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Solving optimization problems is challenging for existing digital computers
and even for future quantum hardware. The practical importance of diverse
problems, from healthcare to financial optimization, has driven the emergence
of specialised hardware over the past decade. However, their support for prob-
lems with only binary variables severely restricts the scope of practical prob-
lems that can be efficiently embedded. We build analog iterative machine
(AIM), the first instance of an opto-electronic solver that natively implements a
wider class of quadratic unconstrained mixed optimization (QUMO) problems
and supports all-to-all connectivity of both continuous and binary variables.
Beyond synthetic 7-bit problems at small-scale, AIM solves the financial trans-
action settlement problem entirely in analog domain with higher accuracy than
quantum hardware and at room temperature. With compute-in-memory oper-
ation and spatial-division multiplexed representation of variables, AIM’s de-
sign paves the path to chip-scale architecture with 100 times speed-up per
unit-power over the latest GPUs for solving problems with 10,000 variables.
The robustness of the AIM algorithm at such scale is further demonstrated by
comparing it with commercial production solvers across multiple benchmarks,
where for several problems we report new best solutions. By combining the
superior QUMO abstraction, sophisticated gradient descent methods inspired
by machine learning, and commodity hardware, AIM introduces a novel plat-
form with a step change in expressiveness, performance, and scalability, for
optimization in the post-Moore’s law era.
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Optimization is a journey, requiring identification of a task as an optimization
problem, creativity in formulating it mathematically, and inventiveness in solving it.
Such problems are deeply ingrained in almost every industry today, from operations
research and manufacturing, finance and engineering, to healthcare and transporta-
tion. We create an analog optimization machine that, by combining mathematical
insights with algorithmic and hardware advances, could offer a crucial inflection
point in the optimization journey.

Optimization workloads and machine learning applications are commonly ac-
celerated with clusters of cloud-based digital chips such as graphical processing units
(GPUs). However, the amount of required processing power is beyond traditional
digital hardware that is already plateauing. Even quantum hardware cannot help
with optimization at practical scales despite the promise of significant acceleration
for other applications fields [1]. As a consequence, several unconventional hard-
ware platforms for solving optimization problems have been proposed over the
past decades. Prominent examples include optical parametric oscillators [2, 3, 4],
memristors [5], polaritons [6, 7], coupled lasers [8], and others [9, 10, 11, 12].
Many of these approaches resort to hybrid architecture, when digital electronics
is fused with the unconventional hardware to achieve scalability. Such hybrid ap-
proaches sacrifice their potential speed-up substantially. In particular, the speed-up
per watt is compromised due to analog-to-digital signal conversions. For the time-
multiplexed systems, where each variable is assigned a certain time slot within a
single source signal, further speed-up reduction is caused by sequential processing of
problem variables. These limitations motivate machines with spatially-multiplexed
variables, which enable high-throughput parallel operations for spatial differentia-
tion [13], integration [14], and solving differential equations [15]. For chip-scale
platforms, the spatially-multiplexed systems promise significant speed-ups with a
recent demonstration of two-variable machine [16].

Beyond the hardware limitations, most unconventional hardware optimizers,
starting with pioneering Hopfield networks [17, 18], target optimization tasks
described as the quadratic unconstrained binary optimization (QUBO) problem. The
QUBO abstraction is a poor fit for many real-world problems [19]. In theory, an
accurate solver for any NP-hard problem, such as the QUBO model, can solve all NP
problems with at most polynomial overhead in number of variables, which is deemed
to be negligible in algorithmic sense. In practice, the polynomial overhead may
lead to significant increase in problem sizes. The overhead associated with limited
hardware connectivity often results in additional substantial inflation in problem
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sizes [20]. Together, the mapping and limited connectivity overheads prevent the
hardware solvers from tackling industrially-relevant applications at scale.

In the emerging realm of analog computation, where complex mathematical
operations are performed at extremely high speed in parallel, we present the analog
iterative machine (AIM) that innovates simultaneously across three dimensions —
problem abstraction, algorithmic design, and analog hardware architecture — for
unconventional computing paradigms.

At the abstraction level, we introduce a quadratic unconstrained mixed op-
timization (QUMO), which allows for both binary and continuous variables. The
QUMO abstraction generalises the QUBO formulation and offers a more natural lan-
guage to express quadratic optimization problems with linear inequality constraints,
which results in a more efficient mapping for many applications including transaction
settlement [21] and Markowitz portfolio optimization [22] problems in financial
domain, crystallographic texture approximation problems in chemistry [23], and
compressed sensing in healthcare [24].

At the algorithmic level, we introduce an advanced gradient descent search
algorithm, inspired by well-known machine learning approaches. To overcome lim-
itations of previous hardware approaches, whose methodology is often based on
describing physical system behaviour and envisioning an improved performance of
hardware thanks to natural internal processes, we focus on co-designing a highly
performing algorithm and hardware from the beginning. The AIM algorithm is an
iterative approach that builds on three core components: gradient of the objective
function, annealing, and momentum acceleration. For the QUMO abstraction, the
gradient is represented by a matrix-vector product, while annealing and momen-
tum techniques are essential for achieving advantageous performance. All three
techniques have been chosen and designed to be amenable to efficient hardware
acceleration.

At the hardware level, we build the first 7-variable instance of the AIM solver
based on discrete optical components. As we show schematically in Fig. 1(a), fast
matrix-vector multiplication is realized using optics by representing variables as
analog signal intensities, i.e., light intensities and currents, and by encoding the
optimization problem as a matrix with spatial optical modulation technologies. Such
design allows AIM to natively support all-to-all pairwise connectivity between the



Figure 1: QUMO abstraction in analogue hardware. (a) The schematic of the
opto-electronic system in which the iterative update rule for the gradient of
the objective function, annealing, and momentum terms are implemented in
analogue hardware. The problem variables are encoded in the signal inten-
sities, namely light intensities and electrical currents, and the problem input
is represented with optical modulators. (b) The optimization problems with
quadratic objective and linear inequality constraints can be efficiently repre-
sented within the QUMO abstraction by introducing one additional continuous
variable per constraint.
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variables. The annealing and momentum techniques are well-suited for implementing
in electronic domain. We report fully hardware-measured performance results for a



range of QUMO problems at 7-bit precision. AIM solves all problems with an average
success rate over 87%, which is in agreement with the corresponding simulations.
As an illustrative example of a real-world QUMO problem, that is also representative
of a broader class of industrial optimization problems, we consider the transaction
settlement problem and demonstrate that AIM outperforms state-of-the-art quantum
hardware [25].

Three crucial design elements of AIM pave the path to new architectures with a
potential 100 times speed-up over state-of-the-art digital solvers for the same power
at 10, 000 variable scale. First, the data transfer between digital and analog domains
is fully eliminated until convergence to a solution is achieved. Second, there is no
separation between compute and memory since the variables are computed as light
traverses through the optical modulation matrix. Finally, AIM leverages the inherent
speed and parallelism of optics and electronics to represent each problem variable
as an independent analog signal, thus eschewing the use of time-multiplexing of
variables as a scaling technique. We envision that scaling to ten thousand variables is
key to addressing real-world problems at scales of practical importance, and outline
how the AIM architecture and technology choices open the way for such scalability
at low cost.

To evaluate the AIM algorithm on problem sizes of interest, we utilize a GPU-
based simulation of AIM for an extensive collection of QUBO and QUMO problems
including G-Set [26], Wishart [27], Tile-3D [28], RCDP [29], and QPLIB [30]
benchmarks. The QUBO problems are included to evaluate the AIM algorithm
relative to the production-grade physics-inspired heuristics. Across all benchmarks,
the simulated AIM demonstrates competitive and often superior solution quality,
compared to state-of-the-art heuristic approaches [31], namely simulated annealing
and parallel tempering, and commercial optimization package, i.e. Gurobi [32].
Moreover, the simulated AIM algorithm sets new state-of-the-art results on two
QUMO and two QUBO problems from QPLIB benchmark which translate to three
orders of magnitude speed-up. In doing so, the AIM algorithm demonstrates a leap
forward in the capabilities of quadratic optimization algorithms.




QUMO

Optimization problems are nonlinear by their nature and, ideally, algorithms should
be designed to exploit and benefit from the original problem formulation. In practice,
this approach requires a substantial expert knowledge for each class of optimization
problems, resulting in their reduction to a common abstraction for which solvers exist.
Given the long history of linear programming development, optimization problems
are usually linearised in standard optimization packages that exploit the simplex
and interior point methods. On one side, the linearisation approach allows one to
treat a broad range of problems equally. On the other side, solving the problem in
the form closest to the original formulation is expected to be the most efficient [33].

The QUMO abstraction represents a wide class of combinatorial nonlinear
optimization problems and is formulated as the minimisation of an objective function
F(x):

Minimize F'(x) = Minimize — %XTQX —b'x (1)
where the vector x includes binary and continuous variables, - is the transpose
operator, and the information about the optimization problem is encoded in the
weight matrix () and the constant vector b. Without loss of generality, one could
consider the {0, 1} values for binary and the [0, 1] interval for continuous variables.
The solution to the QUMO model is the assignment of the variables x that minimises
the expression in Equation 1. In contrast, the components of x are binary variables
in Equation 1 for the QUBO framework.

Besides being nonlinear, most optimization problems are constrained. A prob-
lem with linear inequality constraints exemplifies the superior expressiveness of
QUMO abstraction over the standard QUBO representation. As illustrated schemat-
ically in Fig. 1(b), only one additional continuous variable, typically referred to
as slack variable, is required for mapping one inequality constraint to the QUMO
abstraction with a penalty method. The resulting matrix of weights () could also
incorporate all the objective linear terms with an addition of the extra binary vari-
able. In contrast, the QUBO model suffers from a large mapping overhead: 10 to 100
binary variables are needed to represent a single constraint with either binary or
unary encoding (see Suppl. material for details). In addition, the smaller problem
size implies that a better solution quality can be achieved under the same time




constraints as a smaller variable space needs to be explored. We note that the QUBO
model is equivalent to the well-known Ising and maximum cut models (see Suppl.
Mat.).

AIM algorithm

Optimization techniques may be classified into derivate-free methods and algorithms
exploiting information about the gradient of the objective function, i.e., gradient-
based methods. The AIM algorithm is the advanced gradient descent method,
represented by the following iterative update rule:

Xi+1 = Xy + At [_QVF(fnonlinear(Xt)) - B(t)xt + V(Xt - Xt—l)] y (2)

where x; is the continuous real-valued state vector at time iteration ¢, At is the
positive number known as the time step (or learning rate), VI is the gradient of the
objective function, f,ninear(¢) is the elementwise nonlinear function that projects
the variables on binary or continuous range of values, « is the objective scaling
parameter, () is the annealing schedule, and ~ is the momentum parameter. The
term involving « on its own represents the simplest gradient descent method, known
as the steepest descent, which modifies the system variables x; along the direction of
the negative gradient thereby decreasing the objective. With an addition of the last
term in Equation 2, the steepest descent is generalised to an accelerated gradient-
based approach that is known as the heavy ball method [34]. In continuous time case,
the momentum term corresponds to the dynamics of the second-order differential
equation, which distinguishes the AIM algorithm from the first-order methods similar
to Hopfield networks [17, 18]. The intuition behind the momentum-based methods
is simple: if one assumes that the variables x; represent coordinates of particles,
then the momentum parameter is equivalent to the mass of particles moving through
a viscous medium in a conservative force field [35]. The annealing schedule /()
makes the system non-conservative: it characterises the system dissipation rate and
controls how much the amplitude of the state x; is reduced at each time iteration t.
The AIM algorithm is of a general kind and can be applied to any objective function
F(x), although in this study we will consider it for solving QUMO problems described
by the Equation 1.



Figure 2: Analog Iterative Machine (AIM) solver. (a-c) The operational princi-
ples of the AIM algorithm are depicted schematically for a single combination
of parameters. (a) The evolution of the objective landscape is shown for time
iterations ¢ € [0, 7. The initially flattened landscape facilitates exploration of
the multidimensional variable space and eventually returns to its original form,
when exploitation occurs and the algorithm converges to the minimum of the
objective. (b) The annealing term is characterized by j(¢) that decreases lin-
early over time, ensuring exploration and exploitation stages of the algorithm.
(c) The better objective values are generally obtained towards the final time
iteration 7' as the contribution of the objective term « increases relatively to
f(t)-term in Equation 2. (d) The two phases of the AIM solver are illustrated.
During the ‘exploration phase’, the AIM algorithm is simulated for a large num-
ber of parameter combinations («y, ) with small number of time iterations
and samples per each combination. During the ‘deep search’ phase, the pa-
rameter pairs (o, 4}), which produce relatively better objective values during
exploration phase, are selected and the AIM algorithm is simulated for a large
number of time iterations and samples per each pair of parameters.
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The distinction of the AIM algorithm is the simultaneous inclusion of both
momentum and annealing terms, which dramatically improve the performance of the
standard steepest gradient descent method on nonconvex optimization problems. As
shown schematically in Fig. 2(a), the annealing schedule 3(¢) enhances exploration
over multi-dimensional objective function space: it suppresses the contribution
from the gradient of the objective function during initial time iterations, thereby
flattening the objective profile. According to the above physical interpretation of
the momentum term, the massive particles accelerate their motion in long and
narrow valleys, improving the convergence of the iterative approach to minima and
providing mechanism for escaping from local minima. From a numerical perspective,
the presence of momentum term increases the range of time step values for which
the system converges [35]. In machine learning, the momentum-based approaches
are known to greatly improve the speed of training, while the annealing schedule
is reminiscent of slowly decaying weights and could be seen as the regularisation
technique. The variations of the AIM algorithm for the Nesterov momentum and
adaptive momentum methods are discussed in Supplementary materials.

The general tendency of the AIM algorithm to achieve better objective values
towards the final time iteration 7" is ensured by relatively increasing contributions
from the gradient of the objective with respect to the annealing and momentum
terms. The annealing term may be time-dependent in either a linear or non-linear
way although here we consider the linear schedule 5(t) = §y(1 —¢/7"), as shown in
Fig. 2(b). Hence, the annealing term decreases to zero over time and the momentum
term vanishes for the equilibrium solution, which means that the AIM algorithm
finds a solution corresponding to the minimum of the objective function F'(x) at time
iteration 7. Having such explicit stopping criteria is a lucid advantage of the AIM
algorithm for an all-analog hardware implementation, as it avoids the complexity
of multiple intermediate readouts that stochastic heuristic approaches suffer from

[36].

We design a two-phase approach for the AIM solver to operate similar to a
black-box solver that can quickly adjust the critical parameters within the given time
limit, as shown in Fig. 2(d). During the ‘exploration’ phase, we evaluate the relative
performance of AIM algorithm across a vast range of parameters (g, ), where aq
scales the o parameter by the largest eigenvalue of the weight matrix (). A subset of
‘good’ parameters is then passed for more extensive investigation in the ‘deep search’
phase (see Methods for details).



AIM Hardware Design

To surpass the speed of classical computers in solving optimization problems, the
AIM algorithm is engineered to be amenable for analog hardware implementation.
As a proof-of-concept, we design and build a fully analog AIM architecture with
discrete opto-electronic off-the-shelf components widely available and common in
telecommunication applications. We implement the most computationally expensive
operation of the iterative update rule in Equation 2, namely the matrix-vector
multiplication, in optical domain and the annealing characterized by 3(t) in electrical
domain. The remaining momentum term could be implemented using capacitor-
based time derivative circuits in the electronic domain.

Fig. 3(a) describes the operational principles of the opto-electronic hardware.
In the optical domain, the values x; are encoded in the intensity of light sources.
Each matrix element ();;, that represents the information about the input problem,
is encoded as the transmissivity of a single cell of an optical matrix of modulators.
In our specific implementation, we use multiple wavelength selective switches to
emulate this modulator matrix, with each one representing a row of the matrix. As
we show schematically in Fig. 3(a), the calculation of the matrix-vector product in
hardware is described by three steps. During the ‘fan-out’ step, each light source
within x; is split into N optical replicas, where N is the size of the problem, resulting
in X; matrix. In the ‘element-wise multiplication’ step, @);; * (X);; is computed
by shining each optical signal (X;);; onto an element of the array of modulators
with transmissivity ();;. During the last ‘fan-in’ step, the intensity-modulated optical
signals are summed column-wise by collecting the light onto N photodetectors. As
a result, the variables have moved onto the electrical domain in the form of currents
(voltages) which are proportional to the total optical power they have received and,
hence, to the x; product. In such architecture, all the scalar multiplications and
additions involved in a single matrix-vector multiplication are computed in parallel
in a single pass of the optical sources through the discussed setup.

To implement the annealing, we use an additional replica of the signal x;
that is optically path-matched with the objective gradient arm and captured with
photodetectors. The annealing 5(¢) path is realized with an analog mixer, in which
the signal from the path Syx; is multiplied with a ramp signal that has negative slope.
These electrical signals are further combined with the output signals from the «
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Figure 3: Hardware AIM setup and performance. (a) The setup shows the
experimental implementation of the AIM algorithm based on opto-electronic
components. The enhanced block represents the setup for variable 1 with the
two arms corresponding to the o« and /5 terms in Equation 2. The all-to-all con-
nectivity is realised in hardware through the wavelength selective switches,
represented as ‘combiner’ block in the scheme. (b) The signal intensities
(green) and the corresponding objective optimality gap (blue) are shown as
a function of time iterations for the 7-bit QUMO problem with 4 binary and 3
continuous variables. The filled light green and blue areas represent regions
for steady state detection. The expected variable values and zero optimality
gap are shown with grey dashed lines. (c¢) The success rate performance re-
sults are demonstrated for the hardware solver, its noisy simulated version,
and noiseless ideal simulations of AIM algorithm across 7-bit QUMO and QUBO
problems. (d) The transaction settlement problem instance involving three fi-

nancial parties is mapped to the QUMO abstraction and solved in hardware
with a success rate of 100%.

a

Variable (var)1 [ f-—Sg———————————————
(Var) '8 path wmealing I
: Difference
| Amplifier; amplifier;
I
L | Y
o bsekod ___________
japath —— \Amplifiery |
|
C\N}\\aser MOD l T
Splitter | |
) | Combiner- m)l |
: #
ey o= _
Var 2 Var 8
(A2) Var 3 Var7 (As)
() Var 4 Var 6 W)
(Aa) Var 5 (As)
(As)
b Variable 1: binary Variable 2: binary Variable 3: binary Variable 4: binary
1 1[=mmmmmm=o-oT-g000008| | [-------30000000000000 | ---- 90000
° ° o®
0 )
[ ouoo"‘. ° o®
T 0p O °°® 0w 0w
= ° .
S, o
‘2,—1 0--2000000000000000000| -1 -1 -1
‘» ; Variable 5: continuous ; Variable 6: continuous ; Variable 7: continuous thimality Gap [%]
c
o) 100
=2 R
= ° | . Pyl 10 | ©e0eecescee,
0 |0 0q4 0 #%e0 (O ] outoono..... 1 ° °
-------------- Qeoooo 00e00,
-1 -1 -1 (1 T et
0 50 100 0 50 100 0 50 100 0 50 100
Iterations
C<
92.5 916 100 87.6 859 100 93.9 89.3 100
E 100 — == — Py P T; - i-th transaction  C - currency account
° It_ljl . Securltv 2C = 25 Security p,_ j th party S - security account
= 80 N buyer T, seller
o .
60 o . T T
" : : \\3 % Success Rate [%]
% 40 o AlM Quantum | Quantum
o AIM Hardware . ° Ps hardware | Hardware*| Ideal*
O 20 Noisy simulations ° Facilitator T
= Ideal simuluations 1 ]. 100 42 45
n -

QUMO QUBO:dense  QUBO: sparse
Benchmarks



path and supplied back to the corresponding modulated sources, completing one
iteration of the AIM algorithm.

On each iteration, the nonlinearity is introduced into the system through
the combination of optical sources with the square-law detection scheme and the
saturation of analog electronics. By calibrating the gain of each amplifier prior to
the modulator, we select a specific region of the transfer function to realise either
binary or continuous variables. The closed loop system allows signals to remain in
analog domain for hundreds of iterations until the annealing term vanishes. At this
point, the signal amplitudes are read out digitally and the optimised objective value
can be computed for the original problem.

Opposed to the variable encoding in phase domain, encoding variables as light
intensities can bring a notable scaling advantage, as the precision requirements for
calibrating variable paths are proportional to the system GHz bandwidth and not
the bandwidth of the optical sources, which can reach 10° GHz. At the same time,
the intensity encoding constrains one to operate with nonnegative matrix weights.
For a general matrix-vector product, one can apply offsetting and scaling procedures
to represent operations with arbitrary matrix weights in analog domain [37, 38].

Such opto-electronic architecture offers a simple blueprint of analog hardware
for solving hard optimization problems with binary and continuous variables.

AIM hardware performance and cross-validation

We conduct a comprehensive evaluation of the opto-electronic AIM solver on a
diverse set of QUMO and QUBO problems. The AIM can solve optimization problems
with binary and continuous variables, with arbitrary connectivity, dense or sparse,
and with 7 bits accuracy for the problem input weights. We vary the parameters
(av, Bo) within their accessible range in hardware to identify the optimal parameter
combination for sampling. For a representative QUMO instance, we present the time
evolution of variables and optimality gap in Fig. 3(b). The optimality gap is defined
in a conventional way as the ratio of the difference between the best objective and
the found objective to the best objective. The steady states are detected within the
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shaded regions. For the measured binary and continuous variable values, we obtain
a high-quality solution to the QUMO problem, with a final optimality gap of 0.29%,
in an entirely analog manner without any digital pre- and post-processing.

We cross-validate the simulated AIM solver and its discrete opto-electronic im-
plementation on 50 instances of the QUMO and QUBO models. Given the historical
emphasis on the QUBO model, we consider 40 QUBO instances with 8 variables,
representing problem classes that are known to be computationally challenging at
scale. These instances are divided equally between two graph topologies, namely
dense fully-connected and sparse three-regular graphs. In both cases, the matrix
weight elements are drawn from the Gaussian distribution and their bit precision
is reduced to 7 bits, resulting in instances belonging to the Sherrington-Kirkpatrick
[39] and weighted maximum cut problems. Given the novel nature of the QUMO ab-
straction, there is a lack of research on methods for generating challenging small size
instances with a mixture of binary and continuous variables. We develop a technique
for planting random continuous minimizer values in the global solution and generate
10 QUMO instances with 7 variables. To make these instances more challenging
to solve and obscure the planted solutions, hundreds of random perturbations are
applied to their matrix weights.

In Fig. 3(c), the success rates of the opto-electronic solver are presented for the
QUBO and QUMO instances. The success rate, a widely used metric for evaluating
the performance of heuristic solvers, is defined as the probability of finding the global
objective value for a given set of parameters. The hardware solver targets exact
objective values for the QUBO instances while the relative and absolute tolerances
are set to 99.5% for QUMO instances to account for hardware imperfections. For all
benchmarks, the opto-electronic AIM achieves high average success rates over 87.6%
with a median success rate of 100%. This performance is in agreement with that of
the simulated noisy AIM algorithm, and is closely aligned with the performance of
the simulated noiseless AIM algorithm.

The opto-electronic AIM demonstrates exceptional performance on challenging
synthetic QUMO and QUBO instances at small scale. While the hardware solver finds
global objectives for all instances, there are several outliers for which the success
rates are lower, with values of about 62%, 1.7%, and 21.4% across the QUMO, QUBO
(dense), and QUBO (sparse) benchmarks. Such outliers may be attributed to the
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inaccessible range of optimal parameter values or to the particular nonlinear function
implemented in hardware.

Solving Transaction Settlement Problem with AIM hard-
ware

As a demonstration of the QUMO abstraction importance, we further consider an
industrially important problem from financial domain, namely the transaction settle-
ment problem, and solve it with AIM hardware. This problem arises in the context
of financial transactions when one needs to ensure that the parties involved in the
transaction are able to receive the funds or assets that they are entitled to in a
timely and efficient manner, as shown schematically in Fig. 3(d). If one party fails
to meet their obligations, the securities settlement system may not be able to settle
all transactions, which can cause a chain reaction of many unsettled transactions.
Consequently, transaction settlement is the NP-hard optimization problem of finding
the optimal set of transactions to settle [40].

Various approaches have been proposed for solving the transaction settlement
problem, one of which formulates it as a linear binary optimization problem with
linear inequality constraints [21]. In turn, the transaction settlement problem can
be further mapped to the QUMO abstraction since the inequality constraints can be
efficiently incorporated into the objective function by introducing continuous slack
variables.

Here we consider a problem instance that is derived from real settlement data
[21]. In order to fit the current hardware requirements, we reduce the original
small-scale problem with 9 variables to 6 variables, i.e., 3 binary and 3 continuous.
We observe the high success rates of 99% and 100% for both, the hardware AIM and
its simulated version in Fig. 3. For comparison, we highlight the quantum hardware
and simulated quantum hardware performance for the same problem with a success
rate of 45% and 42%), respectively [21].
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Simulated AIM Solver Performance at scale

Here we validate the algorithmic performance of the AIM solver that is implemented
on the GPU. We consider a comprehensive set of benchmarks, one of which is the
quadratic programming library (QPLIB). The QPLIB benchmark is a collection of
challenging synthetic and real-world problems, gathered over a year-long open call
from mathematical and numerical analysis communities [30, 41]. For evaluating
the AIM solver on QUMO problems, we focus on a subset of QPLIB benchmark,
namely the non-convex problems with linear inequality constraints. These problems
have up to several thousand variables, while the number of constraints reaches ten
thousand. These constraints lead up to ten thousand additional continuous variables
for problems formulated within the QUMO abstraction. We consider unconstrained
and equality-constrained binary problems within QPLIB. In addition, we use the
well-studied G-Set benchmark with synthetically generated problems up to 20000
variables [26], Tile3D and Wishart instances from a recently introduced CHOOK
generator [42], as well as a set of manufacturing problems, i.e., RCDP.

For QUMO problems, we compare the AIM approach against the commercial
Gurobi solver, that outperforms such optimization packages as Octeract, Baron, and
Scip [43]. For QUBO benchmarks, in addition to Gurobi, we consider two heuristic
approaches, namely simulated annealing and parallel tempering, that are known for
a consistently better or similar performance over other physics-inspired methods [44,

, 46]. Both heuristic approaches benefit from highly-optimised implementations
in Azure quantum inspired optimization service and work as black-box solvers for a
given time limit [31].

We design the AIM approach to resemble a black-box solver operation with
the main sensitive parameters («y, Jy) dynamically adjusted for a given time limit
for each problem, while small variations of the momentum parameter values are
explicitly mentioned within and between benchmarks (see Suppl. Mat.). For a
representative performance comparison across such a disparate set of benchmarks,
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we consider the quality of solution improvement metric:

(100% - —FaM — Frest son if AIM i.s better than all
FBest known — FBest rest’ competing methods

Objective

B if AIM is equal to the best
Improvement

competing method

0%,

1009 - Fiest sext = Fan if AIM is worse than the best
L " Fhest known — Fanu’ competing method

(3)

where Fpest known represents the best known minimum of the objective function for
the problem and the AIM algorithm is compared against the best solution found by
competing solvers: Gurobi, parallel tempering, or simulated annealing. Since all
solvers are given the same computational resources equivalent to about 100 seconds
of the AIM solver, the solution improvement metric serves as a good indicator of
their relative performance in terms of finding better objective function values (see
Methods).

For the QUMO benchmark, we report the AIM speed-up against the Gurobi
solver on the hardest quadratic binary problems with linear inequality constraints
within QPLIB (QPLIB:QBL). Since Gurobi attempts not only to find the optimal
solution, but also to prove the global optimality of the solution, we consider the
Gurobi time when it first finds the best objective value, which can be compared
with the time of the AIM solver, that provides no global optimization guarantees.
In Fig. 4(a-b), we consider ten of the most difficult instances requiring more than
a minute of computational time for Gurobi to find the best known solution. The
one minute threshold is chosen as the problems that can be solved faster can be
seen either intrinsically simple or their structure could be substantially simplified
by the pre-processing techniques of Gurobi. The AIM solver is up to three orders of
magnitude faster in all QUMO except the two instances, one of which it is unable
to solve. Moreover, the AIM solver finds the new best solutions for two heavily
constrained instances in about 40 seconds: the instances 3584 and 3860 have about
500 binary and 10000 continuous variables in QUMO formulation. To evaluate the
speed-up, we run Gurobi for these two instances for five days. For the instance
3584, Gurobi finds the same solution as the AIM solver in about 54000 seconds, while
proving its global optimality takes four and half days. The Gurobi solver optimises
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Figure 4: Simulated AIM solver performance. (a) The relative speed-up per-
formance of the AIM solver compared to the Gurobi solver is shown on QUMO
instances formulated for a subset of QPLIB benchmark, namely instances with
quadratic objective and linear inequality constraints for binary variables (QBL).
The AIM solver is up to three orders of magnitude faster on eight out of ten
instances, and is unable to solve one instance. For instances 3860 and 3584, the
AIM solver finds the new state-of-the-art solutions. (b) The time performance
is depicted for the Gurobi solver on the corresponding ten QBL instances in
their original formulation. These are the hardest instances within the QBL in-
stances that take more than 60 seconds for the Gurobi solver to find the best
known solution. (c) The violin plots demonstrate distribution of the quality
improvement performance for the AIM solver compared to the best solution
found by competing methods across six QUBO benchmarks. The competing
methods include parallel tempering, simulated annealing, and Gurobi solvers.
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instance 3860 to the same quality as the AIM approach in about 13000 seconds with
an optimality gap of 8% in five days.

Although we do not know the origin of the hardest instances discussed above,
we notice that the ones solved by the AIM approach are united by the same type of
inequality constraints, which can be seen as Horn clauses [47]. The Horn clauses
play fundamental role in automated theorem proving and, intuitively, imply that
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if all variables except one are true, then that last variable must also be true. Such
insight into the logical properties of this subset of the hardest QPLIB problems may
imply that the AIM solver can efficiently propagate the logical clauses of Horn type
that can bring advantageous performance in solving logic programming problems.

In Fig. 4(c), the AIM solver demonstrates consistent objective improvement over
the competing methods across several QUBO benchmarks including Wishart, RCDP,
Tile3D, and QPLIB:QUBO, where QPLIB:QUBO includes a subset of graphs from
QPLIB that are natively represented as the QUBO model. Remarkably, AIM solver
finds new best solutions for the two largest problems with over thousand variables
from QPLIB:QUBO, namely 3693 and 3850 instances. For Gurobi, the optimization
of instance 3850 takes 110000 seconds to reach the same solution quality as AIM
solver in 40 seconds, with the gap of 3% in 5 days. The instance 3693 cannot be
optimised to the similar AIM quality of solution by Gurobi in 5 days. The AIM solver
further demonstrates competitive performance on the G-Set instances. With many
heuristic approaches applied to the G-Set benchmark over the past two decades, the
performance of the Gurobi solver has probably been overlooked due to the general
perception that it is inefficient at solving natively formulated QUBO problems. In our
analysis, we observe that Gurobi solves particularly well instances with certain graph
topologies, finding new best global solutions for four graphs with torus geometry
from G-Set benchmark, although it still underperforms on other QUBO instances.

Among all QUBO benchmarks, AIM solver is behind only on the quadratic
constrained binary optimization problems within QPLIB (QPLIB:QCBO), which
includes instances with binary variables and equality constraints. We note that
Gurobi employs various pre-processing techniques that can drastically reduce the
number of variables and constraints [48], thereby greatly simplifying problems
before invoking the main optimization methods such as simplex, interior point, and
branch-and-bound.

With the development of similar pre-processing techniques for the AIM solver,
the QUBO and QUMO formulations of constrained problems could be simplified and
one could expect an improved performance for the AIM approach. For example,
we implement one of the pre-processing methods for solving two QUMO instances
within QPLIB:QBL benchmark (see Methods).
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Scalability Roadmap

The developed opto-electronic AIM architecture is the first tangible demonstration
of a fully analog, spatially-multiplexed hardware that is able to solve optimization
problems containing both binary and continuous variables with all-to-all connectivity.
To address practical optimization problems at scale and guarantee the speed-up
improvement, we envision the same proposed AIM architecture with 10000 variables
using miniaturized and mass-produced opto-electronic components used, for exam-
ple, in smartphone devices. For instance, the transaction settlement problem can be
split into multiple sub-problems of that size based on transaction values and available
liquidity. Another practical application at this scale could be the constrained portfolio
optimization problem. For this problem, the whole universe of stocks, e.g. 2800
stocks within the New York Stock Exchange, can be represented within the 10000
variable hardware with all-to-all connectivity and mixed variables.

The AIM architecture with 10000 variables will be achieved by moving from
discrete optical components to integrated opto-electronic technologies from the
consumer space that are low-cost, low-power and scalable. Following the established
operational principles of the AIM prototype, the most computationally expensive
matrix-vector product will be still implemented in optical domain, while the anneal-
ing and momentum techniques will be realised in electrical domain. For generating
and detecting optical signals, i.e., problem variables, one can use inexpensive and
scalable micro-LEDs and CMOS sensors. To achieve sufficient system signal-to-noise
ratios and dynamic ranges, each variable will be represented by multiple dependent
optical sources detected by multiple dependent photodetectors. Spatial light modula-
tors (SLMs) could be a promising technology for achieving high resolution modulator
matrices, with potentially each individual SLM pixel representing a different problem
weight. Estimating a source-to-SLM-pixel ratio of 1 : 100, micro-LEDs will shine onto
rows of the modulators matrix to achieve the all-to-all connectivity. The modulated
signals after the SLMs will be collected column-wise onto CMOS sensors to perform
massive dot-product operations in parallel in a single pass of light through the system,
as in Fig. 1. These illuminations, elongated in one dimension, can be implemented
with spherical-lens systems, which are well-corrected for errors in large-field-of-view
imaging [49].
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Assuming that each SLM pixel can provide the required element-wise multi-
plication, an SLM resolution of 100 million pixels is needed to achieve a scale of
tens of thousands variables. Since a typical SLM has several million pixels today,
we envision the equivalent of a two-dimensional array of SLMs with a resolution of
about 2000 x 2000 pixels each. We note that the current SLM refresh rate of a few
hundred Hz is sufficient as the AIM solver needs to compute millions of samples for
each optimization problem. Such an SLM, together with a 2000 array of independent
micro-LEDs and a 2000 array of independent CMOS sensors, would constitute the key
building block, i.e., single ‘module’ of the AIM solver. This module is then spatially
multiplexed into an array of modules whose input and output signals are properly
split and combined together guaranteeing a highly integrable platform for a large
matrix by vector multiplication.

Keeping into account the industrial technological advancements of micro-LEDs
and customized optical components, we calculate a total power consumption of
the AIM hardware of about 2 kW at 10000 variables, including the contributions of
transimpedance amplifiers and variable gain amplifiers. For the estimated 9 cm long
overall path lengths of the whole hardware, we can achieve a time per iteration of
approximately 0.6 ns.

On the digital side, we run the GPU-based solver implementation on A100
over a large number of synthetic instances with 10000 variables at FP16 precision.
We measure the average time per iteration of 820 ns at the power consumption of
297 W. Assuming that the time per iteration will decrease by a factor of two as we
move to INT8 to fairly compare the simulated results with the analog hardware, we
calculate a speed up improvement of AIM versus state of the art digital hardware per
unit power of about 100 times at 10000 variables. With such improvement, the same
optimization problem would be solved in tens of seconds with the AIM hardware,
while an hour long computation would be required for the digital solver.

Discussion

We face a pressing need for optimization hardware that can continue to scale in
the edge computing era. The computational complexity of optimization problems
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forces us to rely on heuristics for finding approximate solutions. Heuristic algorithms
running on a quantum computer with a million physical qubits would be still four
orders of magnitude slower than alternative CPU-based algorithms [1]. To address
the shortcomings of traditional classical and quantum hardware, we harness the
speed of light and aim to build an opto-electronic computer to solve hard optimization
problems at industrially-relevant scale more than two orders of magnitude faster
than state-of-the-art digital solutions.

Reflecting on the practical impact of existing unconventional approaches in
optimization, we focus on solving problems in the QUMO abstraction. The QUMO
abstraction is superior to the well-known QUBO model, in which the objective
variables are always binary, as it naturally expresses a broader class of optimization
problems. The advantage of the QUMO abstraction is caused not only by the cost of
converting continuous variables to binary, but also by the concomitant complexity
increase for reformulated QUBO problems of larger size. On the contrary, QUMO
can represent the ‘sweet spot’ between hardware amenability and higher expressive
power for many practical applications. We observe that the heavily-constrained
optimization problems, such as the transaction settlement or portfolio optimization
problems, have a rather straightforward and efficient transformation to the QUMO
abstraction.

To unleash the potential of analog computing, AIM provides an original view
at unconventional optimization hardware. The AIM algorithmic approach not only
shows highly-competitive performance across various benchmarks with four instances
optimised to the new best ever solutions, but also offers advanced gradient-based
approaches that are easily amenable for analog implementation. Following compute-
in-memory principle, we utilize commodity technologies to build the first QUMO
solver in analog hardware. The small-scale opto-electronic AIM based on discrete
components solves the mixed binary and continuous optimization problems with
weight matrices accuracy up to 7 bits in fully analog way. The good quantitative
agreement between the simulated solver and its optical counterpart paves a promising
avenue for realising the state-of-the-art optimization approaches in analog hardware
at scale.

We believe our blueprint for co-designing unconventional hardware and algo-
rithms will ignite the exploration of other optimization techniques and hardware
platforms, as well as enhance the development of automated problem mapping
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procedures to the QUMO abstraction. A wider variety of real world problems still
need to be explored to understand which applications would benefit the most from
the QUMO abstraction and for which the unconventional hardware, such as AIM,
could bring a tangible advantage in terms of solution quality and time-to-solution
for reasonably large problems. At scale of tens of thousands variables, AIM could pro-
vide a route to more cost-effective, energy-efficient, fast and accurate optimization
architectures than conventional paradigms.

Methods

AIM Parameters

Typically, multiple hyperparameters need to be calibrated for heuristic methods to
achieve their best performance in solving optimization problems. To determine the
optimal set of parameters, external hyperparameter optimization packages or stan-
dard grid search techniques are widely used. While the choice of hyperparameters
is critical, the time required to calibrate them is often overlooked. However, the
hyperparameter space grows exponentially with the number of parameters, and a
trade-off should be considered if the performance gain from fine-tuned additional
parameters outweighs the time spent for fine-tuning them. In principle, the three
main parameters {«, fy, v} of the AIM algorithm need to be adjusted for each opti-
mization problem. In our simulations, we notice that the algorithm is less sensitive
to momentum parameter value, while the « and f, values significantly affect the
solution quality. We further perform a linear stability analysis of the AIM algorithm
to evaluate reasonable exploration regions for these two parameters and find that
by scaling the o parameter as &« = /), where ) is the largest eigenvalue of the
weight matrix (), we get scaled parameters o, and (3, being in a similar optimal unit
range across a wide range of problems.

We note that for two QPLIB:QUMO instances, namely 5935 and 5962, we
developed a pre-processing technique that greedily picks variables with the highest
impact on the objective functions and considers their possible values, which is
accounted in the reported time speed-up of AIM.
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The hardware performance is cross-validated with noisy simulations, in which
the Gaussian noise is injected into variables with standard deviations of 3% for QUMO
problems and 0.2% for QUBO problems to account for hardware imperfections.
In addition, the measured hardware nonlinearity function is used for realising
binary variables in the noisy simulations (further details are available in Suppl.
materials). The smaller noise in case of QUBO model could be attributed to the
fact that the weights of these instances are created to be sensitive to the noise in
the first place. The momentum term is zeroed for noisy simulations. The relative
and absolute tolerances are defined for some value a and its reference value a,.s as
la — aref| < (Tolaps + Tolrer|res|)-

Comment on objective improvement metric. The introduced objective improve-
ment metric can be used evaluate the relative improvement in objective value found
by the solver of choice, i.e., the AIM algorithm, compared to other competing
methods. In particular, the objective improvement of 100% happens when the AIM
approach finds the best known objective while the competing solvers cannot achieve
it, and in the reverse situation, the objective improvement is —100% when one of the
competing solvers finds the best known objective while the AIM solver could not.

Competing solvers

For a fair comparison, we ensure that all methods use similar computing resources.
Although the implementation of GPU or CPU based solvers can require highly varying
engineering efforts, we try to estimate the cost of running solvers on the hardware,
on which they are designed to run, and vary the time limit across solvers accordingly
to ensure similar cost per solver run. In what follows, the AIM solver runs on GV100
GPU for 5 — 300 seconds per instance across all benchmarks. For the highest time
limit of AIM we estimate time limits of about 400 seconds per instance for the
simulated annealing and parallel tempering methods run on multicore CPU machine.
In case of Gurobi, our licence allows one to use only up to 8 cores, so it is given 1000
seconds per instance. To simplify the evaluations, the competing solvers are always
given these maxed out time limits even for the instances on which AIM uses less
than 300 seconds.

Simulated annealing. As described in Azure quantum inspired optimization
service [31], simulated annealing is a Monte Carlo search type of method that

23



simulates a state of varying temperatures, where the temperature of a state influences
the decision-making probability. For optimization problems, the algorithm starts
at an initial high-temperature state where “bad" moves in the system are accepted
with a higher probability, and then slowly “cools" on each sweep until the state
reaches the lowest specified temperature. At lower temperatures, moves that don’t
improve the objective value are less likely to be accepted. For QUBO problems, each
decision variable is “flipped" based on the objective value impact of that flip. Flips
that improve the objective value are accepted automatically. Flips that don’t improve
the objective value are accepted on a probabilistic basis, calculated via the Metropolis
Criterion.

Parallel Tempering. As described in Azure quantum inspired optimization
service [31], parallel tempering can be regarded as a variant of the simulated
annealing algorithm, or more generally Monte Carlo Markov Chain methods [50].
As with simulated annealing, the cost function is explored through thermal jumps.
Unlike simulated annealing, a cooling temperature is not used. Instead of running a
single copy of the system, Parallel Tempering creates multiple copies of a system,
called replicas, that are randomly initialized and run at different temperatures.
Then the same process is followed as in simulated annealing, but based on a specific
protocol two replicas can be exchanged between different temperatures. This change
can enable walkers that were previously stuck in local optima to be bumped out of
them, and thus encourages a wider exploration of the problem space.

Gurobi. Gurobi is the commercial solver that is highly-optimized to work as
the black-box solver. Gurobi pre-solve techniques can drastically reduce the input
problem size and the number of constraints [48]. We note that Gurobi finds for the
first time the global minima solutions to several largest G-Set instances including
G62, G72, G77, G81, which are all united by the same torus graph topology, and
further proves that the best known solutions are exact for other graphs with torus
topology: G11, G12, G13, G32, G33, G34, G48, G49, G50, G57, G65, G66, G67.

Benchmarks

QPLIB benchmark. The quadratic programming library (QPLIB) is a library of
quadratic programming instances [30] collected over almost a year long open call
from various communities, with the selected instances being challenging for state-
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of-the-art solvers. As described in the main part of the paper, we consider only the
hardest instances within the QPLIB:QBL class of problems, which contains instances
with quadratic objective and linear inequality constraints, the QPLIB:QCBO class
of problems which contains instances with quadratic objective and linear equality
constraints, and the QPLIB:QBN class of problems which contains QUBO instances.

Wishart benchmark. Wishart planted ensemble (WPE) problems [27] are
originally planted binary Integer Linear Programming (ILP) problems whose coeffi-
cients are drawn from a correlated multivariate Gaussian distribution. It has been
shown that in the hard regime, the ground state is extremely difficult to find using
Monte-Carlo-based algorithms (such as parallel tempering) even for small problem
sizes of 32 variables. The statistics has been collected across 100 instances

RCDP benchmark. Rotationally constrained discrepancy problem (RCDP)
arises in the automotive manufacturing industry when one needs to arrange n disks
on a common axis [51]. Due to imperfections, the disks have uneven surfaces and we
wish to decide the alignment of disks to minimize total height. The disks have uneven
surfaces due to imperfect machining. The goal is to rotate the disks to appropriate
angles with respect to a reference orientation such that when all put through the
common axel, the cumulative surface height in each sector is as close as possible to
the ideal case when all surfaces are perfectly flat. This problem can be formulated
as either mixed integer programming or QUBO. The RCDPs are tunable in hardness
by increasing either n and the number of sectors K or the correlation between the
sectors. For our study, the QUBO problems were generated by external team. The
statistics has been collected across 100 instances with 360 variables.

Tile3D benchmark. The 3d tile planted problems [28] are highly tunable
short-ranged Ising planted instances based on partitioning the problem graph into
edge-disjoint subgraphs. It has been shown that the tile-planted problems can be
made orders of magnitude (in terms of time-to-solution) harder than a typical 3D
Gaussian spin-glass instance. The statistics has been collected across 100 instances
with 512 variables.

G-Set benchmark. The G-Set benchmark includes a collection of synthetically
generated instances from 800 to 20000 variables [52].

Hardware QUBO instances. For the hardware experiments, we generate 7-bit
dense and sparse instances. The sparse instances belong to the QUBO model on
three-regular graphs that is NP-hard [53], although NP-hardness does not imply that
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every random instance is difficult to solve. We apply two additional procedures to
make these instances more challenging to solve. First, in order to ensure that the
instances are not trivial to optimise, the global objective minimizer is verified to be
distinct from the projected eigenvector corresponding to the largest eigenvalue of
the weight matrix [54]. Second, the instances are made highly sensitive to noise as
we generate a million instances and select ones that often lead to a different global
objective solution in the presence of 1-bit level noise. For example, the generated
instances with dense and sparse 7-bit weight matrices are likely to be affected by
such small noise with a probability of 50 — 70%, which may translate to success rates
of up to 30 — 50% for hardware that cannot guarantee the target 7-bit precision.

Hardware QUMO instances. Despite allowing several variables to have con-
tinuous values within the range of [0, 1] in the QUBO instances above, these variables
tend to retain their binary values. To ensure that the given variables take indeed con-
tinuous values in the global objective state, we plant random continuous minimizer
values in the global solution and generate 10 QUMO instances with 7 variables. As
the number of continuous variables increases for a given problem size, the problem
instances become relatively easier to solve. Consequently, we consider instances
with one, two, and three continuous variables.
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Supplementary Information

1 Problem mapping advantage of QUMO abstraction
over QUBO model

The realistic optimization problems are commonly constrained problems with mixed
variable types. The advantage of transforming an optimization problem to QUMO
abstraction rather than QUBO model is evident for a wide class of problems including
such with both binary and continuous variables, and problems with inequality
constraints. To illustrate this mapping advantage, we consider a toy quadratic
optimization problem with a linear constraint formulated in Fig. 1:

Original problem : min axzy + bxs 4)
st. 0<cx;+drs <1, (5)

in which all three variables can be assumed to be binary z; € {0,1}. To get an
unconstrained optimization problem, the inequality constraint can be mapped to
the objective by using a penalty method:

Unconstrained problem :  min ax 29 + bxs + Py(czy + dws + 5 — 1)2, (6)

where s € [0, 1] is the continuous slack variable and P, is a large enough constant
that ensures that the constraint is satisfied. A QUMO solver can be applied directly
to this unconstrained optimization problem. In contrast, if one has a QUBO solver,
then the additional mapping step needs to take place. To map a continuous variable
to binary representation, one may consider either unary or binary encodings:

2NVbits

Unary encoding : s = Z Y; (7)
j=1
Npits—1

Binary encoding : s = Z 2"y, (8)
k=0

where N, is the target bit precision for the continuous variable. From this simple
analysis, the problem mapping to the QUMO abstraction is one-two orders of magni-
tude more efficient than to QUBO model in terms of the total number of variables.
For the hardware QUBO solvers, the available bit precision for the input problem
weights needs to be taken into account, which may limit one to use unary encoding.
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2 Comment on QUMO abstraction

The introduced QUMO abstraction can be seen as a subclass of mixed integer non-
linear programming (MINLP) class of problems. The MINLP problems appear in
various fields including engineering design problems, particularly in chemical en-
gineering where complex chemical processes can be modelled using quadratic or
other nonlinear functions, and integer variables can represent discrete decisions.
These optimization problems have a wide range of applications in areas such as
chemical process design and control, network design, planning and scheduling,
energy systems, and portfolio optimization. To address these problems, a variety of
tailored algorithms have been developed that outperform general-purpose MINLP
solvers. Given the increasing number of applications for MINLP and the growing
demand for powerful analytics and decision-making tools, significant algorithmic
developments are likely to emerge in this area over the next decade, including
advances in convexification, decomposition, and parallel implementations to handle
large-scale problems arising in machine learning.

Within MINLP, the mixed binary quadratic programming (MBQP) class [55]
would include constrained optimization problems with binary and continuous vari-
ables, which is often also referred to as mixed binary optimization (MBO) problems
[25]. Recent advancements in quantum and quantum-inspired technologies, as well
as in optical Ising solvers capable of approximately searching for the ground state of
Ising spin Hamiltonians, have increased interest in integrating Ising problems into the
process of solving difficult optimization problems. Existing approaches range from
direct mapping of MBQP to hybrid quantum-classical methods based on optimization
algorithms [55, 25]. The problems within MBQP class with linear constraints could
be efficiently translated to the QUMO abstraction with an additional continuous
variable per each inequality constraint, making a wide range of applications more
accessible for solving directly on AIM.

3 Quantum hardware limitations for optimization prob-
lems

Quantum computing has emerged as a candidate hardware solver for hard optimiza-
tion problems [56]. Similar to the other physical machines, quantum computers also
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target the QUBO abstraction. In addition to sharing the same abstraction limitations,
additional quantum hardware constraints further limit the potential of quantum
computing as efficient solver for optimization problems. Quantum approximate opti-
mization algorithm (QAOA), that targets quantum gate computers, performs similar
to random guess on small-size QUBO problems [56] with theoretical estimations
that even a million physical qubit hardware will be still many orders of magnitude
slower than existing classical heuristics [57]. The quantum computers can offer up
to quadratic speed-up over classical alternatives in solving NP-hard optimisation
problems, to which QUBO and QUMO belong. But, this quadratic speed-up further
suffers from the slow time operation of quantum gates. Hence, unless new quantum
optimization algorithms emerge and quantum computers scale significantly, it is
unlikely that quantum computing will allow us to tackle challenging optimization
problems at sizes of interest.

Quantum annealing platforms offer another approach for solving QUBO prob-
lems. The D-Wave pioneered QUBO hardware solvers and managed to scale from
tens of variables to the current several thousands of variables over two decades [20].
In practice, one of the main challenges for this hardware is the limited connectivity
of only 15 connections per each variable, i.e. the Pegasus topology. This translates to
additional mapping overhead of QUBO problem with an arbitrary topology to the
D-Wave machine. In the worst case of the fully-connected graph, the latest D-Wave
Advantage hardware with 5000 qubits can accommodate only problem sizes up to
150 variables. This one order of magnitude mapping overhead is further amplified by
one-two orders of magnitude mapping advantage of QUMO over QUBO abstraction.

4 Examples of hardware time traces for QUMO prob-
lems.

The time evolution of variables and optimality gap are shown for QUMO problems
with one and two continuous variables in Supp. Fig. 1 and Supp. Fig. 2, respectively.
Initially, the feedback loop is open in opto-electronic setup and all variables are
set to zero. Once the feedback loop is closed, the iterative update rule of the AIM
algorithm happens for about 100 iterations and the variables, i.e. signal intensities,
evolve to their steady states. The final steady state has near 0% optimality gap and
corresponds to the global minimum objective, as verified with the Gurobi solver.
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Extended Data Figure 1: Hardware time traces for QUMO problem with 1 con-
tinuous variable. The signal intensities (green) and the corresponding objec-
tive optimality gap (blue) are shown as a function of time iterations for the 7-bit
QUMO problem with 6 binary and 1 continuous variables. The filled light green
and blue areas represent regions for steady state detection. The expected vari-
able values and zero optimality gap are shown with grey dashed lines. For the
optimality gap graph, the symlog scale is used for y-axis for gap value over 1
and linear scale for values below.

5 Physical analogy of the AIM algorithm

AIM algorithm belongs to the family of gradient descent methods that use the concept
of momentum. The first momentum method has been introduced in 1964 by Boris
Polyak [34] and is known as heavy-ball method or simply momentum method. For
optimising the nonlinear function F'(z), it could be written as:

Xer1 = Xt + At [—OCVF(Xt> + ”}/(Xt — thl)] , (9)

As discussed in the main text of the paper, the AIM algorithm is the advanced gradient
descent method represented by the iterative update rule:

X1 =X + At [—aVF(xy) — B(O)x; + v(xs —x4-1)] - (10)

The momentum ~-term helps to overcome the issue of slow convergence due to
fluctuations from one iteration to the next, which can cause the state to ‘bounce’
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Extended Data Figure 2: Hardware time traces for QUMO problem with 2 con-
tinuous variable. The signal intensities (green) and the corresponding objec-
tive optimality gap (blue) are shown as a function of time iterations for the
7-bit QUMO problem with 5 binary and 2 continuous variables. The rest of
description of Supp. Fig. 1 applies here as well.

around an optimum instead of continuously moving towards it. The momentum term
reduces the ‘bouncing’ by pushing consequent updates in the direction of the most
recent update [58]. This effect provides a tendency for a system to continue along
the path it is already taking, therefore making it less susceptible to ‘bouncing’ due to
fluctuations in the gradient. For example, if a variable equals to 1 at iteration 7 and
is —1 on the iteration i + 1, then this variable will be pushed at the iteration i 4 2 by
the momentum term for a value of 2+, which provides a good local minima escape
mechansim for the AIM algorithm. The parameter ~ is generally less than 1 as the
dependence of a given state on previous states should weaken with the number of
iterations between the current state and the earlier state.

The physical interpretation for the momentum method Equation 9 is well-
known: in terms of continuous dynamical system, the momentum parameter is
equivalent to the point mass m of Newtonian particles moving in viscous medium
with friction coefficient ;1 under conservative force field f = VE with potential
energy E(x) [35]:

d?*x dx
mﬁ + /LE = —VE(X,:). (11)
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Similarly, the iterative update rule in Equation 10 could be interpreted as the the
dynamical system of equations:

d*x dx
My Th = —VF(x) — ¢(t)x, (12)

where ¢(t) is the nonconservative force. To find the relation between physical
quantities and parameters «, (3, and ~y, one can discretise the Equation 12:

X — 2%+ + X4 X — X
m AT RS R — VF(x) o)X, (13)
which can be further rewritten as
At? At? m
Xi+At = Xp — MVF(Xt) - m(ﬂﬂ&t + m(xt - Xt—At)- (14)

By comparing terms in Equation 10 and Equation 14, we get:

At?
ANt = ——— 15
“ m + pAt (15)
At?
m
At = ——— 1
vat m + pAt a7

Thus, the Newtonian system of equations, described by Equation 12, is equivalent
to the AIM iterative update rule, described by Equation 10, with the parameters
a representing the scaling factor of the conservative force, 5(¢) standing for the
nonconservative force, and - corresponding to the particle mass.

The AIM algorithm converges to steady states for any positive values «, 5(t),
and ~. These steady states are the minima of the Lyapunov function, representing
the energy of the system. Denoting y = fuonlinear() to represent either binary or
continuous variables, achieved by applying the elementwise nonlinear function for
binary variables and linear function for continuous variables, the Lyapunov function
can be written for the QUMO objective F'(y) for Equation 12 as:

mdft  (yO)dfl.  (y) 1 N o s
E=— nonlinear nonlinear I . bT " / -1 dr. (1
2 di di pY @y=biy+ol >; - Juontnear(¥)d. (18)

Due to presence of nonconservative force, the overall improving QUMO objective
value during the time evolution can be worsening for several intermediate consecutive
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iterations. Towards the end of the time evolution, the annealing term ¢(t¢) decreases
to zero and the kinetic term vanishes, so the minima of the Lyapunov function
correspond to the equilibrium states of the Equation 12 and are the minima of the
QUMO objective function. From the physics perspective, the convergence to the
overall better optimal state in the end happens as the energy decreases due to the
presence of friction.

We note that the promising results of analog computations have been demon-
strated for solving differential equations and performing complex mathematical
operations. For example, the Fredholm integral equations of the second kind can
be solved using free-space visible radiation [59], the Hilbert transformation can
be performed with a second-order optical integrator [60], the basic trigonometric
operations are enabled with metasurface-based platform [61], and mathematical
operations can be performed using high-index acoustic metamaterials [62].

6 Comparison of the AIM architecture to other itera-
tive approaches

In case of the QUMO objective function, the simulated iterative update rule of the
AIM algorithm reads as:

Xt+1 = Xt + At [Q(anonlinear(xt) + bT) - B(t>Xt + ’V(Xt - Xt—l)} ) (19)

' i), if [x;]; — bina
fnonlinear([xt]i) = Slgn([xt] ) . [Xt} ry
[x1]i, if [x,]; — continuous,

where each variable [x,]; is also clipped to the range of [—1, 1]. For the well-studied
QUBO model, the AIM algorithm can be further rewritten in a simpler form as:

X1 =X + At [o(Q - sign(x,) +07) = B()x +v(x; — %)) - (20)

where all variables are now assumed to be binary. We choose sign nonlinearity here,
but other nonlinearities could be considered including {cos, tanh, clamp}. As we
discussed above in section 5, the AIM iterative update rule corresponds to the second
order differential equation. Consequently, the AIM algorithm is distinct from all the
first order methods, the well-known example of which is the Hopfield networks [17,
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1. The Euler update rule and ordinary differential equation can be written for
Hopfield networks as:

Xer1 = X¢+ At [a(Q - tanh(x) +b") — Bx] (21)
le—j = Q- tanh(x) + b") — Bx. (22)

In these equations, the losses term is represented by a constant parameter 3. By con-
sidering time-varying losses /3(¢) in Hopfield networks, one arrives to the equations,
that are fundamentally similar to our current opto-electronic AIM implementation.

Another recently introduced heuristic method is called the simulated bifurcation

algorithm [63, 64] which is described by equations:
dx
E = oy, (23)
dy :
il co@ - sign(x) — (ap — a(t))x, (24)

where ag, ¢y, and a(t) are the hyperparameters. This system of equations can be
further reduced to the single second order differential equation:

d*x ,

o co@ - sign(zx) — (ag — a(t))z. (25)
Compared to the AIM algorithm equations, the simulated bifurcation method doesn’t
have the first order derivative and its iterative update rule can be written as:

Xyl = X+ (X — X—1) + At? [—(ao — a(t))x; + co@ - sign(x;)] . (26)

This update rule is similar to the AIM algorithm with v = 1. In general, the momen-
tum methods with v > 1 are unstable [65]. Such instability is probably mitigated in
the simulated bifurcation algorithm by an extra condition that manually forces the
difference (x; — x;_1) to be zero if |x;| = 1. We also note that the original iterative
update rule of the simulated bifurcation algorithm uses symplectic Euler method for
discretising the system of equations above and can be written as:

Xip1 = Xp + @At [(xp — x—1) — At(ag — a(t))x: + AtcoQ - sign(xy)] . 27)

which would suffer from the same instability issue due to the momentum term
without applying the extra constraint above.
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7 Extensions of AIM algorithm

Extenstion 1: other momentum-based approaches for the AIM algorithm. Mo-
mentum methods are commonly used in machine learning to accelerate the training
of neural networks. Besides the heavy-ball method, one may modify the AIM algo-
rithm to be based on, for example, the Nesterov momentum method, in which case
the update rule would be given by the following equation:

X1 = X¢ + At [—aVF(x; + y(x¢ — %x4-1)) — B(t)x: + y(x¢ — X-1)] - (28)

Unlike heavy-ball method, the Nesterov momentum update evaluates the gradient at
a point (x; + v(x; — X;_1)), to which the momentum term has been applied, instead
of evaluating the gradient at the most recent state x;.

The performance comparison between AIM algorithms based on different
momentum-based methods is a promising avenue for future studies.

Extension 2: Exploration phase. In order to limit the range to be searched
for each parameter, the initially defined bounds may be further dynamically updated
based on a computed performance of solutions within the bound in comparison
with solutions for parameters outside of the current bound. In other words, given
a current bounds for a € [anin, @maz], by increasing the bound to, for example,
10 * v, and evaluating solutions for parameters within the increased bound, it may
be determined that solutions outside the current bound are better than solutions
inside the current bound and in this case the bound is increased. This process may
be repeated over many iterations until a suitable region of parameter space is found.

8 Equivalence of QUBO, maximum cut, and Ising
models

The QUBO, weighted maximum cut, and the problem of minimization of the classical
Ising Hamiltonian are mathematically equivalent. The QUBO problem seeks to find
assignments to a set of binary variables = € {0, 1} with the goal of minimizing the
objective:

min Foupo = min —0.5x7Ax — aTx — ag (29)
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where the matrix A, the vector a, and the constant a, are problem specific.

In the Ising model, one typically referes to variables as spins y € {—1, 1}, to
quadratic weights as interactions B, and to linear terms as magnetic fields b. The
objective is then to minimise the energy function:

min Fgng = —0.5y" By + by + b,. (30)
y

Substituting y = 2x — 1 into Equation 30, one gets the mapping between the QUBO
and Ising models:

= 4B (3D
a = 2b—2Be (32)
ay = by—ble+0.5e’Be (33)

where e is the unity vector.

In the weighted maximum cut model, one looks for the cut of the given graph
C' into two parts with maximised number of their connecting weighted edges:

max Flyaxeut = max Z Cij (34)

i€F1jEES

where E; and F, represent vertices of two subgraphs. One can see the maximum
cut model is equivalent to the problem of minimization of the Ising Hamiltonian by
noticing that:

1 — iy,
2

A Fraeu = Max z; C; = max —05y"Cy + > Cy. (35)

.3

We further note that the linear terms could be incorporated within quadratic terms
by introducing an extra variable.
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