
In Proceedings of the 2023 USENIX Annual Technical Conference (ATC’23)

Confidential Computing within an AI Accelerator

Kapil Vaswani1, Stavros Volos1, Cédric Fournet1

Antonio Nino Diaz1, Ken Gordon1, Balaji Vembu3,†, Sam Webster1, David Chisnall1, Saurabh Kulkarni4,†

Graham Cunningham5,‡, Richard Osborne2, Daniel Wilkinson6,‡

1Microsoft 2Graphcore 3Meta 4Lucata Systems 5XTX Markets 6Imagination Technologies

Abstract

We present IPU Trusted Extensions (ITX), a set of hardware
extensions that enables trusted execution environments in
Graphcore’s AI accelerators. ITX enables the execution of AI
workloads with strong confidentiality and integrity guaran-
tees at low performance overheads. ITX isolates workloads
from untrusted hosts, and ensures their data and models re-
main encrypted at all times except within the accelerator’s
chip. ITX includes a hardware root-of-trust that provides at-
testation capabilities and orchestrates trusted execution, and
on-chip programmable cryptographic engines for authenti-
cated encryption of code/data at PCIe bandwidth.

We also present software for ITX in the form of compiler
and runtime extensions that support multi-party training with-
out requiring a CPU-based TEE.

We included experimental support for ITX in Graphcore’s
GC200 IPU taped out at TSMC’s 7nm node. Its evaluation on
a development board using standard DNN training workloads
suggests that ITX adds < 5% performance overhead and de-
livers up to 17x better performance compared to CPU-based
confidential computing systems based on AMD SEV-SNP.

1 Introduction

Machine learning (ML) is transforming many tasks such as
medical diagnostics, video analytics, and financial forecasting.
Their progress is largely driven by the computational capa-
bilities and large memory bandwidth of AI accelerators such
as NVIDIA GPUs, Alibaba’s NPU [2], Google’s TPU [18],
and Amazon’s Inferentia [3]. Their security and privacy is a
serious concern: due to the nature and volume of data required
to train sophisticated models, the sharing of accelerators in
public clouds to reduce cost, and the increasing frequency
and severity of data breaches, there is a realization that ma-
chine learning systems require stronger end-to-end protection
mechanisms for their sensitive models and data.

†Work done while at Microsoft; ‡Work done while at Graphcore.

IPU0 IPU1

CCU ICU

Figure 1: Graphcore Intelligence Processing Unit (IPU) develop-
ment board (May 2020) with ITX extensions, showing two IPUs on
the front side connected to the CCU via the ICU on the back.

Confidential computing [1, 4, 11, 31] relies on custom hard-
ware support for trusted execution environments (TEE), also
known as enclaves, that can provide such security guarantees.
Abstractly, a TEE is capable of hosting code and data while
protecting them from privileged attackers. The hardware can
also measure this code and data to issue an attestation re-
port, which can be verified by any remote party to establish
trust in the TEE. In principle, confidential computing enables
multiple organizations to collaborate and train models using
sensitive data, and to serve these models with assurance that
their data and models remain protected. However, the predom-
inant TEEs such as Intel SGX [22], AMD SEV-SNP [5], Intel
TDX [16], and ARM CCA [6] are limited to CPUs. Recently,
NVIDIA has announced TEE support in upcoming Hopper
GPUs [25] that works in conjunction with CPU TEEs.

Adding native support for confidential computing into AI
accelerators can greatly increase their security, but also in-
volves many challenges. Security features such as isolation,
attestation, and side-channel resilience must be fitted in their

highly optimized architecture, with minimal design changes,
and without degrading their functionality, performance, or
usability. An additional requirement is the flexibility to op-
erate with various hosts, including CPUs with no TEE sup-
port, CPUs with process-based TEEs such as Intel SGX, and
CPUs with VM-based TEEs such as AMD SEV-SNP. None
of the accelerator TEE designs that have been proposed meet
this requirement, including NVIDIA GPU TEEs. Finally, the
manufacturing and assembly process and protocols must be
hardened against supply chain attacks.

This paper describes our effort to support TEEs in Graph-
core’s GC200 Intelligence Processing Unit (IPU), a state-of-
the-art custom AI accelerator. We introduce IPU Trusted Ex-
tensions (ITX), a set of experimental hardware capabilities in
IPUs. We show that, using ITX in conjunction with appropri-
ate compiler and runtime support, we can delegate ML tasks
to the IPU with strong confidentiality and integrity guarantees
while delivering accelerator-grade performance. In particular,
ITX can guarantee isolation of an ML application from an
untrusted host: application code and data appears in clear-
text only within the IPU, and remains encrypted otherwise,
including when transferred over the PCIe link between the
host and the IPU. Once an application is deployed within an
ITX TEE, the host can no longer tamper with the application
state or the IPU configuration. ITX can also issue remotely
verifiable attestations, rooted in a Public Key Infrastructure
(PKI), enabling a relying party to establish trust in a given ML
task before releasing secrets such as data decryption keys.

The main components of ITX are a new execution mode
in the IPU for isolating all security sensitive state from the
host and securely handling security exceptions, programmable
cryptographic engines capable of encrypting/decrypting CPU-
IPU PCIe traffic at line rate (32 GB/s bidirectional throughput
supporting PCIe Gen4), and a novel authenticated encryption
protocol for ensuring confidentiality and integrity of code/data
transfers without requiring trust in the host.

Trust in ITX is rooted in the Confidential Compute Unit
(CCU), a new hardware Root-of-Trust (HRoT) on the IPU
board. The CCU provides each device with a unique identity
based on a hardware secret sampled within the CCU at the
end of manufacturing. The CCU firmware is responsible for
managing the entire lifecycle of TEEs on the IPU, includ-
ing creation, issuing attestation reports that capture IPU and
task specific attributes, key exchange, launch, and termina-
tion of TEEs. Our design also features protocols for securely
provisioning firmware to the IPU in a potentially hostile man-
ufacturing environment, for issuing certificates that capture
the identity of all updatable firmware, and for supporting
firmware updates without requiring device re-certification.

Several distinguishing aspects of ITX and the IPU program-
ming model result in stronger security than one may expect
from CPU-based TEEs:

• An ITX TEE spans the entire IPU, and has exclusive
access to all IPU resources until it terminates. Therefore,

it is not possible for an adversary to run concurrently
on the same resources and exploit the resulting side-
channels. This execution model is feasible as most AI
workloads require at least one accelerator, with larger
workloads requiring thousands of accelerators for hours.

• The IPU memory system consists of large on-chip
SRAM attached to its cores, which is loaded with data
from untrusted external memory during explicit syn-
chronization phases. Thus, during computational phases,
code and data accesses to IPU memory have a fixed
latency. This has two security implications: (1) traffic
between IPU cores and memory need not be encrypted,
as it stays within the chip; (2) this avoids the need for
optimizations such as caching or speculation to hide
memory access latency, and the resulting side-channels.

• The IPU supports a programming model where alloca-
tion and scheduling of all resources on the IPU (cores,
memory, and communication channels) are statically
managed by the compiler. Hence, the IPU application
binary defines its entire data and control flow, including
data transfers within the IPU, and between IPU and host
memory. This is unlike GPUs where the host software
stack (runtime and driver) remain in full control of the
execution, and must be trusted to guarantee integrity.

There are many ways for software to utilize ITX to provide
end-to-end guarantees for ML workloads, depending on the
threat model and capabilities of the host. This paper focuses
on configurations where a multi-party ML training workload
is deployed to the IPU without trusting the host CPU. This
mode has the strongest security properties and can be used
with any CPU. We describe a prototype software stack and
protocols for it, and present its end-to-end evaluation using
standard DNN training workloads. Software to support other
configurations, e.g., where the IPU is coupled with a hardware-
protected CPU TEE, are left for future work.

We have fully implemented ITX in the IPU, taped out in
2020 and manufactured in TSMC’s 7nm node. Our extensions
use less than 1% of this large ASIC, and do not require any
changes to its compute core or memory subsystem. Its eval-
uation on a development board using confidential ML train-
ing workloads suggests a performance overhead of less than
5% compared to non-confidential IPU workloads. While our
prototype demonstrated promising results, significant work
remains to turn our work into production.

Due to implementation constraints, our prototype uses a
discrete HRoT (instead of an on-die core) and it does not
encrypt traffic over IPU-IPU links. It is therefore vulnerable
to physical attacks, e.g., on the link between the CCU and
IPU, or between multiple IPUs. These vulnerabilities are not
limitations of our design and can be addressed in future IPU
generations by integrating the HRoT on the IPU chip, and by
introducing encryption engines on IPU-IPU links.

2

In summary, this paper makes the following contributions:

1. A set of experimental hardware extensions to the IPU,
a commodity custom AI accelerator, that enable high-
performance confidential multi-party machine learning.

2. Support for remote attestation and secure key exchange
based on a discrete hardware root-of-trust.

3. A pipelined application-level protocol for authenticated
encryption & decryption of code and data over PCIe.

4. Protocols for securely provisioning secrets, firmware,
and certificates to a device during manufacturing.

5. Prototype software support for enabling confidential
multi-party training of ML models expressed in Ten-
sorFlow on the IPUs without requiring trust in the CPU.

6. Hardware implementation of ITX in the IPU ASIC manu-
factured by TSMC in 7nm node, and its initial evaluation
on a development board in 2020, suggesting low over-
heads and orders of magnitude improvements over CPU
TEEs. This made our prototype the first AI accelerator
to support confidential computing.

While some aspects of our design are specific to IPUs, we
hope it can serve as a blueprint for adding TEE support in
other specialized devices and accelerators.

2 Background

This section outlines the IPU architecture and programming
model, focusing on aspects relevant to security. The section
also reviews hardware-based confidential computing.

2.1 IPU Hardware Architecture

Tiles. Each IPU consists of a set of tiles, each with a multi-
threaded core and a small amount of private on-chip SRAM.
The IPU features 1472 tiles, totalling roughly 900 MB of on-
chip SRAM. The cores support an instruction set tuned for AI,
including specialized vector instructions and low-precision
arithmetic. Each core can execute up to six statically sched-
uled threads. Since on-chip memory is accessed at fixed la-
tency, instructions can be exactly scheduled by the compiler.

Interconnects. The tiles are connected over internal ex-
change, an all-to-all, stateless, synchronous and non-blocking
high-bandwidth interconnect whose operation is similarly or-
chestrated by software. The internal exchange is connected
to an external exchange interconnect via a set of exchange
blocks. Each exchange block manages a subset of the tiles
and mediates traffic between the two interconnects. Each IPU
has a pair of PCIe links that connect to a host server, and
additional IPU-Links that connect to other IPUs.

PC
I C

on
tr

ol
le

r

PCI Complex

Internal Interconnect

Ex
te

rn
al

 E
xc

ha
ng

e
In

te
rc

on
ne

ct

IPU-IPU Link Controller

Ex
ch

an
ge

 B
lo

ck
s

(X
B)

Tiles

Control
Port Re

gi
st

er
s

Host
Exchange

H
SP

IPU-IPU Link Controller

Tiles

IC
U

IPU

IPU

User
Application

IPU
Binary FW

PCI

ML Framework

IPU SW Stack

Guest OS
Device Drivers

Hypervisor
and Host OS

CPU

Figure 2: System stack (left) and IPU floorplan (right).

The external interconnect is a packet-switched Network-on-
Chip. Tiles use the external interconnect to dispatch packets
to the host via PCIe links and unicast/multi-cast packets to
tiles on other IPUs via IPU-links. Tiles read data from the host
by issuing a read request packet and waiting for all associated
read completion packets. Tiles write data to the host by issuing
one or more write request packets. Packets are routed based
on tile identifiers. For requests, packets from exchange blocks
are placed onto lanes based on the source tile identifier of
the exchange packet. For read completions, the exchange
lane is chosen based on the destination tile identifier, which
is recorded in a lookup table in the PCI complex for each
outstanding read request.
Exchange Address Spaces. The IPU exposes three address
spaces to facilitate communication between the host and the
IPU and between IPUs. The Tile address space is used by
tiles to address one another. The Host PCI space is used by
the host to address tile memory and on-chip page tables in
the Host Exchange block. The Tile PCI space is used by tiles
to address read requests to host memory over PCI. The IPU
can be configured to re-map read requests from tiles to the
PCI domain using on-chip page tables.
Host-IPU Interface. The IPU exposes a set of configuration
registers to the host via a PCI BAR space. These registers
are hosted in a component known as the PCI Complex. The
PCI complex consists of a Host Sync Proxy (HSP) responsible
for external synchronization between the host and the IPU,
a host exchange that translates packets between PCI format
and a proprietary external-exchange packet format, on-chip
page tables for address translation of read/write requests from
tiles to the PCI domain, on-chip lookup tables for keeping
metadata for outstanding PCI read requests, and a control
port that provides access to configuration registers of all other
internal components.

The host exchange subsystem also includes a component
known as the autoloader, which enables efficient scrubbing
and initialization of tile memory. To initialize a binary in tile
memory, the host can load small programs (e.g., a bootloader)
into the autoloader, which can then broadcast it to all tiles.
Host-IPU Synchronization. The IPU execution model is
based on the Bulk Synchronous Parallel (BSP) paradigm with
barriers and supersteps. A superstep involves a global syn-
chronization barrier between all tiles on one or more IPUs,
followed by an exchange phase that transfers data between

3

tiles, followed by a compute phase which ends at another
barrier. This process repeats until some application specific
criteria is met—e.g., loss is under a threshold.

Using the HSP registers, the host can configure the fre-
quency of synchronization barriers and indicate barriers at
which it expects to be notified—e.g., when one or more batch
of data has been processed, at epoch boundaries. Once config-
ured, the IPUs can execute multiple supersteps independently
without requiring involvement from the host.

IPU Control Unit (ICU). The ICU is a microcontroller inte-
grated on the board and connected with the IPUs via JTAG,
and with PCB peripherals for power supply and environmental
monitoring. It is responsible for initialization of the IPUs.

Resets. The main means of resetting the IPU from the host
is a secondary bus reset (SBR) that resets the entire device
including the IPUs, the ICU, and the host link; the ICU must
re-enable the host link once it comes out of reset. Alterna-
tively, a Newmanry Reset can be triggered by writing the IPU
control register; it resets the device logic including the host
and IPU links, but does not reset the physical links. In both
of these resets, tile memory is not scrubbed.

2.2 IPU Software Stack

The IPU software stack compiles and executes applications
written in ML frameworks such as TensorFlow and PyTorch.
It consists of a compiler, a host runtime, and a set of libraries
supported by the IPU device driver.

Compiler. Given a computation graph representing a task
(e.g., a TensorFlow XLA graph), the compiler partitions each
layer of the graph between tiles, so that each tile holds a part of
the model state (weights and activations for some layers) and
a part of the input data. The compiler also assigns resources
(threads, memory) to each node of the graph, schedules its
computation, and finally emits specialized code for each tile.

The resulting IPU binary captures the different phases of
execution, including I/O for reading batches of data, code for
running the training loop, and I/O for writing the weights of
the trained model. I/O phases also include synchronization
and internal exchange code for exchanging data among tiles.

The compiler maps all data transfers between the host and
IPUs to an abstraction called streams supported by the run-
time. Data transfers from the host to an IPU (and IPU to the
host) are mapped to input (output) streams and compiled to
sequences of read (write) instructions to the Tile PCI address
space. The compiler also uses streams to implement check-
points: checkpoint creation maps all model weights to a single
output stream, and checkpoint restoration reads them back
from a single input stream.

The compiler supports an offline mode, which decouples
compilation from execution. In this mode, the compiler gener-
ates self-contained IPU binaries, which can be persisted and
loaded into one or more IPUs at a later point in time.

Host Runtime. The runtime provides code for loading IPU
binaries, and for streaming data in and out of the IPUs. It
loads IPU binaries by deploying a small bootloader into a
reserved section of each tile memory. The bootloader in turn
reads each tile-specific binary from the host into tile memory.

The runtime implements input streams by repeatedly copy-
ing data into a ring buffer in host memory and mapping the
pages of the ring buffer into Tile PCI space in the on-chip
page table. Once the ring buffer is ready and the mapping
is defined, code on tiles can issue read requests. Similarly,
output streams are implemented by copying data from the
ring buffer to application memory.

2.3 Confidential Computing

Confidential computing is a paradigm where code/data remain
protected from privileged attackers throughout their lifecy-
cle: at rest, in transit, and during use. Central to confidential
computing is the notion of a trusted execution environment
(TEE) with two key capabilities: it can host an application in
a hardware-isolated environment, which protects the applica-
tion from any external access including access from privileged
attackers; and it can issue remotely verifiable attestations that
capture security claims about the application hosted in the
TEE and the platform supporting the TEE. The attestations
can be used by a relying party to gain trust in an application.

TEEs are supported by recent processors from Intel and
AMD; ARM also recently defined a specification for sup-
porting TEEs. There are broadly two classes of CPU TEEs:
process-based and VM-based. Process-based TEEs (e.g., Intel
SGX) are designed to isolate a user-space application from an
untrusted operating system (both guest and host) and the hy-
pervisor. VM-based TEEs (e.g., AMD SEV-SNP, Intel TDX)
are designed to protect an entire guest VM from the host oper-
ating system and the hypervisor. TEEs offer varying degrees
of protection from attackers with physical access to the CPU.
Most TEE implementations assume that attackers can snoop
on interconnects between the CPU package and external com-
ponents (e.g., off-chip DRAM) and protect data by encrypting
and integrity-protecting memory traffic.

Remote attestation is typically rooted in an on-die hardware
root of trust (HRoT) with exclusive access to a unique device
secret provisioned into one-time programmable fuses during
manufacturing. During boot, the HRoT uses the secret to de-
rive a device-specific identity key. This key typically endorses
keys used for signing attestation reports. The corresponding
public key is endorsed by the hardware manufacturer.

3 Threat Model

TEE hardware is subject to a variety of attacks throughout
its lifecycle, from chip design and manufacturing up until the
hardware is decommissioned.

4

Trust in TEEs is rooted in hardware, and consequently in
the chip designers and their OEMs involved in designing and
manufacturing the chips. Additional trust is also required in
the infrastructure for issuing certificates to each chip, and for
publishing the last known good version of firmware trusted
computing base (TCB). While this is also the case with the
IPU, we wish to minimize trust in the rest of the supply chain.
Hence, we conservatively assume that attackers control the
manufacturing and assembly process after tapeout, including
the process of provisioning firmware and/or secrets to each
device and harvesting their Certificate Signing Requests.

After deployment, we assume a strong adversary that con-
trols the entire system software stack, including the hypervisor
and the host operating system, and also has physical access to
the host. The adversary can access or tamper with any code
and data transferred between the host and the IPU, either in
operating system buffers or over PCIe. The adversary can
also tamper with device memory directly via the PCI BAR,
or map the victim application’s tile PCI address space to host-
side memory controlled by the attacker. Information leakage
through side-channels such as timing, power analysis, and
physical probes on the IPU are generally out of scope. How-
ever, we wish to offer protection from side-channels based on
memory access patterns, and from low-level integrity attacks
such as glitching.

We trust the IPU and HRoT packages, and we assume that
the adversary cannot extract secrets or corrupt state within
the packages. In particular, the IPU includes trusted SRAM
within the IPU tiles accessed only via on-chip channels.

With the current generation of IPUs, we make additional
trust assumptions in the ICU, which provides connectivity
between the hardware RoT and the IPUs, and in links be-
tween IPUs. We trust the ICU firmware and the physical links
that connect the HRoT, the ICU and the IPU. These trust
assumptions can be removed in subsequent generations of
the IPU by placing the HRoT on the IPU die, and encrypting
communication over IPU-IPU links.

The ML source script and configuration are trusted. The
ML framework and the compiler are trusted for integrity of
the computation—i.e., to compile the model defined in the
ML script correctly into a manifest and IPU binaries. In multi-
party configurations (involving parties that do not trust one
another), these assumptions can be met by having all parties
review the script and configuration for the workload, then
confirm that they all locally compile to the same manifest and
binaries. Each party is trusted with the integrity and confiden-
tiality of the data streams they provide for the computation;
in particular, honest parties are trusted to correctly encrypt
their data streams with a fresh encryption key, and to release
this key to IPUs only after verifying their attestation report.

In configurations that couple the IPU with a host CPU
TEE (e.g., Intel SGX and TDX, AMD SEV-SNP), the CPU
package is also trusted, along with any software hosted in
the TEE.With process-based TEEs, the CPU-based software

ICU

CCU
SEC. EXCEPTION

EXCEPTION

BOARD RESET

SXPs

E
xc

h
an

ge

PCI
Complex

Tiles

A
ut

ol
oa

d
er

Flash

IPU

HOST

C
or

e

Figure 3: IPU hardware extensions to support trusted execution.

TCB may include the ML training or inferencing script and
its framework (e.g., TensorFlow, PyTorch), compiler, and run-
time. With VM-based TEEs the TCB may additionally in-
clude the kernel-mode driver and a guest operating system.
The host runtime is trusted for confidentiality—i.e., to setup a
secure, attested channel between the CPU TEE and IPU, and
to transfer code/data over the channel.

Under this threat model, we wish to provide confidentiality
and integrity guarantees for model code and data, including
initial weights, input data, checkpoints and outputs. For train-
ing, integrity implies that the trained model is bitwise equiva-
lent to the model obtained in the absence of the attacker. For
inferencing, integrity implies that requests yield same results
as those obtained in the absence of the attacker.

We wish to provide remote attestation, which refers to the
ability of the platform to make remotely verifiable claims that
a relying party can use to reason about the TEE’s security
properties and thereby establish trust in the application hosted
within the TEE. Specifically, we wish to ensure that the attes-
tation can deliver temporally fresh evidence that contains all
security-sensitive parts of the platform and application state.

4 Overview

Trusted execution in IPUs enables model developers to se-
curely offload an ML job (training or inference) while pro-
tecting both its model and data from the hosting platform. In
turn, model developers can prove to data providers that their
data remains protected from both the hosting platform and
the model developers themselves. (Appendix A.1 provides a
comprehensive security analysis of ITX.)

The workflow for offloading a job involves TEE creation,
generation of an attestation report, its verification by remote
parties, code/data encryption, secure exchange of encryption
keys, job execution, and decryption of the outcome.

4.1 Hardware Extensions (ITX)

The IPU hardware contains several components (shown in
Figure 3) to support this workflow, including a new hardware
root-of-trust (RoT), called the CCU, and a new execution
mode, called the trusted mode, in which all security sensitive
state is isolated from a potentially malicious host. This mode

5

C200Untrusted
Host

CCU

IPU

IPU

Model
provider

Data
providers

IPU Runtime

Guest OS &
IPU Driver

1

2

3

4

5

6

7

8

8

9
7 10

11

Trusted clean room Untrusted cloud platform

IPU
Compiler

Encryption
tool

Verifier

Data
Encryption

tool
Verifier

Host OS and
Hypervisor

Figure 4: Multi-party training in trusted offline mode. Before
training, the remote parties upload their encrypted code, data and
certificates (1–4) Once training starts (5–6), they verify the attesta-
tion report (7) then release their encryption keys to the CCU (8-9);
they can be offline for the rest of the computation. The IPUs train
the model in a TEE (10) and releases an encrypted trained model
(11), whose key can be shared with model receiver(s).

is entered by writing to a configuration register. (For remote
verifiability, this register is measured by the CCU and included
in the attestation report.) Once the IPU enters this mode, its
configuration registers and tile memory can be accessed only
by the CCU and ICU. The only way to exit this mode is via
a chip reset, which is extended to scrub all key registers and
tile memory.

The IPU also includes programmable AES-GCM engines
for authenticated encryption and decryption of code and data
transferred between the host and the IPU at PCIe line rate.
These engines are hosted in new components, called Secure
Exchange Pipes (SXP), located on the interconnect between
the PCIe block and the exchange blocks. The SXP and its use
are described in Section 6.1.

4.2 Software Support
There are many ways to utilize ITX. For this paper, we il-
lustrate a particular mode, called the offline mode (Figure 4).
In this mode, a multiparty ML training workload can be de-
ployed in an IPU-based TEE without requiring a CPU-based
TEE. This mode has strong security properties (e.g., small
TCB) and minimal dependencies on the host CPU hardware.

Job Preparation. In offline mode, a model developer uses
an extended IPU compiler to statically compile a model train-
ing job expressed in an ML framework such as TensorFlow
or PyTorch to standalone IPU binaries in a trusted, offline
clean room environment (1). In addition to the binary, the
compiler generates a job manifest, which contains auxiliary
information required at runtime to execute the job. Next, the
model developer encrypts binaries and parameters such as
initial weights and learning rate using encryption keys that
remain in the clean room environment. The model developer
also generates a fresh public key share for key exchange, and

a signature over the key share using their certificate. These
artifacts, along with the model developer’s certificate are pack-
aged together to create an application package. Separately,
data providers pre-process and encrypt their input data and
labels in their own clean room environments, and create data
packages which include their key shares and certificates (2).
The resulting packages are uploaded to an IPU server (3, 4).

Job Initialization. Any entity can initiate execution of the
training job using the host runtime, which has been extended
to load encrypted code/data into IPUs. For confidential com-
puting jobs, the runtime provides user-mode APIs for opera-
tions such as creating TEEs (5) for a job, fetching their attes-
tation reports and additional collateral such as device-specific
certificates (6), and relaying key-exchange messages from
relying parties to the CCU (8). This runtime is not trusted.

Remote Attestation. In trusted mode, the CCU can issue re-
motely verifiable attestations, which are relayed to relying par-
ties (7) as proof of TEE configuration for their workload. The
attestation is a certificate chain from the IPU manufacturer
root CA to an end-certificate signed by the CCU with custom
extensions that embed initialization attributes (e.g., measure-
ment of all security-sensitive IPU registers) and job-specific
attributes, such as the measurement of the job manifest, and
the hash digest of other runtime attributes, including certifi-
cate fingerprints of all parties and the CCU’s fresh public
keyshare. The model developer and data providers verify this
report, the model, and identities of other participants. If they
decide to make their data available for this job, they derive
shared keys using the CCU’s public key share and securely
exchange their secrets with the CCU.

Job Execution. After the model developer and data providers
have released their keys to the CCU, the CCU deploys the
keys into the SXPs and starts the job (9) by installing a boot-
loader into the IPU tiles using the autoloader. The bootloader
fetches the application binary from host memory to each tile
in 1KB blocks. In trusted mode, these blocks are decrypted
and integrity checked by the SXPs before being written to tile
memory (see Section 7.3). Once the application binary has
been transferred, the runtime initiates execution of the job.
During execution, tiles generate read requests for data, also in
blocks of 1KB. In trusted mode, the blocks are fetched from
host memory over PCIe, and decrypted and integrity checked
by the SXPs before being written to tile memory. Similarly,
all write requests (e.g., checkpoints and trained model) are
encrypted and extended with authentication tags before being
written to host memory. The encryption protocol is mostly
transparent to the compiler, which can compile any training
algorithm into binary relying on the data being in tile memory
in cleartext and utilizing all available IPU compute resources.
Finally, the IPU encrypts the trained model with a key made
available only to the model receivers listed in the job manifest.

6

Figure 5: CCU firmware architecture and key hierarchy.

5 Trusted Execution on IPUs

5.1 Confidential Compute Unit (CCU)

The CCU is responsible for associating each device with a
unique cryptographic identity and managing trusted execution
in its IPUs. The CCU is a discrete chip based on STMicro’s
STM32H753 microcontroller [24]. This chip was selected as
the RoT based on several security features required to imple-
ment measured boot and to offer protection from a variety
of attacks throughout the IPU lifecycle, such as the ability
to provision a custom bootloader during manufacturing and
a mode that prevents external access via interfaces such as
JTAG. As shown in Figure 3, the CCU is connected to the
IPU via the ICU. A dedicated pin receives all exceptions gen-
erated by the IPU in trusted mode, giving the CCU firmware
full control over exception handling. The CCU reset pin is
coupled in hardware with the ICU reset pin and IPU reset, so
they cannot be independently reset.

Firmware Architecture and Attestation. The CCU im-
plements a measured boot protocol which is a variant of
the Device Identity Composition Engine (DICE) architec-
ture [12, 33]. DICE ensures that each device is assigned a
unique identity while minimizing exposure of hardware se-
crets. Except for the stable device identity, all derived secrets
and keys automatically change when firmware (and its mea-
surement) changes, which ensures that low-level firmware
attacks do not compromise secrets used within other firmware.

The CCU firmware (Figure 5) consists of three layers: an
immutable primary bootloader provisioned in one-time pro-
grammable flash memory at manufacturing; a mutable sec-
ondary bootloader responsible for device identity and attes-

tation certificates; and a confidential compute engine (CCE)
that manages the TEE lifecycle.

During manufacturing, the CCU is provisioned with the
primary bootloader firmware. When the device is brought out
of reset for the first time, this primary bootloader receives
control from ROM firmware, samples a unique device secret
(UDS) using a hardware-based TRNG, stores it in a region
of flash memory, and permanently blocks its access from any
other firmware layers. The UDS is the root of the IPU key
hierarchy, and this protocol ensures that it is never exposed
outside the CCU, not even to the manufacturer.

On every subsequent boot, the CCU loads and authenticates
the secondary bootloader from flash using the IPU manufac-
turer’s firmware signing key. Next, it derives two intermediate
secrets: a Hardware Device Identifier (HDI) from UDS, and
a Composite Device Identifier (CDI) from UDS and the mea-
surement of the secondary bootloader. HDI is unique to each
card, while CDI is unique to each card and secondary boot-
loader. It then scrubs UDS from memory and transfers control
to the secondary bootloader, handing over HDI and CDI.

The secondary bootloader further derives two public-
private key pairs: a Card Identity Key (CIK) from HDI, and a
Platform Identity Key (PIK) from CDI. Hence, CIK gives each
card a stable identity whereas PIK is unique to each card and
secondary bootloader. The bootloader also generates a self-
signed CSR for CIK, a PIK CSR, and a PIK certificate signed
by CIK. The PIK CSR and certificate contain a custom exten-
sion that records measurements of the secondary bootloader
and the ICU firmware along with additional device-specific
information. The CSRs can be securely harvested during man-
ufacturing and endorsed by the IPU manufacturer CA, which
issues CIK and PIK certificates. (See Appendix A.2.)

The secondary bootloader derives the Attestation Key (AK)
from CDI and the CCE measurement. Hence, AK is unique to
each device, secondary bootloader, and CCE. The bootloader
issues an AK certificate with the CCE measurement in a
custom extension, signed by PIK, and finally scrubs all secrets
and transfers control to CCE, handing over AK.

The CCE uses AK to sign attestation reports containing
IPU- and job-specific information (Section 5.2). A relying
party can validate attestation reports using the device-issued
AK certificate, and manufacturer-issued CIK/PIK certificates.

Firmware Update. Per DICE, a secondary bootloader update
invalidates PIK certificates issued by the manufacturer and,
as UDS is provisioned within each device, the IPU manufac-
turer cannot independently derive and certify the updated PIK.
Instead, we rely on CIK, acting as a local CA, to sign the
updated PIK certificate. Additionally, the manufacturer would
issue TCB update certificates containing measurements of old
and new versions of firmware. A relying party can validate
attestations using device-issued PIK certificates, the original
PIK and CIK certificates, and TCB update certificates. (See
Appendix A.3–A.4 for more details and a hardened variant.)

7

5.2 TEE Lifecycle Management
The CCU exposes an API for TEE management on the IPU.

TEE Initialization. The first step in securely offloading a job
to an IPU is to create a fresh TEE for this job. TEE initial-
ization requires a job manifest (Appendix A.5), public key
shares, signatures over the key shares and certificates for each
relying party, and a checkpoint counter indicating whether the
job is starting or resuming from a checkpoint. During TEE
initialization, the CCU first quiesces the IPU, ensuring that
there are no in-flight read and write requests between the host
and IPU. It then switches the IPU into trusted mode, scrubs all
tile memory using the autoloader, and measures the state of
the configuration registers. It then checks the signatures over
the key shares using the certificates, and generates its own
fresh EC share, which is used to establish an ECDH shared
secret between each relying party and the CCU.

The CCU generates an attestation report signed by the attes-
tation key containing various IPU-specific attributes (e.g., con-
figuration register measurements) and job-specific attributes
such as the job manifest, certificate fingerprints for all parties,
and the checkpoint counter consisting of the epoch counter
and checkpoint identifier. (See Appendix A.6 for the details.)

Each relying party can review the attestation together with
the supporting certificate chain, to validate the device and
the initial state of the CCU and IPU, then it can compute its
ECDH shared secret and wrap a key package that contains the
party’s data encryption keys and nonces to run the job. (See
Table 2 in Appendix A.6 for the keying details.)

TEE Launch. After gathering wrapped encryption keys from
all relying parties, the host launches the execution of a job.

First, the CCU computes the ECDH shared secret for each
party and uses them to unwrap the key package(s) received
from each party. It then combines the nonces to derive a check-
point key and a final-model encryption key for this run of the
job (and, if resuming from another run, the checkpoint key
from that previous run to restore its state). This key derivation
ensures both that the checkpoint key for this run is fresh (as
long as one relying party’s nonce is fresh) and that the check-
point key of a prior run can be recomputed once all relying
parties agree to resume from a checkpoint. (See Table 2 in
Appendix A.6 for the keying details.)

Next, the CCU deploys a pre-defined bootloader on the
IPU tiles using the autoloader, and it deploys a first set of
encryption keys to the SXP (including the model key) as
specified in the job manifest. It then activates the bootloader
(whose measurement is included in the attestation report)
on every tile, which issues requests to read their encrypted
application binary from host memory. Responses to these
read requests are authenticated and decrypted by the SXPs
before being copied into private tile memory.

Finally, the CCU deploys the next set of encryption keys
(including data keys) as specified in the job manifest, and
triggers the main execution loop on the IPU tiles.

1 Image (1/4)

2 Image (2/4)

3 Image (3/4)

4 Image (4/4)

5 Model (1/3)

6 Model (2/3)

7 Model (3/3)

TagIV

Figure 6: Authenticated encryption with explicit IVs. Data is par-
titioned into frames with unique IVs. Hardware-level decryption
ensures their integrity based on their authentication tag; the receiver
must verify that frame IVs match the expected IVs.

TEE Termination. At any point after initialization of a TEE,
the host runtime can also request that the TEE be terminated.
The CCU may also terminate the TEE in the event of a security
exception raised from the IPU such as failure to authenticate a
response of a read request. During TEE termination, the CCU
quiesces the IPUs, scrubs tile memory using the autoloader,
and disables all SXP keys. Finally, the CCU switches the IPU
into normal mode via Newmanry reset.

A TEE may also be terminated by a hard reset of the device.
In this case, all CCU state is cleared and the IPU reverts to
normal mode. When it comes out of reset, prior to re-enabling
the host links, the ICU scrubs tile memory to ensure that any
secrets left over from a previous execution are erased before
the host re-gains access to the device.

6 Encrypted Direct Memory Access

Next, we describe the ITX protocol for encrypted code and
data transfers to/from IPU tiles. The protocol is application-
level as opposed to transport-level. While it is transparent to
ML frameworks, it relies on application software (e.g., the
IPU compiler) to assign IVs for authenticated encryption and
to program the tiles to securely load code, initial weights,
training data, and save/reload checkpoints and results. The
protocol is supported in IPU hardware by fully pipelined
AES256-GCM engines for authenticated encryption at PCIe
line rate. This choice results in simpler hardware, allows the
IPU to be coupled with untrusted CPUs (or CPUs with varying
TEE support) and retains the compiler’s ability to maximize
PCIe utilization by parallelizing data transfers across tiles.

6.1 Data Format
In the encryption protocol (illustrated in Figure 6), application
software partitions each code and data stream into equally-
sized encrypted frames. Each frame consists of a 128-bit IV,
followed by a series of cipher blocks that carry the encrypted
contents of the frame, and by a 128-bit authentication tag. Ap-
plication software is free to use different frame sizes for differ-
ent streams, as long as the total frame size (including IV and
authentication tag) is a multiple of 128 bytes with a maximum
of 1KB, which is the largest supported PCIe read. Application

8

PCI
Complex

Exchange Lanes

Exchange BlocksSXPs

Figure 7: IPU External Exchange Interconnect, with an SXP on
each exchange lane. Traffic is forwarded from and to exchange
blocks to exchange lanes based on the exchange block identifier.

software can use different keys to encrypt different streams.
This is critical for multi-party scenarios where streams are pro-
vided and accessed by different parties. Crucially, application
software must ensure that IVs are never reused across frames
encrypted with the same key, which would be catastrophic
with AES-GCM. In our implementation, this invariant is en-
sured by the compiler, which constructs the IV by combining
stream-specific identifiers and frame indexes, and the fact
that both code and data streams are write-once abstractions.
Together, this guarantees that unless the associated key has
been compromised, authenticated decryption with the correct
IV yields the correct payload.

6.2 Hardware Support
Multiple components in the IPU support ITX encryption. The
IPU includes blocks, called Secure Exchange Pipes, exten-
sions to packet formats for carrying encryption-related in-
formation, and extensions to exchange blocks and the PCIe
complex for supporting the task of mapping frames to keys.
Secure Exchange Pipe (SXP). The SXP is a programmable
hardware block that supports AES256-GCM authenticated
encryption and decryption of frames. Each SXP achieves 16
GBps unidirectional throughput with negligible impact on
latency. As shown in Figure 7, there are four SXPs placed on
the exchange interconnect (two per direction) to support en-
cryption/decryption at PCIe Gen4 line rate (32GBps bidirec-
tional). In trusted mode, each SXP is configured to intercept
read/write requests from four exchange blocks.
AES-GCM Engine. The SXP’s core is a fully pipelined AES-
GCM engine that supports 16 physical key contexts to enable
concurrent requests. Each context can be programmed by
loading a 256-bit key into control registers exposed to the
CCU via an internal control bus. While frames may be inter-
leaved, for functional correctness we require that each context
processes a single frame at a time. This invariant is enforced
by the compiler, as detailed in Section 7.1.

The core implements the standardized AES256-GCM algo-
rithm with two restrictions: the additional authenticated data
is always empty; and the plaintext is block-aligned and not
empty. For convenience, we also treat the IV as a full 16-byte

block, including the 32 bits of internal block counter. In each
cycle, the core performs one of the following operations on
its context: (i) the context is idle and the core receives the IV
for the frame, (ii) the context is active and the core receives a
block of data, or (iii) the context is active and the core receives
a MAC. The core detects context switches by comparing key
context identifiers between consecutive cycles, so that it can
fetch the next context before the next operation.
Frame encryption/decryption. The SXP receives three types
of external exchange packets: read requests (egress); read
completions requiring decryption (ingress); and write requests
requiring encryption (egress). Their headers are extended to
carry additional information to help the SXP determine how
the packets should be handled: an AES bit indicates that the
read completion or the write request is encrypted; a 4-bit
KEY_INDEX field identifies the physical key context to use;
and a CC bit indicates the last packet of the frame and triggers
the computation of its authentication tag.

In write request packets (outbound to the host PCIe do-
main), the AES and CC bits are set by the tile, whereas the
KEY_INDEX is set by the SXP. In read completions packets,
the information is set by the PCIe complex based on trusted
state it maintains about pending read requests.

Read request packets and packets with the AES bit unset do
not require encryption/decryption; they are passed unchanged.
For all other packets, the header bypasses the AES core, then
the AES core handles each packet (and its blocks) depending
on whether a frame starts, a frame continues, or a frame ends.
Key Selection. Each SXP supports multiple physical key con-
texts to enable encryption/decryption of concurrent I/Os. The
SXP provides a set of programmable (by CCU) registers to de-
fine a mapping between packets and the physical key context
to use for encrypting/decrypting their payload. The compiler
produces this mapping by assigning a set of tiles associated
with an exchange block context to access a single stream.
Upon receiving a packet, the SXP looks up the physical key
context using the exchange block context index computed
from the source tile identifier in the header.

Once the SXP infers the physical key context, it updates
the KEY_INDEX field in the request packet header. For write
requests, the field is then used by the SXP to switch the AES
core to the inferred physical context for encrypting its payload.
However, for read requests, the situation is more involved, as
the read requests bypass the AES core, and the inferred phys-
ical key context must be used to decrypt the read completions
that will be returned by the host after the read request has
been processed. When the PCI complex receives the read
request, it caches the KEY_INDEX and AES fields in an on-chip
lookup table along with other metadata, such as the source tile
identifier. When the corresponding read completions arrive
from the host, the PCI complex retrieves these fields from
this lookup tables and inserts them into the read completion
packets. The SXP can then use these values to identify the
physical key context to use for decrypting the payload. The

9

PCI complex tracks the number of pending read completion
packets for each request, and sets the CC bit on the last one.

7 Software Extensions

We now describe a set of extensions to the IPU software stack
to compile and execute confidential ML tasks using ITX in
offline mode. This mode is triggered by a Tensorflow config-
uration option. When enabled: (1) The XLA backend trans-
forms the computation graph to use a new abstraction called
confidential data streams for all data transfers including ini-
tial weights, training data, checkpoints and the trained model.
(2) The IPU compiler compiles the computation graph into
a set of IPU application binaries (one for each IPU), where
each binary is a concatenation of tile-specific binaries. The
compiler encrypts tile binaries into a set of encrypted frames
using a freshly sampled model key. A frame is assigned a
unique IV comprised of code type, IPU/tile IDs and frame
index. (3) The IPU runtime is extended to securely bootstrap
the task, then transfer the encrypted binaries and data between
the host and IPU. (See Appendix A.8 for a sample scenario.)

7.1 Confidential Data Streams
Confidential data streams is a compiler and runtime abstrac-
tion for transferring data to/from the IPU with confidentiality
and integrity guarantees, leveraging SXPs. Each stream is a se-
quence of data instances encrypted with the same symmetric
encryption key. Each data instance is partitioned into a se-
quence of frames, and each frame is encrypted using a unique
IV composed of a stream type (data), a stream identifier, and
the index of the frame within the stream.

The compiler and the runtime implement reads and writes
to confidential data streams as follows. As discussed in Sec-
tion 6.1, the compiler first assigns a region in tile PCI space
to each stream, subject to the constraint that it never exceeds
the total capacity of the IPU ring buffer (e.g., 256 MB).

Next, the compiler assigns sets of tiles to read from or write
to each stream, reserves SRAM on each tile to hold a part
of the stream, and generates SXP mappings, subject to the
constraints that (a) the exchange block context associated
with these tiles map to physical key contexts assigned to the
stream, and (b) the number of physical key contexts in use at
any point in the program does not exceed 16 for any SXP.

To maximize performance under these constraints, the com-
piler may introduce synchronization points in the application
where existing keys are invalidated and new keys are loaded.
The compiler includes these synchronization points in the job
manifest, along with their key identifiers; and the (untrusted)
IPU runtime uses this part of the manifest to ask the CCU to
load the next decryption keys into the SXPs at these points.
The key changes apply only to input streams. Keys for output
streams are derived and loaded by the CCU at TEE launch, and
do not change throughput its lifetime. A malicious runtime

not following the job manifest’s key schedule can only cause
decryption failures, resulting at most in denial-of-service.

Next, the compiler schedules read/write operations on each
tile. The schedule is required to satisfy a hardware constraint
that, at any point, the tiles that generate requests targeting
any given physical key context be associated with a single
exchange block context. This is because, while the exchange
block can dynamically synchronize and regulate requests
within each exchange block context (so that its physical key
context is used by one tile at a time) there is no such synchro-
nization across exchange block contexts.

Finally, the compiler generates code on each tile that im-
plements the schedule, to issue read/write requests for the ac-
cessed frames. (Details are omitted due to space constraints.)

7.2 Secure Checkpointing

Checkpoints are saved to and restored from host memory, and
are implemented via data streams. Secure checkpointing is
implemented via a special form of confidential data streams,
where the IV captures the epoch (counting the number of
checkpoint resumptions for this job) and the checkpoint iden-
tifier (counting the number of checkpoints stored within an
epoch.) The CCU uses a separate checkpoint key for each
epoch, and makes the epoch counter and checkpoint identifier
available to IPU tiles via the bootloader at the start of the
application. (See Appendix A.7 for more details.)

7.3 Secure Bootstrapping

Secure bootstrapping is the process of securely loading en-
crypted application binaries into the IPU, either at the start of
a job, or while resuming a job from a checkpoint.

Bootstrapping involves the following steps. First, the IPU
runtime loads the encrypted IPU binary in host memory and
creates a TEE using the CCU APIs; this switches the IPU into
trusted mode. Next, the CCU installs a bootloader (shown in
Appendix A.5) onto every IPU tile using the autoloader de-
scribed in Section 2.1, and also configures the SXPs with the
model-decryption key. The bootloader on each tile fetches the
tile’s binary from host memory by issuing a sequence of read
requests. Each frame received from the host is intercepted
by the SXPs, authenticated and decrypted, and copied into
tile memory. The bootloader then checks that the received
IV matches the expected IV built into the bootloader logic;
this check is performed in software because the SXPs only
guarantee authenticity of each frame, not the integrity of the
entire stream. Failure of this check indicates an attempt by
the host to tamper with the code stream, such as by replay-
ing/reordering frames. In such event, the tile raises a security
exception, which is handled by the CCU. If all checks pass,
the bootloader reconstructs the original binary by stripping
IVs and authentication tags from all frames.

10

Finally, the bootloader computes a hash of the tile binary;
the tiles accumulate a hash of the whole application; and
the CCU checks that it matches the measurement in the job
manifest, or generates a security exception otherwise. This
protocol, together with bootloader integrity (its measurement
is included in the attestation) guarantees application integrity.

8 Evaluation

Our evaluation focuses on TEE overheads for ML training
when using CPUs and IPUs.

Implementation. We have implemented ITX on the IPU
on a non-production development board. The IPU chip has
been fabricated in TSMC’s 7nm node, including the on-chip
security extensions, which account for < 1% of the chip size.
As part of post-fabrication validation, these extensions have
been tested to verify they conform to their specified behavior.

We have integrated the CCU on the board and implemented
the architecture described in Section 5, including the protocols
for measured boot and TEE management.

We have implemented a software prototype for confidential
training tasks where the host CPU server is untrusted. Our
prototype includes experimental support in the ML frame-
work, IPU compiler and runtime. There are a few gaps in our
prototype: (1) our implementation currently supports only
one IPU on the board; (2) the compiler makes use of only one
logical key region onto which code, data, label, checkpoints,
and outputs are mapped; nevertheless, every encrypted frame
is statically assigned a unique IV, preserving the invariant that
each IV is used only once; (3) secure resumption is not yet
implemented; and (4) the bootloader deployed on IPU tiles
does not measure the IPU binary after decryption.

Experimental Results. Figure 8 summarizes the hardware
and software configuration of our testbeds. We evaluate the
performance of confidential training on ResNet models of
various sizes (20, 56, and 110) on the Cifar-10 dataset. The
dataset consists of 60,000 32x32 images spanning 10 classes;
50,000 of these images are used for training the dataset and
the remaining are used for testing the resulting model. We
ran the same training code and data configurations in clear
and confidential modes, and confirmed that they both yield
models with the same prediction accuracy.

We compare IPU TEEs against CPU TEEs based on the
largest available AMD SEV-SNP server. The early IPU devel-
opment boards operate at reduced frequency of 900 MHz. The
AMD CPU testbed utilizes 48 single-threaded cores; hyper-
threading does not improve performance due to high vector
unit utilization leaving little room for another hyper-thread.
Scaling from 32 to 48 cores improved performance by 10%.

Figure 9 shows the training throughput that we achieve in
clear and confidential modes. IPU-based training even with a
single IPU operating at reduced frequency is 12-20x and 13-
17x faster than CPU-based training in clear and confidential

Testbed Training configuration
AMD SEV-SNP
48-core VM on
EPYC 7763

ResNet-20. Batch size: 1534; 32 epochs.
ResNet-56. Batch size: 768; 32 epochs.
ResNet-110. Batch size: 384; 64 epochs.

ITX IPU @ 900
MHz, Intel Xeon
8168

ResNet-20. Batch size: 64; 32 epochs.
ResNet-56. Batch size: 32; 32 epochs.
ResNet-110. Batch size: 16; 64 epochs.

Figure 8: Testbed configuration for TensorFlow training of ResNet
models on Cifar-10 dataset. In each configuration, batch sizes are
optimized to yield maximum performance. (Smaller batches do not
affect correctness, but may improve convergence or accuracy.)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

SEV-SNP ITX SEV-SNP ITX SEV-SNP ITX

resnet-20 resnet-56 resnet-110

T
h

ro
u

g
h

p
u

t
(c

if
a

r-
1

0
 i

m
a

g
e

s
/s

e
c

) Clear Confidential

12
76

27
43

0

17
34

2

48
2

44
6

88
46

77
34

23
9

21
2

29
39

28
49

14
03

Figure 9: Training throughput of ResNet models on cifar-10.

modes respectively. Enabling SEV-SNP introduces modest
overheads, ranging from 8% (small model) to 14% (large
model) while the overheads of enabling ITX range from 3%
(large model) to 58% (small model). The ITX overhead is
dominated by one-time setup cost, which is amortized over
large training times; this cost includes TEE initialization and
attestation (40%), TEE launch including SXP setup (43%) and
TEE termination including SXP scrubbing (13%). Runtime
encryption introduces only 4% of the total overhead. More
generally, we expect the one-time cost to be negligible with
state-of-the-art models, which take weeks or days to train.
With ResNet-110 model, the overall overhead is just 3% (1123
vs 1089 seconds for running 64 epochs). We also expect
that utilizing both IPUs at full frequency would deliver an
additional performance improvement (up to 3.5x) over CPUs.

In summary, the evaluation shows that using ITX, AI work-
loads can continue to benefit from the use of accelerators
without compromising on performance or security.

9 Discussion

Trusted CPU TEEs. While this paper mainly focuses on a
configuration where IPUs are attached to an untrusted CPU,
ITX supports configurations with varying trust in CPU TEEs.

For instance, ITX can be used in a configuration where
IPUs are coupled with a process-based CPU TEE (e.g., Intel
SGX) hosting TensorFlow, the IPU compiler and the IPU run-
time, with the IPU kernel-mode driver and the OS running
outside the TEE. In this configuration, the enclave would re-
ceive an encrypted model script from the model developer,

11

and the IPU runtime would encrypt the compiled IPU bi-
nary with fresh keys. Similarly, the enclave would receive
encrypted training data from data providers on the basis of an
Intel SGX and IPU attestation. Within the process-based CPU
TEE, the data can be decrypted, pre-processed and aggregated
(in parallel with job execution), and re-encrypted by the IPU
runtime with fresh keys. Encrypted code/data still then need
to be copied to a run buffer allocated outside the enclave (in
the host process) accessible to the IPU. While this configura-
tion has a larger TCB and incurs higher CPU cost, it offers
greater flexibility and support for inferencing scenarios.
Inferencing. While this paper mainly focuses on training,
ITX does support inferencing workloads. Scenarios, where
the number of remote inference clients using a model is small
and mostly static, can be served by the existing architecture
(no trust in the CPU) without additional overhead by assigning
a key context to each client. Scenarios, where the number of
clients is large and dynamic, could be supported by introduc-
ing a trusted front-end server component (in a process-based
TEE on the host CPU or a remote CPU) that terminates TLS
connections, receives inference requests from the clients, and
re-encrypts them in batches using a smaller number of key
contexts on the IPU (to avoid frequent expensive re-keying in
the IPU). This architecture still allows decoupling the choice
of CPU TEEs and accelerator TEEs. This is unlike GPU TEEs
that require the CPU and GPU TEEs to be on the same plat-
form. Finally, the TCB of the re-encrypting TEE is relatively
small and independent of the application.
Side-channels. Our design intends to minimize leakage from
side-channels. On the IPU itself, leakage due to memory
access patterns and timing is minimized for two reasons. First,
computation on the IPU is statically scheduled by a trusted
compiler. It is therefore possible to analyze a workloads at
compile time to ensure that memory access patterns are data
independent, or add padding otherwise. Second, the IPU cores
do not rely on speculative execution and on-chip memory
accesses incur a fixed latency. As a result, all I/O between the
untrusted host CPU and IPUs occurs at fixed time intervals.
Thus, the attacker can observe the time taken to process an
entire batch, as opposed to time taken to process each layer
in the model [15].

10 Related Work

Trusted hardware. There is a history of work [7,8,10,13,20,
20, 21, 27, 32, 35] on trusted hardware that isolates code/ data
from the rest of the system. Intel SGX [22] and AMD SEV-
SNP [5] are the latest in this line of work. Our work extends
this approach from general-purpose CPUs to accelerators.
Trusted execution on accelerators. Our work is the first to
demonstrate an ASIC with confidential computing capabilities
and the only one that does not require trust in CPU TEEs.

NVIDIA recently announced confidential computing sup-
port in upcoming Hopper GPUs [25]. Their design shares

the same core principles as ITX on IPUs. Hopper GPUs are
equipped with an on-package hardware RoT responsible for
attestation and enforcing course-grained GPU isolation un-
der the assumption that on-package GPU memory is trusted.
Hopper GPUs also support encrypted and integrity-protected
communications (kernels and data) to and from the GPU.
However, the NVIDIA design requires a VM-based CPU
TEE as the responsibility of attesting and establishing a se-
cure channel with the GPU lies within the kernel-mode driver.

Numerous mechanisms have been proposed to enable
CPU TEEs to securely interact with I/O devices—e.g.,
GPUs [17, 34, 37], FPGAs [19, 26, 30, 38], and AI acceler-
ators [14, 36, 39]. Some of this work has attempted to reduce
trust on privileged host via hardware support on the GPU [34]
or on the CPU [17]. Graviton [34] extends the GPU with sup-
port for secure resource management, and relies on a trusted
GPU runtime hosted in a process-based CPU TEE to manage
the TEE lifecycle. HIX [17] requires extensions to process-
based CPU TEEs, including the PCI interconnect and the
CPU’s MMU. GuardNN has attempted to remove the CPU
from the TCB [14] by introducing instructions for establish-
ing a secure channel between remote users and the device,
and for decrypting/encrypting inputs/outputs. However, such
architecture does not guarantee integrity as the instruction
schedule can be tampered by attackers controlling the CPU.

TEE-I/O. In parallel with our work, there has been an
industry-wide effort to develop TEE-I/O, a standard frame-
work for assignment of devices to VM-based CPU TEEs.
This effort also includes the development of TEE Device In-
terface Security Protocol (TDISP [29]), an architecture for
devices that support TEE-I/O. TDISP provides specifications
for establishing trust between the VM-based TEE and the de-
vice (SPDM [9]), and for secure TEE-device communication
(IDE [28]) and secure management of the device’s lifecycle.

CPUs and devices that support TDISP are expected to be
deployed in the next couple of years. Compared to application-
level protocols (such as Section 6), TDISP is more efficient
and transparent. CPUs that support TDISP provide hardware
encryption for PCIe communication, removing the need for
software encryption using explicit IVs. However, TDISP cur-
rently supports only VM-based TEEs, which brings the OS,
device drivers, and other user-mode components in the TCB.

11 Conclusion
We presented ITX, a set of experimental hardware extensions
for Graphcore IPUs. Our design provides application-level
confidentiality and integrity for ML tasks offloaded to an un-
trusted cloud provider. We also presented a software architec-
ture that removes trust from host CPUs, thereby minimizing
the trusted computing base and removing dependencies on
CPU TEEs. We implemented them in the GC200 IPU taped
out at TSMC’s 7nm node, and experimentally confirmed small
performance overheads for training large models.

12

References

[1] Confidential computing consortium. https://confid
entialcomputing.io/, 2022.

[2] Alibaba. Alibaba unveils AI chip to enhance cloud
computing power. https://www.alibabacloud.com
/blog/alibaba-unveils-ai-chip-to-enhance-c
loud-computing-power_595409, 2022.

[3] Amazon. AWS Inferentia: High performance machine
learning inference chip, custom designed by AWS. ht
tps://aws.amazon.com/machine-learning/infe
rentia, 2021.

[4] Amazon. Confidential Computing. https://aws.am
azon.com/blogs/compute/tag/confidential-c
omputing/, 2022.

[5] AMD. AMD SEV-SNP: Strengthening VM isolation
with integrity protection and more. https://www.amd.
com/system/files/TechDocs/SEV-SNP-strengt
hening-vm-isolation-with-integrity-protect
ion-and-more.pdf, 2021.

[6] ARM. Arm Confidential Compute Architecture. https:
//www.arm.com/architecture/security-featu
res/arm-confidential-compute-architecture,
2023.

[7] Rick Boivie. SecureBlue++: CPU support for secure
execution. 2011.

[8] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas.
Sanctum: Minimal hardware extensions for strong soft-
ware isolation. In USENIX Security Symposium, 2016.

[9] DMTF. Security Protocol & Data Model (SPDM). ht
tps://www.dmtf.org/sites/default/files/sta
ndards/documents/DSP0274_1.3.0.pdf, 2022.

[10] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy,
Dmitry V. Ponomarev, Nael B. Abu-Ghazaleh, and Ryan
Riley. Iso-X: A Flexible Architecture for Hardware-
Managed Isolated Execution. In International Sympo-
sium on Microarchitecture, 2014.

[11] Google. Confidential Computing. https://cloud.go
ogle.com/confidential-computing, 2022.

[12] Trusted Computing Group. Hardware requirements for
a device identifier composition engine family 2.0, level
00, revision 78. https://trustedcomputinggroup.
org/wp-content/uploads/Hardware-Requireme
nts-for-Device-Identifier-Composition-Eng
ine-r78_For-Publication.pdf, 2018.

[13] Owen S. Hofmann, Sangman M Kim, Alan M. Dunn,
Michael Z. Lee, and Emmett Witchel. InkTag: Secure
applications on an untrusted operating system. In Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2013.

[14] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G. Ed-
ward Suh. GuardNN: Secure DNN accelerator for
privacy-preserving deep learning. In Design Automation
Conference, 2022.

[15] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely,
Yige Hu, Christopher J. Rossbah, and Emmet Witchel.
Telekine: Secure computing with cloud GPUs. In
USENIX Symposium on Networked Systems Design and
Implementation, 2020.

[16] Intel. Intel Trust Domain Extensions. https://www.
intel.com/content/www/us/en/developer/arti
cles/technical/intel-trust-domain-extensi
ons.html, 2023.

[17] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumad-
havan, and Jaehyuk Huh. Heterogeneous isolated execu-
tion for commodity GPUs. In International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2019.

[18] Norman P. Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, and et. al. In-datacenter
performance analysis of a Tensor Processing Unit. In In-
ternational Symposium on Computer Architecture, 2017.

[19] A. Khawaja, Landgraf. J, R. Prakash, M. Wei,
E. Schkufza, and C. J. Rossbach. Sharing, protection,
and compatibility for reconfigurable fabric with Amor-
phOS. In USENIX Symposium on Operating System
Design and Implementation, 2018.

[20] David Lie, Chandramohan A. Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John C. Mitchell, and Mark
Horowitz. Architectural support for copy and tamper
resistant software. In International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, 2000.

[21] Jonathan M. McCune, Ning Qu, Yanlin Li, Anupam
Datta, Virgil D. Gligor, and Adrian Perrig. TrustVi-
sor: Efficient TCB reduction and attestation. In IEEE
Symposium on Security and Privacy, 2010.

[22] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative Instructions and Soft-
ware Model for Isolated Execution. In International
Workshop on Hardware and Architectural Support for
Security and Privacy, 2013.

13

https://confidentialcomputing.io/
https://confidentialcomputing.io/
https://www.alibabacloud.com/blog/alibaba-unveils-ai-chip-to-enhance-cloud-computing-power_595409
https://www.alibabacloud.com/blog/alibaba-unveils-ai-chip-to-enhance-cloud-computing-power_595409
https://www.alibabacloud.com/blog/alibaba-unveils-ai-chip-to-enhance-cloud-computing-power_595409
https://aws.amazon.com/machine-learning/inferentia
https://aws.amazon.com/machine-learning/inferentia
https://aws.amazon.com/machine-learning/inferentia
https://aws.amazon.com/blogs/compute/tag/confidential-computing/
https://aws.amazon.com/blogs/compute/tag/confidential-computing/
https://aws.amazon.com/blogs/compute/tag/confidential-computing/
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.3.0.pdf
https://cloud.google.com/confidential-computing
https://cloud.google.com/confidential-computing
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

[23] ST Microelectronics. STM32 MCUs secure firmware
install overview. https://www.st.com/resource/
en/application_note/an4992-stm32-mcus-sec
ure-firmware-install-sfi-overview-stmicro
electronics.pdf, 2022.

[24] ST Microelectronics. STM32H573 microcontroller with
crypto accelerators. https://www.st.com/en/micr
ocontrollers-microprocessors/stm32h743-753
.html#documentation, 2022.

[25] NVIDIA. NVIDIA Confidential Computing. https:
//www.nvidia.com/en-in/data-center/soluti
ons/confidential-computing/, 2022.

[26] Hyunyoung Oh, Kevin Nam, Seongil Jeon, Yeongpil
Cho, and Yuneheung Paek. MeetGo: A trusted exe-
cution environment for remote applications on FPGA.
IEEEAccess, 9:51313–51324, 2021.

[27] Emmanuel Owusu, Jorge Guajardo, Jonathan M. Mc-
Cune, James Newsome, Adrian Perrig, and Amit Va-
sudevan. OASIS: On achieving a sanctuary for integrity
and secrecy on untrusted platforms. In ACM Conference
on Computer and Communications Security, 2013.

[28] PCI-SIG. Integrity and Data Encryption (IDE). https:
//members.pcisig.com/wg/PCI-SIG/document/15
149, 2022.

[29] PCI-SIG. TEE Device Interface Security Protocol
(TDISP). https://members.pcisig.com/wg/PC
I-SIG/document/18268, 2022.

[30] S. Pereira, D. Cerdeira, C. Rordigues, and S. Pinto. To-
wards a trusted execution environment via reconfig-
urable FPGA. In ArXiv, 2021.

[31] Mark Russinovich, Manuel Costa, Cedric Fournet,
David Chisnall, Antoine Delignat-Lavaud, Sylvan Cleb-
sch, Kapil Vaswani, and Vikas Bhatia. Toward con-
fidential cloud computing. Communications of ACM,
64:54–61, 2021.

[32] Richard Ta-Min, Lionel Litty, and David Lie. Splitting
Interfaces: Making trust between applications and oper-
ating systems configurable. In USENIX Symposium on
Operating System Design and Implementation, 2006.

[33] Trusted Computing Group. DICE. https://truste
dcomputinggroup.org/work-groups/dice-archi
tectures/, 2022.

[34] Stavros Volos, Kapil Vaswani, and Rordrigo Bruno.
Graviton: Trusted execution environments on GPUs.
In USENIX Symposium on Operating System Design
and Implementation, 2018.

[35] Samuel Weiser and Mario Werner. SGXIO: Generic
trusted I/O Path for Intel SGX. In ACM Conference on
Data and Application Security and Privacy, 2017.

[36] Peichen Xie, Xuanle Ren, and Guangyu Sun. Cus-
tomizing trusted AI accelerators for efficient privacy-
preserving machine learning. In ArXiv, 2020.

[37] Miao Yu, Virgil D. Gligor, and Zongwei Zhou. Trusted
display on untrusted commodity platforms. In ACM
Conference on Computer and Communications Security,
2015.

[38] Mark Zhao, Mingyu Gao, and Christos Kozyrakis. ShEF:
Shielded enclaves for cloud FPGAs. In Internantional
Conference on Architectural Support for Programing
Languages and Operating Systems, 2022.

[39] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao
Wang, Jiangfeng Cao, Boyan Zhao, Zhongpu Wang,
Yuhui Zhang, Lixin Zhang, and Dan Meng. Enabling
rack-scale confidential computing using heterogeneous
trusted execution environment. In IEEE Symposium on
Security and Privacy, 2020.

A APPENDIX

A.1 Attack Vectors and Security Analysis
Table 1 summarizes the attack vectors discussed in Section 3
and, for those covered by our threat model, how ITX mitigates
each of these attacks.

A.2 Firmware Provisioning and Device Certifi-
cation

In this section, we describe an example process for firmware
provisioning and device certificates that would be followed if
ITX were to be used for IPUs in a production environment.
During board manufacturing, the CCU would be provisioned
with firmware followed by a board reset to harvest certificate
signing requests (CSRs) generated by the execution of the
primary and secondary bootloaders. The CSRs would then be
used by the IPU manufacturer to issue device certificates.

Firmware Provisioning. The CCU is provisioned with
firmware using the SoC’s Secure Firmware Install (SFI) fea-
ture [23]. The firmware package consists of all firmware lay-
ers discussed in Section 5.1 and the configuration bytes (called
OPTION), whose secure user memory registers are configured
so that secure user memory includes only the regions onto
which the secure bootloader is deployed. The firmware pack-
age is encrypted with a symmetric key, which is provisioned
to a hardware security module (HSM).

The encrypted firmware package and the HSM are used
by the board manufacturer to deploy CCU firmware during

14

https://www.st.com/resource/en/application_note/an4992-stm32-mcus-secure-firmware-install-sfi-overview- stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4992-stm32-mcus-secure-firmware-install-sfi-overview- stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4992-stm32-mcus-secure-firmware-install-sfi-overview- stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4992-stm32-mcus-secure-firmware-install-sfi-overview- stmicroelectronics.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html##documentation
https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html##documentation
https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html##documentation
https://www.nvidia.com/en-in/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-in/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-in/data-center/solutions/confidential-computing/
https://members.pcisig.com/wg/PCI-SIG/document/15149
https://members.pcisig.com/wg/PCI-SIG/document/15149
https://members.pcisig.com/wg/PCI-SIG/document/15149
https://members.pcisig.com/wg/PCI-SIG/document/18268
https://members.pcisig.com/wg/PCI-SIG/document/18268
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/work-groups/dice-architectures/

Threat Mitigation
Host (Software, Physical)
IPU Memory Access, e.g.,
host software uses MMIO
and PCI BARs, physical at-
tacker tampers with on-chip
memory

MMIO blacklist prevents CPU from
accessing code/data in IPU; ac-
cess via interfaces JTAG prohib-
ited; IPU memory cannot be physi-
cally accessed w/o breaking into the
package.

Host CPU, Memory, and
PCIe bus, e.g., read/write,
replay, or re-ordering of
code/data in host memory or
in transit, including DMA
buffers, PCIe bus

Code/data are encrypted with AES-
GCM with explicit IVs, and keys
not shared with the host; uniqueness
and integrity of IVs are ensured by
trusted code executed on tiles.

IPU Binary Malleability,
e.g., host replaces model en-
cryption key or encrypted
code

Bootloader computes hash of the
tile binary; hash accumulated and
checked against expected measure-
ment in the job manifest. (Not
implemented.)

IPU Connectivity, ICU-
CCU or ICU-IPU Tampering
on the development board

no; attacker can mount a physical
attack to (1) retrieve the key(s) sent
to IPU, and (2) tamper with ICU FW
measurement sent to CCU

IPU-IPU Tampering no; attacker can mount physical at-
tacks against multi-IPU tasks; tam-
per with data sent across IPUs.

Supply Chain, Firmware
Primary Bootloader Provi-
sioning Tampering

The IPU manufacturer checks
whether the signed bootloader
manifest includes the expected
nonce provisioned into the CCU
primary bootloader.

Using non-genuine, known
vulnerable TCB components

Firmware authorization; hardened
measurement protocol outlined in
Appendix A.4.

Side-channels
IPU Memory IPU memory access patterns cannot

be observed by co-located attacker
as the IPU is entirely assigned to
one job at a time.

Host Memory and PCIe Bus no: attacker can observe access pat-
terns to host memory and on PCIe
bus. However, these patterns do not
leak much information in the BSP
model, e.g., the size and number of
minibatches, but not their contents.

Power and Timing no: attacker can measure power con-
sumption and/or execution time of
a superstep. Similarly, this does not
leak much information for typical
ML tasks.

Table 1: Potential threats and how ITX mitigates them. Physical
access attacks on the CCU-ICU-IPU and the IPU-IPU channels can
be mitigated once the CCU is integrated on the IPU and AES-GCM
is utilized to protect the IPU-IPU channels.

the manufacturing and testing. The chip tester implements a
multi-stage protocol between the CCU secure bootloader and
the HSM, during which the HSM authenticates the certificate
issued by the CCU and wraps its firmware encryption key
using the certified public key. This enables the CCU secure
bootloader to decrypt the firmware package, to install the
firmware, and to configure the OPTION bytes based on the
requested configuration.

While this SFI process guarantees confidentiality of the
firmware, it does not directly protect its integrity: provisioning
may be subject to supply-chain attacks that would replace
CCU parts provisioned using SFI with CCU parts containing
malicious firmware. We extend SFI with protection against
such attacks by injecting a secret known only to the IPU
manufacturer into the primary bootloader. Once the CCU has
been integrated onto an IPU board, a challenger can ask the
primary bootloader to prove possession of the secret.

This process entails the following three steps. First, the
IPU manufacturer generates a fresh secret for every batch of
CCUs. The secret is injected to the primary bootloader of the
CCU firmware. Second, the IPU manufacturer derives from
the secret an asymmetric batch-specific bootloader manifest
signing key. After deriving this key, the IPU manufacturer
keeps only the public part. Third, the IPU manufacturer issues
a certificate for the public bootloader manifest signing key.
The certificate is signed by the IPU manufacturer Firmware
certificate authority (CA). This certificate contains a batch
number, and is valid till the production date of the batch.

Device Certification. In order to certify its device identity
keys, the board tester resets the board and harvests the CIK
and PIK CSRs generated for the board and platform identity
keys, as well as the bootloader manifest. The command to
harvest the bootloader manifest includes a fresh nonce, to be
echoed in the signed bootloader manifest.

In response, the IPU manufacturer verifies the CSRs re-
ceived by the card manufacturer and issues CIK and PIK
certificates that are signed by the CIK and PIK CAs of the
IPU manufacturer. In addition, the IPU manufacturer vali-
dates the bootloader manifest against the bootloader manifest
signing key certificate specific to the batch to which the CCU
belongs, and ensures that the nonce matches the expected one.

A.3 Firmware Updates

The CCU firmware includes a secondary bootloader and a
CCE, both authenticated by the primary bootloader and possi-
bly updated after the card has been deployed in production.

Updating the Secondary Bootloader. The secondary boot-
loader involves relatively complex cryptographic operations,
and may need to be updated in the field. As discussed in Sec-
tion 5, the platform identity key (PIK) is derived from UDS
depending on the hash of the secondary bootloader. Therefore,
any updates to the secondary bootloader changes the platform

15

identity, and PIK certificates issued by the manufacturer are
no longer valid, requiring device re-certification.

Unfortunately, re-certification of a remote device by the
IPU manufacturer can be a complex and lengthy operation as
the manufacturer (by design) does not retain unique device
keys. Thus, it requires collection of CSRs from the device,
and more importantly an authentication mechanism to ensure
that the manufacturer signs only PIK certificates exported
from devices in the cloud provider’s datacenters.

We overcome this challenge via a protocol that enables
updates to the secondary bootloader without invalidating
manufacturer-issued certificates.

Prior to updating the secondary bootloader (say to ver-
sion Y), the cloud provider’s IPU Firmware CA issues a TCB
update certificate capturing the measurement of the new ver-
sion of the secondary bootloader and revokes previous certifi-
cates for versions of the secondary bootloader that should no
longer be deployed.

After a firmware update has been deployed, the primary
bootloader generates a new CDI (CDIY). The secondary boot-
loader generates platform identity and attestation keys specific
to this version of firmware (PIKY and AKY). However, the
card identity key (CIK) stays the same as it does not depend
on the measurement of the secondary bootloader. The PIKY

certificate, hence, is signed by the original CIK, which has
been certified by the manufacturer.

Subsequently, a remote challenger can combine the TCB
update certificate with the CIK certificate originally issued by
the manufacturer to verify the PIKY certificate is issued by the
device using the original CIK, and that the measurement of
the new secondary bootloader in the PIKY certificate matches
the measurement of the secondary bootloader in the TCB
update certificate.

Updating the CCE. Updates can be applied at any point
without the need for any additional certification from the
manufacturer. When a device boots with a new version of
CCE, it generates a new attestation key with a signature over
the public AK along with a hash of the CCE using the PIK.
Quotes generated by the updated version of CCE firmware
can be validated using a valid PIK certificate.

A.4 Measured Boot Protocol
The protocol discussed in Section 5.1 is still susceptible to
advanced chosen-firmware attacks: a malicious secondary
bootloader could impersonate another version of the firmware
by using CIK to endorse a PIK certificate for the correspond-
ing firmware measurement. Firmware authorization provides
a strong defense against such attacks—the malicious firmware
would need to be correctly signed by the IPU manufacturer
to run as secondary bootloader. We can harden the boot pro-
tocol further by moving CIK and PIK generation into the
primary bootloader (as shown in Figure 10) without revealing
the private CIK to the secondary bootloader.

Figure 10: Hardened boot protocol that protects against bootloader
impersonation attacks.

In this protocol, the primary bootloader generates CIK from
UDS, and generates PIK using CDI and the measurement of
the secondary bootloader. To allow a relying party (e.g., IPU
manufacturer CA) to attest that the PIK was indeed generated
by the primary bootloader, the primary bootloader creates a
custom structure, known as PIK endorsement, containing the
PIK public key along with a measurement of the secondary
bootloader, and a signature over these two attributes using
the CIK. The bootloader then scrubs the CIK private key and
passes public CIK and PIK keys along with the private PIK
and the PIK endorsement to secondary bootloader. During
manufacturing, the IPU manufacturer PKI issues a PIK cer-
tificate only after validating the PIK endorsement structure.
(Our prototype CCU does not implement this protocol to keep
the primary bootloader simple.)

A.5 Compiled Manifests and Bootloader

Job Manifest. The compiler-generated job manifest includes
all the information required by the IPU runtime and CCU to
create and launch a new TEE, which will host the ML task.
The manifest contains the hash digest of the application binary
loaded into each IPU. It lists the synchronization points at
which the IPU needs to synchronize with the host, and for each
synchronization point, it keeps the following information:

• the key region identifier assigned to each stream that will
be read or written following the end of synchronization
(i.e., the mapping between a stream identifier j to a key
region identifier);

16

• the ring buffer region (i.e., Tile PCI space in the ring
buffer) assigned to each key region (key region definition
registers);

• the part of each stream that has been mapped to the ring
buffer region (stream offset);

• the set of physical key contexts to which the stream key
needs to be loaded;

• the physical key context assigned to each exchange block
context (exchange block context map registers); and

• the key region to which each physical key context is
assigned (physical key map registers).

Secure Code Bootstrapping. The code snippet below illus-
trates the bootloader code that fetches the application binary
frames and confirms the integrity of the IV of each frame.
def bootloader():

IPU_id = get_current_ipu_id()
tile_id = get_current_tile_id()
num_frames = TOTAL_TILE_MEMORY / (MAX_FRAME_SIZE

- IV_SIZE - TAG_SIZE)
for index in range(1, num_frames):

expected_iv = StreamType::CODE | ipu_id |
tile_id | index

frame = read_next_frame_from_host()
if expected_iv != get_iv(frame):

raise_security_exception()
strip_iv_and_tag(frame)

compute_hash()

A.6 Attestation

Cryptographic Operations. Table 2 details the keys sam-
pled, derived, and exchanged at the start of a run in trusted
mode. We rely on standard algorithms: Elliptic Curve Diffie-
Hellman for establishing shared secrets, a KDF for deriving
keys, and an AES-based authenticated key-wrapping scheme.
These operations rely on the attestation of the manifest and
runtime parameters, including all public keyshares. Each party
provides its own random nonce, and the CCU combines them
to deterministically derive keys for checkpoints and the final
model; these keys are fresh secrets as long as one party is
honest. To resume from a checkpoint saved in a previous run,
the attested runtime parameters ensure that all parties agree on
the epoch counter and checkpoint identifiers, and the parties
provide their nonces for the previous and new run.
Remote Attestation. During TEE creation, the CCU gen-
erates an attestation report that captures security-critical at-
tributes about the IPU and runtime configuration, including:

• the measurement of configuration registers;

• the measurement of the IPU bootloader used for loading
application binaries onto IPUs;

• the measurement of the job manifest;

Key or secret Provider CCU
public/private keyshare
for each relying party p

Xp,xp fresh EC share receive Xp

encryption key
for each input stream j

k j fresh key unwrapped

public/private keyshare
for the CCU in this run

Y,y receive Y fresh EC share

nonce for p in this run sp,Y fresh secret unwrapped
wrapping key
for p,Y with salt
a = X p||Y ||M

wp KDF[xp ·Y](a) KDF[y ·Xp](a)

key to load checkpoints
saved by prior run Z

kload N/A KDF[⃗sp,Z](’ck’)

key to save checkpoints ksave N/A KDF[⃗sp,Y](’ck’)
key to save final model km unwrapped KDF[⃗sp,Y](’m’)

Table 2: Keying for a workload with manifest M between relying
parties identified by their public keyshares X⃗p and a CCU identified
by its fresh CCU public keyshare Y for this run. After attestation, an
ECDH shared secret wp is used for wrapping k j , sp,Y , and sp,Z when
resuming from Z from p to the CCU, and optionally for wrapping km
from CCU to any party p designated as a receiver of the final model.
The keys used for encrypting checkpoints and the final model are
derived from nonces from all relying parties, ensuring these keys are
fresh (as long as one party is honest) and require agreement from all
parties to be released.

• the hash digest of the attributes for this run, including:

– the public keyshare of the CCU for this run (Y);

– the epoch e and checkpoint counter c from which
the job is restarted (if any);

– the certificate fingerprints of all parties (X⃗p);

– a stream assignment, specifying a party for each
input, and parties (model receivers) that receive the
model key.

The host collects the attestation report, along with a CCU-
issued certificate chain, which includes the AK, PIK and CIK
certificates, and is rooted at the self-signed CIK certificate.
These are presented to relying parties along with: the original
CIK and PIK certificates, the TCB update certificates for the
secondary bootloader and ICU firmware, and any intermediate
CA certificates.

A relying party can verify the attestation report as follows:

1. Validate the CCU-issued certificate chain and auxiliary
certificates; and check for certificate revocation.

2. Confirm that public key of the CIK certificate issued by
IPU manufacturer matches the public key in the CIK
certificate obtained from the CCU.

3. Confirm that any updates to the secondary bootloader
and ICU firmware are rooted to a valid certificate chain.
Two checks are required: (i) if there exists a TCB update
certificate issued for the secondary bootloader with a

17

hash digest matching the hash digest in the CCU-issued
PIK certificate; (ii) if there exists a TCB update certifi-
cate issued for ICU firmware with a hash digest matching
the hash digest in the CCU-issued PIK certificate.

4. Review the attested manifest and attributes for this run.

Secure Key Exchange. For each run, each party p derives a
fresh wrapping key wp using its private keyshare xp and the
public keyshare of the attested CCU Y . This key is used to
wrap a key package containing the streams identifiers assigned
to the party and the party’s key for these streams k j, and the
nonce(s) sp,Y for the current run (and sp,Z for the previous
run if the current run is resuming from a checkpoint saved
in run Z.) The CCU can derive the wrapping key for party p
using its private keyshare y and the party’s public keyshare
Xp. In possession of w⃗p, the attested CCU can unwrap the key
packages of all parties, which are made available during the
TEE launch stage.

The parameters of the model are encrypted using the final-
model key km that has been derived by the CCU using the
nonces obtained from all parties. The parties engage in a
protocol for exchanging their nonces so they can derive the
key once they possess all nonces. The CCU can additionally
release the final-model key to model receivers listed in the
attestation report using the wrapping key shared between itself
and each model receiver.

A.7 Secure Checkpointing
Each IPU periodically checkpoints its state to enable recovery
from failures. A checkpoint is created by writing the weights
of the model to an output stream. The checkpoint also in-
cludes metadata, such as the current offset for all confidential
data streams. These offsets are also written in plaintext, so
that the IPU runtime can restart the job and resume loading of
confidential data streams at the correct offset. Conversely, a
checkpoint is restored by reading the weights using an input
stream and resuming confidential streams from the check-
pointed offsets. A checkpoint along with the job manifest and
binaries suffice to resume an application from the checkpoint
instead of restarting from the beginning.

In trusted mode, checkpoints are encrypted and integrity
protected. In particular, tiles enforce the integrity of the pro-
cess of restoring state from a previously created checkpoint.
This includes protecting against attacks, such as tampering a
checkpoint or loading a wrong checkpoint onto an IPU. (Guar-
anteeing freshness, e.g., resumption from the latest check-
point, would involve some form of trusted persistent storage
and is out of scope in this paper.)

Checkpoints are implemented using confidential streams.
The code generated to read a checkpoint stream generates a
sequence of expected IVs, checks that the IVs returned in the
frames match the expected IV, and strips the IV and authenti-
cation tag from the frames. Conversely, the code generated

to write a checkpoint stream generates a sequence of IVs and
places them in the header of the frame. The IV for each frame
uniquely encodes the checkpoint type, the epoch counter (in-
cremented at each resumption), the checkpoint identifier (in-
cremented at each saved checkpoint), the IPU and tile IDs,
and the frame index. The CCU uses a separate key for each
epoch; it installs the key of the epoch of the checkpoint it is
resuming from, if any, and the key of the current epoch for
writing all its checkpoints.

The tiles read and write checkpoints as follows:

1. Tiles obtain initial values of the epoch counter and check-
point identifier (assigned by the CCU along with the
bootloader code) from pre-determined locations in tile
memory. If the epoch counter is not null, the tiles use it
(with the checkpoint identifier) to compute their expected
IVs and read part of their corresponding checkpoint.

2. Each tile increments their local epoch counter and start
(or resume) the application.

3. At regular intervals, the tiles checkpoint their part of the
state, using IVs computed from their current values, and
then increment their local checkpoint identifier.

A.8 Sample Training Scenario
Figure 11 shows a sample training scenario with three parties.
Given the job manifest generated by the compiler, IPU run-
time, CCU, and IPU synchronize at various points where the
IPU runtime populate the ring buffer with the data expected
by the IPU, and the CCU loads keys to the IPU SXPs.

DescriptionTile PCI Space
in Ring Buffer

Sync
Point

Egress SXPs load key3 & key4 for checkpoint & output streams;
The keys will be used in subsequent steps.0

The ring buffer holds encrypted code;
Ingress SXPs load key0, enabling all tiles to load their code.1

Ingress SXPs load key1 & key2 to read from both providers;
RB is split between 4 streams of encrypted images and labels,
and filled with the first batch.

2

RB is filled with the second batch from both providers.3

All tiles save their part of the checkpoint, encrypted to RB (key3).4

RB is filled with the final batch from both providers.5

All tiles save their part of the model, encrypted to RB (key4).6

Training Image Stream Label
Stream

Checkpoint
StreamCode

IV Image (1/2) Tag IV Image (2/2) Tag

Training Image
Stream

Label
Stream

key0 key1 key2 key3

Output
Stream

key4

Figure 11: Sample training scenario with 3 parties: one providing
model code (using key0) and the others (using key1 and key2) each
providing their own streams of training images and labels; this task
saves checkpoints (using key3) and a final model (using key4). The
compiler emits a job manifest that indicates, for each synchronization
point of the task, which part of each stream is mapped to the ring
buffer (1..6) and which keys the CCU should load for ingress. The
keys for egress streams are programmed in the start of the job (0).

18

	Introduction
	Background
	IPU Hardware Architecture
	IPU Software Stack
	Confidential Computing

	Threat Model
	Overview
	Hardware Extensions (ITX)
	Software Support

	Trusted Execution on IPUs
	Confidential Compute Unit (CCU)
	TEE Lifecycle Management

	Encrypted Direct Memory Access
	Data Format
	Hardware Support

	Software Extensions
	Confidential Data Streams
	Secure Checkpointing
	Secure Bootstrapping

	Evaluation
	Discussion
	Related Work
	Conclusion
	APPENDIX
	Attack Vectors and Security Analysis
	Firmware Provisioning and Device Certification
	Firmware Updates
	Measured Boot Protocol
	Compiled Manifests and Bootloader
	Attestation
	Secure Checkpointing
	Sample Training Scenario

