
Simulating Network Paths with Recurrent Buffering Units

Divyam Anshumaan1*, Sriram Balasubramanian1, 2*†, Shubham Tiwari1

Nagarajan Natarajan1, Sundararajan Sellamanickam1, Venkata N. Padmanabhan1

1Microsoft Research India
2University of Maryland, College Park

t-danshumaan@microsoft.com, sriramb@cs.umd.edu, t-shutiwari@microsoft.com, nagarajn@microsoft.com,
ssrajan@microsoft.com, padmanab@microsoft.com

Abstract
Simulating physical network paths (e.g., Internet) is a corner-
stone research problem in the emerging sub-field of AI-for-
networking. We seek a model that generates end-to-end packet
delay values in response to the time-varying load offered by
a sender, which is typically a function of the previously out-
put delays. The problem setting is unique, and renders the
state-of-the-art text and time-series generative models inap-
plicable or ineffective. We formulate an ML problem at the
intersection of dynamical systems, sequential decision mak-
ing, and time-series modeling. We propose a novel grey-box
approach to network simulation that embeds the semantics of
physical network path in a new RNN-style model called Recur-
rent Buffering Unit, providing the interpretability of standard
network simulator tools, the power of neural models, the ef-
ficiency of SGD-based techniques for learning, and yielding
promising results on synthetic and real-world network traces.

1 Introduction
Network simulation provides a cost-effective way of devel-
oping and evaluating networking applications (e.g. video-
conferencing) and protocols. It is a cornerstone research prob-
lem, recognized as such by the networking community, with
applications in AI-for-networking (Wei, Gu, and Li 2021).

Network simulation entails delaying or dropping the data
packets traversing a sender-receiver network path appropri-
ately. The sender S typically adapts its sending rate contin-
uously based on the feedback in terms of delays or drops
gleaned from the packets sent previously. For the simula-
tion to be realistic, the packet delays and drops produced by
the simulation mechanism should reflect the target network
conditions faithfully, both at the microscopic and the macro-
scopic levels, so as to recreate application-level metrics such
as throughput distribution.

Widely-used network simulation tools such as ns-
3 (NSNAM 2011) require configuring with a certain net-
work topology,link bandwidth, cross-traffic, etc., typically
performed manually by networking domain experts. How-
ever, it is extremely challenging to ensure realism in such a

*These authors contributed equally.
†Work partially done as a Research Fellow at Microsoft Research

India
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

manual approach. State-of-the-art (SOTA) data-driven config-
uration techniques (Yan et al. 2018; Ashok et al. 2020) try to
mitigate this challenge, but (a) they do not accommodate real-
world network behaviors like packet reordering, and (b) scale
poorly as they rely on black-box optimization (Section 2).

In this work, we formulate and study a novel ML problem
of simulating a target network path. The goal is to respond to
the sending protocol’s actions with realistic delay values for
every packet, just like the target network would. Note that
the sending protocol is provided as input and it could be very
different at test vs train. Formally:

Definition 1 (End-to-end network path simulation). Let
(Π,N ) denote the traces collected using a sending proto-
col Π, over a target network path N between a sender S and
a receiver R, i.e., S N

⇝ R (e.g., the path between a cloud
server and a cellular client in certain locations, during the
peak hours of a day). We seek a model N̂ that simulates
S

N
⇝ R s.t. for a new and previously unseen protocol Π′, the

simulated traces (Π′, N̂ ) “closely match” the ground-truth
(Π′,N ), that would be obtained if we took the trouble of actu-

ally running Π′ too on the same path S
N
⇝ R under identical

network conditions. The match is in terms of the metrics that
networking applications care about; e.g., the joint delay and
throughput distribution.

This problem poses the following key challenges:
(A1) Reactive inputs at test time: At test time, the de-

cisions made by the protocol (e.g., new sending rate), form-
ing the input to the model N̂ , are a response to the delays
output by the model. So, we cannot expect the entire input
sequence to be available ahead of time, unlike in standard
predictive (Rangapuram et al. 2018; Salinas et al. 2020) or
generative modeling settings (Esteban, Hyland, and Rätsch
2017; Fu et al. 2019; Smith and Smith 2020).
(A2) Unseen test protocols: At test time, the behaviour of
inputs to the model (governed by Π′) can change drastically
from that of the training time (governed by Π), as it depends
on how the protocol Π′ reacts to the (simulated) delays.
(A3) Non-trivial success metric: The stochastic nature of
the network setting means that the metrics of interest are
distributional, e.g., joint delay and throughput distribution.
Unlike in sequential decision making, we cannot attach a



Figure 1: Our simulation (left) vs standard generative mod-
eling settings (right); subscript ·t denotes time t (absence
denotes static feature), and superscript ·i denotes series i.

reward to a given output sequence.
We address this challenging problem (Definition 1) by

focusing on modeling the behavior of the target path N ,
using domain-aware neural models, rather than on the
actions of the sender protocol that could change drastically
at test time. We develop a (conditional) generative modeling
technique inspired by network simulation tools like ns-3 that
mimic the components of the physical network. A key aspect
is explicitly modeling the unobservable cross-traffic which
competes for resources on the same network path N and so
critically influences the observed delays.
Contributions: We make three key contributions:
(1) Novel ML formulation of end-to-end network path
simulation — has significant applications in the development
of networking algorithms (Wei, Gu, and Li 2021).
(2) A grey-box approach to network simulation that embeds
the semantics of physical network path in a new RNN-style
model called Recurrent Buffering Unit or RBU (Section 3)
— provides the interpretability of simulator tools and the
expressive power of neural models.
(3) Efficient and practical solution — scales to sequences of
length tens of thousands (leverages domain-specific insights
for training in Section 4), orders of magnitude more than
what the SOTA time-series GAN techniques (Yoon, Jarrett,
and van der Schaar 2019; Jarrett, Bica, and van der Schaar
2021) can handle, yet produces realistic traces in synthetic
and real-world network settings (Section 5).

Related Work: We highlight the relevant ML work here
(and revisit some of these in Section 2).

Generative models for time-series: SOTA techniques for
generating time-series data use RNNs with a GAN-like ob-
jective (Esteban, Hyland, and Rätsch 2017; Lin et al. 2020;
Xu et al. 2020; Yoon, Jarrett, and van der Schaar 2019) or
imitation learning (Jarrett, Bica, and van der Schaar 2021).
While they account for longer-range temporal dynamics, er-
ror compounding, conditioning on static meta-data, they do
not handle (A1), or scale to very long sequences. Also, eval-
uation metrics like Maximum Mean Discrepancy, discrimi-
native scores, etc. used in these works are secondary to our
domain-specific metrics in (A3).

Generative models for text: In the language domain, recent
work have used LSTMs (Sutskever, Vinyals, and Le 2014;

Sutskever, Martens, and Hinton 2011) or Transformers (Rad-
ford et al. 2018, 2019) to complete or generate sequences,
given a context. Indeed the GPT-class models have shown
impressive performance in language understanding and text
generation tasks, leveraging the self-attention idea in the de-
coder to capture temporal and positional dependencies while
eschewing recurrences of RNNs. However, as with recur-
rent networks, scaling to very long sequences and obeying
domain-specific constraints continue to persist with Trans-
formers, as we observe in our evaluation (Section 5).

Sequential decision making/RL: Our problem has the fla-
vor of sequential decision making in (A1). RL formulations
applied to such problems (Levine et al. 2020; Ranzato et al.
2016) focus on maximizing expected rewards over multiple
trials, which doesn’t apply to our setting as stated in (A3).
Frameworks like imitation learning are also infeasible be-
cause of the lack of interactive access to the target N .

2 Problem Setup, Background, & Challenges
A network trace, collected using a sender S (e.g., file trans-
fer, video call) over a physical network N , is packet-level
time-series of measurements (xt, yt), t = 0, 1, . . . , where
xt ∈ Rd denotes the “input features” for packet t (e.g., inter-
packet spacing st, packet sizes) characterizing the load of-
fered to N by S; and yt ∈ R>0 the end-to-end delay ex-
perienced by packet t, with the convention yt = ∞ when
packet t was dropped and so never delivered to the destina-
tion. Typically, S runs a protocol Π, e.g., TCP Cubic (Ha,
Rhee, and Xu 2008), for adapting the sending rate based on
the feedback it gets in terms of delays and drops experienced
by the preceding packets. We denote a set of such traces by
(Π,N ). Note that N is a complex black-box system, and
we treat it as such. In addition to the packet-level features
xt, we also use 3 static features, denoted by x (dropping
the subscript ·t), to model N̂ : 1) the minimum delay or ymin
(approximating the end-to-end network propagation delay),
2) the maximum delay or ymax, and 3) the 95th percentile
throughput (approximating the bottleneck link bandwidth).

Setup: As in Definition 1, we seek a model N̂ , using
(Π,N ) for training, that helps produce realistic end-to-end
delays, like the actual physical network path N between a
sender S and a receiver R would, even for a new sender
protocol, Π′, at test time. N̂ can be deployed for evaluating
new protocols, which may be disruptive or infeasible to per-
form on the target N . The “goodness” of the model N̂ is
determined by how well the application metrics such as the
distribution of packet delays and throughput, computed over
the simulated traces for the unseen protocol Π′, i.e., (Π′, N̂ ),
match the ground-truth (Π′,N ). While obtaining the ground-
truth is challenging in general, it is feasible in controlled
settings to enable comparison (described in Section 5).

How network simulation is done today: The widely-
used solution for network simulation is to use frameworks
like ns-3 (NSNAM 2011) that implement the mechanism of
physical network components (like links, buffers, end-points)
in software. But, it is very challenging to configure them to
reflect the target network conditions. Recent efforts (Yan et al.
2018; Ashok et al. 2020) learn the model N̂ using a simple



abstraction of physical network paths (Figure 3) and domain
knowledge-based heuristics. While they show promise for
realistic simulation in some settings (Section 5), they (a)
are fairly rigid in the type of networks they can model; for
instance, they do not accommodate events like link failures,
or packets arriving out of order at the receiver, and (b) rely
on black-box optimization techniques (because they work
with the ns-3 tool directly), e.g., Bayesian Optimization,
which makes it challenging to scale. Ashok et al. (2020) also
briefly discuss the challenges of using neural formulations
(covered by LSTM-based baselines in Section 5) for network
simulation, which we tackle in our work.

Inadequacy of domain-agnostic models: Consider a typi-
cal network trace in Figure 2 obtained using ns-3 tool, config-
ured with a simple topology (in longer version (Anshumaan
et al. 2022)), and peak bandwidth of 7.8 Mbps, constituting
N . Several observations are in order, from left to right in the
Figure. First, the sending rate, regulated by the TCP Cubic
protocol at S, stabilizes around the peak bandwidth, after
a brief initial “exploration”, characteristic of the protocol.
Second, the delays yt build up to a peak value of around 0.5
seconds, due to the sender behavior as well as (unobserved)
cross-traffic along N , which together start filling up the bot-
tleneck link buffer. Third, zooming into the start of the trace,
the sending rate increases swiftly, and fourth, delay builds up
indicating congestion, leading to packet drops once the bot-
tleneck link buffer has been filled up. This example illustrates
the global (first two plots) and local (last two plots) behav-
iors observed in real-world network traces. These behaviors
critically influence the decisions made by the protocol, and in
turn the evolution of the network trace, and the application-
level metrics. So, learning the model N̂ entails learning the
structure and stochasticity in the end-to-end delays yt con-
ditioned on the inputs seen until and including xt as well as
the previous delays output by N̂ .

At a first glance, this resembles auto-regressive time-
series formulations studied in predictive (Borovykh, Bohte,
and Oosterlee 2017; Rangapuram et al. 2018) and genera-
tive settings (Sutskever, Martens, and Hinton 2011; Graves
2013). These techniques factorize the joint P (y1:T |·) into a
product of conditionals ΠtP (yt|·), and use RNN-based or
Transformer-based (Radford et al. 2019) models to learn a pa-
rameterized distribution for the conditional (e.g., multinomial
or Gaussian). MLE-based training of these models helps learn
P (yt|·) with a low step-wise loss in expectation, but there is
no guarantee that samples satisfy nuanced dynamics observed
in network traces. While such modeling could capture the
high-level structure in sequences if carefully trained (Bengio
et al. 2015; Ranzato et al. 2016), they fail at capturing the
micro-level characteristics (see Section 5), that we articulated
using Figure 2.

On the other hand, GAN techniques that directly yield
samples (Yoon, Jarrett, and van der Schaar 2019; Xu et al.
2020; Jarrett, Bica, and van der Schaar 2021) are meant for
generating synthetic data, which is different from our setting
(see Figure 1). They do not explicitly model the conditional
dynamics (A1), and scale poorly with the sequence length —
training TimeGAN (Yoon, Jarrett, and van der Schaar 2019)

to synthesize sequences of length 600 takes over a week on a
V100 GPU, with their TensorFlow code. In contrast, network
traces are 50x – 100x longer.

It is quite unclear whether domain-agnostic neural models
can capture the fine-grained behaviors in network traces. In
the next section, we show how we address the challenges
by priming the neural model with domain knowledge in the
form of queuing dynamics of real network paths.

3 Proposed Model: Recurrent Buffering Unit
It seems unlikely, a priori, that the problem posed in Defini-
tion 1, in the face of challenges (A1)–(A3), can be solved
satisfactorily, even under some assumptions on the sender pro-
tocols. The promise comes from a growing body of research
underscoring the importance of incorporating the knowledge
of physical systems and processes in neural models (Li et al.
2020; Xu, Pradhan, and Duraisamy 2021; Beucler et al. 2021).
Especially, to tackle (A2), it is imperative that we model the
behavior of the target path N , rather than the network re-
sponses to the (observed) actions of the sender protocol —
which could be very different at test time. Also, any accept-
able model for simulating N , in terms of domain-specific
metrics (A3), should preserve path dynamics at the level of
consecutive packets. For instance, we want the delays, yt
and yt+1, imposed on packets, t and t + 1, to ensure that
these packets delivered at the receiver R are spaced apart
in accordance with the bottleneck bandwidth, i.e., a higher
(lower) bandwidth would mean a shorter (longer) inter-packet
spacing at R—otherwise, packets t and t+1 being delivered
arbitrarily close to each other in time would imply impossibly
high available bandwidth for S.

We appeal to how network simulation tools preserve path
behaviors and physical constraints by construction, i.e., by
implementing, in code, the semantics of physical network
path composed of links, buffers, and nodes. As we saw in
Section 2, the key difficulty in working with such tools is to
appropriately configure them. Our first technical contribution
is, in essence, to turn the (discrete) simulator tool into a
learnable model via deriving an end-to-end differentiable
formulation.

Consider an abstraction of the physical path S
N
⇝ R in

Figure 3. For clarity, we consider a single bottleneck link
(where the path is most constrained in terms of bandwidth) of
unknown bandwidth B and a FIFO (First-in First-out) queue
of unknown buffer size τ , as in (Yan et al. 2018; Ashok
et al. 2020). Later in the section, we extend the ideas to
multi-path networks, which, among other things, allows us
to accommodate phenomena such as packet re-ordering.

The end-to-end delay, yt, suffered by the packet t along the
network path in Figure 3 admits a nice structure, comprising
(1) the end-to-end propagation delay of S N

⇝ R, dprop, arising
from the speed of light, (2) the “transmission delay”, dtrans ∝
1/B, or the time taken to transmit a packet onto the network
link, and (3) the “queuing delay” dqueue, or the time spent by
packet t in the buffer, waiting for its turn to be transmitted.
In other words, yt = dprop + (dtrans + dqueue).

In the rest of the discussion, we define dtrans + dqueue to be
the “bottleneck delay”, dt, for packet t, with the subscript ·t,



Figure 2: Global (left two) and local (right two, zoomed into the first 10% packets) characteristics of a typical network trace.

Figure 3: Abstraction of a physical network path.

as the transmission delay and the queuing delay would, in
general, vary from packet to packet depending on the packet
size and the length of the queue encountered by a packet.

The key component of stochasticity affecting dt are the
(unobserved) competing cross-traffic packets ct also filling
the buffer, marked by shaded regions in the figure.

So, the bottleneck link abstraction of network paths is
specified by dprop, dtrans, τ , and the dynamic cross-traffic ct.

Modeling parameters dprop, dtrans, τ : While it is possible
to estimate these parameters from offline traces using simple
heuristics in some cases, such estimates can be grossly inac-
curate for real-world traces. So, we model the 3 parameters,
with a bounded sigmoid function, in terms of static features
and the packet size (details in Section 4).
Modeling cross-traffic ct: Cross-traffic typically arises from
other senders whose traffic flows via the same bottleneck
link buffer. We model the (random) cross-traffic ct ∈ [0, 1]
as a fraction of the remaining buffer space occupied when
packet t from S arrives. Noting that cross-traffic could react
to changes in the network state just as the sender S, we model
ct via a non-linear dynamical system:

ct = σ(⟨wc,ht−1⟩), ht = σ
(
⟨Wh, ·⟩+ ⟨Uh,ht−1⟩

)
, (1)

where ht that models the local state of the network path at
time t is a standard RNN with weight matrices Uh and Wh;
the input · to this RNN comprises packet features xt and the
global state of the path as we will see in Section 4.

Modeling bottleneck delay dt: We derive dt using the
FIFO buffer dynamics. Let st denote the delta between the
sending timestamps of packets t and t-1, i.e., the inter-packet
spacing at S. We exploit the following mutually exclusive
conditions, when packet t arrives in the buffer. If there are no
other packets from S ahead in the queue, i.e, st ≥ dt−1, then
dt is proportional to the cross-traffic in the queue; else, the

packet t-1 has not yet drained, and the additional delay at
accrued by packet t is dt−1 − st. With ct modeled as in (1)
and ReLU(z) = max(z, 0), we have:

at = dtrans + ReLU
(
dt-1 − st

)
, dt = at + ct

(
τ − at

)
. (2)

Note that when st ≥ dt−1, dt increases with the fraction
ct of cross-traffic occupying the buffer of capacity τ ; when
st < dt−1, dt increases with the fraction ct of cross-traffic
occupying the buffer of (shrunk) capacity τ − at.

Modeling the output: The end-to-end delay yt and the
packet drop probability pt are given by:

yt = dt + dprop, and pt = σ(dt − τ), (3)

where dt is given by (2) and σ(·) is the sigmoid function.

Recurrent Buffering Unit: The proposed Recurrent
Buffering Unit (RBU) for modeling end-to-end network de-
lays and packet drops (Figure 4, right) is given by recur-
rences (1), (2), (3).
Proposition 1. RBU preserves the semantics of single-
bottleneck link network path in Figure 3, when σ in (3) is the
step function. That is, for any two packets originating at S at
timestamps t and t′, with t < t′, they are delivered in order
at R, i.e., their output delays satisfy t + yt < t′ + yt′ , or
packet t is dropped.

Proof: It suffices to show that t′ + dt′ > t + dt. Note
that t′ ≥ t+ st′ . If we show the inequality for t′ = t+ st′ ,
when t′ is indeed the immediate next packet, then it holds
for all future packets. In this case, it reduces to showing
st′ + dt′ > dt or dt′ > dt − st′ . Now, from (2), we have
either dt′ ≥ at′ or packet t is dropped, in which case we are
done, since at > τ and ct ∈ [0, 1] together imply dt > τ . So,
dt′ ≥ at′ = max(dt − st′ , 0) + dtrans > max(dt − st′ , 0) ≥
dt − st′ , which proves the claim.

Multi-path networks: In reality, links can fail momentar-
ily over the course of a call, or packets may be randomly
routed via different paths and arrive out of order at the re-
ceiver. To this end, we consider a generalized multi-path
abstraction with a bottleneck link along each path k parame-
terized by d

(k)
trans and τ (k). Consider a packet that enters queue

k. To model the dynamics here, we need to keep track of
the time elapsed between the immediately preceding packet
that entered the same queue k and the current packet. We



denote this quantity by s
(k)
t , and update it using the recur-

rence: s(k)0 = 0 and s
(k)
t = s

(k)
t−1 + st. With ct as in (1), the

bottleneck delay for the queue k that packet t enters is given
by recurrences analogous to (2):

a
(k)
t = d

(k)
trans + ReLU

(
d
(k)
t−1 − s

(k)
t

)
, (4)

d
(k)
t = a

(k)
t + ct

(
τ (k) − a

(k)
t

)
(5)

For all other queues k′ ̸= k at time t: a(k
′)

t = a
(k′)
t−1, and

d
(k′)
t = d

(k′)
t−1. Then, we obtain yt and pt from (3) with dt =

d
(k)
t and τ = τ (k). Finally, we reset the accumulative elapsed

time of the queue k, i.e., s(k)t = 0, as the current packet has
entered queue k.

4 Training and Inference
There are three key challenges in learning the RBU model,
using the traces (Π,N ).
(C1) Very long traces. Traces are extremely long in general
(tens of thousands of packets). Trying to jointly learn all the
model parameters in the recurrence relations, even in the
single bottleneck link case, (1), (2) and (3), using only the
observed end-to-end delays in the traces, may be ill-posed.
Working with aggregated or sub-sampled traces is out of
question in the simulation setting, unlike in synthetic data
generation setting of GANs, because we need to respond
at a packet-level to the sender protocol at test time. On the
other hand, we could divide the (packet-level) traces into
independent chunks that are sufficiently small amenable to
efficient training. However, the independence of the chunks
means that the global temporal structure of traces (e.g.,
slow build-up of congestion and surges in cross-traffic) is
not captured. We address this challenge using a two-level
architecture that preserves both the global and fine-grained
characteristics of traces, yet being computationally and
sample-efficient. We train a packet-level model within the
confines of individual chunks, but the global structure of the
traces is integrated via a coarser, window-level model.
(C2) Cross-traffic ct estimation. Despite the structure
RBU model imposes on the delays unlike a vanilla RNN,
training the model using standard MLE techniques (Graves
2013; Borovykh, Bohte, and Oosterlee 2017; Salinas et al.
2020) does not perform well for our problem, owing to
the absence of direct feedback, especially ct (1). Using
domain knowledge and the global trace structure via the
window-level model, we estimate packet-level ct robustly.
(C3) Discrete path selection. In the multi-path scenario,
recurrences involve a discrete step of selecting a queue k
for packet t. This introduces discontinuity in the model at
training. In our implementation, we use a smoothed version
of recurrences.

Leveraging global structure: Consider the step-wise loss
(i.e., packet-level), in the spirit of auto-regressive formula-
tions (Graves 2013; Borovykh, Bohte, and Oosterlee 2017;
Salinas et al. 2020), to learn the RBU model ΘRBU:

Jpkt(·; ΘRBU) :=

N∑
i=1

Ti∑
t=1

ℓpkt
(
(ŷ

(i)
t , p̂

(i)
t ), y

(i)
t

)
, (6)

where (ŷ
(i)
t , p̂

(i)
t ) denote the delay and drop probability

for packet t in trace i predicted by RBU, and ℓpkt is the loss
in (11). We can apply SGD to minimize (6), with standard
tricks like chunking, mini-batching, and (truncated) back-
propagation through time (Sutskever 2013). But, this per-
forms poorly in our evaluation (Section 5) given extremely
long traces.

We devise a two-level architecture (Figure 4) that helps
mitigate the issues. We use a coarser window-level model to
obtain an embedding of the global state of the network path,
which then provides crucial feedback on cross-traffic ct for
the packet-level RBU model. For the window-level model,
we use (2-layer) LSTM, parameterized by Θwindow and static
trace features x as input, to compute an embedding hw of the
path S

N
⇝ R state. The model operates over fixed-length (100

ms, in experiments, corresponding to the round-trip time on
typical network paths when the global state could change),
non-overlapping windows:

hw = LSTM(hw−1,x; Θwindow) . (7)

Estimating cross-traffic: We estimate the expected frac-
tion of cross-traffic filling the bottleneck buffer, denoted
cw ∈ [0, 1], using a linear layer over the global path state
hw with sigmoid activation. We modify the packet-level ct
in (1) to incorporate this information with a hyper-parameter
γ ∈ [0, 1]:

ct = (1− γ) cw + γ σ(⟨wc,ht−1⟩) . (8)

Furthermore, we obtain a crude estimate of cw from the
training data, by inverting the RBU recurrences to approxi-
mate ct; to do so, we use γ = 0 in (8) and simple heuristic
estimates (Ashok et al. 2020) for dtrans, dprop and τ (discussed
in Section 5). We then use the distribution of (discretized)
ct values for packets t ∈ window w, denoted c̃w, as the
“ground-truth” for cw, to compute the cross-entropy term:

Jwin(·; Θwindow) :=

N∑
i=1

∑
window w

ℓCE
(
c(i)w , c̃(i)w

)
. (9)

We show in Section 5 that even the crude estimate c̃w helps
improve the performance of RBU significantly, by providing
an effective “domain-specific regularization” while training.

RBU training: The input to the RNN ht of the cross-
traffic model (8) comprises xt and hw obtained from the
window model (7). The parameters dprop, dtrans, τ must satisfy
certain physical constraints; in particular, for a trace with
static features ymin and ymax, 0 < dprop, dtrans ≤ ymin and
0 < τ ≤ ymax by definition. So, we use the bounded sigmoid
function for estimating each of the 3 parameters:

g(x) = (bx − ax)σ(⟨wg,x⟩) + ax, (10)

where ax and bx are the lower and upper bounds respectively
for the parameter, given x. Let p = ⊮{y=∞} denote the
packet drop status in the training data, i.e., p = 1 when a
packet is dropped (i.e., y = ∞), else p = 0. We use squared
loss for delays and cross-entropy loss ℓCE for drops:

ℓpkt
(
(ŷ, p̂), y

)
= p ℓCE(p̂, 1)+(1−p)(ℓCE(p̂, 0)+(ŷ−y)2).

(11)



Figure 4: Left: Window-level (LSTM) and packet-level (RBU) models unrolled across time/packets. Right: RBU cell.

We set up the optimization problem (Figure 4):

min
ΘRBU,Θwindow

Jpkt(·; ΘRBU) + λJwin(·; Θwindow), (12)

where ΘRBU is the set of RNN weights in (1), and the
weights for g in (10) needed to compute dprop, dtrans, τ . We
use stochastic gradient-descent to learn the model parameters
jointly, with mini-batching, and weight decay on the model
parameters.

RBU inference: During simulation, the sender S, config-
ured with protocol Π′, transmits data for the duration of the
run (1 minute, in our evaluation). Unbeknownst to S, we
replace the real network N with the trained RBU model N̂ .
We sample the static features x uniformly from the training
data (Π,N ). We sample cw, needed in (8), for 1 ≤ w ≤ Nw

(= 600, corresponding to 100ms windows over 1 minute), by
unrolling the window-level LSTM (7) at once with input x.
For each packet t that S sends out, we form the features xt

needed as input, together with x, for N̂ . We do a forward pass
of N̂ on the input (which takes around 2 ms on a standard
GPU for RBU). The output (delay value or packet drop) from
N̂ is provided as feedback to S. Then, S sends out the next
packet t+1, with inter-packet spacing of st+1, as determined
by Π′ acting on the model feedback, and so on.

Multipath RBU training: In the multi-path scenario, first
note that we can rewrite the set of recurrences (4) for the links
when packet t arrives, using the indicator function 1t(k) = 1,
if packet t enters queue k and 1t(k

′) = 0, for k′ ̸= k. To
mitigate (C3), we relax this indicator function, during train-
ing, with the probability of traversing queue k for packet t,
denoted by qt(k). In some cases, we may be able to model
qt(k) using indirect observations in the training traces. For
instance, in the two-path case, the fraction q̃w of packets sent
by S that arrived out-of-order at R in a given time window
w (which can be easily computed for any trace) gives an ap-
proximation to qt(2) (or qt(1) which is 1− qt(2)) for w. We
estimate qw from the window-level embedding (7), just as cw
above, via incorporating a loss term ℓCE(qw, q̃w) correspond-
ing to (9). Details of the training and inference procedure
for the multi-path scenario are given in the longer version
(Anshumaan et al. 2022). In Section 5, we demonstrate how
this technique helps model multi-path behaviors like packet
reordering in real-word network traces.

5 Experiments
Compared methods: We compare the RBU model with:
(1) iBoxNet (Ashok et al. 2020): a SOTA network simula-
tion approach that uses network domain knowledge to infer
parameters from network packet traces, (2) LSTMwin: Autore-
gressive modeling of delays (Sutskever, Martens, and Hinton
2011; Graves 2013) (referred to as “T-forcing” in (Yoon,
Jarrett, and van der Schaar 2019; Jarrett, Bica, and van der
Schaar 2021; Xu et al. 2020)) as the factorized conditional
ΠtP (yt|·), implemented with LSTMs trained on windowed
traces using xt as input and (discretized) yt as output; at in-
ference, we use the argmax of the output distribution as the
delay value for all the packets in the window, (3) LSTMpkt:
Same as LSTMwin during training, but we sample a value
from the output distribution independently for each packet in
the window at inference, (4) LSTMpkt,FIFO: same as LSTMpkt,
but enforces no-packet-reordering constraint (Proposition 1)
while sampling delays, (5) Transformer: We use a GPT (de-
coder) model (Radford et al. 2018).
Datasets: We (1) design a synthetic benchmark using ns-3 as
in (Ashok et al. 2020), consisting of 4200 traces for 4 differ-
ent TCP protocols, on a variety of cross-traffic patterns and
network configurations; and (2) use a subset of traces from a
real physical network testbed Pantheon (Yan et al. 2018) for
2 TCP protocols. The ns-3 data corresponds to single-path
configuration (hence, no packet reordering), while the Pan-
theon data includes naturally occurring reordering from real
networks.

In all our experiments, we use only the TCP Cubic protocol
(dominant on the internet) traces for training, and the other
TCP protocols (Vegas, NewReno, and LEDBAT) for testing.
Implementation: We implement all the models in Py-
Torch. The static trace features are normalized to [0,1].
For LSTMwin and LSTMpkt, we (a) normalize the delays
and the sending rates, and (b) use a 2-layer LSTM with 256
hidden units and a fully connected layer with discretized
yt as output (100-dimensional), tuned to maximize mean
delay and throughput distribution match, on the training pro-
tocol. For RBU, we (a) use the same LSTM architecture, to
be consistent, for the window-level model in (7), with dis-
cretized cw in (8) as output, (b) set γ = 0.1 in (8) and size
of ht in (1) to 1, which works well across datasets, and (c)
use single-bottleneck buffer RBU model (just as the ground-



Protocol Model WD (Tput,
Delay)

WD (P95 De-
lay)

iBoxNet 0.015 ± 0.000 0.000 ± 0.000
LSTMpkt 0.271 ± 0.011 0.155 ± 0.001

Cubic LSTMwin 0.164 ± 0.002 0.150 ± 0.001
(Train) LSTMpkt,FIFO 0.214 ± 0.009 0.119 ± 0.000

Transformer 0.224 ± 0.015 0.030 ± 0.003
RBU 0.032 ± 0.004 0.007 ± 0.000

iBoxNet 0.054 ± 0.000 0.088 ± 0.000
LSTMpkt 0.084 ± 0.000 0.112 ± 0.001

Vegas LSTMwin 0.108 ± 0.003 0.110 ± 0.001
(Test) LSTMpkt,FIFO 0.061 ± 0.000 0.091 ± 0.000

Transformer 0.079 ± 0.003 0.007 ± 0.001
RBU 0.041 ± 0.004 0.057 ± 0.007

Protocol Model WD (Tput,
Delay)

WD (P95 De-
lay)

iBoxNet 0.056 ± 0.000 0.005 ± 0.000
LSTMpkt 0.156 ± 0.002 0.154 ± 0.001

LEDBAT LSTMwin 0.118 ± 0.019 0.149 ± 0.000
(Test) LSTMpkt,FIFO 0.106 ± 0.000 0.122 ± 0.000

Transformer 0.103 ± 0.001 0.043 ± 0.005
RBU 0.049 ± 0.000 0.008 ± 0.000

iBoxNet 0.053 ± 0.000 0.007 ± 0.000
LSTMpkt 0.207 ± 0.009 0.152 ± 0.001

NewReno LSTMwin 0.133 ± 0.012 0.147 ± 0.001
(Test) LSTMpkt,FIFO 0.166 ± 0.007 0.124 ± 0.000

Transformer 0.165 ± 0.013 0.038 ± 0.002
RBU 0.094 ± 0.018 0.024 ± 0.011

Table 1: (mean ± std. dev) Wasserstein distances (WD), the
lower the better, for traces obtained via different models and
protocols, on the ns-3 data. The best numbers are in bold.

truth) for ns-3, and 2-path RBU model for Pantheon. For
iBoxNet, we use their official code. Training RBU on the
largest dataset (ns-3) takes only about 3 minutes per epoch
on V100 GPU. We report mean and std. dev., over 3 indepen-
dent simulations, for all the metrics.
Note: We give all the key results in this section. For additional
details on datasets, implementation, metrics, and for more
comprehensive qualitative and quantitative results, we defer
the reader to the longer version of our paper (Anshumaan
et al. 2022).

Qualitative Evaluation of Traces
In the top row of Figure 5, we show 4 randomly picked
ground-truth (GT) traces for Cubic (train) and Vegas (test)
protocols from the ns-3 dataset. Each trace, shown in a differ-
ent color for a protocol, consists of a sending rate series and
a delay series, trimmed to the first few seconds to show the
local behaviors, in separate plots. The bottom row shows (a)
for Cubic, traces obtained by running the RBU model with
static features obtained from the same 4 GT Cubic traces
(to enable direct comparison), and (b) for Vegas, example
RBU traces that give similar throughput as the 4 GT traces.

Note how the RBU traces reflect the much lower delays
with Vegas vs Cubic, just as in GT. RBU is able to achieve
such accurate recreation, even though it was trained only on
Cubic data.

Quantitative Evaluation on Unseen Protocols
We first look at application-level metrics obtained via dif-
ferent models on the ns-3 data. We quantify the distri-
butional match using the standard Wasserstein distance
(WD). In Table 1, we present the 2-dimensional WD for
the joint throughput, mean delay distribution, and WD for
the P95 delay distribution. RBU is competitive w.r.t. the
SOTA iBoxNet across all the protocols. LSTM-based base-
lines, on the other hand, fare poorly (as hypothesized in
Section 2). The LSTMpkt,FIFO method, where we explicitly
constrain the sampled delays to satisfy no re-ordering (as
in the GT traces), does improve over the standard variants,
but is often worse compared to RBU. Notably, we find that
the Transformer (GPT) model outperforms the LSTM-based
models in many cases (as one would expect), but is not as
good as RBU. As noted in Section 2, our intuition for this
is that (a) it is important to model the delay dynamics care-
fully, which the Transformers do not, and (b) Transformer
models continue to suffer from the pitfalls of LSTM models
at inference time. In Table 2, we see that RBU performs sig-
nificantly better than the SOTA iBoxNet on the real-world
Pantheon data on both Cubic (train) and Vegas (test) proto-
cols.

Next, we quantify how well RBU preserves fine-grained
temporal patterns. We divide the traces (sending rates,
delays) into small chunks (of 15 packets) and compute
the maximum mean discrepancy (MMD) between the
simulated and the GT chunks, using RBF kernel. We show
the MMD (the lower the better) of chunks over time in
Figure 5 for the Vegas (test) protocol. RBU has much lower
MMD in general, and especially relative to the baseline
LSTM models. This suggests that RBU captures local
temporal patterns over very long traces. Also, consistent with
Table 1, LSTMpkt,FIFO performs better than the baselines,
and iBoxNet is competitive. Details on MMD computation
and results for different chunk lengths, protocols, and more
baselines are in the longer version (Anshumaan et al. 2022).

GAN techniques: As we mentioned in Section 2, GAN
techniques (Yoon, Jarrett, and van der Schaar 2019; Jarrett,
Bica, and van der Schaar 2021) are unable to scale to se-
quences of lengths even in the order of hundreds, and for
modest model sizes. Setting the output sequence length of
the generator to a manageable size, and adversarially train-
ing it with aggregate traces, is also not meaningful in our
setting — the output samples from the generator cannot be
used to drive simulation as the sender requires continuous
packet-level feedback.

Simulating Real-World Network Phenomena
We now demonstrate RBU’s ability to simulate real-world
network behaviors using packet re-ordering phenomenon, i.e.,
packets sent by S arriving out of order at receiver R, observed
in the Pantheon traces. This is an important behavior from



Figure 5: First two plots: (Top row) Ground-truth sending rates, delays for 4 sample TCP Cubic & Vegas traces; (Bottom row)
traces from the RBU model trained on Cubic, tested on Cubic and Vegas. Last plot: MMD2 vs chunks for TCP Vegas (ns-3 data).

Figure 6: Fraction of packets reordered in calls (first two), windows (last two) for TCP Cubic, Vegas (Pantheon)

Protocol Model Wasserstein Distances
2D (Tput, Mean Delay) 2D (Tput, P95 Delay) 1D Mean Delay 1D P95 Delay

Cubic (Train)

iBoxNet 0.150 ± 0.000 0.125 ± 0.000 0.142 ± 0.000 0.116 ± 0.000
LSTMpkt 0.225 ± 0.018 0.245 ± 0.015 0.065 ± 0.007 0.101 ± 0.001
LSTMwin 0.288 ± 0.023 0.279 ± 0.024 0.078 ± 0.004 0.087 ± 0.009
RBU 0.098 ± 0.002 0.084 ± 0.002 0.038 ± 0.001 0.034 ± 0.001

Vegas (Test)

iBoxNet 0.098 ± 0.000 0.184 ± 0.000 0.082 ± 0.000 0.211 ± 0.000
LSTMpkt 0.254 ± 0.029 0.153 ± 0.038 0.234 ± 0.012 0.125 ± 0.005
LSTMwin 0.265 ± 0.020 0.145 ± 0.030 0.270 ± 0.019 0.135 ± 0.006
RBU 0.091 ± 0.029 0.089 ± 0.025 0.036 ± 0.005 0.043 ± 0.010

Table 2: Wasserstein distances (WD) for Pantheon data for different models and protocols. The lower the better.

the application’s perspective as reordered packets could be
treated as lost if they don’t arrive before a certain timeout
(depending on the protocol). The metric of interest is the
fraction of packets re-ordered in the calls.

In Figure 6, the metric CDFs for the RBU model (with
2 bottleneck links) traces align significantly better with
GT, compared to LSTMwin, for both train and test proto-
cols; iBoxNet is not even shown here since its rigid single
FIFO queue model precludes the recreation of reordering.
We also show a baseline where we fix the length of the sec-
ond queue τ (2) to be twice the first queue τ (1); this tends to
reorder packets flowing through the second (longer) queue;
while it performs reasonably well on the train protocol, the
match is relatively poor on the test protocol, which under-
scores the effectiveness of our technique, and the joint learn-
ing of the RBU parameters.

Limitations: To capture and recreate real-world network
behaviors such as reordering, we would need domain-specific
insights on the new behaviors of interest. It is unlikely that
the full expressive power of RBU can be exploited otherwise.

6 Conclusions
We formulate a novel ML problem at the intersection of se-
quential decision making, dynamical systems, and time-series
generative modeling. We present the RBU construct that com-
bines domain knowledge with the expressive power of neural
models, yielding significantly better match for application-
level metrics for network simulation than existing neural tech-
niques and pure domain-knowledge based techniques. We
also demonstrate that RBU is flexible enough to model real-
world network phenomena like packet reordering accurately,
which is currently not possible using domain-knowledge
based techniques like iBoxNet.



References
Anshumaan, D.; Balasubramanian, S.; Tiwari, S.; Natarajan,
N.; Sellamanickam, S.; and Padmanabhan, V. N. 2022. Simu-
lating Network Paths with Recurrent Buffering Units. arXiv
preprint arXiv:2202.13870.
Ashok, S.; Duvvuri, S. S.; Natarajan, N.; Padmanabhan, V. N.;
Sellamanickam, S.; and Gehrke, J. 2020. iBox: Internet in
a Box. In Proceedings of the 19th ACM Workshop on Hot
Topics in Networks, 23–29.
Bengio, S.; Vinyals, O.; Jaitly, N.; and Shazeer, N. 2015.
Scheduled sampling for sequence prediction with recurrent
neural networks. In Advances in Neural Information Process-
ing Systems, 1171–1179.
Beucler, T.; Pritchard, M.; Rasp, S.; Ott, J.; Baldi, P.; and
Gentine, P. 2021. Enforcing analytic constraints in neural net-
works emulating physical systems. Physical Review Letters,
126(9): 098302.
Borovykh, A.; Bohte, S.; and Oosterlee, C. W. 2017. Con-
ditional Time Series Forecasting with Convolutional Neural
Networks. stat, 1050: 16.
Esteban, C.; Hyland, S. L.; and Rätsch, G. 2017. Real-valued
(Medical) Time Series Generation with Recurrent Condi-
tional GANs. arXiv:1706.02633.
Fu, R.; Chen, J.; Zeng, S.; Zhuang, Y.; and Sudjianto, A. 2019.
Time series simulation by conditional generative adversarial
net. arXiv preprint arXiv:1904.11419.
Graves, A. 2013. Generating Sequences With Recurrent
Neural Networks. CoRR, abs/1308.0850.
Ha, S.; Rhee, I.; and Xu, L. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. ACM SIGOPS Operating
Systems Review, 42(5).
Jarrett, D.; Bica, I.; and van der Schaar, M. 2021. Time-series
Generation by Contrastive Imitation. Advances in Neural
Information Processing Systems, 34.
Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
Reinforcement Learning: Tutorial, Review, and Perspectives
on Open Problems. arXiv e-prints, arXiv–2005.
Li, Z.; Kovachki, N. B.; Azizzadenesheli, K.; Bhattacharya,
K.; Stuart, A.; Anandkumar, A.; et al. 2020. Fourier Neural
Operator for Parametric Partial Differential Equations. In
International Conference on Learning Representations.
Lin, Z.; Jain, A.; Wang, C.; Fanti, G.; and Sekar, V. 2020.
Using GANs for Sharing Networked Time Series Data: Chal-
lenges, Initial Promise, and Open Questions. In Proceedings
of the ACM Internet Measurement Conference, 464–483.
NSNAM. 2011. ns-3 Network Simulator. https://www.nsnam.
org/. Accessed: 2023-03-18.
Radford, A.; Narasimhan, K.; Salimans, T.; and Sutskever, I.
2018. Improving language understanding by generative pre-
training. https://cdn.openai.com/research-covers/language-
unsupervised/language understanding paper.pdf. Accessed:
2023-03-18.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsupervised
multitask learners. OpenAI blog, 1(8): 9.

Rangapuram, S. S.; Seeger, M. W.; Gasthaus, J.; Stella, L.;
Wang, Y.; and Januschowski, T. 2018. Deep State Space Mod-
els for Time Series Forecasting. In Bengio, S.; Wallach, H.;
Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett,
R., eds., Advances in Neural Information Processing Systems
31, 7785–7794. Curran Associates, Inc.
Ranzato, M.; Chopra, S.; Auli, M.; and Zaremba, W. 2016.
SEQUENCE LEVEL TRAINING WITH RECURRENT
NEURAL NETWORKS. International Conference on Learn-
ing Representations.
Salinas, D.; Flunkert, V.; Gasthaus, J.; and Januschowski, T.
2020. DeepAR: Probabilistic forecasting with autoregressive
recurrent networks. International Journal of Forecasting,
36(3): 1181–1191.
Smith, K. E.; and Smith, A. O. 2020. Conditional GAN for
timeseries generation. arXiv preprint arXiv:2006.16477.
Sutskever, I. 2013. Training recurrent neural networks. Uni-
versity of Toronto Toronto, Canada.
Sutskever, I.; Martens, J.; and Hinton, G. E. 2011. Generating
text with recurrent neural networks. In ICML.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. Advances in neural
information processing systems, 27.
Wei, W.; Gu, H.; and Li, B. 2021. Congestion Control: A
Renaissance with Machine Learning. IEEE Network, 35(4):
262–269.
Xu, J.; Pradhan, A.; and Duraisamy, K. 2021. Conditionally
Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems. Advances in
Neural Information Processing Systems, 34.
Xu, T.; Wenliang, L. K.; Munn, M.; and Acciaio, B. 2020.
COT-GAN: Generating Sequential Data via Causal Optimal
Transport. Advances in Neural Information Processing Sys-
tems, 33.
Yan, F. Y.; Ma, J.; Hill, G. D.; Raghavan, D.; Wahby, R. S.;
Levis, P.; and Winstein, K. 2018. Pantheon: the training
ground for Internet congestion-control research. In 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC}
18), 731–743.
Yoon, J.; Jarrett, D.; and van der Schaar, M. 2019. Time-series
Generative Adversarial Networks. In Wallach, H.; Larochelle,
H.; Beygelzimer, A.; d Alché-Buc, F.; Fox, E.; and Garnett,
R., eds., Advances in Neural Information Processing Systems
32, 5508–5518. Curran Associates, Inc.


