
This is authors' version. The definitive version is published in the proceedings of ICSE’23 SEIP. ©2023 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A/B Integrations: 7 Lessons Learned from Enabling
A/B testing as a Product Feature

Aleksander Fabijan
Microsoft

Bellevue, WA, USA
alfabija@microsoft.com

Pavel Dmitriev
Outreach.io

Seattle, WA, USA
pavel.dmitriev@outreach.io

Benjamin Arai
Microsoft

Bellevue, WA, USA
bearai@microsoft.com

Andy Drake
Microsoft

Bellevue, WA, USA
andrak@microsoft.com

Sebastian Kohlmeier
Microsoft

Bellevue, WA,USA
skohlmeier@microsoft.com

 April Kwong
 Microsoft

Bellevue, WA,USA
aprilk@microsoft.com

Abstract— A/B tests are the gold standard for evaluating
product changes. At Microsoft, for example, we run tens of
thousands of A/B tests every year to understand how users
respond to new designs, new features, bug fixes, or any other ideas
we might have on what will deliver value to users. In addition to
testing product changes, however, A/B testing is starting to gain
momentum as a differentiating feature of platforms or products
whose primary purpose may not be A/B testing. As we describe in
this paper, organizations such as Azure PlayFab and Outreach
have integrated experimentation platforms and offer A/B testing
to their customers as one of the many features in their product
portfolio. In this paper and based on multiple-case studies, we
present the lessons learned from enabling A/B integrations –
integrating A/B testing into software products. We enrich each of
the learnings with a motivating example, share the trade-offs made
along this journey, and provide recommendations for
practitioners. Our learnings are most applicable for engineering
teams developing experimentation platforms, integrators
considering embedding A/B testing into their products, and for
researchers working in the A/B testing domain.

Keywords—A/B testing, A/B integrations, Platform design

I. INTRODUCTION

A/B testing enables companies to make trustworthy data-
driven decisions at scale and has been a research area in the
software industry for many years [1], [2]. Companies run A/B
tests to assess ideas and to safely validate [3] what delivers value
to their customers. For example, at Microsoft, we run tens of
thousands of A/B tests yearly, testing the impact of UX
improvements, infrastructure migrations, back-end service
optimizations, and to determine the optimal time to update an
operating system [4]. In our case study companies – Microsoft
& Outreach – First Party A/B testing of the product (1P A/B
testing) has been an integral part of software development
process for years.

In addition to A/B testing for internal use, we have observed
that A/B testing is becoming a differentiating feature [5] for
software products themselves. In other words, not only are
products using A/B testing to make informed ship decisions, but

products are starting to offer A/B testing to their customers as
one of their many features.

For example, Outreach is developing a sales engagement
platform, a product that helps ease the communication between
sellers and prospective customers. They offer A/B testing
functionality for sales representatives to validate which
sequences of e-mails and phone calls are most effective for
different selling scenarios. Similarly, Azure PlayFab, which is a
complete backend platform for live games with managed game
services to test ideas for game features is offering A/B testing to
game developers.

 In this paper, we refer to these distinct use-cases of A/B
testing as “A/B integrations”, referring to A/B testing capability
being integrated into a product as a feature for the customers as
opposed to being used by the product creators themselves. As
shown in Figure 1, we illustrate the conceptual difference
between an A/B test for internal use (first-party A/B test e.g.
testing a change in a product like Bing which has integrated with
A/B testing platform), and A/B Integrations (e.g. testing a
change in one of the games that have onboarded to Azure
PlayFab which has integrated with ExP – Microsoft’s
experimentation platform).

Figure 1. 1P A/B Testing (top) vs. A/B Integrations (bottom).

In this paper, based on a longitudinal multi-case study over
the last four years, we present the unique engineering and
cultural challenges that A/B testing platform teams needed to
overcome to make A/B integrations successful. A/B integrations
share some commonalities with first party A/B testing; however,
they also differ in many aspects. Specifically, to offer A/B
integrations, the A/B testing platform teams may be required to
build new infrastructure, streamline metric creation, build

partnerships with configuration providers, create education
programs for integrators, and offer validation capabilities to
assure trustworthiness.

Our main contribution is the discussion on the lessons
learned which will be most helpful to those working on A/B
testing platforms and those developing products that may benefit
from A/B integrations. These roles typically include software
engineers, product managers and data scientists, as well as
researchers exploring A/B testing and data-driven software
development.

II. BACKGORUND

A. Learning about user preferences

It is common for companies to use existing telemetry in
products to understand what is valuable for the users and make
decisions based on lessons learned [6]–[8]. Observational data
such as telemetry [9] enable software companies to be more
accurate in evaluating their ideas, and to move away from
assumptions and towards trustworthy data-driven decision
making through experimentation. In software development, the
term “experimentation” can be used to describe different
techniques for exploring the value of the changes introduced to
a product [10]. For example, experimentation can refer to
iterations with prototypes in the startup domain [11], [12],
canary flying [13] of software features (exposing a small
percentage of users to a new feature or a change), gradual rollout
[13] (deploying a change to one customer groups and expanding
to the next one), dark launches [14] (releasing new features
disabled and testing them in production), and controlled
experimentation [15] - releasing multiple variants of the product
and evaluate the differences between them through statistical
tests. We describe the latter next.

B. First party A/B testing

In this paper, when we mention experimentation or A/B
testing, we refer to the scientifically proven technique of
randomized clinical trials [16] in an online setting, originating
from the theory of controlled experiments going back to Sir
Ronald A. Fisher’s experiments at the Rothamsted Agricultural
Experimental Station in England during the 1920s [15]. In the
simplest A/B test, two or more variants of the product are tested
against each other to determine, with statistical significance, if
one of the variants performs better for key metrics. The tests are
executed in parallel which helps exclude any other factors such
as seasonality or special events like Olympic games from
impacting the measurement. In this paper, we will use the term
1P A/B testing (first-party A/B testing) to refer to such
experiments conducted in the product directly, and to
differentiate it from the A/B integrations use case when A/B
testing is offered as a feature of a product which primary purpose
may not be A/B testing.

C. Developing A/B testing capability

To run A/B tests at scale, companies need to invest in
infrastructure, processes, and culture in an iterative fashion [17].
Prior work both from authors of this paper [18], [19] and from
other researchers [20]–[22] and companies such as
Booking.com [23], [24], LinkedIn [25], Google [26] and
Facebook [14] stress that the growth of experimentation is
conditional on the correct execution and integration of the

scientific method into a software product. This includes
developing an experimentation platform [19], designing
comprehensive metrics for measuring the impact of A/B tests
[27], and highlighting the value to create excitement and
increase adoption of A/B testing [28]. All this research,
however, has been focusing on building A/B testing capabilities
and using them directly in a product. To our knowledge, no
research body exists on how to build and integrate A/B testing
capabilities into products such that products themselves can
offer A/B testing as a feature to their users. This is a problem
that our case companies, which we will introduce next, have had
to solve to create differentiating capabilities in their software
products.

III. RESEARCH METHOD

In this section we introduce our case companies and describe
how we collected and analyzed the data for this research.

Case companies. Two companies participated in our study,
Microsoft, and Outreach. Microsoft is a large-scale software
company with many diverse products that are running A/B tests
[2] for many years. At Microsoft, over tens of thousands of A/B
tests are run every year across the products on the web, client
applications infrastructure, user experience, etc. using the
experimentation platform ExP where authors of this paper are
working at – taking the A/B testing platform team perspective.
ExP team collaborated with many integrators. One of them
which we can present in this paper is Azure Playfab [29], a
gaming back-end solution that aimed to improve its A/B testing
offering.

Outreach is a startup in the sales domain, providing a sales
engagement platform for B2B sales. They have embarked on the
journey of A/B testing in 2018 when they ran their first A/B
tests. One of the authors of this paper works at the data science
team at Outreach that provides A/B testing capabilities to
Outreach customers – taking the A/B testing integrator
perspective. Outreach has integrated A/B testing into their
product by purchasing an A/B testing platform available on the
market.

Data collection and analysis. The authors of this paper
work as subject matter experts for scaling A/B testing in their
companies and have collected data through action research [30].
Aleksander is a Senior Product Manager at Microsoft ExP where
he works with Andy who is a Principal Data Scientist, and
Benjamin who is a Group Partner Data Scientist and Product
Manager on the ExP team. Sebastian is a Principal Product
Manager and April is a Principal Software Architect on the ExP
team. Pavel is the Vice President of Data Science at Outreach.io.
In aggregate, the authors have over 50 years of experience in the
field of A/B testing.

Our data collection consisted of several qualitative and
quantitive data colleciton techniques. During the last four years,
the authors of this paper have been working with software
product teams and enabled A/B integrations for several products
– Outreach and Azure PlayFab being two examples. This
involved semi-structured interviews through which we collected
requirements for platform features for A/B integrations, focus
groups with engineers, data scientists and executives,
longitudinal evaluation of the progress and surfacing of the
blockers. We analyzed our collected data in 6 joint workshops

conducted over Microsoft Teams, each 1h in duration, where we
thematically coded the observations and aggregated them into 7
key categories, which we describe as the main contribution of
this paper. We resolved disagreements as comments on content.

Threats to validity. There are several validity concerns that are
applicable for this type of qualitative research [31]. With
respect to construct validity, researchers and participants in this
study work in the field of A/B testing and were well aligned on
the studied phenomena. In each data collection session, we
explained the purpose and terminology at the beginning to all
participants. With respect to external validity, the results of this
paper apply specifically to teams in software companies that are
developing A/B testing capability and consider offering this
capability as a product feature. Specifically, the findings will
help them understand the key requirements / effort needed to
move from offering A/B testing as an internal service towards
offering A/B testing as a feature. The learnings can be useful
also to products that are evaluating A/B testing vendors/support
(customer perspective).

IV. INTRODUCING A/B INTEGRATIONS

In this section we first introduce A/B integrations. Next, we
describe the key lessons learned that we obtained from enabling
A/B integrations at our case companies. We conclude the section
with a summary.

A. A/B Integrations

As described in the introduction, companies have been A/B
testing their products for many years. However, we have
observed a unique shift in how A/B testing is becoming offered
at our case companies. In addition to being a tool to decide what
features to ship for a product being developed by our case
companies, it is becoming a feature of a product for our
customers. The main rationale for offering A/B testing as a
feature is its capability to offer trustworthy evaluation.
Specifically, by offering the capability to compare ideas for
customers creating video games, web sites, e-mails etc., our
customers can now test their ideas with their products.

To make A/B testing possible as an integrator feature,
however, three parties need to be involved in the process from
the software and product development perspective: First, there
is the A/B testing platform team, developing the core platform
and service for A/B testing. In our case companies, this team
consists of data scientists, engineers, and product managers that
are domain experts in A/B testing. At Microsoft, for example,
this is the ExP team. Second, we have the A/B integrators:
product teams that are integrating A/B testing into a software
product. A/B integrator teams that our case companies partnered
with typically consisted of engineers and product managers, and
these teams are usually not domain experts in A/B testing.
Finally, we have the customers of integrators – the users of the
product developed by the A/B integrator. These users typically
have specific tasks to complete using the integrator product (e.g.
wish to schedule a meeting with a promising lead) and are the
ones that will be using the A/B testing capability to validate
ideas with their users.

Now that we are familiar with the main parties involved in
the process, we will share the 7 lessons that we learned in how

to make A/B integrations effective. We ranked them in
importance based on the frequency count of how often they
appeared in our thematic coding.

B. API/SDK infrastructure for A/B integration

Context & Motivating example. In 1P A/B testing, an
intuitive User Interface (UI) is the interaction point with the
experimentation platform [32]. For example, experimenters use
a web browser to start/stop A/B tests and analyze results.
Interactions through the Application Interfaces (APIs), however,
are secondary in importance compared to UI. At Microsoft ExP,
thousands of unique users interact with the A/B testing platform
daily using the UI while distinct API calls by users or
applications were only a small fraction of this base before A/B
integrations. And while high-quality API infrastructure is
important for both 1P A/B testing as well as for A/B
Integrations, the latter require a significantly broader set of
features to be built in the API infrastructure. The two main
reasons for this are the need for automation and debuggability.
Specifically, in the case of A/B Integrations, there cannot be any
human involvement or manual steps in A/B testing workflows –
e.g. A/B tests are created and analyzed through the integrator
product which is relying on the API infrastructure to execute
operations in the A/B testing platform. In the 1P A/B testing, the
user of the A/B testing platform can open a support case to get
assistance with an issue. In A/B integrations, the integrator must
have all the necessary information to help the customer. As a
result of this additional distance, the API infrastructure needs to
provide A/B integrators with additional debuggability on the
status of the tasks, their results, and errors.

At Outreach, for example, the A/B testing vendor they
integrated with was unable to supply a library to reproduce A/B
test assignment offline. The lack of this capability prevented
Outreach from using common A/B testing features such as
retrospective AA [33] and required them to derive different
ways to confirm experiment randomization quality. Similarly,
at Microsoft ExP, API infrastructure for interacting with the
experimentation platform has been in use for over a decade.
However, to enable A/B integrations, the case company had to
rebuild the API infrastructure to meet the needs of A/B
integrators. The team had to expose signals that report when
experiments results are ready, provide additional diagnostic
information for failures, disruptions or delays, expose
experiment quality concerns in the API such as Sample Ratio
Mismatch [34], and provide guidance to A/B integrators such
that they can create features in their product (e.g. UX for
surfacing the quality issue) or set-up internal protocols (e.g.
scaling compute resources in case of high capacity utilization).
This required updating the contract of the APIs, exposing
operational telemetry, adding new features, and supporting
event-driven architecture. Even with ExP's mature A/B testing
infrastructure built over 15 years, it took more than 12 months
of engineering effort to support A/B Integrations. Furthermore,
volume of traffic is another dimension - Our data shows that
A/B Integrators may call APIs/SDK infrastructure with 100x
larger traffic compared to 1P A/B testing users over very short
period of time. To handle this volume, throttling and caching

needed to be added across API surfaces, and event-driven
architecture is helping distribute the load more evenly.

Explanation. There are two main reasons why API
infrastructure will require an additional investment for A/B
integrations. First, and as illustrated with examples above, A/B
integrators and their customers require a higher level of
automation and debuggability. A/B testing platforms therefore
need to provide a set of APIs or API attributes specifically for
understanding the trustworthiness of A/B tests. We recommend
supporting event-driven architecture such that integrators can
automate tasks for important milestones like experiment results
ready, experiment results invalid, or experiment running for a
longer than expected period. Simply exposing a subset of private
APIs to the integrator is insufficient.

Second, each integrator may use a different language (e.g.
C#, Python) for integrating with the experimentation platform.
This necessitates the need for supporting language-agnostic API
infrastructure through a single specification which can be used
to support the automation of SDK generation for all languages.

Recommendation: To enable A/B testing for integrators,
expect to invest in automation and debuggability as part of the
core API/SDK infrastructure. This investment will be larger and
broader compared to the offering in internal/service-to-service
APIs. Next, supporting several programming languages will
quickly become a requirement even if it may not seem like one
in the beginning. Therefore, start with automation that includes
auto generating the API/SDK code from a single specification
source from the beginning. This will make it easier to create
compilers for auto-generating code in a different language in the
future when the need arises.

Furthermore, define or select API guidelines early in the
engineering process and establish a review cadence that will
enforce following the guidelines. At Microsoft ExP, the vNext
API design guidelines were published and made available on
Github whereas other case companies followed their own
internal guidelines. Most importantly, perform customer
development throughout the development and identify
champion scenarios that will be used by multiple A/B
integrators. For these scenarios, create example code on how to
use the APIs/SDK and share them with the integrators for a
quick ramp-up. At Microsoft ExP, the team created 12 pages of
champion scenarios with example code, covering the critical
scenarios of editing an A/B test, starting / advancing
experiments, programmatically editing metrics, scheduling
compute jobs, retrieving A/B test results, and checking for
validity of results.

The Champion scenarios contained guidance on how to
utilize the built APIs for automation and debuggability. When
the API and SDK infrastructure is ready, the platform team can
be the first integrator to validate the infrastructure (dogfood).
Use this opportunity to set a Key Result [35] to onboard any
existing UX/tooling to the newer infrastructure and deprecate
the prior APIs to save on the support costs. APIs that you create
should seamlessly integrate with reusable UI components which
we discuss in section F.

In Table 1, we summarize the common differences between
1P A/B testing and A/B integrations for this learning.

TABLE I. SUMMARY OF INFRASTRUCTURE LEARNINGS.

ObservaƟon 1P A/B tesƟng A/B IntegraƟons

Primary interface
between plaƞorm and
user

User Interface
(UI/UX)

API/SDK contract
Fully automatable
onboarding

Use of API/SDK
infrastructure

Mainly powering
plaƞorm UI

Only form of integraƟon

Customer familiarity
with A/B tesƟng

Low to Medium
to high

None to low

AutomaƟon and
debuggability

Low High

DocumentaƟon IntuiƟve UI Champion code snippets

C. Streamline metric editing experience for A/B integrators

Context & motivating example. Designing good success
and guardrail metrics is an active area of research [27], [36],
[37]. The process requires taking raw telemetry emitted by a
product as users are interacting with it and aggregating it into
meaningful measures [9]. This typically involves many steps
across multiple roles. For example, product experts and metric
design researchers using the product and interviewing users to
understand what constitutes success or dissatisfaction, engineers
logging the telemetry that will be needed for data engineers to
extract and transform the data [9], and data scientists creating
the metric definitions and helping design A/B tests. For
example, to measure the success of ideas tested on a search
engine, one could take all the interactions with the product
during the A/B test period and aggregate them by user to decide
if one group had more positive experience on average than the
other (e.g., fewer query reformulations per user). Designing
metrics in this way is not optimal nor feasible for customers of
A/B integrators.

Explanation. The ability to integrate with an existing A/B
technology opens A/B testing to product teams who would not
be willing to commit the resources to build their own
experimentation solution or integrate with an external solution.
The customers of integrators therefore need pre-defined metrics
to simplify the process and get them value quickly. In our
research, we observed that metric definitions and notion of
success can be shared across customers of an A/B integrator.
This is not always the case for 1P A/B testing, e.g. what makes
users of Bing successful could vary significantly from what is
considered success for users of Outlook. To provide an example,
for every customer of Outreach – a sales engagement platform
used by sales representatives to reach out to potential customers
- it is important to measure, for every change to an email
template, the sentiment of customer responses to the emails, and
how many meetings that email template helped setup with
potential customers. These success criteria are the same across
Outreach customers. Similarly, customers of Azure PlayFab get
the same starting core set of metrics. In addition, supporting
custom metrics still remains a requirement, e.g. both of our case
companies have received requests from their customers for
them. However, by having a starter set of metrics for customers,
metric creation no longer is a blocker for getting value for A/B,
and instead becomes a value add the customers can leverage as
appropriate.

Recommendation. The key advice here is to provide A/B
integrators with the ability to easily create metrics that can be
shared across their customers from day one. At one of our case
companies, the A/B testing platform team created a solution to
provide consistent metrics to every customer of an integrator.
The solution involves adding the capability to create a centrally
managed metric set that can easily be cloned for every new
customer of the integrator, assuring correct isolation of
resources and seamless management of metric definitions.
Individual metrics are carefully tailored for integrators customer
base and all of the customers can use the metric definitions for
their A/B tests. This is different from 1P A/B testing where each
product typically requires its own research and metric definition
process.

To achieve this, it was critical to standardize the telemetry
logging contract on the A/B integrator side, which needs to
include the required parameters (e.g. variants the user has been
randomized into). To standardize the logging, the platform team
needs to provide the expected schema to the integrator and
collaborate with the integrator on validation. Furthermore, if a
customer of an A/B integrator can create new flows in their
product, the A/B testing platform needs to be able to accept new
event types and can create new metrics. This can be done by
either defining new event names, or using property bags in the
schema, and calling the API/SDK infrastructure described in the
earlier section to create those new metrics.

D. Enable effective metric computation and analysis

Context & motivating example. Outreach uses a 3rd party
vendor to execute A/B tests for their customers – sales
organizations. However, when it comes to computing metrics
and performing statistical tests, Outreach faced a challenge.
With different pieces of telemetry being spread across SQL
databases, data lake, and their A/B testing vendor, there was no
clean and cost-effective way to compute metrics. They would
either have to send all their telemetry to the A/B testing vendor,
which is concerning, or they would have to implement metric
management and statistical analysis themselves – a difficult,
costly, and error-prone task. While Outreach ended up doing the
latter, they wish A/B testing vendors provided better options.

Explanation. Importance of leveraging a diverse set of
metrics to analyze A/B tests and implementing statistical tests
accurately has been strongly emphasized in A/B testing
literature [38]. Companies that use a 1P A/B testing platform can
easily share learnings and compute resources between the
product being testing and the A/B testing platform, allowing
A/B testing platform developers help implement best practices
in an efficient and cost-effective manner. Integrators, however,
face the following four challenges:

1. Integrators may already have telemetry stored in other types
of stores for uses such a reporting and alerting. Indeed, the
number and diversity of telemetry stores, ranging from
relational databases to data warehouses, to data lakes, to
analytical tools, across different clouds and on-prem
deployments, make it impossible for an A/B testing
platform to support all options and keep up with evolution.

2. For the same reasons as above, typically integrator’s
computation environment may not be natively supported
by the A/B testing platform.

3. Setting up a separate storage and computation environment
just for A/B testing would duplicate compute resources and
likely be costly to support over time.

4. Integrators lack domain knowledge and resources to
implement best practices of metric computation and
statistical testing in-house.

From the integrator’s perspective, the ideal solution should
be to compute metrics on top of their data store in their
computation environment, while the process is implemented and
managed with the help of the A/B testing platform. The
challenge for the A/B testing platform is how to enable such
capability.

Recommendation. In recent years, semantic layer emerged
as a solution to different metric computation needs [39], [40].
Semantic layer provides a way to define metrics in an abstract
form, independent of specific data stores or computation
environments. Semantic layer vendors then integrate with
various data stores and computation platforms to auto-generate
and execute metric computation code, as well as provide APIs
to access metrics. Thus, semantic layer serves as a middle layer
between data/compute environment and metric consumers and
is used as a single source of truth for metric definitions across
use cases such as internal dashboards, in-product analytics, and
machine learning.

We recommend that A/B testing platforms integrate with
semantic layer vendors. This approach has been successfully
implemented within large companies such as Airbnb and
Microsoft [41], [42]. While many 3rd party A/B testing vendors
have not yet embraced this approach, based on the learnings that
we have, we believe this is the best way forward for them as
well.

Aside from resolving the 5 challenges mentioned above, this
approach has several other advantages:

1. It allows automatically providing “default” metric set
consisting of “count” and “boolean” metrics for each event
of interest (e.g. Avg Number of Emails Sent per User,
Fraction of Users who Sent at least One Email). This may
be beneficial for integrators to get started on creating their
own more nuanced metrics, ensures important events are
not left unmonitored when analyzing test results, and helps
automatically catch unexpected data quality issues.

2. It provides an easy way to compute and monitor a
consistent set of metrics over time for both dashboards and
A/B tests. These metrics would be used as success
measures, helping align A/B testing success criteria and
business KPIs.

3. It naturally supports the tradeoff between speed – how
quickly the experiment results are available, and cost –
how expensive it is to compute these results. Since
semantic layer supports multiple computation platforms, a
subset of A/B testing metrics can be configured to run
faster (e.g. once every hour) on a more expensive

computation platform, while the full set of metrics can run
less frequently (e.g. once a day) on a more cost-effective
platform.

4. It provides more flexibility for defining the business
model, where the price integrator pays for the A/B testing
platform may depend not only on the number of
experiments ran or traffic that passed through those
experiments, but also on the number of metrics and metric
computations performed as well as the complexity of those
metrics.

E. Config service as integrator

Context & motivating example. Configuration provides
the ability to deliver metadata to applications in real-time, so that
applications can change their behavior in response to this
metadata [43]. This enables the application to perform code-less
feature changes and turn features on/off in real-time. A/B testing
and configuration are similar due to the ability to turn features
on/off in real-time. Since product teams often already have a
configuration system or there are central configuration systems
that are used more broadly across an organization, part of
Microsoft’s ExP platform strategy is to pursue integration
opportunities with config providers to help accelerate
experimentation adoption. By integrating experimentation
capabilities directly with configuration systems that are used
across an organization, ExP can easily align with existing
processes that teams have in place to deploy and manage general
configuration. It also enables larger organizations that span
1,000s of engineers to standardize how feature flags are
authored and managed to ensure consistency across the
organization.

Explanation. One scenario where configuration leverages
turning on/off features is the gradual rollout to users to manage
risk (aka., blast radius). Similarly, A/B experiments turn features
on/off for samples of users to determine impact of the feature
being tested.

From a design perspective, it’s easy to see how configuration
and experimentation are tightly coupled and ideally a single
system. By having a single system, multiple software
development efficiencies can be achieved. For example, the A/B
testing platform can provide a single user experience to rollout
features and simultaneously generate A/B analysis to evaluate
each step in the rollout process, A/B treatment assignment can
leverage configuration metadata layer to deliver treatment
assignment information to the customer, and developers need to
integrate flagging a feature on/off. As a result, changes to
application behavior are then controlled by a single system
rather than multiple systems, making it easier to monitor and
debug issues.

If a customer were to integrate with experimentation and
configuration at the same time, it’s clear that a single solution
would be ideal. The challenge that the case companies ran into
working with numerous customers is that customers tend to
already have a configuration system in place. This can be an
external system or a homegrown solution to meeting specific
needs of a company’s Safe Deployment Processes (SDP). In this
case, the solution is not as simple. Convincing an organization
to migrate to an all-in-one solution (viz., configuration +

experimentation) is unlikely given it’s likely deeply integrated
with existing SDP processes.

Recommendation. For experimentation to work seamlessly
with existing configuration systems, we have found it necessary
to simplify the experimentation integration model. Specifically,
it’s critical that the A/B testing platforms enforce
experimentation promises (e.g., trustworthy user randomization,
computation of scorecards for analysis, consistency of users
across rollout steps), but it is up to the configuration system to
deliver the actual payload of assignment to the customer and in
most cases provide the user experience to gradually rollout
features and enforce policies to ensure features are rolled out in
a consistent and safe manner (aka., manage blast radius).
Integrating A/B testing into configuration management as a
feature is an industry standard that has been adopted broadly by
large software companies such as Amazon which has invested
heavily in resilient continuous configuration [44]. They have
found "that configuration changes cause outages at about the
same rate as code changes". By having strong alignment
between configuration management and A/B testing teams can
reduce risks associated with configuration changes, make data-
driven decisions and move faster with smaller and lower risk
deployments.

The key to make integrations work with a myriad of config
providers is to support different levels of config merging –
specifically, make it possible to integrate A/B tests into standard
config files by the integrator (e.g. the integrator merges the
different flags being tested with config and delivers a single
config file to the end product) as well as support the pass-
through model where config and A/B flags are delivered
separately to the product and the product is responsible to
reconcile the two. For example, at our case organization Azure
PlayFab, integration was a good option as Azure PlayFab
already provided a config solution and event logging as part of
its core offering. A/B flags were combined with the existing
config delivery to remove any need to change game applications
to get experimentation flags. This same approach, however, was
not possible with some other integrators and a passthrough
method was applied.

F. Reusing A/B testing platform UI

Context & motivating example. When A/B testing is
integrated, a UI is typically needed for the customers of
integrators to use the functionality. The obvious choice here is
for Integrator product teams to build UI for this purpose.
However, in case of B2B partnerships there is an alternative –
integrators can sometimes reuse A/B platforms UI and there are
good reasons to do this. A/B testing platform teams have been
publishing research on the importance of intuitive and
comprehensive User Interface (UI) for the process of running
and operating an A/B testing platform for many years [1], [2].
A/B testing UI can be as simple as a notebook with sample code
on how to make an API call to start an A/B test for new teams
starting to run A/B tests or a well-designed and comprehensive
user experience. The UI at Microsoft ExP is created through the
collaboration of a designer, UX Product Manager, UX Architect,
and several UX-focused engineers and feature product managers
working on the UI for the A/B testing platform. The ExP UX
team performs user research to find pain points and for

designing new features, cognitive walkthroughs with various
levels of mock-up maturity, A/B test our own ideas with
platform users, and ship new features only if they don’t regress
our guardrail metrics.

Integrator products, however, don’t necessarily operate in
the A/B testing space. Furthermore, their UI principles may be
fundamentally different. Ramping up on A/B testing UI can
therefore be an expensive investment for an integrator in
isolation. At Microsoft, for example, we have seen various
levels of UI re-use for A/B testing among integrators.
Specifically, Azure PlayFab is using ExPs UI for diagnostic
purposes, however, their customers are using only Azure
PlayFab UI and APIs to interact with A/B testing. So, how can
the platform team enable integrators to be more effective in
creating their UI and effectively grow their A/B testing offering?

Explanation. UI from the A/B testing platform can serve two
purposes. First, it can be used to quickly ramp up the integrator
team on A/B testing. Second, it can inspire how to build the A/B
testing UI for Integrator customers or even be reused in the
integrator product. As a result of the investment in ExP UI, the
team often gets asked by integrators whether the UI can be re-
used in the Integrator product. As a result of this common ask,
the team has made it possible to reuse the UI at three different
levels:

Level 1: Design library. ExP team has a shared library of
designer created mock-ups for common A/B testing workflows.
These include user stories with screen-by-screen frames. The
design library consists of Fluent components – an open-source
cross-platform design system that gives developers and
designers the basic framework.
https://www.microsoft.com/design/fluent/.

Level 2: Component library. ExP team has implemented
common patterns from the design library as standard
components in code. Standard components can be as small as
drop-down and as large as a complete flow (e.g. complete page).
An example of a large standard component is a multi-step
wizard to create an A/B test with all the guidelines on how to
integrate this wizard to create an entity. The components are
implemented in React and include thorough accessibility checks
(e.g. will work only with keyboard and well if used with screen
readers), logging (e.g. will log interaction), are parametrized
(e.g. can easily be re-used for other create flows) and have tests
(e.g. standard CI/CD pipeline will validate the functionality).
The team has created over 50 standard components for various
parts of the UI. Standard components can be used across the A/B
platform UI to make consistent experience, however, can also
be used by integrators in their UI if they choose to do so.

Level 3: Cross-linking to A/B testing platform. Another
way A/B testing UI can be reused in an integrator product is to
expose links to A/B testing entities from the integrator product
to an A/B testing platform. For example, once A/B tests results
are available, the integrator exposes a hyperlink to the A/B
testing platform where the results can be viewed. This will
require the customers/users to authenticate into the A/B testing
platform, however, if the alternative is no UI this is still better.

Recommendation. To ramp up the integrator team on A/B
testing, we recommend identifying a specific integrator
customer scenario, creating a proof-of-concept integration with
the platform through the API infrastructure, and letting the
integrator’s product team use the A/B testing platform UI to set
up and analyze an A/B test for the specific scenario. This will
help them ramp up on A/B testing quickly as well as understand
the appropriate level of UI reuse that will be applicable for them
and their customers. The level does not need to be the same
across the Integrator offering. For example, an integrator may
choose to reuse design patterns for creating and editing A/B
tests, reuse components from the code library for a different part
of the product, and cross-link to A/B testing platform to view
results. Each of the three levels of UI reuse has pros and cons
that need to be considered when making a decision.

Level 1: Design library approach may result in significant
savings for the Integrator design team, however, it will not have
a high impact on the engineering efficiency. It is the easiest to
share, however, the engineers may still need to implement the
large majority of the components used in the design library. We
recommend this approach for integrators with mature UI/UX
teams.

Level 2: Component library approach may result in some
of the UI in the integrator product looking or behaving slightly
differently to the rest of the UI and has an onboarding cost for
the Integrator team to learn the platform-team code base. It also
creates a hard dependency on the specific A/B testing platform
and changes that they may do to their UI. Once onboarded,
however, the integrator team can create a new UI for the A/B
testing functionality in their product quickly. We recommend
this approach for integrators that are well connected with their
A/B testing platform team as it will require a continuous
partnership.

Level 3: Cross-linking approach may create some
confusion as the customer of the integrator will have to learn two
different UI experiences, however, is applicable as a stepping
stone towards creating a comprehensive UI. If integrator
customers are technical, however, developing additional UI may
not be needed in the initial release of A/B testing as an integrator
feature. This scenario is possible if A/B testing platform
supports isolated environments with role-based access control.

At Microsoft, majority of internal-facing integrator products
have chosen to re-use component library at some parts of their
experimentation interface and cross-linking to ExP UX
elsewhere. This combination and depending on how much of the
UX a product team is comfortable to re-use, has significantly
lowered the implementation effort for integrating A/B testing
into a product. To give an example, one of the internal-facing
integrator teams was able to implement an end-to-end proof of
concept where a customer using their product was able to run an
A/B test using ExPs infra in a few months of engineering effort.
This work was sufficient to demo the new feature to their
customers, shortening the engineering effort time to a Minimum
Viable Product by at least 35% of the initial investment.

 In contrast, external/public-facing integrators have chosen
to use ExPs design library. Selecting this option resulted in
fewer design and research studies.

G. Support Education of A/B testing

Context & motivating example.: Even with amazing
tools/SDKs to integrate and create high-quality metrics,
deficiencies in educational tools will almost always result in a
failure of A/B testing to scale and thrive within an organization.
A/B test results are only as good as the telemetry and metrics
that they measure. This can make A/B testing a time intensive
endeavor, given the investment required. Education is a key tool
to build momentum, and ensure teams are aware of the platform,
key concepts of A/B testing, and best practices.

Explanation. Even with cutting edge tooling to shepherd
customers through the A/B process, it is still susceptible to bad
data (e.g., incorrect integration with treatment assignment,
missing telemetry events) and interpretation of results (e.g.,
defining metrics using the wrong base level such as session or
user [27]). Further compounding the problem, lack of familiarity
with the platform can result in an integration that is trustworthy
but inefficient and/or unable to service large volumes of
experiments (e.g., each experiment requires computation over
an unmanageably large amount of telemetry data). For A/B
testing to scale and be cost effective for a business, there needs
to be a way for a core set of people to horizontally educate the
broader organization and in this case integrators on the value and
democratize the data driven decision making process to help
scale. Education is the key tool we have found to unlock these
capabilities and increase the potential for customer success.

Recommendations: In our experience working with a
variety of customers across Outreach and Microsoft, we have
found the following educational paths critical for success and we
recommend the following educational support tools:

1. Presentation with leadership to educate on the value and
cost of experimentation. Value can be demonstrated with
case studies and other motivating examples to justify
business investment. Cost of experimentation is not a
motivator but it is a critical component to educate on how
experimentation requires a flywheel of investment [17].

2. Documentation to educate data engineers on the details and
nuances associated with building trustworthy, scalable, and
robust pipelines (e.g., high-volume telemetry should
consider aggregation caches).

3. Documentation to educate developers on the appropriate
ways to set up an experiment in code (e.g., upon failure the
client should always be in a safe default state) and clean up
(e.g., remove config data over time to manage risk) once
the experiment is completed. We have found such
documentation to be an important tool for developers to get
hands-on experience integrating with the platform and
delivering early milestones such as a proof-of-concept.

4. Classes to educate data scientists on the tooling available
to assess the trustworthiness and interpretation of results
from an A/B experiment. These tend to be delivered best as
interactive sessions to allow the students to ask questions
and understand the subtleties of A/B analysis.

5. Integrator documentation. Integrators will require adding
documentation on how to use A/B testing and adjust it to
use the language of their UI (e.g. see example from Azure
Playfab [29]).

Armed with these educational tools and a strong champion
(e.g., accountable architect or product manager), a team should
be able to motivate A/B experimentation across all-levels of the
business and execute on an integrating that is both trustworthy
and scalable to meet business needs.

H. Surface validation problems

Context & motivating example. A/B testing platforms
need to provide integrators and their customers with tooling that
enables trustworthiness validation during initial onboarding and
continuous validation after completing the onboarding. When
ExP onboarded Azure PlayFab as an integrator, the ExP and
Azure Playfab teams collaborated closely to assess the
trustworthiness of random assignment using an A/A test to
demonstrate that there’s no statistically significant difference in
metrics. Both teams also engaged with an end-customer to pilot
the integration with a test A/B experiment leveraging a pre-
defined set of metrics. Post-launch from a continuous validation
perspective, both teams collaborated to add a Sample Ratio
Mismatch (SRM) column to Azure PlayFab scorecards to enable
end-customers to assess the trustworthiness of their experiments
in a self-service manner.

Explanation. Recent research contributions from large scale
companies such as LinkedIn [45] Yahoo [26], and Microsoft
[46] confirms that quality issues such as SRMs are common in
large scale experimentation. At Outreach, before automated
SRM validation was introduced, almost 50% of active
experiments showed an SRM. After adopting SRM validation
and alerting, the case company was able to reduce the SRM rate
to single digit percentages, resulting in more accurate decisions
and time savings on investigations and debugging. Validation
leveraging an A/A test and a test A/B experiment is not just
critical during initial onboarding of an integrator, but validation
needs to also be easily repeatable as end-customers start running
A/B tests. From that perspective it’s critical for end-customers
to be able to run an A/A test when needed and have visibility
SRMs for debugging purposes. This information should be
made available directly in the UI to ensure that users have
visibility into potential trustworthiness issues and can
investigate as needed.

From a metrics perspective, to keep things simple integrators
are encouraged to provide end-customers with standardized
definitions of metrics such as latency, system errors, user sign-
ups and sales that can be easily leveraged by all customers.
However, if integrators provide end-customers with the ability
to create custom metrics it is critical that users have tooling to
validate metric definitions and can easily assess health of their
custom metrics. During custom metric creation it is
recommended for the integrator to provide users with visibility
into sample data to ensure that users can easily assess how a
metric is computed. Once computed, A/B test scorecards should
flag potential metric health issues such as missing telemetry,
constant value and high variance and provide a UI that enables
users to address issues. This includes supporting scenarios such
as the deletion of a problematic metric or outlier trimming to
improve metric quality.

Recommendation. When offering A/B testing as a feature,
it’s critical for integrators to provide a mechanism for one-off
validation of assignment and continuous validation to assess the
trustworthiness of scorecards and metric health. This needs to be
fully automated to empower the end-customer by providing
them with the visibility they need to address issues.

1. Integrator needs to choose how they use the APIs for
validation (e.g. SRM). We recommend exposing the
completion of a critical check as an event through an event-
driven architecture and diagnostic information about the
event through an API. This helps integrators call the API
only when needed (e.g. for failed tests).

2. Platform should support multiple validation options, the
most important are A/A tests and integrators can configure
what and how often they will run them. Integrator then runs
this test suite. AA tests, SRM tests, and other “black box”
validation techniques for auto-detecting bad experiments
are important, since human supported validation is not
available nor scales for A/B integrations.

3. Self-validating platform. Platform should have validations
built in and continuously running. More generally, things
common across all integrators should be automated by the
platform. It is hard for integrator to perform validations
with no access to the platform.

4. Platform needs to expose logs to integrators. An integrator
then decides how to surface those further. We recommend
event-driven architecture for surfacing important events
such as a test failing and providing integrators with
guidance on what to recommend to their customers once
one of such validations is unsuccessful.

5. While the above recommendations make it easier to
diagnose quality issues with A/B tests, understanding the
root causes behind those issues and fixing them is still a
difficult problem [47]. It is important that the platform
company provides educational resources and customer
support to help customers identify the reasons behind
failed validations and fix the underlying issues.

V. CONCLUSION

Enabling A/B integrations brings new opportunities for A/B
testing platforms and for software products that start to offer
A/B testing as a feature in their portfolio. Despite many A/B
testing platforms available on the market as well as built
internally by software companies, integrating A/B testing into
products is far from a solved problem. In this paper we
discussed our key learnings based on the multi-year journey at
Microsoft and Outreach as we integrated A/B testing into
products such as Azure PlayFab. We learned that even with the
rich infrastructure and processes that we created for 1P A/B
testing over the last 15+ years, there is still need to develop and
support new scenarios unique to A/B integrations.
Moving forward, we need to dive deeper on the success
measured for A/B integrations, and outline the maturity path
similar to the Experimentation Growth Model [2] for 1P A/B
testing.

TABLE II. SUMMARY OF KEY LEARNINGS.

Learning Takeaways for A/B
plaƞorms

Takeaways for Integrators

API/SDK
infrastructure

for A/B
integraƟon

 Create a spec that
autogenerates code.

 Generate events
(event-driven arch.)

 Support automaƟon
and debuggability

 Assign an architect and
engineer to create an
integraƟon design.

 Review and integrate
champion scenarios
first.

Streamline
metric ediƟng
experience for

A/B integrators

 Provide capability for
easily shared metrics.

 Enable custom metrics

 Standardize logging
contract.

Enable effecƟve
metric

computaƟon
and analysis

 Use semanƟc layer for
metric and compute
definiƟons.

 Reuse metric definiƟons
for A/B and dashboards.

Config service

as integrator
 Support integraƟng

with pull and push
config.

 Enforce A/B
trustworthy promises

 Support passing the
config separately and
jointly with A/B test
config.

Reusing A/B
tesƟng plaƞorm

UI

 Share design paƩerns
with integrators.

 Expose UI component
library if possible.

 For PoC and quick ramp-
up cross link with the
A/B tesƟng plaƞorm.

Support
EducaƟon of

A/B tesƟng

 Share case studies
with leadership and
engineering

 Provide code examples
for trustworthy
integraƟons.

 Add user-facing A/B
documentaƟon.

 Create courses for users
in your domain.

Surface
validaƟon
problems

 Trigger events for
failed tests

 Expose diagnosƟc
results

 Provide A/A test feature
validaƟon.

 Expose SRM test result
to users.

ACKNOWLEDGMENT

We would like to thank everyone at Microsoft, Outreach and
Azure PlayFab for contributing to this research and the
reviewers that have provided feedback on it.

REFERENCES

[1] A. Fabijan, P. Dmitriev, H. H. H. Olsson, and J. Bosch, “The
Evolution of Continuous Experimentation in Software Product
Development: From Data to a Data-Driven Organization at
Scale,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), May 2017, pp. 770–780, doi:
10.1109/ICSE.2017.76.

[2] A. Fabijan, P. Dmitriev, C. McFarland, L. Vermeer, H.
Holmström Olsson, and J. Bosch, “Experimentation growth:
Evolving trustworthy A/B testing capabilities in online software
companies,” J. Softw. Evol. Process, p. e2113, Nov. 2018, doi:
10.1002/smr.2113.

[3] T. Xia, S. Bhardwaj, P. Dmitriev, and A. Fabijan, “Safe Velocity:
A Practical Guide to Software Deployment at Scale using
Controlled Rollout,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in

Practice (ICSE-SEIP), May 2019, pp. 11–20, doi: 10.1109/ICSE-
SEIP.2019.00010.

[4] P. Li Luo, P. Dmitriev, M. Hu Huibin, Xiaoyu C., Z. Dimov, B.
Paddock, Y. Li, A. Kirshenbaum, I. Niculescu, and Y. Thoresen,
“Experimentation in the Operating System: The Windows
Experimentation Platform,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), May 2019, pp. 21–30, doi:
10.1109/ICSE-SEIP.2019.00011.

[5] A. Fabijan, H. Holmström Olsson, and J. Bosch, “Differentiating
Feature Realization in Software Product Development,” in
Product-Focused Software Process Improvement, 2017, pp. 221–
236.

[6] K. Pohl, Requirements Engineering: Fundamentals, Principles,
and Techniques. 2010.

[7] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the User
Experience on a Large Scale : User-Centered Metrics for Web
Applications,” Proc. SIGCHI Conf. Hum. Factors Comput. Syst.,
pp. 2395–2398, 2010, doi: 10.1145/1753326.1753687.

[8] E. Lindgren and J. Münch, “Raising the odds of success: The
current state of experimentation in product development,” Inf.
Softw. Technol., vol. 77, pp. 80–91, 2015, doi:
10.1016/j.infsof.2016.04.008.

[9] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones of the
system,” in Proceedings of the 38th International Conference on
Software Engineering Companion - ICSE ’16, 2016, pp. 92–101,
doi: 10.1145/2889160.2889231.

[10] G. Schermann, J. J. Cito, and P. Leitner, “Continuous
Experimentation: Challenges, Implementation Techniques, and
Current Research,” IEEE Softw., vol. 35, no. 2, pp. 26–31, Mar.
2018, doi: 10.1109/MS.2018.111094748.

[11] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use
Continuous Innovation to Create Radically Successful
Businesses. 2011.

[12] S. Blank, “Why the lean start-up changes everything,” Harvard
Business Review, vol. 91, no. 5. John Wiley & Sons, p. 288, 2013,
doi: 10.1523/JNEUROSCI.0307-10.2010.

[13] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. 2010.

[14] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development
and deployment at facebook,” IEEE Internet Comput., vol. 17,
no. 4, pp. 8–17, 2013, doi: 10.1109/MIC.2013.25.

[15] J. F. Box, “R.A. Fisher and the Design of Experiments, 1922–
1926,” Am. Stat., vol. 34, no. 1, pp. 1–7, Feb. 1980, doi:
10.1080/00031305.1980.10482701.

[16] S. D. Simon, “Is the randomized clinical trial the gold standard of
research?,” J. Androl., vol. 22, no. 6, pp. 938–943, Nov. 2001,
doi: 10.1002/j.1939-4640.2001.tb03433.x.

[17] A. Fabijan, B. Arai, P. Dmitriev, and L. Vermeer, “It takes a
Flywheel to Fly: Kickstarting and Growing the A/B testing
Momentum at Scale,” 2021, doi:
10.1109/SEAA53835.2021.00023.

[18] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The
Evolution of Continuous Experimentation in Software Product
Development,” 2017, doi: 10.1109/ICSE.2017.76.

[19] S. Gupta, L. Ulanova, S. Bhardwaj, P. Dmitriev, P. Raff, and A.
Fabijan, “The Anatomy of a Large-Scale Experimentation
Platform,” in 2018 IEEE International Conference on Software
Architecture (ICSA), Apr. 2018, no. May, pp. 1–109, doi:
10.1109/ICSA.2018.00009.

[20] K. Kevic, B. Murphy, L. Williams, and J. Beckmann,
“Characterizing Experimentation in Continuous Deployment: A
Case Study on Bing,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), May 2017, pp. 123–132, doi:
10.1109/ICSE-SEIP.2017.19.

[21] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch, “The
RIGHT model for Continuous Experimentation,” J. Syst. Softw.,
vol. 0, pp. 1–14, 2015, doi: 10.1016/j.jss.2016.03.034.

[22] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker, and
Y. Xu, “Trustworthy online controlled experiments,” in
Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining - KDD ’12, 2012, p.
786, doi: 10.1145/2339530.2339653.

[23] R. L. Kaufman, J. Pitchforth, and L. Vermeer, “Democratizing
online controlled experiments at Booking. com,” arXiv Prepr.
arXiv1710.08217, pp. 1–7, 2017.

[24] T. Kluck and L. Vermeer, “Leaky Abstraction In Online
Experimentation Platforms: A Conceptual Framework To
Categorize Common Challenges,” Oct. 2017, [Online].
Available: http://arxiv.org/abs/1710.00397.

[25] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin, “From
Infrastructure to Culture,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining - KDD ’15, 2015, pp. 2227–2236, doi:
10.1145/2783258.2788602.

[26] D. Tang, A. Agarwal, D. O. Brien, M. Meyer, D. O’Brien, and M.
Meyer, “Overlapping experiment infrastructure,” in Proceedings
of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’10, 2010, p. 17,
doi: 10.1145/1835804.1835810.

[27] P. Dmitriev and X. Wu, “Measuring Metrics,” in Proceedings of
the 25th ACM International on Conference on Information and
Knowledge Management - CIKM ’16, 2016, pp. 429–437, doi:
10.1145/2983323.2983356.

[28] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The
Benefits of Controlled Experimentation at Scale,” in Proceedings
of the 2017 43rd Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), Aug. 2017, pp. 18–26, doi:
10.1109/SEAA.2017.47.

[29] Azure Playfab, “Azure Playfab A/B Testing Documentation.”
https://learn.microsoft.com/en-
us/gaming/playfab/features/analytics/ab-testing/.

[30] A. B. Sandberg, “Agile Collaborative Collaboration,” IEEE
Comput. Soc., vol. 28, no. 4, pp. 74–84, 2011, doi:
10.1109/MS.2011.49.

[31] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,” Empir.
Softw. Eng., vol. 14, no. 2, pp. 131–164, 2008, doi:
10.1007/s10664-008-9102-8.

[32] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “Effective

online controlled experiment analysis at large scale,” in
Proceedings - 44th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2018, 2018, pp.
64–67, doi: 10.1109/SEAA.2018.00020.

[33] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “Online
controlled experimentation at scale: An empirical survey on the
current state of A/B testing,” in Proceedings - 44th Euromicro
Conference on Software Engineering and Advanced
Applications, SEAA 2018, 2018, pp. 68–72, doi:
10.1109/SEAA.2018.00021.

[34] A. Fabijan, “Diagnosing Sample Ratio Mismatch in A/B
Testing.” https://www.microsoft.com/en-
us/research/group/experimentation-platform-
exp/articles/diagnosing-sample-ratio-mismatch-in-a-b-testing/.

[35] J. Doerr, Measure what matters: How Google, Bono, and the
Gates Foundation rock the world with OKRs. Penguin, 2018.

[36] W. Machmouchi and G. Buscher, “Principles for the Design of
Online A/B Metrics,” in Proceedings of the 39th International
ACM SIGIR conference on Research and Development in
Information Retrieval - SIGIR ’16, 2016, pp. 589–590, doi:
10.1145/2911451.2926731.

[37] P. Dmitriev, B. Frasca, S. Gupta, R. Kohavi, and G. Vaz, “Pitfalls
of long-term online controlled experiments,” in 2016 IEEE
International Conference on Big Data (Big Data), Dec. 2016, pp.
1367–1376, doi: 10.1109/BigData.2016.7840744.

[38] P. Dmitriev, S. Gupta, K. Dong Woo, and G. Vaz, “A Dirty
Dozen: Twelve Common Metric Interpretation Pitfalls in Online
Controlled Experiments,” 2017.

[39] “Airbnb-engineering: how-airbnb-achieved-metric-consistency-
at-scale.” https://medium.com/airbnb-engineering/how-airbnb-
achieved-metric-consistency-at-scale-f23cc53dea70.

[40] S. Patotski, “Metric-computation-for-multiple-backends.”
https://www.microsoft.com/en-
us/research/group/experimentation-platform-exp/articles/metric-
computation-for-multiple-backends.

[41] “Airbnb-engineering: how-airbnb-achieved-metric-consistency-
at-scale.” .

[42] S. Patotski, “Metric-computation-for-multiple-backends.” .
https://www.microsoft.com/en-
us/research/group/experimentation-platform-exp/articles/metric-
computation-for-multiple-backends

[43] M. T. Rahman, L.-P. Querel, P. C. Rigby, and B. Adams, “Feature
Toggles: Practitioner Practices and a Case Study,” Proc. 13th Int.
Work. Min. Softw. Repos. - MSR ’16, pp. 201–211, 2016, doi:
10.1145/2901739.2901745.

[44] W. Vogels, “Continuous Configuration at the Speed of Sound |
All Things Distributed,” All Things Distributed - Amazon, 2021.
https://www.allthingsdistributed.com/2021/08/continuous-
configuration-on-aws.html.

[45] N. Chen, M. Liu, and Y. Xu, “Automatic Detection and Diagnosis
of Biased Online Experiments,” Jul. 2018, [Online]. Available:
http://arxiv.org/abs/1808.00114.

[46] A. Fabijan et al., “Diagnosing Sample Ratio Mismatch in Online
Controlled Experiments,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining - KDD ’19, 2019, pp. 2156–2164, doi:

10.1145/3292500.3330722.

[47] A. Fabijan et al., “Diagnosing sample ratio mismatch in online
controlled experiments: A taxonomy and rules of thumb for
practitioners,” 2019, doi: 10.1145/3292500.3330722.

