certified by
an authorized entity (i.e., an administrator or an operating
system vendor). Any hash verification error implies that a
requested block is invalid (i.e., corrupt or outdated). Then,
APRON renovates it by retrieving a corresponding block from
a reliable source such as a remote server, verifying it, and
overwriting it at the correct storage location. Once the system
boots up, APRON additionally runs a background thread to
renovate any other non-requested invalid blocks in the end.
Also, it deduplicates any redundant network transfers.

We prototype APRON for Linux. We use device map-
per [95] for intervening storage access and dm-verity [112]
for hash tree verification. We also use Network Block De-
vice (NBD) [22] as our remote storage protocol and its client,
nbdkit [60], for userspace operations including HTTPS.

APRON ensures short system downtime and low runtime
overhead. For a recovery with a 10 GiB system image in the
servers with fast (local 1 Gbit/s) and slow (remote 100 Mbit/s)
networks, APRON adds at most 5 s and 32 s to the downtime,
respectively. It outperforms the full recovery by up to 28×
and 12× and the delta recovery by up to 120× and 23×.
APRON incurs an average runtime overhead of 9% on diverse
real-world application tests from the Phoronix Test Suite [89]
during renovation. Once the renovation is completed, the
runtime overhead becomes negligible (0.01%).

In summary, this paper makes the following contributions:
• APRON is the first system that securely and progressively

Bootloader

(1st)

Operating
System

fix

Bootloader

(2nd)

Recovery

Environment

corrupt

Bootloader

(1st)

Operating
System

Bootloader

(2nd)

reset

trusted
untrusted

Figure 1: Secure boot with a normal recovery.

renovates a device’s system image. It effectively mini-
mizes the downtime due to recovery or update.

• APRON suggests a unified way to fix various types of
invalid blocks including corrupt and outdated blocks.

• APRON shows its effectiveness (i.e., short downtime and
low runtime overhead) in various configurations.

The source code of our prototype is publicly available at
https://github.com/microsoft/APRON.

2 Background and Motivation
We will explain the background and motivation of APRON.

2.1 Secure Boot and Recovery
Secure boot ensures that a valid operating system will start
to run on a device when it is powered on or reset. It has
various synonyms, such as authenticated, measured, trusted,
and verified boot, depending on security policies enforced or
emphasized. Trusted or verified boot typically stops the boot
procedure if it recognizes any verification failures, and initi-
ates a recovery procedure. Authenticated or measured boot
proceeds with the boot procedure while extending measure-
ment values to a hardware component like Trusted Platform
Module (TPM) [119] to report them to a system administrator
for a later decision. In this paper, secure boot denotes trusted
boot.

Figure 1 shows a procedure of secure boot with a recov-
ery. When a device is powered on or reset, its CPU starts
to execute the first-stage bootloader or boot firmware (e.g.,
Unified Extensible Firmware Interface (UEFI) [121], core-
boot [30]) typically stored in a boot ROM. The first-stage
bootloader verifies and loads the second-stage bootloader
(e.g., GRUB [41], BOOTMGR [38]) stored in a specific loca-
tion of local storage (e.g., EFI System Partition (ESP)). The
second-stage bootloader verifies an operating system image
stored in local storage. If the verification fails or a recovery
has been requested, it boots into a recovery environment.

The recovery environment runs an agent program for re-
covery. The agent either downloads the latest system image
from a known source and validates it or uses a local backup
image to re-image the device [4, 18, 40, 50, 51, 98, 108, 125].
Finally, the agent reboots the device or directly loads the re-
covered kernel (using kexec in Linux [47] or Kernel Soft
Reboot (KSR) in Windows [76]) and lets the kernel proceed
the remaining boot procedure.

https://github.com/microsoft/APRON

APRONtrusted
untrusted

Bootloader

(1st)

fix

Bootloader

(2nd)

Recovery

Environment

corrupt

Bootloader

(1st)

Bootloader

(2nd)

reset

Operating
System

fix

Operating
System

Figure 2: Secure boot with APRON.

2.2 Image-based System Management
Modern operating systems for specific use cases or casual
end-users, such as container, IoT, edge, mobile phone, and
personal computers [1, 6, 10, 25, 36, 37, 39, 45, 61, 74, 83, 86,
96, 105, 117] adopt image-based management to confine and
simplify their deployment and update procedures. They split
device storage into at least two different partitions including
read-only system partition and read-writable user partition.

The system partition contains security-critical data which
must not be modified, including kernel, drivers, and shared
libraries. The kernel prevents any processes from modifying
the partition [11, 112]. Administrators or operating system
vendors generate or update a golden image for the system
partition, sign it, and deploy it to devices. Instead of deploy-
ing the entire image, they can calculate and deploy the delta
between the new and old images [34,70,91]. The device either
fully overwrites the received image into its system partition
or selectively updates it based on the delta. Later, a trusted
bootloader verifies whether the system partition contains a
valid, up-to-date system image before loading it.

The user partition contains casual applications and data
populated by a user, which are not related to the device’s
critical operations. These user applications and data can be
backed up by cloud storage, which is out of this paper’s scope.

2.3 Motivation and Goal
Secure boot and image-based operating systems are widely
deployed to real-world computing devices. However, their
recovery mechanisms suffer from three important problems,
motivating us to design a new approach that progressively
recovers the device not only during its secure boot but also
after the startup of its operating system (Figure 2).
Downtime for recovery. While the recovery environment
repairs the system image, a computing device cannot conduct
any regular operations that it is expected to do. That is, it
cannot ensure a critical requirement, availability, for a long
time. It is critical especially if the device leverages frequent
reboots and recoveries to mitigate attacks and failures [3,4,17,
26, 51, 79, 98, 108, 125] or is deployed for mission-critical or
time-sensitive tasks like edge computing [12, 84]. We cannot
simply get rid of the recovery environment because we need a
separate environment to securely trigger a recovery procedure

at least. Instead, what we aim to achieve is
G1. Two-stage progressive recovery
Our approach progressively recovers the system image dur-
ing and after the system boot. Its validity is ensured by a
separate recovery environment.

Inefficient recovery due to unknown state. Existing re-
covery approaches are inefficient as they do not know which
portions of the system image are corrupt in advance. Inspect-
ing the entire image to identify invalid blocks and calculate
delta takes long (§6.2). Instead, what we aim to achieve is
G2. State-aware on-demand recovery
Our approach identifies whether certain portions of the sys-
tem image are corrupt and recover them on demand.

Insecure recovery due to stale image. Existing recovery
approaches rely on a system image backup stored in local
storage to recover the system image, which might be outdated
or corrupted by adversaries. Fetching the latest image from a
reliable source is a viable solution, but it is slow even if the
image is compressed. Instead, what we aim to achieve is
G3. External up-to-date recovery
Our approach fetches authenticated portions of the system
image on demand from a reliable external source.

3 Threat Model and Assumption
We consider how to recover a computing device from a re-
mote adversary who can compromise the device’s operating
system including its kernel and system binaries as well as
the underlying systems software (e.g., hypervisor and host
operating system) if exists. The adversary can bypass the at-
tack detection or prevention mechanisms for the device using
unknown attack vectors, enabling initial compromise. After
they compromise the system, they tamper with its storage to
persist their control over it or corrupt it [24, 29, 53, 77, 81, 82].

We assume that the adversary cannot tamper with the
boot firmware like other bare-metal recovery or reprovision
systems [17, 51, 79, 108, 125]. Existing hardware compo-
nents (e.g., boot ROM [66], TPM [119], and security co-
processors [9, 102, 122]) protect the boot firmware and its
configuration data including the public key certificate of the
authorized entity (i.e., administrator or operating system ven-
dor) and a signed system version number for rollback pre-
vention. We assume that a user or an administrator can rec-
ognize system compromise (e.g., by monitoring its external
behaviors) and recover the system by forcefully rebooting
it [14,40,118,125] to let the boot firmware initiate a recovery
procedure. In addition, the authorized entity generates and
signs system images and metadata as well as operates servers
for device management.

4 Design
In this section, we explain the design of APRON. It consists of
(a) storage layer to authentically and progressively renovate

the system partition during the system boot and after the
startup of the operating system, (b) server to maintain and
deploy valid, up-to-date system images, (c) client to fetch
specific portions of the system image and deliver them to the
storage layer for renovation, and (d) recovery environment to
initiate APRON.
Storage layer. The APRON storage layer is responsible for
on-demand renovation of invalid blocks (§4.2), background
prefetching (§4.3), and deduplication (§4.4). All these tasks
are securely performed based on a Merkle hash tree computed
over a valid, up-to-date system image.
Server and client. The APRON server manages and updates
operating system images, generates metadata for them (e.g.,
a Merkle hash tree), signs them, and deploys them to clients.
The APRON client establishes a secure session with the de-
ployment server to fetch data blocks based on the APRON
storage layer’s requests and deliver them to it (§4.5).
Recovery environment. The APRON-aware recovery envi-
ronment prepares a minimal environment to initiate an oper-
ating system with APRON including operating system kernel
and APRON metadata (§4.6).

4.1 Initialization
APRON is integrated into the operating system kernel and
can be configured via boot parameters and APRON metadata.
The APRON metadata includes a root hash value concatenated
with a version number and Merkle hash tree calculated over
the system partition. This metadata is prepared and signed
by the APRON server (§4.5). APRON stores critical system
files (e.g., kernel and device drivers) in the system partition
and APRON metadata in a separate partition (to avoid circular
dependency when calculating a hash tree). The APRON-aware
recovery environment verifies this setting (§4.6).

During the system boot, APRON updates and verifies the
APRON metadata. In particular, APRON attempts to download
the latest APRON metadata from the APRON server. Then, it
verifies the metadata’s signature using the authorized entity’s
public key and checks whether the metadata’s version number
is greater than or equal to the reference version number. Both
public key and reference version number are secured along
with the boot firmware (§3). If the downloaded metadata is
new and valid, APRON replaces the locally stored one with it
and proceeds the system boot. If the version number in the
new metadata is greater than the reference version number
in the secure storage, APRON monotonically increases the
reference version number accordingly as it means there is a le-
gitimate update. Otherwise, APRON discards the downloaded
one and proceeds the system boot with the local metadata.

When the operating system sets up a root filesystem,
APRON prevents it from directly using the system partition.
Instead, APRON places a layer (i.e., a virtual storage device or
partition) over the system partition and makes the operating
system use the storage layer as a read-only root filesystem.
This layer allows APRON to intercept any accesses to the sys-

Kernel
Userspace

access

retrieve&
verify

serve

APRON

Apps

31

2

valid block
invalid block

Storage

(a) Valid access

Kernel
Userspace

access

retrieve&
verify

serve

APRON

Apps

1

Server

Client

4

2
fetch&

verify

3

renovate5

Storage

fix

(b) Invalid access

Figure 3: On-demand renovation. Access to a valid block is verified
and served using local storage (1 – 3). Access to an invalid block is
served with the help of a remote server (1 – 5).

tem partition, verify the individual accesses, and selectively
fix the corresponding blocks using the Merkle hash tree.

4.2 On-Demand Renovation
If any process or thread (except for APRON itself) requests
a portion of the system partition, APRON transparently pro-
vides valid data either as they are or after renovating them.
Figure 3 shows the overall on-demand renovation procedure.
When a userspace application or kernel thread attempts to
read data contained in the system partition via a filesystem or
block device interface (1), APRON retrieves a corresponding
disk block expected to contain the requested data and verifies
it using the Merkle hash tree (2). If the retrieved block is
valid (Figure 3a), APRON provides it to the requester (3).
To avoid repetitive storage retrieval and validation (i.e., to
skip 2), APRON maintains retrieved read-only blocks in an
in-kernel cache and serves them to requesters later without
re-validation until the blocks are evicted from the cache. Also,
APRON identifies whether a requested block is a zero block
(i.e., a data block filled with zeros) by checking the hash
tree (i.e., a corresponding leaf node). In that case, it quickly
provides a zero buffer to the requester without accessing the
storage device at all. These two performance optimization
methods are motivated by dm-verity [112].

If the retrieved block is invalid (Figure 3b), APRON fetches
a corresponding block from the deployment server via the
client and then verifies it (3). If the fetched block is valid,
APRON provides it to the requester (4) to proceed with its
execution immediately. Then, APRON overwrites the content
of the fetched block into the corresponding location at the
local storage device (5). If the fetched block is invalid due
to network error, server error, or some other reason, APRON
retries the block fetching up to a predefined number of times.
If APRON fails to obtain the block eventually, it reboots the
device to re-initiate the renovation.

In addition, APRON concurrently retrieves the same block

from the local and remote storage (i.e., conduct 2 and 3
in parallel) to effectively hide network overhead. APRON
activates this concurrent fetching only if it confirms that the
storage device is corrupt (i.e., it finds at least one invalid block
during previous storage accesses) to avoid sending meaning-
less network requests.

4.3 Background Prefetcher
The on-demand renovation might fail if the network connec-
tion between a device and the deployment server becomes
unreliable or slow during execution. To avoid such failures,
APRON has background prefetcher that is a kernel thread to
detect and renovate invalid blocks of the system partition
in advance. Background prefetcher only inspects unidenti-
fied blocks which exclude verified or renovated blocks and
zero blocks according to the hash tree. To support the former,
APRON maintains a verified block bitmap and updates its bits
when certain blocks are verified or renovated by either the
on-demand renovation or background prefetcher.

Background prefetcher inspects unidentified blocks if it
does not interfere with storage accesses from other applica-
tions or kernel threads. Specifically, it wakes up if there is
no in-flight access to the local storage device, checks and
renovates a limited number of unidentified blocks, and sleeps.

Background prefetcher detects consecutive invalid blocks
and renovates them together (i.e., a batch renovation) to im-
prove the renovation throughput. It is different from the on-
demand renovation which repairs each urgently required block
with low latency. When background prefetcher wakes up, it
inspects the system partition from the first unidentified block
according to the verified block bitmap to detect the first in-
valid block. Next, it inspects the following blocks until it
encounters a valid block or the number of inspected blocks
exceeds a threshold, resulting in a sequence of consecutive
invalid blocks. Then, it fetches corresponding blocks from
the remote storage together, verifies them, overwrites them
to the local storage device for batch renovation, and updates
the verified block bitmap accordingly. It uses an exponential
backoff algorithm to dynamically adjust the threshold.
Disconnection. If background prefetcher has fully inspected
the entire system partition, APRON can be completely discon-
nected from the deployment server until the device gets reset
or it needs to renovate or update the system image (§4.6).

4.4 Deduplication
APRON might repetitively fetch equivalent blocks from the de-
ployment server for renovation, which meaninglessly stresses
both server and network. APRON avoids it using a data dedu-
plication technique. APRON fetches a corresponding block
from the server to renovate an invalid block only if it is unique
or no other equivalent block of it has been fetched. If not,
APRON uses the fetched equivalent block (in the local stor-
age) for renovation. The APRON server creates deduplication
metadata representing equivalent block sets in the system

image. Specifically, the APRON server analyzes the system
image (or the leaf nodes of its hash tree) to find equivalent
blocks with the same content, forms sets by grouping equiva-
lent blocks, assigns a unique identifier to each set, and adds
this information to the deduplication metadata. The APRON
server deploys and maintains the deduplication metadata to-
gether with the hash tree. To minimize the metadata size,
APRON excludes unique blocks and zero blocks from it.

On the device, APRON maintains deduplication informa-
tion consisting of two data structures for maintaining equiv-
alent block sets and tracking whether and which block be-
longing to each set has been fetched, respectively. During
initialization, APRON retrieves equivalent block set informa-
tion from the deduplication metadata and constructs a static
block map which associates each non-unique block (member)
with its set identifier (member 7→ setID). Later, APRON con-
firms whether a block is unique by looking up the static block
map. If APRON fetches any non-unique block belonging to an
equivalent block set for the first time (during the on-demand
or background renovation), it adds this information to a dy-
namic block map to reversely associate the fetched block’s set
identifier with the fetched block (setID 7→ f etched). This dy-
namic block map allows APRON to serve a duplicated block
request using an equivalent block stored in the local storage.

Figure 4 shows the on-demand renovation with dedupli-
cation. The deduplication neither affects access to any valid
blocks nor any invalid but unique blocks. Thus, we do not
re-explain them (refer to §4.2). Instead, we focus on access
to an invalid non-unique block that might have an equiva-
lent block fetched and stored in the local storage device. If
APRON confirms that a requested invalid block is not unique
and its equivalent block is stored in the local storage device
according to the deduplication information (i.e., the dynamic
block map) (Figure 4a 3), APRON retrieves the equivalent
block from the local storage device and verifies it (4). If
the retrieved equivalent block is valid, APRON provides it to
the requester (5) and fixes the invalid local block (6). In
addition, it skips 4 if the equivalent block is in the cache.

If the requested invalid block has no fetched equivalent
block or the retrieved equivalent block is invalid (Figure 4b),
APRON fetches a corresponding block from the deployment
server and verifies it (4), provides it to the requester (5),
and renovates the invalid local block (6). APRON updates
the deduplication information (7) by adding the requested
block as a fetched one to the dynamic block map.

Figure 4c depicts how deduplication works. In the begin-
ning, APRON constructs a static block map using equivalent
block sets and an empty dynamic block map. At time t, a
thread requests an invalid and non-unique block bk with the
set ID of s0. APRON fetches a corresponding block from the
deployment server since the dynamic block map has no entry
for s0 and adds s0 7→ bk to the dynamic map. At time t +1, a
thread requests b j with the set ID of s1. Again, APRON fetches
a corresponding block from the server and adds s1 7→ b j to

retrieve&
verify

Kernel
Userspace

Storage

access

retrieve&
verify

serve

APRON

Apps

51

2

Dedup
info

3

6

check

4

renovate

fix

valid block
invalid block

(a) Invalid access with fetched equivalent block

Kernel
Userspace

Storage

access

retrieve&
verify

serve

APRON

Apps

51

2

Dedup
info

3 check

Server

Client

fetch&

verify

4

renovate6
update7

fix

(b) Invalid access without fetched equivalent block

Static map
Member SetID

bi

bj

bk

bl

 SetID Fetched

......
Dynamic map

s0

s1

s0

s2

s0

s1

bk
bj

nil

Equivalent block sets:
{(bi, bk, ...), (bj, ...), (bl, ...), ...}

t

bk

bk

remote

t+1

bj

bj

remote

t+2

bi

bk

local

fix
access

t: s0→bk

t+1: s1→bj

bi→s0→bk
bj→s1→x
bk→s0→x

time

(c) Deduplication management

Figure 4: On-demand renovation with deduplication. Access to an invalid block with a local equivalent block is served and renovated using
the equivalent block (1 – 6). Access to an invalid block without a local equivalent block is served with the help of a remote server while
renovating the requested block and updating the deduplication information (1 – 7).

the dynamic map. At time t +2, a thread requests bi with the
set ID of s0. This time, APRON retrieves bk from the local
storage to renovate bi because the dynamic map has s0 7→ bk.
Background prefetcher with deduplication. Background
prefetcher prioritizes unique or never-fetched invalid blocks
which must be remotely renovated over other invalid blocks
which can be locally fixed. To this end, it treats invalid non-
unique blocks as semi-valid if their equivalent blocks have
been fetched and does not renovate them urgently. At the
end of storage inspection, it spawns another kernel thread,
duplicator, to renovate all semi-valid blocks using their lo-
cal equivalent blocks. Like background prefetcher, duplicator
wakes up if there is no in-flight access to the local storage de-
vice, renovates a single set of consecutive blocks, and sleeps.

4.5 Server and Client
The APRON servers are responsible for two major tasks: gen-
erating and maintaining operating system images as well as
their associated metadata; and deploying them to the APRON
client running in computing devices via a secure channel.
Management server. The management server is a trusted
server operated by administrators or operating system ven-
dors. It generates APRON metadata when a system image
is newly generated or updated. First, it analyzes the system
image to zero out unallocated data blocks—to handle sparse
images—and then calculates a hash tree over the image. Next,
it generates deduplication metadata (i.e., figures out equiv-
alent block sets) using the hash tree’s leaf nodes. Then, it
monotonically increases the hash tree version number, and
signs a concatenation of the root hash value and version num-
ber. Lastly, it stores the system image and APRON metadata
in a dedicated place to be accessible to the deployment server.
Deployment server. The deployment server provides system
images and APRON metadata to APRON devices. It interacts
with devices via secure channels (i.e., TLS) to prevent external

entities from manipulating or eavesdropping on communica-
tion. To handle data block requests, it uses a remote storage
protocol (e.g., iSCSI, NBD) or a regular data transfer protocol
(e.g., HTTP, FTP). The former lets it efficiently and trans-
parently handle requests but is bad for portability. The latter
introduces overhead including bloated packet headers and
extra translation but ensures portability and proximity (e.g.,
with Content Delivery Network (CDN)). They respectively
have pros and cons, and which one we are expected to choose
one of them according to system configurations.
Client. The APRON client is a userspace service that interacts
with the deployment server. It establishes a secure channel
with the server and uses either a remote storage protocol or a
regular data transfer protocol to receive data blocks.

Unlike the management server, APRON does not trust both
the deployment server, which could be operated by a third
party like a CDN, and the userspace client, which might
be compromised by an attacker. The in-kernel APRON stor-
age layer always verifies received blocks with the versioned
APRON metadata signed by the management server. Even
if the deployment server or the userspace client arbitrarily
tampers with or downgrades the system image or metadata,
the in-kernel APRON layer identifies such attempts based on
signature and version mismatch.

4.6 First-Stage Recovery and Update
APRON can start to work only if a device has critical system
files (i.e., kernel and device drivers for storage and network)
and APRON metadata in valid forms. APRON relies on a first-
stage recovery environment to ensure it. If any of them are
invalid, the trusted bootloader enters the recovery environment
to obtain their latest versions from the deployment server. A
conventional APRON-unaware recovery environment would
fully download both critical system files and APRON meta-
data from the deployment server via HTTPS. In contrast, an

APRON-aware recovery environment only needs to download
the metadata via HTTPS while selectively renovating invalid
portions of the critical system files via APRON. It is possible
because a recovery environment typically shares the same
(or minimized) kernel with the main operating system, so we
modify its kernel to incorporate APRON.
Scheduled update. APRON works as an update mechanism
for non-compromised operating systems. If APRON recog-
nizes an update during system execution, it stages updated
APRON metadata on the APRON partition. Through a reset,
the recovery environment replaces APRON metadata with
the staged one. Finally, APRON progressively updates the
system during its execution. Unlike existing update mecha-
nisms [5,7,16], APRON does not need to reserve extra storage
to temporarily store a (potentially large) update file and apply
multiple update files in a proper order.

5 Implementation
In this section, we explain how we develop APRON for Linux.
Initialization. We use initramfs to configure and initial-
ize the APRON storage layer as the root filesystem. Our
initramfs checks whether the signature and version number
of a given root hash value are valid using the public portion of
our signing key and reference version number we provision
to TPM NVRAM indexes. If they are valid, it initializes the
APRON storage layer and mounts it at a specific point. Further,
it creates a tmpfs filesystem to use it as a writable overlay
for the storage layer using overlayfs [23] to support applica-
tions that only work with a writable root filesystem. Lastly, it
sets up the overlaid storage layer as the root filesystem. We
store the initramfs in the system partition, so it is secured
by APRON as well.
Storage layer. We implement the APRON storage layer as a
loadable kernel module written in approximately 1,200 lines
of C code on Linux kernel version 5.11. The storage layer
prototype consists of two virtual block devices representing
local and remote block devices, respectively.

The local virtual block device intervenes with any access to
the system partition and is exposed as a regular block device
to the outside (to work as the root filesystem). It is based on
the device mapper framework [95]. The storage layer verifies
all accesses to the local block device using a Merkle hash
tree based on dm-verity [112]. It also spawns background
prefetcher as a kernel thread to inspect the local block device
while maintaining and using the deduplication information. If
the storage layer finds any corrupt blocks from the local block
device, it renovates them by copying corresponding blocks
from the remote virtual block device to the local virtual block
device while verifying them using the hash tree. That is, it
securely makes the content of the local block device equiv-
alent to that of the remote block device. This approach also
allows APRON to use a local backup device for renovation
instead of a remote device if the network condition is bad or
a new system image is buggy. Background prefetcher uses

kcopyd [114] to efficiently copy a sequence of data blocks
between block devices. In addition, APRON’s every storage
access is cached by the dm-bufio interface.

The remote virtual block device interacts with the deploy-
ment server via the APRON client based on NBD [22]. We use
NBD because it is easy to configure (both in client and server)
and has a small code base. If needed, APRON can work with
other advanced remote block storage such as Ceph [123] for
better efficiency, reliability, and scalability.
Server. The APRON server has a program to identify equiva-
lent block sets written in 170 lines of Rust code, Bash scripts
to automate the creation, management, and deployment of
system images and APRON metadata, and other server appli-
cations. It uses zerofree [126] to zero out the unallocated
blocks of system images, veritysetup [112] to calculate
Merkle hash trees over them, and openssl [115] to sign the
root hash value concatenated with a version number. Also,
it uses nbdkit [60] and lighttpd [65] to operate an NBD
server with TLS and an HTTPS server, respectively.
Client. We prototype the APRON client using
nbd-client [32] and nbdkit [60]. It uses nbd-client
to connect to the APRON server via NBD over TLS and
configure this session as the storage layer’s remote block
device. Also, to interact with the APRON server via HTTPS,
it uses nbdkit to spawn a device-local NBD server backed by
the HTTPS server and lets nbd-client connect to this local
NBD server (via a Unix domain socket). nbdkit relies on its
curl plugin to fetch specific portions of system image files
from the HTTPS server using HTTP range requests.
Recovery environment. The APRON recovery environment
is based on the Linux kernel with APRON and initramfs. It
includes curl [107] to download APRON metadata from the
APRON server, and both nbd-client and nbdkit to renovate
essential system files (i.e., kernel and initramfs) in the sys-
tem partition on-demand. Unlike the main operating system,
we decide not to spawn background prefetcher in the recov-
ery environment because it only runs for a short amount of
time. In addition, it contains kexec [47] to directly load the
renovated operating system’s kernel.
Bootloading. We decide not to manipulate the first-stage
bootloader (UEFI [121]) of our computing device (e.g., re-
place it with coreboot [30] or replace its platform key with our
own key [52]) because it is too intrusive and does not affect
the core functionalities of APRON. Instead, we rely on the
current UEFI-based Linux boot procedure that securely loads
the second-stage bootloader, GRUB [41], signed by Linux
vendors (i.e., Canonical in our case) through Shim [68] signed
by Microsoft. We modify GRUB’s configuration to make it
load either the operating system with APRON or the APRON
recovery environment.

6 Evaluation
We evaluate APRON by answering the following questions:

• RQ1. Does APRON ensure short system downtime when
it needs to renovate the system during boot? (§6.2)

• RQ2. How much overhead does APRON add to other
workloads during renovation? (§6.3)

• RQ3. What is the network usage of APRON for renova-
tion? (§6.4)

• RQ4. Does APRON complete renovation within a reason-
able time? (§6.5)

6.1 Setup

Device. We use a desktop computer featuring an Intel Core
i5-8500 CPU (six cores) at 3 GHz, 8 GiB of RAM, and 1 TB
of PCIe 3.0 NVMe SSD as an APRON device.
Server. The APRON device frequently downloads small data
packets to selectively renovate the system image, subject to
network performance. To evaluate it, we use two APRON
servers with fast and slow network configurations. The fast-
network server is a mini computer connected to the 1 GbE
switch that the APRON device is also connected to. It features
an Intel Pentium Silver J5005 CPU (four cores) at 1.5 GHz,
8 GiB of RAM, and 500 GB of SATA SSD. The slow-network
server is a Virtual Machine (VM) in Microsoft Azure. It
features two Intel vCPUs at 2.6 GHz, 8 GiB of RAM, and
30 GiB of Premium SSD. According to netperf [49], the me-
dian TCP latencies between the device and two servers are
0.24 ms and 5.45 ms, and the TCP throughputs between them
are 934 Mbit/s and 931 Mbit/s, respectively. We additionally
throttle the slow-network server’s bandwidth to 100 Mbit/s to
evaluate low-throughput cases.
Configuration. We install Ubuntu Server 20.04 on the device
while replacing its kernel and modules with ours, comput-
ing a hash tree over the system partition, and changing its
GRUB configuration. We do not use existing image-based
operating systems because they are highly customized for spe-
cific platforms (e.g., VM, mobile phone). We reserve 10 GiB
for a device’s system partition formatted with ext4. Ubuntu
Server 20.04 occupies 5.5 GiB of the system partition. It be-
comes 1.6 GiB with gzip. We also reserve 100 MiB to store
the APRON metadata. We use 4 KiB as the data and hash
block size and SHA-256 for constructing the hash tree, and
RSA-4096 to sign the root hash. The sizes of the hash tree and
deduplication metadata are 81 MiB and 1.6 MiB, respectively.
We install Ubuntu Server 20.04 to our servers. We repeat all
experiments at least 10 times and report their average values
except for benchmark tools with internal repetitions (§6.3)
and an experiment with deterministic results (§6.4).

6.2 System Downtime (RQ1)
To minimize system downtime, APRON boots into a system
while renovating its invalid blocks requested during the boot.
We compare it against existing recovery mechanisms which re-
pair all invalid blocks before the system boot. In general, both
attacks and legitimate updates change a portion of the system

0 20 40 60 80 100
100

101

102

103

Corruption [%]

D
el

ay
[s

]

(a) Low latency & high throughput

0 20 40 60 80 100
100

101

102

103

Corruption [%]

D
el

ay
[s

]

(b) High latency & high throughput

0 20 40 60 80 100
100

101

102

103

Corruption [%]

D
el

ay
[s

]

(c) High latency & low throughput

delta
full
HTTPS
NBD-TLS

Figure 5: Boot-time delay comparison between APRON and other
recovery mechanisms.

image (which will be explained later), but what and how many
blocks they will change are unpredictable. Thus, we randomly
corrupt 1%–100% of the system partition for evaluation (i.e.,
zero some of or all its 4 KiB blocks). Whether we use zero or
non-zero blocks does not affect APRON’s performance (§6.6).
We measure the delay solely introduced by APRON; that is,
we exclude any other delays due to hardware initialization,
bootloader loading and execution, and operating system load-
ing, which are ∼16 s in total on our device, because they
are independent of APRON. We use systemd-analyze [64]
for this measurement. In addition, we omit the case without
corruption because APRON does not delay it.
Full recovery. For comparison, we implement a full recovery
mechanism like existing mechanisms [4, 40, 50, 51, 98, 108,
125]. In a recovery environment (i.e., before the system boot),
an agent downloads the compressed image via HTTPS while
concurrently decompressing it to the local storage. Then, it
boots into the recovered system. We omit additional image val-
idation because we trust TLS. The recovery takes ∼60 s (high
throughput) and ∼154 s (low throughput), which is 4× and
10× longer than the system boot time. It is independent of the
corruption ratio and marginally affected by network latency.
Delta recovery. We implement a delta recovery mechanism
using rdiff [91] that the SWUpdate project [16] uses. rdiff
consists of (a) signature computation, (b) delta computation,
and (c) patch adoption. Delta update is efficient because it
can pre-compute (a) and (b) on the server-side, but the delta
recovery cannot leverage such pre-computation (details are
in Appendix B.) In total, it takes 105–561 s (high throughput)
and 112–665 s (low throughput), which is 7–35× and 7–42×
longer than the system boot time. It depends on the corrup-
tion ratio and is marginally affected by network latency. The
delta recovery is slow, but it reduces network traffic (31 MiB–
1.6 GiB) and unnecessary storage writes.
APRON. Figure 5 shows APRON’s boot-time delay while

varying the network latency, network throughput, and cor-
ruption ratio. The delay is 2.2–4.9 s (NBD over TLS) when
latency is low and throughput is high, which is 14%–31% of
the boot time. It becomes 0.2–1.2× longer than the boot time
when latency increases and 0.8–2.0× longer than the boot
time when latency increases and throughput decreases. They
are up to 27.8×, 23.9×, and 11.8× shorter than the full re-
covery, and up to 119.8×, 41.6×, and 23.1× shorter than the
delta recovery, respectively. In addition, as expected, APRON
with HTTPS is 1.6–9.7× slower than APRON with NBD over
TLS due to extra translations.
Summary. APRON ensures short downtime because it appar-
ently repairs the blocks required to boot the system first and
the remaining blocks later once the system boots up. It outper-
forms existing mechanisms especially when (a) the network
latency is low, (b) the network throughput is high, and (c) the
number of invalid blocks is small. These conditions are satis-
fied in practice. The network performance is improving. Also,
the number of invalid blocks is generally small in both attack
and update cases. For example, a persistent backdoor usu-
ally consists of a few small executables [29, 81]. We further
analyze how Flatcar Container Linux [39] (an image-based op-
erating system) and Fedora Cloud [93] (a pre-installed cloud
image) change over their releases. Across 36 Flatcar releases
for two years (version 2512.2.0 to 3139.1.2 for QEMU x64),
9.7%–12.2% of their 8.5 GiB images change. Also, across
11 Fedora Cloud releases for five years (version 26 to 36 for
QEMU x64), 12.5%–21.7% of their 4.5 GiB images change.
Thus, APRON is effective in decreasing the system downtime.

6.3 Runtime Overhead (RQ2)
APRON verifies and renovates the (remaining) system parti-
tion during system execution. We evaluate how its verifica-
tion and renovation processes affect the runtime performance
of other workloads using benchmark programs. We ensure
the benchmark programs terminate before renovation is com-
pleted. Otherwise, they run on the recovered system which
hides renovation overhead. To this end, we prolong renova-
tion using a fully corrupt system image and the slow-network
server and select benchmark programs which take shorter
than the renovation (§6.5). We install them in another sys-
tem image copy and execute them via APRON. We compare
APRON to a pristine environment with the same hardware
and operating system except that it runs an unmodified kernel.
Microbenchmark. Figure 6 shows LMbench [71] system
call execution times normalized to those from the pristine
environment. Both in a verification condition and during the
renovation, the overheads of the APRON device over the pris-
tine device are 0%–40%. As expected, APRON affects sys-
tem calls related to filesystem and network (e.g., stat, fstat,
open/close, UNIX socket). On a geometric mean, the over-
heads of the APRON device in a verification condition and
during the renovation are 7% and 8%, respectively.

The APRON device might download a lot of data from

the deployment server to renovate the system partition, so it
might affect the network performance of other applications.
We use LMbench’s network throughput evaluation results
to identify whether and how APRON affects LMbench’s net-
work throughputs (Figure 7). In a verification condition, the
network throughput of LMbench on the APRON device is
3.6% (geometric mean) lower than that on the pristine device.
During the renovation, the network throughput of LMbench
on the APRON device is 11.8% (geometric mean) lower than
that on the pristine device. Consequently, APRON’s renova-
tion noticeably affects the network throughput of other ap-
plications only during renovation. In addition, if we turn off
APRON’s verification once the renovation is completed, the
overhead becomes almost zero.
Macrobenchmark. We evaluate APRON with 11 real-world
application tests from Phoronix Test Suite [89] (Figure 8).
The overheads of APRON during renovation over the pris-
tine environment are 1.9%–21% (geometric mean: 9%). As
expected, renovation affects I/O-intensive workloads (e.g., 7-
Zip, Apache, and Memcached) whereas less affects compute-
intensive workloads (e.g., Crafty, FLAC, and PyBench). With-
out renovation (i.e., the verification condition), APRON’s over-
head over the pristine environment is negligible (0.01%).

6.4 Network Usage (RQ3)
During renovation, APRON fetches blocks required for recov-
ery from the deployment server. We evaluate this network us-
age. We use the randomly corrupt system images again (§6.2).
We count the number of bytes the server sends to the APRON
device at the server (using lighttpd logs) while enabling
APRON’s optimization (i.e., zero block ignorance and dedu-
plication). This network usage is independent of network
latency and throughput.

Figure 9 shows how many bytes APRON downloads from
the server while varying the corruption ratio. It downloads
44.6%–94.0% of the corrupt blocks, which are only 1.1–2.9×
larger than corresponding rdiff deltas. APRON’s optimiza-
tion is effective especially when the number of invalid blocks
is large. This is because it increases the probability that multi-
ple invalid blocks are equivalent such that no repetitive down-
loads are needed due to deduplication (§4.4).

6.5 Complete Renovation Time (RQ4)
Once the system boots up, APRON performs both on-demand
and background renovation. We measure how long it takes
to complete the renovation when the system is idle or busy.
Hastening the complete renovation is not our goal and that is
why we assign a low priority to background prefetcher to min-
imally affect other workloads (§6.3). We compare it against
the full and delta recovery to check whether it is reasonable.
Idle system. Figure 10 shows APRON’s complete renovation
time in an idle system while varying the network latency,
network throughput, and corruption ratio. The complete reno-
vation (NBD over TLS) demands 47.4–104.5 s when latency

syscall
read

write stat
fstat

open/close

sel_10_fd

sel_100_fd

sel_250_fd

sel_500_fd

sel_10_tcp

sel_100_tcp

sel_250_tcp

sel_500_tcp

sig install

sig overhead

prot fault

pipe latency

unix sock
latency

fork+exit

fork+exec
fork+sh

GEOMEAN
0

0.5

1

1.5
E

xe
cu

tio
n

tim
e

pristine verification renovation

Figure 6: LMbench system call execution time normalized to the pristine cases (pristine: Ubuntu Server 20.04 without APRON; verification:
APRON without a renovation process but with hash-tree verification; renovation: APRON with a renovation process).

socke
t (1 B)

socke
t (64 B)

socke
t (128 B)

socke
t (256 B)

socke
t (512 B)

socke
t (1024 B)

socke
t (1437 B)

socke
t (10 MB)

unix socke
t

pipe
100

102

104

B
an

dw
id

th
[M

B
/s

]

pristine verification renovation

Figure 7: LMbench network throughput.

7-Zip
Apache

Compile
(Apache)

Crafty
FLAC

HMMer

Memcached
Minion

OpenSSL

PostgreSQL

PyBench

GEOMEAN
0

0.5

1

1.5

O
ve

rh
ea

d

pristine verification renovation

Figure 8: Normalized Phoronix Test Suite overhead.

is low and throughput is high, 50.2–190.4 s when latency in-
creases, and 84.0–504.3 s when latency increases and through-
put decreases. They take 0.8–1.7×, 0.8–3.2×, and 0.5–3.3×
longer than the full recovery, and 2.2–5.5×, 1.9–3.1×, and
1.1–1.4× shorter than the delta recovery, respectively. In addi-
tion, APRON with HTTPS takes 1.1–2.1× longer than APRON
with NBD over TLS. APRON’s complete renovation is subject
to network latency and throughput because it does not benefit
from bulk network transfer and compression.

Busy system. We make the system busy by running the
Memcached test from Phoronix [89], which heavily contends
with APRON (Figure 8), once the system boots up. The com-
plete renovation is delayed by at most 7.0% (low latency) and
2.5% (high latency and low throughput). Overall, the reno-
vation is moderately affected by the system’s busyness. The
renovation with the slow-network server suffers less from the
busyness than that with the fast-network server since the slow
network performance dominates the renovation overhead.

Summary. Although APRON renovates the system during its
execution in the background, it finishes the renovation within
a reasonable time—i.e., it is at most 3× slower than the full
recovery. Further, it is comparable to or even faster than the
full recovery if the network is fast and the number of invalid
blocks is small. Both are satisfied in practice (§6.2).

0 20 40 60 80 100
0
2
4
6
8

10

Corruption [%]

D
at

a
[G

iB
]

corrupt

fetched

rdiff

Figure 9: Network usage of APRON.

0 20 40 60 80 100
0

200

400

600

Corruption [%]

C
om

pl
et

io
n

[s
]

(a) Low latency & high throughput

0 20 40 60 80 100
0

200

400

600

Corruption [%]

C
om

pl
et

io
n

[s
]

(b) High latency & high throughput

0 20 40 60 80 100
0

200

400

600

800

Corruption [%]

C
om

pl
et

io
n

[s
]

(c) High latency & low throughput

delta
HTTPS
NBD-TLS
full

Figure 10: Complete recovery time comparison between APRON

and other recovery mechanisms.

6.6 Miscellaneous
Non-zero corruption. We confirm whether we use zero or
non-zero blocks to corrupt the system image does not affect
APRON’s performance. If a block is expected to be a zero
block, APRON does not touch it regardless of corruption. If
not, APRON renovates it regardless of whether it is overwrit-
ten by a zero or non-zero erroneous block. Non-zero corrup-
tion slows down the delta recovery as it complicates rdiff
signatures, but showing its worst case is not our interest.
Deduplication. The deduplication decreases not only net-
work usage but also renovation time to some extent. Without
it, the renovation is delayed by up to 2.2% (low latency)
and 9.0% (high latency and low throughput). The renova-
tion with the fast-network server marginally benefits from
the deduplication because it aims for reducing the network
overhead (§6.4). In contrast, the system downtime does not
benefit from the deduplication because only a few blocks are
requested during the system boot.

Memory usage. APRON uses at most ∼120 MiB of addi-
tional memory when it renovates a fully corrupt system image
to cache fetched blocks and maintain its data structures. This
memory is reclaimed once the renovation is completed.

7 Security Analysis
In this section, we analyze the security of APRON. We fo-
cus on how APRON mitigates persistent kernel attacks. Also,
we explain how APRON detects or prevents less severe but
frequent userspace and network attacks.
Kernel attack. APRON efficiently recovers a computing de-
vice from advanced adversaries who have compromised the
device with critical kernel vulnerabilities. APRON runs in the
kernel and it does not assume any other non-standard kernel
integrity protection or monitoring technologies [15, 44, 69,
78, 88, 128] to protect itself. To this end, if adversaries com-
promise the kernel, they can temporarily deactivate APRON
and corrupt the system image. However, APRON eventually
defeats them based on a system administrator’s input: the
administrator can detect a misbehaving device using device or
network monitoring tools and forcefully reset it using existing,
standardized techniques [40, 118, 125]. This reset eliminates
in-memory exploits and activates APRON via secure boot
again. If the administrator prepares an updated image fixing
the exploited vulnerability, APRON prevents the adversaries
from reusing the vulnerability by rapidly recovering the sys-
tem with the updated image. Even if no patch is prepared,
APRON causes hardship to the adversaries since they must
repeatedly compromise the operating system across forceful
device resets to persist their control or system destruction.
Such repetitive attack attempts are highly visible and thus can
be detected and mitigated by network-level techniques [3].
Userspace attack. APRON prevents or detects userspace
attacks against it through all four attack surfaces userspace
attackers can access (§5): (a) filesystem containing operating
system files, (b) APRON storage layer, (c) storage device stor-
ing the system image, and (d) APRON client. First, APRON
prevents or detects the modification of its filesystem. APRON
mounts the filesystem for the operating system as read only,
preventing non-privileged attacks. Adversaries with a root
privilege can remount the filesystem and modify it. However,
such modifications only remain in memory and are not re-
flected in the underlying write-protected APRON storage layer.
Second, APRON prevents the modification of its storage layer.
The APRON storage layer ignores any block write requests
via block IO interfaces. Thus, both non-privileged and privi-
leged adversaries cannot modify it. Third, APRON prevents or
detects the modification of its storage device. Non-privileged
adversaries cannot access the storage device. In contrast, priv-
ileged adversaries can tamper with the storage device using
block IO interfaces. However, the APRON storage layer iden-
tifies and reverts such manipulation based on the signed hash
tree. Fourth, APRON detects a misbehaving APRON client.
Privileged adversaries can compromise the userspace APRON

client to deliver manipulated data to the APRON storage layer.
However, APRON identifies and ignores such manipulated
data based on the signed hash tree.
Network attack. APRON detects network attacks includ-
ing traffic manipulation. Adversaries might tamper with the
network traffic between the APRON client and deployment
server to deliver a manipulated system image. However, since
APRON traffic is secured with TLS, the adversaries cannot ar-
bitrarily manipulate it unless they break TLS or compromise
the deployment server. Even if they succeed, APRON drops
such manipulation because it verifies fetched data using the
signed hash tree.

8 Discussion
In this section, we discuss some possible alternatives to
APRON’s design.
Advanced deduplication and compression. APRON cur-
rently uses a simple block-based deduplication (§4.4) without
network traffic compression, resulting in relatively high net-
work usage (§6.4). APRON can reduce it using advanced dedu-
plication techniques like content-defined chunking [31,67,80]
and seekable compression [116], but there are two tradeoffs.
First, their computational overhead is higher than block-based
deduplication, increasing the overall recovery time and run-
time overhead. Second, they are incompatible with the effi-
cient, block-level hash tree [112] APRON leverages. To main-
tain the compatibility, APRON requires a fine-grained hash
tree with complicated data structure and computational com-
plexity. We leave balancing these tradeoffs to future work.
File-based recovery. APRON verifies and renovates the en-
tire storage or partition as it assumes the image-based system
management (§2.2). Instead, it can focus on a set of critical
files if it separately maintains their root hashes using tech-
niques like Integrity Measurement Architecture (IMA) [62]
and fs-verity [113]. This file-based recovery potentially
reduces the overhead of APRON, but it must overcome two
problems. First, it requires a separate technique to recover the
kernel and filesystem itself. Otherwise, it even cannot iden-
tify whether certain files exist in the device. Second, it must
maintain and update a set of root hash values in a scalable
and consistent manner. This is because there are many criti-
cal files depending on each other (e.g., system binaries and
shared libraries). APRON is free from such problems because
it is independent from the filesystem and it only maintains a
single root hash value for the entire image.
Mutable data. APRON leverages and ensures the read-only
property of the image-based system management, but it does
not prevent users from storing any data in the device. Like
other image-based operating systems, APRON can maintain a
separate read-writable user partition (§2.2). Then, APRON can
let users use it as a writable overlay for the storage layer (as
explained in §5) or mounting it at specific writable directories
(e.g., /etc, /home) [33].

Single point of failure. APRON can suffer from a single-
point-of-failure problem because its recovery task relies on a
server which is remote in most cases. To overcome it, APRON
needs other techniques like a load balancer [21] to mitigate
this problem. Especially, the HTTPS version of APRON seam-
lessly benefits from such load balancing (§4.5).

9 Related Work
In this section, we explain existing studies related to APRON.
Network boot. Datacenter administrators frequently provi-
sion operating systems on new or failed server machines. They
use the Preboot eXecution Environment (PXE) boot [55] to
make each server boot into a small operating system stored
in a storage server within the same local network. This small
operating system downloads a full operating system to the
local storage and, finally, boots into it. However, the PXE boot
neither efficiently downloads system images nor ensures any
network-level security because it relies on TFTP [106]. Thus,
it can only be used within a well-managed local network. To
overcome these problems, iPXE and UEFI support HTTP(S)
boot [56, 59]. Still, they must download an entire operating
system image to local storage to boot into it unlike APRON.
Diskless boot. Administrators can configure an operating
system to use network storage as its root filesystem via remote
block storage protocols (e.g., iSCSI and NBD) or network
file systems (e.g., NFS and Samba). It is known as diskless
boot [35,48,79,97]. It makes much more sense in a data center
where servers are connected through the same high-bandwidth
and low-latency local network [20]. However, since this ap-
proach fully relies on network storage, it cannot avoid repeti-
tive fetching of the same blocks from storage servers if the
blocks are evicted from the cache due to memory pressure.
Further, a lack of required blocks due to potential network
errors can result in significant system malfunctioning. Data
block caching [26, 100, 101, 109, 110] might mitigate these
problems, but cached blocks can be evicted according to the
cache replacement policy unlike APRON. Also, all cached
blocks should be accessed via a translation layer and dis-
carded when any recovery or update is needed. Advanced
distributed file systems [2, 101, 123] can avoid some of the
problems, but they have large code bases and require com-
plicated server- and client-side configuration. Unlike them,
APRON only requires maintaining a simple file or web server.
Operating system streaming deployment. An operating sys-
tem streaming deployment [28,42,43,85,111] uses both local
and network storage. While serving block requests from ker-
nel threads and other applications using network storage, the
operating system streaming deployment stores downloaded
blocks at the corresponding locations of local storage. These
stored blocks will be used to resolve further requests to avoid
repetitive downloading of the same blocks. The operating sys-
tem streaming deployment also copies not-yet-downloaded
blocks from network storage to local storage in the back-
ground to eventually mirror the network storage to the local

storage. However, unlike APRON, existing operating system
streaming deployment mechanisms neither consider secure
operating system deployment nor support selective renova-
tions of invalid blocks. Thus, it must deploy the entire operat-
ing system image from scratch if it recognizes any corruption
or the operating system image has been updated.

Efficient update. Updating an operating system or its kernel
with minimal downtime is heavily studied [5, 7, 16, 19, 27, 63,
90, 99, 127, 130]. A/B update [5, 7, 16] has a separate parti-
tion to download an updated system image during execution
and reboot into it. Live kernel patching [19, 27, 90, 130] hot
fixes the kernel without rebooting it. Since live kernel patch-
ing cannot handle complicated changes (e.g., data layout),
other schemes [63, 99, 127] leverage memory snapshot and
soft reboot. However, all these mechanisms work only if an
operating system or underlying systems software (i.e., hyper-
visor [99], System Management Mode (SMM) [130]) is not
compromised or corrupt. For example, a privileged attacker
can tamper with both A/B partitions, hinder hot-patching, or
corrupt memory or storage snapshots. Thus, they should rely
on recovery mechanisms APRON to fix corrupt systems.

Multi-node progressive recovery. Multi-node progressive
recovery [3, 57, 92, 129] is another way to recover or update
a system with minimal or zero downtime. To maximize the
availability of a critical service, these schemes operate re-
dundant copies of the same service in multiple physical or
virtual computing nodes. If the service needs to be recovered
or updated, they first deal with a part of the nodes while run-
ning the other part of nodes to keep alive the service. They
handle the latter part of nodes after they have recovered or
updated the former part of the nodes. These schemes can
achieve zero downtime if at least one node is always running.
However, their resource costs are high because they require
multiple nodes. In addition, we note that they can benefit
from APRON because, in the end, they recover or update each
node—reducing node recovery or update time is important to
maintain their overall fault tolerance.

10 Conclusion

APRON is a novel approach to authentically and progressively
renovate an operating system image during the system boot
and after the startup of the operating system, minimizing
the system downtime needed for a recovery. It is especially
effective for the reboot-based security systems that frequently
reset and repair devices to deal with attacks and failures, and
mission-critical systems which are sensitive to the downtime.
APRON renovates the entire operating system image with
negligible runtime overhead and small network usage.

Acknowledgment

We would like to thank the anonymous reviewers and our
shepherd, Eric Eide, for their helpful feedback.

References
[1] A Fedora initiative. Fedora Silverblue. https://
silverblue.fedoraproject.org.

[2] Atul Adya, William J. Bolosky, Miguel Castro, Ger-
ald Cermak, Ronnie Chaiken, John R. Douceur, Jon
Howell, Jacob R. Lorch, Marvin Theimer, and Roger P.
Wattenhofer. FARSITE: Federated, available, and reli-
able storage for an incompletely trusted environment.
In Proceedings of the 5th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
Boston, MA, December 2002.

[3] Hussain M. J. Almohri, Layne T. Watson, and David
Evans. Misery digraphs: Delaying intrusion attacks
in obscure clouds. IEEE Transactions on Information
Forensics and Security, 13(6):1361–1375, 2017.

[4] Eduardo Alvarenga, Jan R. Brands, Peter Doliwa, Jerry
den Hartog, Erik Kraft, Marcel Medwed, Ventzislav
Nikov, Joost Renes, Martin Rosso, Tobias Schneider,
and Nikita Veshchikov. Cyber resilience for the In-
ternet of Things: Implementations with resilience en-
gines and attack classifications. IEEE Transactions on
Emerging Topics in Computing, 2022.

[5] Android Open Source Project. A/B (seamless) system
updates. https://source.android.com/devices/

tech/ota/ab.

[6] Android Open Source Project. Implementing dm-
verity. https://source.android.com/security/

verifiedboot/dm-verity.

[7] Android Open Source Project. Overview of Virtual
A/B. https://source.android.com/devices/tech/
ota/virtual_ab.

[8] Android Open Source Project. Verified Boot. https:
//source.android.com/security/verifiedboot.

[9] Apple. Apple T2 security chip: Security overview,
2018. https://www.apple.com/mideast/mac/docs/
Apple_T2_Security_Chip_Overview.pdf.

[10] Apple Support. About the read-only system volume
in macOS Catalina. https://support.apple.com/en-
us/HT210650.

[11] Apple Support. System integrity protection. https:
//support.apple.com/guide/security/system-

integrity-protection-secb7ea06b49/1/web/1.

[12] Atakan Aral and Ivona Brandic. Dependency mining
for service resilience at the edge. In Proceedings of the
3rd IEEE/ACM Symposium on Edge Computing (SEC),
pages 228–242, 2018.

[13] William A. Arbaugh, David J. Farber, and Jonathan M.
Smith. A secure and reliable bootstrap architecture.
In Proceedings of the 18th IEEE Symposium on Secu-
rity and Privacy (Oakland), Oakland, CA, May 1997.
IEEE.

[14] Anish Athalye, Adam Belay, M. Frans Kaashoek,
Robert Morris, and Nickolai Zeldovich. Notary: A
device for secure transaction approval. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP), Ontario, Canada, October 2019.

[15] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen,
Rohan Bhutkar, Guruprasad Ganesh, Jia Ma, and
Wenbo Shen. Hypervision across worlds: Real-time
kernel protection from the Arm TrustZone secure
world. In Proceedings of the 21st ACM Conference
on Computer and Communications Security (CCS),
Scottsdale, Arizona, November 2014.

[16] Stefano Babic. Software management on embed-
ded systems. https://sbabic.github.io/swupdate/
overview.html.

[17] Yechan Bae, Sarbartha Banerjee, Sangho Lee, and Mar-
cus Peinado. Spacelord: Private and secure smart space
sharing. In Proceedings of the Annual Computer Secu-
rity Applications Conference (ACSAC), 2022.

[18] Adrian Baldwin, Tristan Caulfield, Marius-Constantin
Ilau, and David Pym. Modelling organizational recov-
ery. In Proceedings of the International Conference on
Simulation Tools and Techniques (SIMUtools), 2021.

[19] Andrew Baumann, Gernot Heiser, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, Robert W. Wisniewski,
and Jeremy Kerr. Providing dynamic update in an
operating system. In Proceedings of the 2005 USENIX
Annual Technical Conference (ATC), General Track,
pages 279–291, 2005.

[20] Nick Black. Dynamic iSCSI at scale: Remote paging
at Google, 2015. Linux Plumbers Conference.

[21] Tony Bourke. Server Load Balancing. " O’Reilly
Media, Inc.", 2001.

[22] P. T. Breuer. The network block device, 2000. https:
//www.linuxjournal.com/article/3778.

[23] Neil Brown. Overlay filesystem. https://

www.kernel.org/doc/Documentation/filesystems/

overlayfs.txt.

[24] Kevin R. B. Butler, Stephen McLaughlin, and
Patrick D. McDaniel. Rootkit-resistant disks. In Pro-
ceedings of the 15th ACM Conference on Computer
and Communications Security (CCS), Alexandria, VA,
October 2008.

https://silverblue.fedoraproject.org
https://silverblue.fedoraproject.org
https://source.android.com/devices/tech/ota/ab
https://source.android.com/devices/tech/ota/ab
https://source.android.com/security/verifiedboot/dm-verity
https://source.android.com/security/verifiedboot/dm-verity
https://source.android.com/devices/tech/ota/virtual_ab
https://source.android.com/devices/tech/ota/virtual_ab
https://source.android.com/security/verifiedboot
https://source.android.com/security/verifiedboot
https://www.apple.com/mideast/mac/docs/Apple_T2_Security_Chip_Overview.pdf
https://www.apple.com/mideast/mac/docs/Apple_T2_Security_Chip_Overview.pdf
https://support.apple.com/en-us/HT210650
https://support.apple.com/en-us/HT210650
https://support.apple.com/guide/security/system-integrity-protection-secb7ea06b49/1/web/1
https://support.apple.com/guide/security/system-integrity-protection-secb7ea06b49/1/web/1
https://support.apple.com/guide/security/system-integrity-protection-secb7ea06b49/1/web/1
https://sbabic.github.io/swupdate/overview.html
https://sbabic.github.io/swupdate/overview.html
https://www.linuxjournal.com/article/3778
https://www.linuxjournal.com/article/3778
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

[25] Canonical Ltd. Ubuntu Core. https://ubuntu.com/
core.

[26] Ramesh Chandra, Nickolai Zeldovich, Constantine Sa-
puntzakis, and Monica S. Lam. The Collective: A
cache-based system management architecture. In Pro-
ceedings of the 2nd USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Boston,
MA, May 2005.

[27] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia,
Chenfu Bao, and Tao Wei. Adaptive Android kernel
live patching. In Proceedings of the 26th USENIX Secu-
rity Symposium (Security), Vancouver, Canada, August
2017.

[28] David Clerc, Luis Garcés-Erice, and Sean Rooney. OS
streaming deployment. In Proceedings of the Interna-
tional Performance Computing and Communications
Conference (IPCCC), 2010.

[29] Eric Cole. Advanced Persistent Threat: Understanding
the Danger and How to Protect Your Organization.
Newnes, 2012.

[30] coreboot. coreboot. https://coreboot.org.

[31] Landon P Cox, Christopher D Murray, and Brian D
Noble. Pastiche: Making backup cheap and easy. In
Proceedings of the 5th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
Boston, MA, December 2002.

[32] Debian Manpages. nbd-client. https:

//manpages.debian.org/testing/nbd-client/

nbd-client.8.en.html.

[33] Debian Wiki. ReadonlyRoot. https:

//wiki.debian.org/ReadonlyRoot.

[34] Matthew Endsley. bsdiff/bspatch. https://

github.com/mendsley/bsdiff.

[35] Christian Engelmann, Hong Ong, and Stephen L. Scott.
Evaluating the shared root file system approach for
diskless high-performance computing systems. In
Proceedings of the 10th LCI International Conference
on High-Performance Clustered Computing (HPCC),
2009.

[36] Fedora Docs. Fedora CoreOS. https://

docs.fedoraproject.org/en-US/fedora-coreos/.

[37] Fedora Docs. Fedora Internet of Things. https://
docs.fedoraproject.org/en-US/iot/.

[38] Tim Fisher. What is the Windows Boot Manager
(BOOTMGR)?, 2020. https://www.lifewire.com/
windows-boot-manager-bootmgr-2625813.

[39] Flatcar Project Contributors. Flatcar Container Linux.
https://www.flatcar.org.

[40] Jessie Frazelle. Opening up the baseboard management
controller. Communications of the ACM, 63(2):38–40,
2020.

[41] Free Software Foundation (FSF). GNU GRUB - GNU
project. https://www.gnu.org/software/grub/.

[42] Luis Garces-Erice and Sean Rooney. Scaling OS
streaming through minimizing cache redundancy. In
Proceedings of the 31st International Conference on
Distributed Computing Systems Workshops (ICDCSW),
2011.

[43] Luis Garcés-Erice and Sean Rooney. Secure lazy provi-
sioning of virtual desktops to a portable storage device.
In Proceedings of the 6th International Workshop on
Virtualization Technologies in Distributed Computing
Date (VTDC), 2012.

[44] Tal Garfinkel and Mendel Rosenblum. A virtual ma-
chine introspection based architecture for intrusion de-
tection. In Proceedings of the 10th Annual Network
and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2003.

[45] Google Cloud. Container-Optimized OS from
Google documentation. https://cloud.google.com/
container-optimized-os/docs.

[46] Google Cloud. Security overview Container-
Optimized OS. https://cloud.google.com/

container-optimized-os/docs/concepts/

security.

[47] Vivek Goyal. kexec: A new system call to allow in
kernel loading, 2014. https://lwn.net/Articles/
582711/.

[48] Riccardo Gusella. The analysis of diskless workstation
traffic on an Ethernet. Technical report, CALIFOR-
NIA UNIV BERKELEY COMPUTER SYSTEMS RE-
SEARCH GROUP, 1987.

[49] HP. The netperf homepage. https:

//hewlettpackard.github.io/netperf/.

[50] HP. HP Sure Recover whitepaper, 2021.
https://www8.hp.com/h20195/v2/GetPDF.aspx/

4AA7-4556ENW.pdf.

[51] Manuel Huber, Stefan Hristozov, Simon Ott, Vasil
Sarafov, and Marcus Peinado. The lazarus effect: Heal-
ing compromised devices in the internet of small things.
In Proceedings of the 15th ACM Symposium on In-
formation, Computer and Communications Security
(ASIACCS), Taipei, Taiwan, October 2020.

https://ubuntu.com/core
https://ubuntu.com/core
https://coreboot.org
https://manpages.debian.org/testing/nbd-client/nbd-client.8.en.html
https://manpages.debian.org/testing/nbd-client/nbd-client.8.en.html
https://manpages.debian.org/testing/nbd-client/nbd-client.8.en.html
https://wiki.debian.org/ReadonlyRoot
https://wiki.debian.org/ReadonlyRoot
https://github.com/mendsley/bsdiff
https://github.com/mendsley/bsdiff
https://docs.fedoraproject.org/en-US/fedora-coreos/
https://docs.fedoraproject.org/en-US/fedora-coreos/
https://docs.fedoraproject.org/en-US/iot/
https://docs.fedoraproject.org/en-US/iot/
https://www.lifewire.com/windows-boot-manager-bootmgr-2625813
https://www.lifewire.com/windows-boot-manager-bootmgr-2625813
https://www.flatcar.org
https://www.gnu.org/software/grub/
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs/concepts/security
https://cloud.google.com/container-optimized-os/docs/concepts/security
https://cloud.google.com/container-optimized-os/docs/concepts/security
https://lwn.net/Articles/582711/
https://lwn.net/Articles/582711/
https://hewlettpackard.github.io/netperf/
https://hewlettpackard.github.io/netperf/
https://www8.hp.com/h20195/v2/GetPDF.aspx/4AA7-4556ENW.pdf
https://www8.hp.com/h20195/v2/GetPDF.aspx/4AA7-4556ENW.pdf

[52] Trammell Hudson. safeboot. https://safeboot.dev.

[53] IBM. What is destructive malware?, 2019. https:
//www.ibm.com/downloads/cas/XZGZLRVD.

[54] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Gene
Tsudik. HEALED: Healing & attestation for low-end
embedded devices. In Proceedings of the International
Conference on Financial Cryptography and Data Se-
curity (FC), 2019.

[55] Intel Corporation. Preboot Execution Environment
(PXE) Specification Version 2.1, 1999.

[56] iPXE. iPXE - open source boot firmware. http://
ipxe.org.

[57] Genya Ishigaki, Siddartha Devic, Riti Gour, and Ja-
son P Jue. DeepPR: Progressive recovery for inter-
dependent VNFs with deep reinforcement learning.
IEEE Journal on Selected Areas in Communications,
38(10):2386–2399, 2020.

[58] Jeremy Cowan, Sai Charan Teja Gopaluni, and
Vijay K Sikha. Security features of Bottlerocket,
an open source Linux-based operating system,
2021. https://aws.amazon.com/blogs/opensource/
security-features-of-bottlerocket-an-open-

source-linux-based-operating-system/.

[59] Wu Jiaxin, Fu Siyuan, and Brian Richardson. Getting
started with UEFI HTTPS boot on EDK II. https:
//laurie0131.gitbooks.io/getting-started-

with-uefi-https-boot-on-edk-ii/content/.

[60] Richard W. M. Jones. nbdkit. https://gitlab.com/
nbdkit/nbdkit.

[61] Samuel Karp. Bottlerocket: A special-
purpose container operating system, 2020.
https://aws.amazon.com/blogs/containers/

bottlerocket-a-special-purpose-container-

operating-system/.

[62] Dmitry Kasatkin, David Safford, and Mimi Zohar. In-
tegrity measurement architecture (IMA) wiki. https:
//sourceforge.net/p/linux-ima/wiki/Home/.

[63] Sanidhya Kashyap, Changwoo Min, Byoungyoung
Lee, Taesoo Kim, and Pavel Emelyanov. Instant OS up-
dates via userspace checkpoint-and-restart. In Proceed-
ings of the 2016 USENIX Annual Technical Conference
(ATC), Denver, CO, June 2016.

[64] Aaron Kili. systemd-analyze – find system
boot-up performance statistics in Linux, 2018.
https://www.tecmint.com/systemd-analyze-

monitor-linux-bootup-performance/.

[65] Jan Kneschke. lighttpd. https://www.lighttpd.net.

[66] Xeno Kovah and Corely Kallenberg. Advanced
x86: BIOS and system management mode internals
SPI flash protection mechanisms, 2014. http://

opensecuritytraining.info/IntroBIOS.html.

[67] Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki.
Bimodal content defined chunking for backup streams.
In Proceedings of the 8th USENIX Conference on File
and Storage Technologies (FAST), San Jose, CA, Febru-
ary 2010.

[68] Eva-Katharina Kunst and Jürgen Quade. Linux
control over secure boot, 2018. https:

//www.linux-magazine.com/Issues/2018/206/

Linux-Secure-Boot-with-Shim.

[69] Hojoon Lee, Hyungon Moon, Daehee Jang, Ki-
hwan Kim, Jihoon Lee, Yunheung Paek, and
Brent ByungHoon Kang. Ki-Mon: A hardware-
assisted event-triggered monitoring platform for
mutable kernel object. In Proceedings of the 22th
USENIX Security Symposium (Security), Washington,
DC, August 2013.

[70] Joshua MacDonald. Xdelta. https://github.com/
jmacd/xdelta.

[71] Larry McVoy and Carl Staelin. lmbench: Portable tools
for performance analysis. In Proceedings of the 1996
USENIX Annual Technical Conference (ATC), January
1996.

[72] Ralph C Merkle. Protocols for public key cryptosys-
tems. In Proceedings of the 1980 IEEE Symposium on
Security and Privacy (Oakland), Oakland, CA, April
1980.

[73] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur
Mutlu. A large-scale study of flash memory failures in
the field. In Proceedings of the ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling
of Computer Systems, 2015.

[74] Microsoft Docs. State separation and isolation.
https://docs.microsoft.com/en-us/hololens/

security-state-separation-isolation.

[75] Microsoft Docs. Windows recovery environment
(Windows RE), 2017. https://docs.microsoft.com/
en-us/windows-hardware/manufacture/desktop/

windows-recovery-environment--windows-re-

-technical-reference.

[76] Microsoft Docs. Kernel soft reboot in Azure Stack HCI,
2021. https://docs.microsoft.com/en-us/azure-
stack/hci/manage/kernel-soft-reboot.

https://safeboot.dev
https://www.ibm.com/downloads/cas/XZGZLRVD
https://www.ibm.com/downloads/cas/XZGZLRVD
http://ipxe.org
http://ipxe.org
https://aws.amazon.com/blogs/opensource/security-features-of-bottlerocket-an-open-source-linux-based-operating-system/
https://aws.amazon.com/blogs/opensource/security-features-of-bottlerocket-an-open-source-linux-based-operating-system/
https://aws.amazon.com/blogs/opensource/security-features-of-bottlerocket-an-open-source-linux-based-operating-system/
https://laurie0131.gitbooks.io/getting-started-with-uefi-https-boot-on-edk-ii/content/
https://laurie0131.gitbooks.io/getting-started-with-uefi-https-boot-on-edk-ii/content/
https://laurie0131.gitbooks.io/getting-started-with-uefi-https-boot-on-edk-ii/content/
https://gitlab.com/nbdkit/nbdkit
https://gitlab.com/nbdkit/nbdkit
https://aws.amazon.com/blogs/containers/bottlerocket-a-special-purpose-container-operating-system/
https://aws.amazon.com/blogs/containers/bottlerocket-a-special-purpose-container-operating-system/
https://aws.amazon.com/blogs/containers/bottlerocket-a-special-purpose-container-operating-system/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://www.tecmint.com/systemd-analyze-monitor-linux-bootup-performance/
https://www.tecmint.com/systemd-analyze-monitor-linux-bootup-performance/
https://www.lighttpd.net
http://opensecuritytraining.info/IntroBIOS.html
http://opensecuritytraining.info/IntroBIOS.html
https://www.linux-magazine.com/Issues/2018/206/Linux-Secure-Boot-with-Shim
https://www.linux-magazine.com/Issues/2018/206/Linux-Secure-Boot-with-Shim
https://www.linux-magazine.com/Issues/2018/206/Linux-Secure-Boot-with-Shim
https://github.com/jmacd/xdelta
https://github.com/jmacd/xdelta
https://docs.microsoft.com/en-us/hololens/security-state-separation-isolation
https://docs.microsoft.com/en-us/hololens/security-state-separation-isolation
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-recovery-environment--windows-re--technical-reference
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-recovery-environment--windows-re--technical-reference
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-recovery-environment--windows-re--technical-reference
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-recovery-environment--windows-re--technical-reference
https://docs.microsoft.com/en-us/azure-stack/hci/manage/kernel-soft-reboot
https://docs.microsoft.com/en-us/azure-stack/hci/manage/kernel-soft-reboot

[77] Microsoft Threat Intelligence Center. Destruc-
tive malware targeting Ukrainian organizations,
2022. https://www.microsoft.com/security/blog/
2022/01/15/destructive-malware-targeting-

ukrainian-organizations/.

[78] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim,
Yunheung Paek, and Brent Byunghoon Kang. Vigilare:
Toward snoop-based kernel integrity monitor. In Pro-
ceedings of the 19th ACM Conference on Computer
and Communications Security (CCS), Raleigh, NC, Oc-
tober 2012.

[79] Amin Mosayyebzadeh, Apoorve Mohan, Sahil Tikale,
Mania Abdi, Nabil Schear, Charles Munson, Tram-
mell Hudson, Larry Rudolph, Gene Cooperman, Peter
Desnoyers, and Orran Krieger. Supporting security sen-
sitive tenants in a bare-metal cloud. In Proceedings of
the 2019 USENIX Annual Technical Conference (ATC),
Renton, WA, July 2019.

[80] Athicha Muthitacharoen, Benjie Chen, and David
Mazieres. A low-bandwidth network file system. In
Proceedings of the 18th ACM Symposium on Operat-
ing Systems Principles (SOSP), Chateau Lake Louise,
Banff, Canada, October 2001.

[81] Ramin Nafisi. FoggyWeb: Targeted NOBELIUM
malware leads to persistent backdoor, 2021.
https://www.microsoft.com/security/blog/2021/

09/27/foggyweb-targeted-nobelium-malware-

leads-to-persistent-backdoor/.

[82] National Cybersecurity and Communications
Integration Center. Destructive malware, 2017.
https://www.cisa.gov/uscert/sites/default/

files/documents/Destructive_Malware_White_

Paper_S508C.pdf.

[83] NixOS contributors. Nix: Reproducible builds and
deployments. https://nixos.org.

[84] Shadi A Noghabi, Landon Cox, Sharad Agarwal, and
Ganesh Ananthanarayanan. The emerging landscape
of edge computing. GetMobile: Mobile Computing
and Communications, 23(4):11–20, 2020.

[85] Yushi Omote, Takahiro Shinagawa, and Kazuhiko Kato.
Improving agility and elasticity in bare-metal clouds.
In Proceedings of the 20th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), Istanbul,
Turkey, March 2015.

[86] openSUSE contributors. openSUSE MicroOS. https:
//microos.opensuse.org.

[87] Perception Point. Technical analysis of CVE-2022-
22583: Bypassing macOS system integrity protection
(SIP), 2022. https://perception-point.io/

technical-analysis-of-cve-2022-22583-

bypassing-macos-system-integrity-protection/.

[88] Nick L Petroni Jr, Timothy Fraser, Jesus Molina, and
William A Arbaugh. Copilot-a coprocessor-based
kernel runtime integrity monitor. In Proceedings of
the 13rd USENIX Security Symposium (Security), San
Diego, CA, August 2004.

[89] Phoronix Media. Phoronix Test Suite - Linux testing
& benchmarking platform, automated testing, open-
source benchmarking. https://www.phoronix-test-
suite.com.

[90] Josh Poimboeuf. Introducing kpatch: Dynamic kernel
patching, 2014. https://www.redhat.com/en/blog/
introducing-kpatch-dynamic-kernel-patching.

[91] Martin Pool. rdiff(1) - Linux man page. https://
linux.die.net/man/1/rdiff.

[92] Mahsa Pourvali, Kaile Liang, Feng Gu, Hao Bai,
Khaled Shaban, Samee Khan, and Nasir Ghani. Pro-
gressive recovery for network virtualization after large-
scale disasters. In Proceedings of the 2016 Inter-
national Conference on Computing, Networking and
Communications (ICNC), 2016.

[93] Red Hat. Fedora Cloud. https://

alt.fedoraproject.org/cloud/.

[94] Red Hat Customer Portal. 32.2. Anaconda
rescue mode Red Hat Enterprise Linux 7.
https://access.redhat.com/documentation/

en-us/red_hat_enterprise_linux/7/html/

installation_guide/sect-rescue-mode.

[95] Red Hat Customer Portal. Appendix A. The
Device Mapper Red Hat Enterprise Linux 7.
https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/logical_

volume_manager_administration/device_mapper.

[96] Red Hat Software. Red Hat Enterprise Linux Atomic
Host: A platform optimized for Linux containers.

[97] Paul Riddle. Automated upgrades in a lab environ-
ment. In Proceedings of the 8th USENIX Symposium
on Large Installation System Administration Confer-
ence (LISA), 1994.

[98] Jonas Röckl, Mykolai Protsenko, Monika Huber, Tilo
Müller, and Felix C Freiling. Advanced system re-
siliency based on virtualization techniques for IoT de-
vices. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2021.

https://www.microsoft.com/security/blog/2022/01/15/destructive-malware-targeting-ukrainian-organizations/
https://www.microsoft.com/security/blog/2022/01/15/destructive-malware-targeting-ukrainian-organizations/
https://www.microsoft.com/security/blog/2022/01/15/destructive-malware-targeting-ukrainian-organizations/
https://www.microsoft.com/security/blog/2021/09/27/foggyweb-targeted-nobelium-malware-leads-to-persistent-backdoor/
https://www.microsoft.com/security/blog/2021/09/27/foggyweb-targeted-nobelium-malware-leads-to-persistent-backdoor/
https://www.microsoft.com/security/blog/2021/09/27/foggyweb-targeted-nobelium-malware-leads-to-persistent-backdoor/
https://www.cisa.gov/uscert/sites/default/files/documents/Destructive_Malware_White_Paper_S508C.pdf
https://www.cisa.gov/uscert/sites/default/files/documents/Destructive_Malware_White_Paper_S508C.pdf
https://www.cisa.gov/uscert/sites/default/files/documents/Destructive_Malware_White_Paper_S508C.pdf
https://nixos.org
https://microos.opensuse.org
https://microos.opensuse.org
https://perception-point.io/technical-analysis-of-cve-2022-22583-bypassing-macos-system-integrity-protection/
https://perception-point.io/technical-analysis-of-cve-2022-22583-bypassing-macos-system-integrity-protection/
https://perception-point.io/technical-analysis-of-cve-2022-22583-bypassing-macos-system-integrity-protection/
https://www.phoronix-test-suite.com
https://www.phoronix-test-suite.com
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://linux.die.net/man/1/rdiff
https://linux.die.net/man/1/rdiff
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-rescue-mode
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-rescue-mode
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-rescue-mode
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/logical_volume_manager_administration/device_mapper
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/logical_volume_manager_administration/device_mapper
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/logical_volume_manager_administration/device_mapper

[99] Mark Russinovich, Naga Govindaraju, Melur Raghura-
man, David Hepkin, Jamie Schwartz, and Arun Kishan.
Virtual machine preserving host updates for zero day
patching in public cloud. In Proceedings of the 16th
European Conference on Computer Systems (EuroSys),
Virtual, April 2021.

[100] Constantine P. Sapuntzakis, Ramesh Chandra, Ben
Pfaff, Jim Chow, Monica S. Lam, and Mendel Rosen-
blum. Optimizing the migration of virtual computers.
In Proceedings of the 5th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
Boston, MA, December 2002.

[101] Mahadev Satyanarayanan, James J. Kistler, Puneet Ku-
mar, Maria E. Okasaki, Ellen H. Siegel, and David C.
Steere. Coda: A highly available file system for a dis-
tributed workstation environment. IEEE Transactions
on Computers, 39(4):447–459, 1990.

[102] Uday Savagaonkar, Nelly Porter, Nadim Taha,
Benjamin Serebrin, and Neal Mueller. Ti-
tan in depth: Security in plaintext, 2017.
https://cloud.google.com/blog/products/gcp/

titan-in-depth-security-in-plaintext.

[103] Bianca Schroeder, Raghav Lagisetty, and Arif Mer-
chant. Flash reliability in production: The expected and
the unexpected. In Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST),
Santa Clara, CA, February 2016.

[104] Quentin Schulz and Mylène Josserand. Secure boot
from A to Z, 2018. Embedded Linux Conference.

[105] Sidero Labs, Inc. Talos Linux. https://

www.talos.dev.

[106] K Sollins. The TFTP protocol (revision 2). Technical
report, STD 33, RFC 1350, MIT, 1992.

[107] Daniel Stenberg. curl. https://curl.se.

[108] Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and
Mohammad Mannan. Reboot-oriented IoT: Life cy-
cle management in trusted execution environment for
disposable IoT devices. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC),
2020.

[109] The kernel development community. A block layer
cache (bcache). https://www.kernel.org/doc/html/
latest/admin-guide/bcache.html.

[110] The kernel development community. dm-cache.
https://www.kernel.org/doc/html/latest/admin-

guide/device-mapper/cache.html.

[111] The kernel development community. dm-clone.
https://www.kernel.org/doc/html/latest/admin-

guide/device-mapper/dm-clone.html.

[112] The kernel development community. dm-verity.
https://www.kernel.org/doc/html/latest/admin-

guide/device-mapper/verity.html.

[113] The kernel development community. fs-verity:
read-only file-based authenticity protection.
https://www.kernel.org/doc/html/latest/

filesystems/fsverity.html.

[114] The kernel development community. kcopyd.
https://www.kernel.org/doc/html/latest/admin-

guide/device-mapper/kcopyd.html.

[115] The OpenSSL Project Authors. OpenSSL – cryptogra-
phy and SSL/TLS toolkit. https://openssl.org.

[116] The Tukaani Project. XZ Utils. https://

tukaani.org/xz/.

[117] Josh Triplett. Chrome OS internals, 2014. LinuxCon
Europe.

[118] Trusted Computing Group. TPM 2.0 Authenticated
Countdown Timer (ACT) Command, 2019.

[119] Trusted Computing Group. Trusted Platform Module
Library - Part 1: Architecture, 2019.

[120] Ubuntu documentation. LiveCdRecovery. https://
help.ubuntu.com/community/LiveCdRecovery.

[121] UEFI Forum. Unified Extensible Firmware Interface
(UEFI) specification, version 2.9, 2021.

[122] Kushagra Vaid. Microsoft creates industry stan-
dards for datacenter hardware storage and security,
2018. https://azure.microsoft.com/en-us/blog/
microsoft-creates-industry-standards-for-

datacenter-hardware-storage-and-security/.

[123] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A scalable,
high-performance distributed file system. In Proceed-
ings of the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), Seattle, WA,
November 2006.

[124] Richard Wilkins and Brian Richardson. UEFI secure
boot in modern computer security solutions, 2013.

[125] Meng Xu, Manuel Huber, Zhichuang Sun, Paul Eng-
land, Marcus Peinado, Sangho Lee, Andrey Marochko,
Dennis Matoon, Rob Spiger, and Stefan Thom. Dom-
inance as a new trusted computing primitive for the
Internet of Things. In Proceedings of the 40th IEEE

https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://www.talos.dev
https://www.talos.dev
https://curl.se
https://www.kernel.org/doc/html/latest/admin-guide/bcache.html
https://www.kernel.org/doc/html/latest/admin-guide/bcache.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/cache.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/cache.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-clone.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-clone.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/kcopyd.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/kcopyd.html
https://openssl.org
https://tukaani.org/xz/
https://tukaani.org/xz/
https://help.ubuntu.com/community/LiveCdRecovery
https://help.ubuntu.com/community/LiveCdRecovery
https://azure.microsoft.com/en-us/blog/microsoft-creates-industry-standards-for-datacenter-hardware-storage-and-security/
https://azure.microsoft.com/en-us/blog/microsoft-creates-industry-standards-for-datacenter-hardware-storage-and-security/
https://azure.microsoft.com/en-us/blog/microsoft-creates-industry-standards-for-datacenter-hardware-storage-and-security/

Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[126] Ron Yorston. Keeping filesystem images sparse.
https://frippery.org/uml/.

[127] Anthony Yznaga. PKRAM: Preserved-over-Kexec
RAM. https://lwn.net/Articles/851192/.

[128] Fengwei Zhang, Kevin Leach, Kun Sun, and Ange-
los Stavrou. SPECTRE: A dependable introspection
framework via System Management Mode. In Proceed-
ings of the 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
2013.

[129] Yangming Zhao, Mohammed Pithapur, and Chunming
Qiao. On progressive recovery in interdependent cyber
physical systems. In Proceedings of the 2016 IEEE
Global Communications Conference (GLOBECOM),
2016.

[130] Lei Zhou, Fengwei Zhang, Jinghui Liao, Zhengyu
Ning, Jidong Xiao, Kevin Leach, Westley Weimer, and
Guojun Wang. KShot: Live kernel patching with
SMM and SGX. In Proceedings of the 50th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2020.

A Merkle Hash Tree

hroot = H(h1,0||h1,1)

h1,0 = H(h0,0||h0,1)

h0,0 = H(b0)

b0

h0,1 = H(b1)

b1

h1,1 = H(h0,2||h0,3)

h0,2 = H(b2)

b2

h0,3 = H(b3)

b3

Figure 11: Merkle hash tree

A Merkle hash tree [72] is a method to efficiently and
securely verify whether any part of data is corrupt. It is con-
structed by recursively computing hashes over data and their
hashes (Figure 11). Its root hash summarizes the entire data.
Thus, we only need to ensure the root hash’s authenticity and
integrity (i.e., sign it) to verify data and node hashes. For
example, to verify a data block b′1, we compute h′0,1 = H(b′1),
h′1,0 = H(h0,0||h′0,1), and h′root = H(h′1,0||h1,1) with leaf and
internal node hashes h0,0 and h1,1—which have been verified
in the same manner—and compare h′root with signed hroot.

B Delta Update
The detailed procedure of the delta update is below. First, we
compute an rdiff signature which is a structured summary
of a base file (i.e., a corrupt system partition) to compute
delta. In our APRON device, it takes ∼21 s to compute an

rdiff signature over the system partition regardless of how
many portions of it are corrupt. The signature size is 181 MiB
without compression. Once we compress it with gzip, it be-
comes between 72 MiB (1% corruption) and 0.5 MiB (100%
corruption). Next, we upload the compressed signature to
the server, decompress it, and compute the delta between the
signature and the valid system image. The delta computation
takes 55–273 s and the size of the delta is between 91 MiB
and 4.1 GiB (between 31 MiB and 1.6 GiB after compression).
Both depend on how many portions of the system partition are
corrupt. We only use the Azure VM for this delta computation
to ignore the CPU performance difference between the two
servers. Finally, we download the compressed delta—which
take 1–16 s (high throughput) and 9–135 s (low throughput),
decompress it, and patch the system partition with it. Patching
itself takes ∼12 s regardless of the number of corrupt blocks.

https://frippery.org/uml/
https://lwn.net/Articles/851192/

	Introduction
	Background and Motivation
	Secure Boot and Recovery
	Image-based System Management
	Motivation and Goal

	Threat Model and Assumption
	Design
	Initialization
	On-Demand Renovation
	Background Prefetcher
	Deduplication
	Server and Client
	First-Stage Recovery and Update

	Implementation
	Evaluation
	Setup
	System Downtime (RQ1)
	Runtime Overhead (RQ2)
	Network Usage (RQ3)
	Complete Renovation Time (RQ4)
	Miscellaneous

	Security Analysis
	Discussion
	Related Work
	Conclusion
	Merkle Hash Tree
	Delta Update

