arXiv:2304.07850v1 [cs.DC] 16 Apr 2023

Trees and Turtles: Modular Abstractions for State
Machine Replication Protocols

Natalie Neamtu
Microsoft Corporation
Redmond, WA, USA
nan55@cornell.edu

Abstract

We present two abstractions for designing modular state ma-
chine replication (SMR) protocols: trees and turtles. A tree
captures the set of possible state machine histories, while a
turtle represents a subprotocol that tries to find agreement
in this tree. We showcase the applicability of these abstrac-
tions by constructing crash-tolerant SMR protocols out of
abstract tree turtles and providing examples of tree turtle
implementations. The modularity of tree turtles allows a
generic approach for adding a leader for liveness. We expect
that these abstractions will simplify reasoning and formal
verification of SMR protocols as well as facilitate innovation
in protocol designs.

1 Introduction

State machine replication (SMR) is a widely-used paradigm
in distributed and decentralized services, wherein a set of
processors provides an abstraction of a single state machine
with an ever-growing history [12]. In the face of possible
processor failures and unbounded communication delays,
the challenge lies in ensuring that nodes always agree on
the history while allowing updates to be made in as timely
a manner as possible.

Traditional SMR protocols are usually constructed around
the notion of an unbounded sequence of slots. The goal of
such a protocol is to fill the slots with values. A typical pro-
tocol consists of an unbounded series of rounds where the
contents of at most one slot may be decided in a round. Some
protocols are only able to fill a single slot (i.e., [1, 5]), thus
an unbounded number of instances of the protocol must
be used to implement SMR. Higher throughput is achieved
by running multiple instances in parallel, either indepen-
dently [4, 9] or in a pipelined fashion [8, 13], or by putting
a batch of values in each slot.

We present here two abstractions that break this slot-by-
slot paradigm: trees and turtles. Referring to a sequence of
values as a chain, the set of such chains forms a tree under
the is-a-prefix-of relation. As was proposed in [10], we gen-
eralize the slot-based scheme for constructing SMR proto-
cols to allow entire chains to be decided at once, extending
the state machine history down a path through the tree. We
then generalize the notion of a round to an abstract subpro-
tocol which can be used to decide one chain. We refer to

Haobin Ni
Cornell University
Ithaca, NY, USA
haobin@cs.cornell.edu

Robbert van Renesse
Cornell University
Ithaca, NY, USA
rvr@cs.cornell.edu

such protocols as turtles because they are stacked in infini-
tum to construct an SMR protocol. Taken together, the result
is protocols called tree turtles.

Using chains requires our subprotocols to form a consen-
sus out of a set with richer algebraic structures than the
traditional set of singlar values. In this case, the algebraic
structure we use is the meet-semilattice formed by the an-
cestor relation between the nodes of the tree as the partial
order and the lowest common ancestor of a set of nodes as
the meet operator. This structure is utilized in the tree turtle
protocols and their proofs of correctness that we present in
this paper.

We expect that our abstractions can lead to various advan-
tages over traditional SMR approaches. Proposing chains
allows processors to specify preferred orderings of values
in the state machine history. Reasoning about SMR proto-
cols is made simpler with tree turtles because the never-
terminating execution is factored out; this can lead to more
reusable proofs in both an informal an formal setting. Tree
turtles themselves have simple proofs when compared to
existing SMR protocols. The modularity of tree turtles also
enables the design of heterogeneous protocols that dynam-
ically adapt to their workloads or operating conditions.

For liveness, we show how to compose our turtle abstrac-
tion with a leader which attempts to eliminate contention
between processors. Different from traditional approaches,
our protocol does not require a non-faulty leader to make
progress under favorable conditions.

2 Trees and Turtles

Put simply, the goal of SMR is to allow a set of processors
agree on an ever-growing sequence of values in a fault-tolerant
manner. Rather than focusing on the individual values in a
sequence, we will consider how an agreement can be formed
on an entire sequence, or a chain, at once. Doing so utilizes
the tree structure present in sets of chains.

Consider a processor p that believes the state machine
history is represented by a chain c. If another processor p’
believes the state machine is represented by a different chain
¢’, then p and p’ should be able to agree on a common his-
tory. Beyond the simplest case where ¢ = ¢’, consider whether
one chain is a prefix of the other. If this is the case, the pro-
cessor who proposed the shorter chain could later “catch up"

http://arxiv.org/abs/2304.07850v1

PaPoC’23, May 8, 2023, Rome, Italy

u/c1
d/ ¥c2
\63

Figure 1. llustrating the tree structure formed by trees and
the is-a-prefix-of relation. Chain u is the longest common
prefix of chains c¢; and ca. Chain d is the longest common
prefix of chains ¢y, c2, and c3.

by extending its chain to the longer chain, without needing
to modify the earlier state machine history.

If p and p’ attempt to establish agreement on an exten-
sion of the state machine history by proposing chains ¢ and
¢’ to each other, then we could consider that p and p’ agree
on the longest common prefix of ¢ and ¢’. This is the (possi-
bly empty) longest identical subsequence that can be found
starting from the beginning of each chain. The longest com-
mon prefix can readily be generalized to any number of
chains; Figure 1 depicts a tree formed by three chains where
the longest common prefixes are ancestor nodes.

Trees!, then, can be viewed as fundamental to state ma-
chine replication: processors continually propose new chains
to each other in order to keep extending the longest agreed-
upon path through the tree. Table 1 summarizes the nota-
tion which we will use for chains in this paper.

Table 1. Summary of notation for chains.

L the empty chain
c < ¢’ | cisa prefix of ¢’ (or, ¢’ is an extension of c)
c=c" | c=c orc’ <c(wesay thatcandc’ agree)
cmc¢’ | the longest common prefix of ¢ and ¢’

Now we will turn our attention to the structure of an SMR

protocol. To perform SMR, processors alternate between propos-

ing new extensions to the longest agreed-upon chain, col-
lecting proposals from other processors, and deciding what
the new longest agreed-upon chain is. This process repeats
forever to ensure that the longest agreed-upon chain is ever-
growing.

Thus, we may extract a natural building block from this
structure: a subprotocol in which processors propose and
subsequently decide on a single chain. While many subpro-
tocol implementations are possible, we establish a common
specification for the properties they should have. Once we

In addition to being like trees in a loose conceptual sense, chains, taken
with the partial order <, satisfy the set-theoretic definition of a tree. This
is because for each chain c, the set of its prefixes {¢’ | ¢’ < c} is totally
ordered by <. As mentioned in the introduction, it is possible to generalize
trees even further to a semilattice.

Natalie Neamtu, Haobin Ni, and Robbert van Renesse

Proposals made

Tree Turtle 1
Chains decided; Proposals made

Tree Turtle 2

Chains decided; Proposals made

Tree Turtle 3

Figure 2. Tree turtle protocols are stacked to implement a
state machine replication protocol.

have one (or many) such subprotocols, constructing a SMR
protocol is simple: we stack these subprotocols on top of
each other in an unending sequence. Owing to this infinite
repetition, and inspired by the saying “turtles all the way
down,” we refer to our building blocks of SMR protocols as
turtles. Since our protocols combine the ideas of trees and
turtles, we will call them tree turtles (Figure 2).

Tree turtles reduce the problem of solving SMR into mak-
ing a single proposal and decision. The specification for tree
turtles requires them to always terminate (Section 5), while
SMR requires that the protocol goes on forever (Section 4).
The tree turtle implementations are encapsulated from the
correctness of the SMR protocol proved in Section 6 mak-
ing those proofs reusable across implementations. This also
readily demonstrates the potential of heterogeneous SMR
protocols composed from multiple types of tree turtles.

3 System Model

We will denote the set of processors participating in a pro-
tocol as P. Processors can communicate with all other pro-
cessors by sending messages over a network.

Failures. Each processor p can either be correct or faulty.
Faulty processors may fail by crashing, at which point they
may stop executing indefinitely. Which processors are faulty
is not known a priori.

Network. The network is assumed to be reliable in the fol-
lowing sense: if a processor p sends a message to a correct
processor g, then g eventually receives that message. We
also assume that the network doesn’t forge or garble mes-
sages, meaning that if a processor g receives a message from
a processor p, then p actually sent that message.

Asynchrony. We assume that there are no upper bounds
on the difference between processor speeds or network la-
tency. This means that processors are not able to distinguish
between faulty processors and correct processors that are
simply slow or whose messages have yet to be delivered.

Quorums. A processor can never expect to receive a mes-
sage from all other processors due to the possibility that
some have crashed. To address this, a processor instead waits

Trees and Turtles

for a quorum which is a subset of the processors in . A quo-
rum system Q is a set of quorums (Q C 2%) which satisfies
the following:

e We assume that any quorum system Q contains a spe-
cial quorum, which we will denote Q*, that consists
entirely of correct processors.

e We say that a quorum system satisfies k-intersection
if any set of k quorums have at least one processor in
common [7].

Appendix B shows how k—intersecting quorum systems
can be implemented using threshold quorums if |P| > k - f,
where f is the maximum number of faulty processors.

4 State Machine Replication Specification

Below we give the requirements for a SMR protocol, in which
processors in P alternate proposing and deciding chains.

Definition 4.1 (State Machine Replication Specification).

e SMR-Agreement: if a processor p decides chain d and a
processor p’ decides chain d’, thend ~ d’ (evenif p = p’).

e SMR-Validity: if a processor decides chain d, then some
processor proposed a chain ¢ such thatd < c.

® SMR-Relay: if a correct processor decides chain d, then
eventually all correct processors decide d or an extension
of d.

e SMR-Monotonicity: if a processor decides chain d and later
another chain d’, then d < d’.

e SMR-Progress: if a correct processor proposes a chain that
it has not decided before, then that processor eventually
decides a chain it has not decided before.

Note that it is impossible for a protocol to satisfy all prop-
erties if the system is asynchronous [6]. For our tree turtle
protocols in Section 7, we will focus on the first four proper-
ties. We will return to SMR-Progress in Section 8 when we
introduce synchrony assumptions.

5 Tree Turtle Specification

A tree turtle is a fault-tolerant protocol executed by the pro-
cessors in P. Processors construct an input and produce an
output for each tree turtle. An input to a tree turtle is a chain
¢, which we will denote in brackets {c). An output of a tree
turtle is a pair of chains (d, u). Since tree turtles are subpro-
tocols, we do not assume here that all processors—including
non-crashed ones—will execute a given tree turtle. We show
in Section 6 that in our construction, all correct processors
will in fact execute each tree turtle.
A tree turtle must satisfy the following properties:

Definition 5.1 (Tree Turtle Specification).

o Turtle-Termination: if each correct processor constructs
an input, then eventually each correct processor produces
an output.

o Turtle-Agreement: for any two outputs (d, u) and (d’, u’),
d=<u andd <u.

PaPoC’23, May 8, 2023, Rome, Italy

o Turtle-Unanimity: for any chain w, if w < ¢ for all inputs
(c), then w < d for all outputs (d, u).

o Turtle-Validity: if some processor produces an output (d, u),
then some processor must have produced an input (c)
such that u < c.

Turtle-Agreement ensures agreement between any two
outputs of a turtle: note that if both d < u and d’ < u, then
either d < d’ or d’ < d. Further, the case where (d,u) =
(d’,u”) implies that d < u for each output. Turtle-Unanimity
ensures that if there is an agreement in the inputs (i.e., pro-
posals) to a turtle, then that agreement is reflected in the
outputs. Turtle-Validity means that each output of a turtle
be a prefix of an input to that turtle. Unlike SMR protocols,
we are able to guarantee the liveness properties for tree tur-
tle protocols (Turtle-Termination).

6 Tree Turtles All The Way Down

We will now show that tree turtle protocols can be com-
posed with each other to implement a protocol satisfying

SMR-Agreement, SMR-Validity, SMR-Relay, and SMR-Monotonicity.

The construction works as follows. All processors in P
are configured with instructions to execute the same un-
bounded sequence of tree turtles numbered 1,2,3,..., and
so on. For convenience, we will extend the tree turtle inputs
and outputs (i, c) and (i, d, u) to now include the tree turtle
number i. We assume that each processor is initialized with
the tuple (0, L, L) as the output for the non-existent tree
turtle 0. Then the processors begin executing the tree tur-
tles in succession. If a processor produces tree turtle output
(i, d, u), that processor decides the chain d. It then proposes
anew chain c, selecting ¢ such that u < ¢, and constructs an
input (i + 1, c) for the next tree turtle i + 1.

By choice of u < c, this construction ensures the follow-
ing lemma:

Lemma 6.1. If a processor produces the output (i,d,u) for
tree turtle i, then for all inputs to subsequent tree turtles (j, c)
where i < j, it must be thatd < c.

Proof. Suppose (j,c) is an input to tree turtle j made by a
processor p. Proceed by induction on j —i.If j = i + 1, then
by the above construction, p must have produced (i, d, u) as
the output of tree turtle i for some chain u < c¢. By Turtle-
Agreement, we also know that d < u which implies d <
c. In the inductive case, we again know that p must have
produced an output (j — 1,d’,u’) with d’ < ¥’ < c in the
previous tree turtle. The inductive hypothesis gives us that
d < ¢’ for all inputs to tree turtle j — 1 (j — 1,¢’). Thus,
the condition for Turtle-Unanimity is satisfied for tree turtle
j—1, and so it must be thatd < d’ < c. O

Further, we can use an inductive argument to see that by
Turtle-Termination, each correct processor will eventually
complete each tree turtle.

PaPoC’23, May 8, 2023, Rome, Italy

Lemma 6.2. Every correct processor eventually produces an
output for each tree turtle.

Proof. Trivially, each non-crashed processor constructs an
input to tree turtle 1. Thus, Turtle-Termination ensures that
the base case of the induction is satisfied. In the inductive
case, each non-crashed processor will use its output of tree
turtle i to construct an input to tree turtle i + 1, and so an
analogous argument applies. O

Now we proceed to the main proof:

Theorem 6.3. The composition of tree turtles implements a
protocol satisfying SMR-Agreement, SMR-Validity, SMR-Relay,
and SMR-Monotonicity.

SMR-Agreement. Suppose that two processors p and p’
decide chains based on their outputs (i, d,u) and (j,d’,u’),
respectively. First, suppose that i = j. By Turtle-Agreement,
d < u’, and we also know that d’ < u’. Then, since d and d’
are prefixes of the same chain u’, it must be that either d <
d’ or d’ < d. Thus, the decided values agree. Now suppose
that i < j. By Lemma 6.1, we know that d < c for all inputs
(j,c) to tree turtle j. By Turtle-Unanimity, we have that d <
d’.

SMR-Validity: Suppose that some processor p decides d.
This means that p produces an output (i, d, u) for some tree
turtle i and chain u. By Turtle-Validity, there must exist an
input (i,c) to the same tree turtle such that u < c¢. So, ¢
was proposed by some processors. And since we must have
d < u,weknowd < c.

SMR-Relay: If a correct processor decides d as a result
of its output of tree turtle i, then by Lemma 6.1 and Turtle-
Unanimity, any processor that completes tree turtle i+1 will
decide d or an extension of d, and Lemma 6.2 gives us that
all correct processors will do exactly as such.

SMR-Monotonicity: If a processor decides d as a result
of its output of tree turtle i, then by Lemma 6.1 and Turtle-
Unanimity, any processor that completes tree turtle i+1 will
decide d or an extension of d. So by induction, any later
decision will be monotonically extending d.

O

The above protocol does not, by itself, satisfy SMR-Progress.
However, the fact that the correct processors eventually com-
plete each turtle (Lemma 6.2) can be used to make an auxil-
iary argument for SMR-Progress for a specific protocol (for
instance, using a probabilistic termination argument).

7 Tree Turtle Implementations

Here we present two possible tree turtle implementations.

7.1 One-Step Tree Turtle

Our first tree turtle protocol uses only a single round of com-
munication between processors, making it a one-step proto-
col [3]. It requires a quorum system satisfying 3-intersection.

Natalie Neamtu, Haobin Ni, and Robbert van Renesse

A processor p executing the One-Step Tree Turtle proto-
col proceeds as follows:

la. p produces an input {c) and broadcasts it to all pro-
cessors, including itself;

1b. p waits to receive inputs {cs) from all processors s in
any quorum Qp;

1c. p produces (d, u), where:
id= HSEQP Cs;
ii. LetC, = {HsermQ ¢s| Q € Q}. Thenu = max(Cp).

That is, d is simply the longest common prefix of the re-
ceived proposals. To compute u, p considers all quorums Q.
For each such quorum, p determines the longest common
prefix on the proposals it received from the processors in
Q. We show below that all these subchains agree with one
another. p then selects the longest.

Lemma 7.1. All elements of C,, agree.

Proof. All of the elements in C,, are computed by taking the
intersection of Q, with another quorum. Let Q, Q” be any
two quorums and x, x” elements of C, where x = |_|s €0,nQ Cs»
and x’ = HserﬂQ’ ¢;. Since Q satisfies 3-intersection, OpN
Q N Q' is non-empty. Let r be some processor in this inter-
section. By the use of M, we have that x < ¢, and x’ < ¢,.
This means that either x < x” or x” < x. Thus, all elements
of C,, agree with each other.]

Since < is transitive, C,, has a maximum element accord-
ing to <, and so the computation of u is well-defined. Fur-
ther, we can show a stronger property about Cp.

Lemma 7.2. Forallx € Cp, d < x.

Proof. For any quorum Q, we can observe that 0, NQ C O,
The longest common prefix over a subset of inputs belong-
ing to processors Q) is at least as long as the longest com-
mon prefix over Q,. Thus, d < x for any x € C,,. m]

Now we proceed to show that this protocol implements a
tree turtle.

Theorem 7.3. The One-Step Tree Turtle protocol satisfies the
tree turtle specification (Definition 5.1).

Turtle-Termination: Suppose that all correct processors
construct an input to the tree turtle. The only point in the
protocol where a given correct processor p will wait is to
receive messages from a quorum of processors at step 1b.
Since there is assumed to be a quorum Q* that consists en-
tirely of correct processors, and the network reliably deliv-
ers messages between correct processors, p will need to wait
no longer than it takes for the messages from all processors
in Q* to be delivered. Thus, p will be able to complete the
turtle at step 1c.

Trees and Turtles

Turtle-Agreement: Suppose that two processors p and
p’ produce (d, u) and (d’, u’), respectively. For all processors
r € Qp N Qp, both p and p’ received the proposal ¢, from
r. Letting x = HrernQp, ¢, we see that x is present in both
Cp and Cp. By Lemma 7.2, d < x, and by the maximality
of u’ over Cpy, x < u’. So, d < u’ by transitivity. The same
argument can be used to show that d’ < u.

Turtle-Unanimity: Suppose that there exists a common
prefix w < ¢ for all inputs (c) to the turtle. Because of step
1b in the protocol, all of the cs values used to compute (d, u)
came from inputs (cs). This means that w is a prefix of each
cs, and so w must be a (not necessarily strict) prefix of the
longest common prefix d = |_|S€Qp cs of the proposals.

Turtle-Validity: Suppose that p produces the output (d, u).
We know that u = HSEQPHQ cs is a prefix of all proposals
made by processors in Q, N Q for some quorum Q. So, tak-
ing any processor r in the intersection Q, NQ, we know that
u < ¢, where {c,) was the input produced by r. O

7.2 Lower-Bound Tree Turtle

Now we will present a second tree turtle protocol, the Lower-
Bound Tree Turtle. This protocol meets the lower bound on
the intersection properties of the quorum system needed
to solve SMR: namely, 2-intersection in the crash failure
case [2]. With these weaker assumptions about the quorum
system, we can design a protocol that makes it safe for pro-
cessors to output a chain based on messages from all proces-
sors in a quorum under the condition that the chains in all
such messages agree. Satisfying this condition requires an
additional round of communication.

A processor p executing the Lower-Bound Tree Turtle
protocol proceeds as follows:

la. p produces an input {c) and broadcasts it to all pro-
cessors, including itself;

1b. p waits to receive inputs {cs) from all processors s in
any quorum Q;;

1c. p computes x = |_|S€Q[17 cs;

2a. p broadcasts (x) to all processors, including itself;

2b. p waits to receive messages (x;) from all processors s
in a quorum Qf,;

2c. p produces (d, u), where d = min x; and u = max x;.

seQp s€Qp
Appendix A contains the proof of correctness for the Lower-
Bound Tree Turtle.

7.3 Message Size

The protocol we discussed uses messages containing chains
that represent the entire state machine history. As the size of
this history grows, this quickly becomes impractical. How-
ever, it is not necessary for a processor to broadcast a chain
in subsequent turtles once it has decided that chain follow-
ing the construction in Section 6.

PaPoC’23, May 8, 2023, Rome, Italy

If processor p decides chain d as a result of its output
of a tree turtle, then any other processor p’ that outputs
(d’,u’) from the same tree turtle will have d < u’ by Turtle-
Agreement. Thus, p’ already knows the contents of the chain
d, and p may omit that chain prefix in its proposals to sub-
sequent turtles.

7.4 Heterogeneous Protocols

The simplest way to construct an SMR protocol using the
proposed abstractions is to use a single tree turtle protocol,
instantiated an unbounded number of times. There are other
options, however, briefly discussed in this section.
Different tree turtle protocols may have different normal
case or worst case performance properties. The Lower-Bound
Tree Turtle, when combined with a leader as discussed in
Section 8, has good normal case performance properties, but
it relies on synchrony assumptions for liveness. A similar
protocol, borrowing ideas from the Ben-Or protocol using
randomness [1], can provide termination almost surely but
has bad normal case performance. By alternating between
the two protocols, we can achieve the best of both worlds.

8 Leaders as an Abstraction

Processors may make different proposals to a tree turtle, pre-
venting them from being able to decide new chains. This
issue of contention has been addressed previously in SMR
protocols by using a leader which drives all processors to
use the same proposals. In existing leader-based consensus
protocols, the leader lies in the critical path of the protocol:
without a functioning leader, no decisions may be made. We
show that using tree turtles, leaders can be easily factored
out so that their only role is to help the protocol towards
making decisions.

Leaders can be introduced to an existing tree turtle pro-
tocol as follows:

e The leader ¢ for tree turtle i is processor with identi-
fier i (mod |P|), meaning the role of leader rotates
through all of the processors.

o The leader ¢ for tree turtle i broadcasts its input ¢, to
turtle i.

e All processors set a timer and wait for the leader’s
message. If a processor p receives c, before the timer
expires, then it uses ¢, as its input to tree turtle i. Oth-
erwise, it proceeds normally.

e The processors double the length of the timer in each
tree turtle.

Under synchronous conditions, the leader is able to elim-
inate contention. The proof requires reasoning about quo-
rums and messages, but these concepts generalize beyond
the protocols presented in Section 7.

Lemma 8.1. Using the above construction and the protocols
in Section 7, if there exists an upper bound A such that a mes-
sage sent between two non-crashed processors is delivered and

PaPoC’23, May 8, 2023, Rome, Italy

processed within A, then there will be an unbounded number
of tree turtles where the leader’s message is received before all
timers expire.

Proof. Consider any tree turtle i after the point in the execu-
tion where the timers have become larger than A - 2/%!. In
general, the leader for a tree turtle may not have started exe-
cuting that tree turtle at the point when other processors be-
gin waiting for its message. Applying Lemma 6.2, consider
a processor p that has begun tree turtle i + 1. Then there
must be a quorum of processors who have begun tree tur-
tle i. This is because in all of our protocols, p must wait to
receive messages from a quorum before completing the pro-
tocol. Let Q be this quorum. Since QNQ* is non-empty, there
must be a tree turtle in the next |P| instances whose leader
is a correct processor in Q. Let j be the first such instance
and let £ be the leader for tree turtle j.

Since ¢ has already begun tree turtle i, it must catch up
at most |P] tree turtles to reach j. Let t be the timer length
for tree turtle j. Since all timer lengths are greater than 2A,
£ will have received messages from a quorum for every tree
turtle up to j. A period of A is sufficient for other processors
to receive £’s input to tree turtle j. However, this does not
include the timers that £ must set for tree turtles i,..., j — 1.
Since the timer lengths are doubled after each tree turtle,
the total time required is A + (¢/2/71 + /217171 ... 4 1/2) =
A+(1-2" ‘P‘)t. Sincet > A-21%1 ¢'s message will be received
before the timers expire. For any |P| turtles, except for a
constant number of turtles in which failures happen, there
must exist a distinct turtle that satisfies the above property,
thus there will be an unbounded number of such turtles. O

Theorem 8.2. Using the above construction and the proto-
cols in Section 7, if there exists an upper bound A such that a
message sent between two non-crashed processors is delivered
and processed within A, then SMR-Progress is satisfied for the
composition of tree turtles (Section 6).

Proof. According to Lemma 8.1 there will be an unbounded
number of tree turtles where the leader’s message is received
before all timers expire. Turtle-Unanimity provides that the
processors who complete the turtle will decide the leader’s
chain. It follows that correct processors will always eventu-
ally be able to decide a new chain.

m}

9 Related Work

Abstracting the problem of achieving consensus on a single
value to entire sequences was previously applied to Paxos
in Generalized Paxos [10]. This work further generalizes
chains to partial-orders of values in which non-interfering
values commute. The HotStuff protocol [13] conceptualizes
the state machine history as a tree, but it only extends the
tree by a single node at a time. The same can be said of
blockchain protocols.

Natalie Neamtu, Haobin Ni, and Robbert van Renesse

The idea of heterogeneous SMR protocols is similar to
protocols which have different “modes”. Typically there is
one mode which is considered the normal operation of the
protocol and another designed for fast-tracking decisions

under best-case conditions. One such example is Fast Paxos [11]

which is able to skip a round of communication in periods
without contention. These modes, however, are usually con-
sidered to be part of a single protocol instead of separate
protocols satisfying a common specification.

10 Conclusion & Future Work

SMR protocols have been around for over thirty years. We

revisit the structure of these protocols and propose new abstractions—

trees and turtles—for the design of modular SMR protocols.

While this paper did not discuss the performance of tree
turtle protocols, we believe that they have potential to be
performant through their ability to drive long extensions
to the state machine history in a few rounds of communi-
cation. Future work could include an empirical analysis of
their performance. Further techniques for optimization can
also be investigated such as pipelining chains from different
rounds of the protocol simultaneously.

There is work in progress by the authors on building for-
mally verified consensus and SMR protocols in both Dafny
and Coq based on the presented abstractions due to their
simplicity and efficiency. We also expect our abstractions to
support different flavors of SMR, such as ordered consensus
and heterogeneous consensus, by utilizing the additional
structure of trees and the flexibility of the tree turtle compo-
sition. Further generalizations of trees and chains into more
general algebriac structures are also possible.

Acknowledgments

The authors would like to thank Pierre Sutra and the anony-
mous reviewers for their helpful suggestions.

References

[1] M.Ben-Or. 1983. Another advantage of free choice: Completely Asyn-
chronous Agreement Protocols. In Proc. of the 2nd ACM Symp. on Prin-
ciples of Distributed Computing. ACM SIGOPS-SIGACT, ACM Press,
Montreal, Quebec, 27-30.

[2] G.Bracha and S. Toueg. 1983. Resilient Consensus Protocols. In Proc.
of the 2nd ACM Symp. on Principles of Distributed Computing. ACM
SIGOPS-SIGACT, Montreal, Quebec, 12-26.

[3] EV. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. 2001. Consen-
sus in One Communication Step. In PaCT ’01: Proceedings of the 6th
International Conference on Parallel Computing Technologies. Springer-
Verlag, London, UK, 42-50.

[4] M. Castro and B. Liskov. 1999. Practical Byzantine Fault Tolerance.
In Proc. of the 3rd Symposium on Operating Systems Design and Imple-
mentation (OSDI’99). USENIX, New Orleans, LA.

[5] C.Dwork, N. Lynch, and L. Stockmeyer. 1988. Consensus in the Pres-
ence of Partial Synchrony. 7. ACM 35, 2 (April 1988), 288-323.

[6] M.J. Fischer, N.A. Lynch, and M.S. Patterson. 1983. Impossibility of
Distributed Consensus with one Faulty Process. In Proceedings of the

Trees and Turtles

2nd Symposium on Principles of Database Systems (PODS’83). ACM
SIGACT-SIGMOD, Atlanta, GA.

[7] EP. Junqueira and K. Marzullo. 2005. Replication predicates for
dependent-failure algorithms. In Proceedings of the 11th Euro-Par Con-
ference (Lecture Notes on Computer Science, 3648). Springer-Verlag,
Monte de Caparica, Portugal, 617-632.

[8] EP. Junqueira, B.C. Reed, and M. Serafini. 2011. ZAB: High-
performance broadcast for primary-backup systems. In 2011 IEEE/IFIP
41st International Conference on Dependable Systems and Networks
(DSN). 245-256. https://doi.org/10.1109/DSN.2011.5958223

[9] L. Lamport. 1998. The Part-Time Parliament. Trans. on Computer
Systems 16, 2 (1998), 133-169.

[10] L. Lamport. 2005. Generalized consensus and Paxos. (2005).

[11] L.Lamport. 2006. Fast Paxos. Distrib. Comput. 19, 2 (oct 2006), 79-103.
https://doi.org/10.1007/s00446-006-0005-x

[12] EB. Schneider. 1990. Implementing fault-tolerant services using the
state machine approach: A tutorial. Comput. Surveys 22, 4 (Dec. 1990),
299-319.

[13] M. Yin, D. Malkhi, M.K. Reiter, G.G. Gueta, and I. Abraham.
2019. HotStuff: BFT Consensus with Linearity and Responsive-
ness. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing (Toronto ON, Canada) (PODC ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 347-356.
https://doi.org/10.1145/3293611.3331591

PaPoC’23, May 8, 2023, Rome, Italy

Appendix A: Correctness of Lower-Bound
Tree Turtle

First we show that all chains computed in step 1c agree:

Lemma 10.1. Ifprocessors p and p’ compute x and x’ in step
Ic respectively, then x =~ x'.

Proof. Since there must be some processor r in the intersec-
. 1 1 . .

tion 0, N Q. both p and p’ received the same chain ¢, from

r. Then, since both x and x’ are prefixes of ¢,, x and x” must

agree. o

Note that the preceding lemma shows that the rules to
compute d and u are well-defined since all of the chains x;
fors e Qf, must agree. The next lemma is trivial and shows
that a common prefix to all proposals is preserved in the
chains computed at step 1c.

Lemma 10.2. If there exists a chain w such that w < c for
all inputs (c), then for any processor p that computes x in step
Ic,w < x.

We now show that the Lower-Bound protocol implements
the specification of a tree turtle.

Theorem 10.3. The Lower-Bound Tree Turtle protocol satis-
fies the tree turtle specification (Definition 5.1).

Turtle-Agreement: Suppose that two processors p and
p’ produce (d,u) and (d’,u’), respectively. There must be
some processor r in the intersection Qf, N Qg,, and both p
and p’ received the same chain x, from r. By Lemma 10.1
and the minimality of d, it must be that d < x,. And by the
maximality of u’, we have that x, < u’. Therefore, d < u’.

The same argument can be used to show that d’ < u.

Turtle-Unanimity: Suppose that there exists a chain w
such that w < ¢ for all inputs {c), and processor p produces
output (d, u). Lemma 10.2 shows that w will be a prefix of
the minimum chain d received by p in step 2b. O

Turtle-Termination and Turtle-Validity are similar to
the proof for One-Step Tree Turtle (Section 7.1).

Appendix B: Threshold Quorum Systems

For completeness, we include how a k-intersecting quorum
system can be implemented (based on [7]). A threshold quo-
rum system constructs quorums from all subsets of # above
a particular size. Let n = || be the number of processors.
Let f be the maximum number of processors that may be
faulty. We can construct a k-intersecting quorum system for
k > 1suchthatn > k- f as follows: the quorums are all sub-
sets of P that have at least n — f processors. Then Q* is the
quorum that contains the n — f correct processors. In a k-
intersecting quorum system implemented with a threshold
quorum system, increasing the value for k results in an in-
crease in the number of correct processors that are assumed
to exist in the system.

https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1145/3293611.3331591

	Abstract
	1 Introduction
	2 Trees and Turtles
	3 System Model
	4 State Machine Replication Specification
	5 Tree Turtle Specification
	6 Tree Turtles All The Way Down
	7 Tree Turtle Implementations
	7.1 One-Step Tree Turtle
	7.2 Lower-Bound Tree Turtle
	7.3 Message Size
	7.4 Heterogeneous Protocols

	8 Leaders as an Abstraction
	9 Related Work
	10 Conclusion & Future Work
	Acknowledgments
	References

