
REACT: Streaming Video Analytics On The Edge With
Asynchronous Cloud Support

Anurag Ghosh∗
Carnegie Mellon University

Pittsburgh, PA, USA
anuraggh@andrew.cmu.edu

Srinivasan Iyengar
Microsoft

Bangalore, India
sriyengar@microsoft.com

Stephen Lee
University of Pittsburgh
Pittsburgh, PA, USA
stephen.lee@pitt.edu

Anuj Rathore∗
Clutterbot

Bangalore, India
anuj@clutterbot.com

Venkata N Padmanabhan
Microsoft Research
Bangalore, India

padmanab@microsoft.com

ABSTRACT
Emerging Internet of Things (IoT) and mobile computing applica-
tions are expected to support latency-sensitive deep neural network
(DNN) workloads. To realize this vision, the Internet is evolving
towards an edge-computing architecture, where computing infras-
tructure is located closer to the end device to help achieve low
latency. However, edge computing may have limited resources com-
pared to cloud environments and thus, cannot run large DNN mod-
els that often have high accuracy. In this work, we develop REACT,
a framework that leverages cloud resources to execute large DNN
models with higher accuracy to improve the accuracy of models
running on edge devices. To do so, we propose a novel edge-cloud
fusion algorithm that fuses edge and cloud predictions, achieving
low latency and high accuracy. We extensively evaluate our ap-
proach and show that our approach can significantly improve the
accuracy compared to baseline approaches. We focus specifically
on object detection in videos (applicable in many video analytics
scenarios) and show that the fused edge-cloud predictions can out-
perform the accuracy of edge-only and cloud-only scenarios by as
much as 50%. REACT shows that for Edge AI, the choice between
offloading and on-device inference is not binary — redundant exe-
cution at cloud and edge locations complement each other when
carefully employed.
ACM Reference Format:
Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkata
N Padmanabhan. 2023. REACT: Streaming Video Analytics On The Edge
With Asynchronous Cloud Support. In International Conference on Internet-
of-Things Design and Implementation (IoTDI ’23), May 09–12, 2023, San Anto-
nio, TX, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3576842.3582385

1 INTRODUCTION
Many emerging smart video analytics applications, such as traf-
fic state detection, health monitoring, surveillance and assistive
technology require fast processing and real-time response to work
effectively. Such applications rely on deep learning-based object
detection models as a core part of their processing and decision-
making pipeline. Unfortunately, the models are compute-intensive
and tend to have large memory requirements, which limits their
application in resource-constrained local environments.
∗Work done while at Microsoft Research

Figure 1: Illustrates the efficacy of asynchronous cloud re-
sponse to improve edge performance. Note that objects are
undetected on edge but detected in the cloud. Thus, cloud
responses can be cascaded to improve system performance.

Prior works have looked at offloading object detection to the
cloud [11, 30]. By transferring data, the inference is either entirely
or partially offloaded to use the computing available in the cloud.
However, processing data in the cloud increases latency, making
it unsuitable for near real-time analysis. For example, low latency
objection detection that achieves high accuracy is highly advanta-
geous for intelligent drones [21] or smartphone-based driver assis-
tance [5] applications. Thus, designing architectures that achieve
low latency and high accuracy would benefit all these applications.

Edge computing has emerged as an approach to address latency,
where information is processed and analyzed closer to the data
source. In many cases, small form-factor hardware that is low-cost
and consumes lower power is often used as edge devices. How-
ever, these devices often fall short of the heavy computing needs of
deep learning models. As such, there has been a significant focus
on special-purpose devices — e.g., Nvidia Jetson, Google Coral —
optimized to run specific DNN workloads. While edge accelerators

https://doi.org/10.1145/3576842.3582385
https://doi.org/10.1145/3576842.3582385

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkata N Padmanabhan

provide improved performance over a general-purpose edge com-
puting platform, they are still limited in their support1 compared
to cloud-based GPUs. Further, due to system constraints, these ap-
proaches run smaller and quantized models at the edge, with lower
accuracy, compared to the larger models, with significantly higher
accuracy, run on the cloud [18].

In this paper, we seek to answer the following research ques-
tion: Can cloud resources complement edge computing to achieve low
latency and high accuracy? In other words, can we achieve low
latency of the edge models and high accuracy of the cloud mod-
els? In contrast to cloud-only and edge-only approaches, our key
idea is to employ edge-based and cloud-based models in tandem
with the cloud resources accessible over a wide-area network that
may have high latency. By having redundant computation of object
detections, we can use cloud-based inferences asynchronously to
course correct edge-based inferences, thereby improving accuracy
without sacrificing latency. Table 1 distinguishes our work from
the prior work involving cloud-only and edge-only approaches.

Past works [18, 43] in the computer vision community have pro-
posed using model ensemble approaches. However, they combine
detections from different models with comparable performance and
do so on the same frame without latency considerations. REACT’s
novel fusion algorithm in contrast combines higher accuracy cloud-
based detections on recent frames with current inference on the
less-accurate edge detections while removing irrelevant stale results
from the cloud.

Figure 1 illustrates how redundant computation helps improve
overall accuracy for object detection. The models detect people on
a flood-affected riverbank area collected from an intelligent drone
at two different points in time. As shown, a cloud-based detection
model achieves higher accuracy but comes with significant latency,
wherein the results of a frame sent at 𝑡 = 0 are obtained at 𝑡 = 𝑘 . On
the other hand, the edge-based detection model has lower accuracy,
as several humans are not detected. Note that at 𝑡 = 𝑛, even though
the scene has changed, some people are still common across the
current and previous frames. However, the edge model still does not
detect these people. Moreover, edge results may be false positives.
Thus, we use cloud-basedmodels to improve the overall accuracy by
considering detections from the accurate cloud model at time 𝑘 < 𝑛

andmerging these with the frame at 𝑡 = 𝑛 on the edge. We note that
this merge operation is not trivial. We need to consider cases where
both detectors don’t agree with each other. Moreover, combining
results will not work if the edge receives a cloud response after all
the objects of interest within the frame change. It is necessary to
ensure that approaches must work in highly dynamic environments,
where objects of interest change frequently.
In this paper, we describe REACT — our system that builds on these
intuitions to exploit cloud’s accuracy with the low latency of the
edge. Below are our contributions.
REACTSystemDesign:Wedesigned an edge-cloud video pipeline
system capable of exploiting the performance gap of object detec-
tion models between the cloud and the edge. Our approach is de-
signed to scale to multiple edge devices and is resilient to network
1Google Coral only supports integer (INT8) operations. Support for some specialized
DNN layers/operations is not available in Jetson devices for FLOAT16 and INT8
operations.

variability. Finally, we develop APIs that edge-based systems can
use to leverage cloud-based models and improve overall accuracy.
Edge-Cloud Fusion Algorithm: We develop a novel fusion al-
gorithm that combines predictions from edge and cloud object
detection models to achieve higher accuracy than edge-only and
cloud-only scenarios. To the best of our knowledge, we are the first
to leverage redundant computations to improve the accuracy of
on-edge object detection.
Real-world Evaluation:We evaluate REACT on two challenging
real-world datasets — data collected from car dashcams [9] and
drones [42]. These datasets span different cities and exhibit high
variations in scene characteristics and dynamics. Our results show
REACT can significantly improve accuracy by 50% over baseline
methods. Further, REACT can tradeoff edge and cloud computation
while maintaining the same level of accuracy. For instance, by
reducing the edge detection frequency by a fourth (from every
5th frame to every 20th frame) and increasing cloud frequency
(from every 100th frame to 30th frame), REACT can achieve similar
accuracy.
Scalability and Resilience Analysis: We analyze the scalability
of our approach and show REACT can support 60+ concurrent edge
devices on a single machine with a server-class GPU. We also show
that REACT is resilient to network variability. That is, it can function
on varying network conditions and leverages cloud models when
feasible. We evaluate REACT over different network types (WiFi and
LTE) with varying latency using a network emulator. Our results
show that evenwith varying response latency from the cloud, REACT
performs better than the edge-only scenario,

2 BACKGROUND
In this section, we provide background on video-based applications
and challenges in cloud or edge-based video analytics applications.

Video-analytics systems collect rich visual information that of-
fers insights into the environment. These systems can be broadly
categorized as: (i) devices that send all video to the cloud for pro-
cessing, and (ii) devices that have limited processing capabilities
constrained by its small form-factor, cost, or energy. In this case, the
video processing can be split between the device and the cloud. That
is, the device can perform either some or possibly all the processing
before it sends the video to the cloud. Deep learning inference for
object detection forms the core aspect of such systems.

Since deep learning is compute-intensive, existing systems typi-
cally send data to the cloud for processing. However, cloud analysis
may incur significant delays and may be unsuitable for live applica-
tions. Edge computing has emerged as an alternative to complement
the cloud, where data processing is done close to the devices to
avoid these delays. A variety of edge computing architectures exist,
depending on where the edge servers are located relative to the end-
devices [38]. Our work assumes the edge device is of low latency,
and limited computing capabilities, such as hubs in smart homes,
routers, and mobile phones and IoT devices such as intelligent
drones and wearable VR headsets. We assume that some form of
resource constrained AI-based workloads can be run on these edge
devices. Modern devices like Raspberry Pi or Jetson are devices are
capable of running lightweight models [37] with a smaller memory
footprint. Pairing specialized accelerators (such as Google Coral or

REACT: Streaming Video Analytics On The Edge With Asynchronous Cloud Support IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

Table 1: A comparison of our approach with existing video analytics techniques. Earlier methods treat execution as a binary
choice and do not consider variations in models employed on the edge and cloud. Considering such variations in REACT leads to
improved performance along with resilience to network variability.

Features Our Approach Glimpse [11] Marlin [2] Edge-Ast.[30]

detection at edge ✓ ✗ ✓ ✗

detection at cloud ✓ ✓ ✗ ✓
n/w resilience ✓ ✓ ✓ ✗

Intel Movidius) speeds up the inference time of small models with-
out affecting accuracy for a class of model. Unfortunately, larger
deep learning models (having higher accuracy than smaller models)
are still not within the latency and memory budget of these devices.
Larger models require cloud GPU resources, but this comes at the
cost of network delays. This is unacceptable for live and stream-
ing applications. In summary, edge processing provides a latency
advantage but there remains a significant accuracy gap between
real-time prediction on an edge device and offline prediction in a
resource-rich setting [25]. Our goal in REACT is to leverage cloud
processing in tandem with edge processing to bridge the accuracy
gap while preserving the latency advantage of edge processing.

3 REACT DESIGN
For real-time edge inference, we propose a system that uses an
edge-cloud architecture while retaining the low latency of edge
devices but achieving higher accuracy than an edge-only approach.
In this section, we discuss how we leverage the cloud models to
influence and improve edge results.
Basic Approach: It is known that video frames are spatiotem-
porally correlated. Typically, it is sufficient to invoke edge object
detection once every few frames. As illustrated in Figure 2(a), edge
detection runs every 5th frame. As shown in the Figure, to interpo-
late the intermediate frames, a comparatively lightweight operation
of object tracking can be employed. Additionally, to improve the
accuracy of inference, select frames are asynchronously transmitted
to the cloud for inference. Depending on network conditions (RTT,
bandwidth, etc.) and the cloud server configuration (GPU type,
memory, etc.), cloud detections are available to the edge device
only after a few frames. The newer cloud detections, which were
previously undetected, can be brought to the current frame using
another instance of an object tracker running on the past buffered
images. Video frames retain the spatial and temporal context de-
pending on scene and camera dynamics. Our key insight is that
these asynchronous detections from the cloud can help improve
overall system performance as the scene usually does not change
abruptly. See Figure 2(b) for a visual result of the approach.
Challenges: Nevertheless, designing a system that utilizes the
above approach would require addressing several challenges. First,
combining the detections from two sources, i.e., local edge detec-
tions and the delayed cloud detections is not straightforward. Each
of these two detections contain separate list of objects represented
by a ⟨class_label, bounding_box, confidence_score⟩ tuple. A fusion al-
gorithm must consider several cases – such as class label mismatch,
misaligned bounding boxes, etc. – to consolidate the edge and cloud
detections into a single list. Second, some or all of the cloud objects

may be “stale”, outside the current edge frame. The longer it takes
to perform fusion, the greater the risk of such staleness, especially
if the scene changes rapidly. Thus, to minimize this risk, once the
old cloud annotations are received, they must be quickly processed
at the edge to help with the current frame.

Another challenge when running detectionmodels on live videos
at the edge is minimizing resource utilization while maintaining
detection accuracy. Previous studies with edge-only detection sys-
tems have shown that running a deep neural network (DNN) for
every frame in a video can drain system resources (e.g., battery)
quickly [2]. In our case, with a distributed edge-cloud architecture,
several resource constraints need to be simultaneously considered.
For example, cloud detections are more accurate as one can run
computationally expensive models with access to server-class GPU
resources. However, bandwidth constraints or a limited cloud bud-
get might restrict their use to once every few frames. Moreover, if
the scene change is insignificant, it would be prudent not to invoke
object detections at the edge and the cloud. On the contrary, for
more dynamic scenes, increasing the frequency of edge detection
might result in excessive heat generation from the modest GPUs
used on edge devices leading to throttling.

Next, we present our system called REACT, which overcomes the
above challenges. Primarily, REACT consists of three components
– i) REACT Edge Manager, ii) Cloud-Edge Fusion Unit, iii) REACT
Model Server. Below, we describe them in more detail.

3.1 REACT Edge Manager
The REACT Edge Manager (REM) consists of different modules, and
put together, enables fast and accurate object detection at the edge.
Change detector: Previous studies have shown that running a ob-
ject detection on every frame in a video can drain system resources
(e.g., battery) quickly [2]. REM provides two parameters, i.e., the
detection frequency at the edge (𝑘) and the cloud (𝑚) – to modu-
late the number of frames between object detection. Intuitively, if
there is little object displacement across frames, running detection
models frequently will lead to wastage of resources. REM employs
a change detector that computes the optical flow on successive
frames. This represents the relative motion of the scene consisting
of objects and the camera, similar to [2, 11, 22]. Thus, the object
detection invocations will only occur at a detection frequency of
every 𝑘𝑡ℎ and𝑚𝑡ℎ frame at the edge and the cloud, respectively, if
this motion is greater than a pre-decided threshold.
Edge Object Detector: Every 𝑘𝑡ℎ frame, REM triggers the edge
object detector module, which in turn outputs a list of ⟨𝑙, 𝑝, 𝑐⟩ tuples.
Here, 𝑙 and 𝑐 are class labels (e.g., cars, person) and confidence scores
(between 0 and 1) associated with the detected objects, respectively.

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkata N Padmanabhan

(a) (b)

Figure 2: (a) REACT System Process Flow. Orange and Green boxes indicate edge and cloud detections. Tracking performance
degrades with age, which is indicated by the lighter shades of the color blue. It should be noted that Cloud Detection and Fast
Track are both asynchronous events. Edge detections ensure lower tracking age, which improves localization. Cloud detections
supplement edge detections, detecting missed objects and correcting class labels. (b) REACT uses asynchronous cloud detections
to correct the box labels and detect more objects.

𝑝 = (𝑥,𝑦,𝑤,ℎ) represents the bounding box for each of the detected
objects, where 𝑥,𝑦 is the center coordinate of the object;𝑤,ℎ is the
width and height of the bounding box. To avoid multiple bounding
boxes for the same object, we use Non-max suppression, which
removes locally repeated detections.
Main Object tracker: REM employs an CPU-based object tracker,
a computationally cheaper technique, between frames for which
the object detections are available. For example, a CSRT [31] tracker
can process images at >40 fps (on Nvidia Jetson Xavier). However,
as the quantum of associated displacement of objects increases, the
tracker accuracy also reduces. The tracker module accounts for
this degradation by multiplying every tracked object’s confidence
scores by a decay rate 𝛿 ∈ [0, 1]. As the confidence scores reduce
with every passing frame with this multiplier, the module sweeps
over the list of objects to discard the ones with lower confidence
scores (i.e., 𝑐 < 0.5).
Cloud communicator: The REM consists of a communication
module responsible for sending every𝑚𝑡ℎ frame (cloud detection
frequency) to the cloud and receive the associated output annota-
tions. Similar to edge detections, the cloud annotations consist of a
list of ⟨𝑙, 𝑝, 𝑐⟩ tuples. Since the cloud can execute larger object de-
tection models, it provides better accuracy over lightweight models
running at the edge. The communication module transmits frames
asynchronously to the cloud. Again, the cloud detection frequency
is based on objects’ motion and leverages the change detector mod-
ule. If the change is below threshold, we do not transmit frames to
the cloud for object detection. As the cloud always processes an
older frame due to network latency, the predictions might become
stale (i.e., fall outside the frame) by the time it reaches the edge.
Asynchronous “Cloud”-Objects tracker: Proposed edge-cloud
fusion presents another challenge. While the detections from the
edge are available for immediate use, the detections received from
the cloud are delayed and may not align with objects in the cur-
rent frame. This is because objects may have moved in the current
frame. Using cloud detections in this scenario may lead to localiza-
tion errors. To use these detections and improve the current frame’s
detection, we fast track cloud object predictions asynchronously.
Here, we start a new instance of the tracker on a new process sepa-
rate from the main tracker. Specifically, we initialize this instance
with cloud predictions and track the objects on every alternate
frame, until it reaches the currently processed frame. We use a

stride parameter that skips frames to speed up the localization of
objects detected in the cloud. Note that the stride can be increased at
the cost of decreased localization accuracy. In practice, we observe
tracking on every alternate frame using our algorithm performed
the best.

3.2 REACT Model Server
The REACT Model Server’s primary goal is to respond to edge in-
ference requests by executing the object detection models on the
cloud and sending annotations of the detected objects back to the
edge device. The server may be shared across numerous edge de-
vices to handle multiple requests at any given time. A request
queue is maintained with multiple worker threads (parameterized
by 𝑛𝑢𝑚_𝑤𝑜𝑟𝑘𝑒𝑟𝑠) to maximize throughput while adhering to a
latency constraint. Server class GPU architectures can efficiently
operate in parallel on a batch of images (say, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 image
tensors) that are dispatched together for inference. Requests are
preprocessed and batched by the worker threads, and a batch is sent
for inference to the GPU(s) either when a batch has 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 im-
ages for inference or when a𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 wait threshold is reached.
Optimal parameter choices depend on the GPU hardware charac-
teristics and the distribution of incoming requests. For simplicity,
we do not consider dynamic batching scenarios.

3.3 Edge-Cloud Fusion Unit
The primary function of this component is to enhance overall detec-
tion accuracy by combining predictions from both edge and cloud
models. As shown in Table 2, the cloud model (CenterNet) outper-
forms the edge model (TinyYolo) by detecting more objects. Our
analysis indicates that the edge model struggles to detect smaller
objects, resulting in lower overall object detections. Additionally,
the cloud-based model performs better in terms of overall detection
rate, demonstrating higher bounding box overlap (which affects
localization error), confidence scores, and predicted labels (which
affect classification rate) than the edge model. Even if both the
models detect an object, the edge models has larger classification
error compared to the cloud model, as we can observe. Also, this
variation is present across classes, TinyYolo only correctly classifies
74.3% of non-car objects (biased towards classifying the majority
of vehicles as cars), while CenterNet correctly classifies 82.0% of
these objects.

REACT: Streaming Video Analytics On The Edge With Asynchronous Cloud Support IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

Algorithm 1: Edge-Cloud Fusion Algorithm
1 𝑀=[][]
2 𝑑𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒 = GetDetectionSource(𝑜𝑏 𝑗𝑒𝑐𝑡𝑠𝑛𝑒𝑤)
3 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =

RemoveOldDetections(𝑜𝑏 𝑗𝑒𝑐𝑡𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑑𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒)
4 for 𝑜𝑐 ∈ 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 do
5 for 𝑜𝑛 ∈ 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠𝑛𝑒𝑤 do
6 𝑖𝑜𝑢 = ComputeIOU(𝑜𝑐 .𝑏𝑏𝑜𝑥, 𝑜𝑛 .𝑏𝑏𝑜𝑥)
7 if 𝑖𝑜𝑢 >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
8 𝑀 [𝑜𝑐] [𝑜𝑛] = 𝑖𝑜𝑢

9 else
10 𝑀 [𝑜𝑐] [𝑜𝑛] = 0
11 end
12 end
13 end
14 𝑐𝑢𝑟𝑟_𝑜𝑏 𝑗𝑠, 𝑛𝑒𝑤_𝑜𝑏 𝑗𝑠 = LinearSumAssignment(M)

15 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑐𝑢𝑟𝑟_𝑜𝑏 𝑗𝑠 = []
16 for 𝑜𝑐 , 𝑜𝑛 ∈ 𝑧𝑖𝑝 (𝑐𝑢𝑟𝑟_𝑜𝑏 𝑗𝑠, 𝑛𝑒𝑤_𝑜𝑏 𝑗𝑠) do
17 if 𝑀 [𝑜𝑐] [𝑜𝑛]! = 0 then
18 𝑜 = {}
19 if 𝑑𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒 == “𝑐𝑙𝑜𝑢𝑑” then
20 𝑜.𝑙𝑎𝑏𝑒𝑙 = 𝑜𝑛 .𝑙𝑎𝑏𝑒𝑙

21 𝑜.𝑏𝑏𝑜𝑥 = 𝑜𝑐 .𝑏𝑏𝑜𝑥

22 end
23 if 𝑑𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒 == “𝑒𝑑𝑔𝑒” then
24 𝑜.𝑙𝑎𝑏𝑒𝑙 = 𝑜𝑐 .𝑙𝑎𝑏𝑒𝑙

25 𝑜.𝑏𝑏𝑜𝑥 = 𝑜𝑛 .𝑏𝑏𝑜𝑥

26 end
27 𝑜.𝑠𝑐𝑜𝑟𝑒 = 𝑜𝑛 .𝑠𝑐𝑜𝑟𝑒

28 𝑜.𝑠𝑐𝑜𝑟𝑒 = 𝑑𝑒𝑐𝑎𝑦 (𝑜.𝑠𝑐𝑜𝑟𝑒)
𝑜.𝑙𝑎𝑠𝑡_𝑑𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑑𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒

29 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑐𝑢𝑟𝑟_𝑜𝑏 𝑗𝑠+ = 𝑜

30 else
31 𝑜𝑛 .𝑙𝑎𝑠𝑡_𝑑𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑑𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒
32 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑐𝑢𝑟𝑟_𝑜𝑏 𝑗𝑠+ = 𝑜𝑛

33 end
34 end
35 return 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑐𝑢𝑟𝑟_𝑜𝑏 𝑗𝑠

It is worth noting that box fusion techniques, such as non-
maximum weighted (NMW) [40] or NMS, combine predictions
based on class labels and only consider a match if the overlap of
the bounding box is high for the same class. If the labels are differ-
ent, these techniques will consider them as two separate objects.
Furthermore, our analysis reveals that edge detection models could
correctly localize objects but often had false positives, i.e., they as-
signed class labels incorrectly. If we used the techniques above, the
same object would be counted twice, thereby decreasing the overall
accuracy.We use these insights to develop a novel bounding box
fusion algorithm to combine cloud-edge predictions that priortizes
cloud-based detections and draws inspiration from earlier works
on IoU based tracking [6] and association strategies [8, 24] and
detection ensembling [18, 40] approaches.

Our box fusion technique works as follows. In the edge, we
maintain a current list of objects (in the form of tuples described
earlier) for the present frame. Whenever any new detections, either

from the cloud or the edge, are available, we first delete the old
objects from the current list that were last submitted by the same
detection source. For example, we delete old objects detected by the
cloud (or edge) when newer cloud (or edge) detections are available.

Next, we create an Intersection over Union (IoU) matrix that
indicates the overlap between current objects and the detections
received. IoU is the ratio of overlapped area with the union of the
area between the two sets of objects. Any value smaller than a
threshold (≥ 0.5) is set to 0.We then perform a linear sum assign-
ment [8], which matches two objects with the maximum overlap.
This matrix provides a list of objects that were already present in the
current object list. We modify the confidence values, bounding box,
and class label based on the new detections’ source. For example,
objects from the cloud obtained from running bigger models will
be more accurate in predicting the class correctly. We present the
pseudo-code to determine the merging of the boxes in Algorithm 1.

4 IMPLEMENTATION
REACT Edge Manager: Our implementation uses OpenCV to re-
ceive a stream of video images. Further, the tracking module is built
upon OpenCV’s object tracker API. We train two object detection
models (MobileNetV2-SSD [37] and TinyYOLO [35]) for the edge
scenario. We also deployed these models on an Nvidia Jetson Xavier
device for inference.
REACT Model Server: Our object detection models (Faster R-
CNN [36] and RetinaNet [28]) are trained using the mmdetec-
tion [10] library, and for training CenterNet [41] models we utilize
the official implementation written in Pytorch. Pytorch’s default o
bject_detector handler only supports torchvision models, so we
implemented custom handlers for generic mmdetection models and
the CenterNet model to serve them on the cloud server using Torch
Serve. We created two handlers as the mmdetection library and the
CenterNet library expose and utilize very different model initializa-
tion, preprocessing and postprocessing programming paradigms in
their implementations. Thus, REACT can be used with newer object
detection algorithms in the future by modifying the sample han-
dlers for reflecting model specific changes. We serve these models
as HTTPS/JSON endpoints over an API.
REACT fusion API:We expose two classes CloudServerInferen
ce and ReactEdgeInference. CloudServerInference class can
be instantiated by providing the address of the HTTP endpoint,
the image resolution, and the model along with optional frequency
parameter, tracker type and number of tracker threads (if used in
Server only inference mode). To instantiate ReactEdgeInference
we specify parameters such as the model to run, image resolution,
tracker type, number of tracker threads, the frequency parameters,
and CloudServerInference object to use. Both the classes expose
a get_annotations method and use the image as input, returning
the annotation output as a JSON object. We believe this API design
facilitates adoption by application developers due to it’s simplicity
and ease of use.

5 EVALUATION METHODOLOGY
In this section, we give a detailed description of the datasets used
and the evaluation setup.

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkata N Padmanabhan

Table 2: Edge models perform worse on detecting and classifying objects, specially for small objects. mAP (capturing overall
performance) for small objects is far lower. Percentage of objects correctly detected (overlap greater than 0.5 IoU; label ignored)
is far higher for the representative Cloud Model compared to the Edge Model. Among the correctly detected objects, we observe
that a far lower percentage are correctly classified.

Model 𝑚𝐴𝑃𝑆𝑚𝑎𝑙𝑙 % Detected (All) % Detected (Small) Classification Accuracy (Small)

CenterNet (Cloud) 12.9 57.8% 43.6% 72.3%
TinyYOLO (Edge) 1.2 41.5% 23.0% 52.0%

5.1 Dataset Description
We extensively evaluate the proposed system’s efficacy on two
datasets in built environment monitoring domain highlighting
its potential in different use cases (drone-based surveillance and
dashcam-based driver assist). Both these datasets are popular and
are among the largest available dataset for edge-based object detec-
tion. These datasets are quite challenging as they exhibit significant
scene change and have a varied number and size of objects. Table 3
provides a summary of the two datasets.
𝐷2-City [9]: The video dataset is created from front-facing car
dashcams and captures the dynamic complexity of real-world traffic
conditions. The dataset is crowdsourced from passenger vehicles
registered on DiDi’s platform and intended for improving vision
technologies, driving intelligence, and similar use cases. It has 1000
driving videos taken in five different cities under various scene
conditions and video resolution. Objects in each video frame are
annotated and include their bounding boxes and class ids.
VisDrone [42]: The videos in the dataset are captured using drones
flown over different cities under various weather and lighting con-
ditions. It contains 79 video clips with around 1.5 million manu-
ally annotated objects. We use the evaluation protocol followed in
VisDrone-VDT 2018 challenge for video object detection task [43],
which focuses on detecting specific objects (e.g., pedestrian, car,
van) taken from drones. The object detection task in these videos
is considered challenging due to the density of really small objects,
dynamic scene conditions, and drones’ movement.

5.2 Performance Metrics
We use mean average precision at intersection over union (IoU) = 0.5
(𝑚𝐴𝑃@0.5) — a popular metric used for object detection tasks [13,
29]. Note that the IoU measures the ratio of the intersection area
and the area of union of the predicted bounding box and ground
truth bounding box. Thus, a prediction is considered a true positive
if the predicted label matches the ground truth, and the IoU is
greater than or equal to the threshold (≥ 0.5).

5.3 Evaluation Setup
In this section, we discuss the training process, baseline techniques
and environment.

5.3.1 Model selection and training. We use a combination of deep
learning models to evaluate our approach, where we execute dif-
ferent models on the edge and cloud. For our cloud-based models,
we use Faster-RCNN [36], RetinaNet [28]. For edge models, we
use TinyYOLO [35] and MobileNetV2-SSD [37]. Table 4 provides

a summary of the different models. To train our models, we fol-
low the protocols described in the 𝐷2-City and VisDrone datasets.
As these datasets are released as part of ongoing challenges, the
test set annotations are not publicly available. Hence, we evaluate
our models on the released validation data set. For our validation
dataset during training, we use 15% from the train data set to tune
the hyper-parameters and select the final model.

5.3.2 Baseline Techniques. We use the following baseline tech-
niques to compare with our proposed approach. Since the code for
existing work was not available, the baselines we use is comparable
to prior work.
Edge-only Inference: Here, we run the object detection only at
the edge and do not offload detection tasks to cloud resources. This
baseline is similar to Marlin [2] that employs the edge-only strat-
egy (see Table 1). However, unlike Marlin, which minimizes edge
inference frequency to conserve energy, our edge-only baseline
invokes edge inference at regular intervals. As a result, this base-
line achieves better performance than Marlin. In the edge-only
baseline, we use lightweight detection models — TinyYOLO and
MobilNetV2-SSD — as they consume less memory and computation
and are well-suited for resource-constrained edge devices. From
hereon, we refer to this baseline as edge-only.
Cloud-only Inference: For this baseline, we run the object detec-
tion task on the cloud. The edge is a thin client that offloads the
detection tasks to the cloud while using a tracker to compensate
for intermediate frames. The performance of this baseline setup
is comparable to existing systems such as Edge-Assisted [30] and
Glimpse [11] (See Table 1) that offloads trigger frames to the cloud
and uses an optical flow based object tracking method to update the
object bounding boxes on the other frames. Note that cloud-only
inference suffers from higher network delays compared to the edge-
only scenario [30]. Such high network latency may be undesirable
for latency-sensitive applications as dynamic changes in scenes
may render responses from the cloud unusable. We use computa-
tionally expensive detection models on cloud, namely RetineNet,
Faster RCNN, and CenterNet, due to their good performance. From
hereon, we refer to this baseline as cloud-only.
Every Frame Edge Inference: In this scenario, we compare REACT
with the casewhere one can run detectors using edgemodels (TinyY-
OLO and SSD-MobileNetv2) on every frame. Unlike the edge-only
baseline, we do not interpolate predictions with any tracker. In
practice, this baseline is infeasible as edge devices cannot run de-
tections on all frames due to latency and energy constraints. We
call these baselines ef-edge-det (tinyyolo) and ef-edge-det (ssdmv2).
We do not compare with Every Frame Cloud Inference as it neither
meets the computational budget nor the latency budget.

REACT: Streaming Video Analytics On The Edge With Asynchronous Cloud Support IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

Table 3: We evaluate our approach on two large-scale real world datasets. 𝐷2-City dashcam videos simulate driver assistance
scenarios, and exhibit heavy occlusions and large variations in object sizes (far-away small objects). Visdrone videos act as drone
sensing scenario, exhibiting variations in altitude (affecting average size of objects), camera viewpoint, and environmental
clutter with large number of objects.

Name Type Size (#videos,
#frames)

of
Classes Remarks

VisDrone Drone (79, 33.3K) 12 Altitude, View Angle
𝐷2-City DashCam (1000, 700K) 8 Varied object sizes

Table 4: We utilize the following models in our experiments.
The choices of hardware are dictated by the memory use and
latency of the model [18]. TinyYOLO and MobileNetV2-SSD
are the archetypal model choices for mobile hardware in the
vision community. Faster R-CNN, RetinaNet and CenterNet
are popular detectors that are expected to be employed on
server class GPUs.

Detector Backbone Where #params

Faster R-CNN ResNet50-FPN Cloud 41.5M
RetinaNet ResNet50-FPN Cloud 36.1M
CenterNet DLA34 Cloud 20.1M

TinyYOLOv3 DN19 Edge 8.7M
SSD MobileNetV2 Edge 3.4M

5.3.3 Network Emulation. We useMahimahi [32] and traffic control
(tc) Linux utility to emulate different network traffic, in particular,
LTE and WiFi. For LTE, we use the Verizon LTE uplink and down-
link traces in MahiMahi to emulate LTE link between the edge and
cloud [32] (hereon, we refer it as LTE). For WiFi, we throttle the
traffic to 24Mbps and also introduce delay of 30ms and 50ms using
tc. Hereon, we refer them asWiFi (30 ms) andWiFi (50 ms). Thus,
we emulate three different network conditions between the client
and the server. Unless stated otherwise, we report our results using
the WiFi (30 ms) network.

6 EXPERIMENTAL RESULTS
In this section, we compare REACT with other baseline techniques.
We also study the impact of network conditions and the tradeoff
opportunities from adjusting the detection frequency at both the
cloud and the edge. Further, we evaluate the scalability of our
approach and its performance on an edge accelerator device.

6.1 Performance Comparison
We first evaluate how REACT’s use of redundant detections running
asynchronously on the cloud help achieve low latency and improves
accuracy. In this experiment, we set the edge and cloud object
detection frequency to 5 and 30, respectively. We compare REACT
to our three baseline approaches and report our results for both
D2-City andVisdrone datasets. For a fair comparison, the baseline
methods also use the same cloud/edge object detection frequency.

Figure 3(a) compares baseline algorithms with REACT (i.e. cloud-
edge) with respect to the object detection accuracy (mAP@0.5)

for D2City dataset. We create distinct pairs of object model com-
binations — one running at the edge and the other on the cloud.
Specifically, we evaluate using two edge models and three cloud
models, a total of six combination pairs. Our results show that
REACT outperforms the edge-only and cloud-only baselines by 20-
40% for all combination pairs. Different object detection models
exhibit different kind of errors, due to their DNN architectural de-
sign decisions, and REACT is able to combine these detections to
reduce overall error and improve performance. This is akin to using
an ensemble of cascading detection models in tandem to reduce
error. We also observe that our approach’s mAP is marginally bet-
ter than the scenario where edge models are executed on every
frame (i.e., ef-edge-det), where no latency constraints on edge de-
vice is assumed. This implies that edge models exhibit certain kinds
of errors that can be rectified by cloud models (See discussion in
Section 6.4.2). This impractical scenario shows us that redundant
computation on the cloud is complementary to on-device execution
on the edge. In particular, the cloud-edge pair of CenterNet and
SSD MobileNetv2 are very complementary and together achieve
the best performance. Qualitative results can be seen in Section 6.6,
we observe that cloud models are able to detect small sized and
heavily occluded objects that edge models tend to miss.

Figure 3(b) shows the same comparison using the Visdrone
dataset. As noted in prior studies, object detection in this dataset
is challenging, and models tend to have low mAP values [43]. Our
results show that REACT achieves higher accuracy and outperforms
baselines by 50%. We also observe that the pair of RetinaNet and
TinyYolo outperforms all baseline techniques.
Key Observations: REACT outperforms baseline algorithms by as
much as 50%. Edge and Cloud models are complementary in their
strengths and weaknesses, and overall performance be improved using
our edge-cloud fusion algorithm.

6.2 Impact of Network
As discussed earlier, REACT receives responses asynchronously from
the cloud and merges its annotations with the edge detections.
Clearly, stale cloud responses affect accuracy. There are three factors
that affect the serving time of responses from the cloud — (i) time to
transmit a frame from the edge to the cloud, (ii) time to run inference
on the frame at the cloud, and (iii) time to send the annotations from
the cloud to the edge devices. Thus, we experiment with different
networks to gauge their impact on the overall accuracy. We restrict
our evaluation to the D2-City dataset with tinyYOLO and RetinaNet
models running at the edge and the cloud, respectively.

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkata N Padmanabhan

ssdmv2
centernet

tinyyolo
centernet

ssdmv2
retinanet

tinyyolo
retinanet

ssdmv2
fasterrcnn

tinyyolo
fasterrcnn

Edge Cloud Model

0

5

10

15

20

25

30

m
AP

@
0.

5

ef-edge-det (ssdmv2)
ef-edge-det (tinyyolo)

cloud-edge edge-only cloud-only

ssdmv2
centernet

tinyyolo
centernet

ssdmv2
retinanet

tinyyolo
retinanet

ssdmv2
fasterrcnn

tinyyolo
fasterrcnn

Edge Cloud Model

0

2

4

6

8

10

12

14

16

m
AP

@
0.

5

ef-edge-det (ssdmv2)
ef-edge-det (tinyyolo)

cloud-edge edge-only cloud-only

(a) D2-City (b) VisDrone

Figure 3: Comparison of REACT (cloud-edge) across two datasets compared to edge-only [2] and cloud-only [11, 30] approaches.
REACT performs better than the Edge upper-bound (every frame execution), the deficiency on edge is rectified by the cloud.

200 300 400 500 600 700
Serving Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

LTE
WiFi (30ms)
WiFi (50ms)

(5, 30) (15, 45)
Detection Frequency

0

5

10

15

20

25

m
AP

@
0.

5

WiFi (30ms)
WiFi (50ms)
LTE

(a) CDF (b) Accuracy

Figure 4: Impact of Network latency on accuracy for differ-
ent network conditions. Detection accuracy is marginally
affected with network latency, and can be mitigated by in-
creasing edge inference frequency.

Figure 4(a) show the cumulative distribution function (CDF) of
the serving times observed on the four network conditions. The
two gray-colored horizontal lines represent 50𝑡ℎ and the 95𝑡ℎ per-
centiles. Using WiFi (30ms), we get the lowest serving time, i.e.,
around 260 ms (95𝑡ℎ percentile). Whereas, LTE has a significantly
longer serving time compared to others (420 ms for 50𝑡ℎ and 570
ms for 95𝑡ℎ percentile). Unlike other network types, LTE also has a
much higher standard deviation. The Figure 4(b) shows the accuracy
associated with the use of the four network types. Intuitively, accu-
racy degrades as serving times increase. This is because a change in
the scene may render the stale output from the cloud useless. Thus,
in the worst case, dynamic scenes where objects change frequently,
such scenarios may not be able to take advantage of cloud resources.
We observe this pattern in our analysis, where higher delays in
serving time reduce accuracy. In particular, the model accuracy
with LTE is the lowest at 21.1 — i.e., 7% lower than WiFi (30ms) in
case of edge-cloud detection frequency at (15,45).

Key Observations: REACT performance is sensitive to different net-
work conditions. Specifically, a 310 ms difference in 95𝑡ℎ percentile
serving time in network type results in 7% reduction in accuracy.

6.3 REACT’s Scalability
We discuss how the added cost of additional cloud resources be
amortized over many edge devices sharing the same REACT model
server.

To evaluate the scalability of REACT Model Server, we looked at
four different generations of GPUs (i.e., K80, M60, P40, and V100)
available on the cloud platforms. Consequently, we selected Mi-
crosoft Azure Ubuntu 18.04 VMs NC6v1 (K80), NV6v3 (M60), ND6v1
(P40), and NC6v3 (V100). As the two datasets consisted of various
image resolutions, we choose a consistent image size (512× 512) for
a fair comparison. We set the inference max batch size to 4 and use
the Faster-RCNN model for the results discussed here (our most
expensive cloud model). We benchmark using the HTTPS/JSON
endpoint and define the payload and user characteristics using the
Locust load testing library [17]. We looked at a scenario where the
edge devices send requests once every 2 seconds (once every 60
frames). The payload involved adding users at a uniformly random
rate of 3 edge devices per second until we reached the maximum

0 20 40 60 80 100
Concurrent edge devices

0

5

10

15

20

Th
ro

ug
hp

ut
 (r

eq
./s

)

k80
m60
p40
v100

Figure 5: Throughput vs #concurrent edge devices for differ-
ent GPUs.

REACT: Streaming Video Analytics On The Edge With Asynchronous Cloud Support IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

0 20 40 60 80 100
Concurrent edge devices

0
500

1000
1500
2000
2500
3000
3500
4000

M
ed

ia
n

Re
sp

on
se

 T
im

e
(m

s) k80
m60
p40
v100

Figure 6: 50𝑡ℎ percentile response time vs # concurrent edge
devices

0 20 40 60 80 100
Concurrent edge devices

0
500

1000
1500
2000
2500
3000
3500
4000

95
%

 R
es

po
ns

e
Ti

m
e

(m
s)

k80
m60
p40
v100

Figure 7: 95𝑡ℎ percentile response time vs #concurrent edge
devices

desired number. Specifically, we varied the concurrent number of
edge devices sending requests between 2 to 100.

Figure 5 shows the throughput of the serving platform with a
varying number of edge devices for the different GPU VMs. For
a smaller number of devices, the GPUs are underutilized, and the
throughput increases. However, each of the four GPUs will hit a
maximum throughput level with the increasing number of edge
devices. For newer GPU devices, such as V100 and P40, we get
a maximum throughput of over 17 requests per second (req./s).
Throughput can be increased by batching requests with a timeout
queue at the expense of average latency. Whereas, the performance
of the K80 is the worst, with throughput maxing out at slightly over
5 req./s. Thus, during lower traffic conditions, one can go with older
GPUs available at a discount compared to newer ones (the pricing
is dynamic and based on demand). However, the newer GPUs can
provide > 3× the performance.

If an application can tolerate a median latency of 500 ms for
inference on the cloud, we can support up to 60+ concurrent de-
vices at a time using the V100 GPU (see Figure 6). If we consider a
Reserved VMwith a V100 GPU2, the cost is 1.63¢/hr. per concurrent
device. This is a conservative analysis due to our model choice —
detectors less expensive than Faster RCNN (like RetinaNet) can
support greater number of concurrent devices. This number re-
duces to 44, 19, and 12 for P40, M60, and K80, respectively. For
95𝑡ℎ percentile case, V100 can support 33 concurrent devices (see
Figure 7). Moreover, for many video analytics applications not all
edge devices are operational at all times. For example, one might
2Cost of a 3 year reserved Azure VM is 0.979$ an hour. See https://azure.microsoft.
com/en-us/pricing/details/virtual-machines/linux/

30 45 60 100
Cloud Frequency (# frames)

5
10

15
20Ed

ge
 F

re
qu

en
cy

 (#
 fr

am
es

) 25 24.3 23.5 22.7

24.6 23.7 23.2 22.5

24.1 23 22.5 21.6

22.8 21.8 22.3 21.4

Figure 8: Higher detection frequency on the cloud and lower
detection on edgemay result in similar accuracy compared to
lower detection frequency on the cloud and higher detection
frequency on edge.

use an AR/MR app on a mobile device for just 20 minutes a day.
Similarly, a dashcam-based driver-assist application will only be
operated while driving (around one hour a day). The overall number
of edge devices supported will be orders of magnitude greater than
the concurrent devices supported.
Key Observations: A single instance of the REACT Model Server
can handle an excess of 60 concurrent edge devices. We can divide the
cost overhead of the VMs across hundreds of edge devices as only a
few devices are operated at any given time for several real-time video
analytics applications.

6.4 REACT Parameter’s Analysis
6.4.1 Impact of Detection Frequency. Most resource-constrained
systems cannot execute deep learning-based object detections on
each frame. Typically, the object detector runs only once every few
frames and a lightweight object tracking is performed on inter-
mediate frames. As we noted earlier, there are tradeoffs between
executing a detector on the edge compared to the cloud. We can
exploit this tradeoff between computation on edge and cloud by
changing detection frequency parameters.

For our evaluation, we set the detection frequency and invoke
edge and cloud models every 𝑋 number of frames and use Reti-
naNet as our cloud model and SSD MobileNetv2 as our edge model.
Figure 8 shows a heatmap indicating the accuracy of REACT using
different edge and cloud detection frequencies. As expected, run-
ning more detections improves accuracy as it mitigates the degra-
dation effects of object tracking. Moreover, if the scene changes
frequently, the cloud detections may be stale, which may further
contribute to degraded performance. And thus, invoking frequent
detections at the edge helps in mitigating these effects.

In particular, we can reduce the frequency at the edge (or cloud)
and increase at the cloud (or edge) with little impact on overall
accuracy. For example, running edge detections every 5th frame
and cloud detections every 100th frame results in mAP@0.5 of
22.7. However, we can instead trade-off computation and reduce
the detection frequency at the edge by a fourth (e.g., run every
20th frame) and slighly more than triple the cloud frequency (e.g.,
every 30th frame) to achieve a similar accuracy (mAP@0.5=22.8).

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkata N Padmanabhan

Such a scenario is quite common in edge devices where excess heat
generated by running detectors often might result in throttling.
If cloud resources are at a premium, we can get similar accuracy
(mAP@0.5=22.5) with the edge and the cloud frequencies set to
every 15th and 60th frame, respectively. Such flexibility allows
application developers to perform tradeoffs to optimize for specific
objectives. These changes to cloud and edge detection frequencies
to maintain similar accuracy also highlight the resilience of REACT
to network variability. Reducing cloud detections forced by lower
bandwidth can be compensated with higher edge detections.

6.4.2 Diagnostic Error Analysis. REACT outperforms the baseline
algorithms and also improves on the upper bound performance
of using edge detections on each frame. Moreover, we can change
detection frequencies and observe similar overall accuracy. How-
ever, mAP alone does not explain the effect of the various system
parameters and the end-task tradeoffs they introduce.

To this end, we use TIDE [7], a toolbox that helps disambiguate
between six error types in object detection (Cls: classification error;
Loc: localization error; Both: both cls and loc error; Dupe: duplicate
predictions error; Bkg: background error; Miss: missed detections
error). TIDE assigns the different error types independently for
every detection error (i.e. computes change in mAP, if an error type
was “fixed” by an oracle), and thus provides us relative breakdowns
that can be compared. This is in contrast with earlier methods
which classified all errors progressively [29] (thus summing error
breakdown to 1 - mAP score), but that is strongly biased toward
error types fixed last [7].

We analyze the error breakdown of REACT at different detection
frequencies for the tinyYOLO-RetinaNet combination (like Sec-
tion 6.1). It’s clear from Figure 9 ((b) and (c)) that the kind of errors
made by REACT on the two datasets are very different. On D2-City
dataset, we see a substantially larger ratio of classification (class
label mismatch) errors compared to VisDrone dataset, and a smaller
ratio of missed detections. Thus, target domain is an important
aspect in discussion of system tradeoffs.

We consider scenarios to demonstrate exactly how parameter
choices effect the errors (and mitigation steps). Developers can
adjust REACT’s parameters, such as changing cloud/edge detection
frequency to reduce localization errors or missing detections, and
how cloud detections improve the overall system performance.
Effect of Cloud Detections: We analyze the error breakdown
between running edge model (tinyYOLO) on every frame and REACT
at (5,30) on Visdrone dataset. From Figure 9 ((a) and (b)), the ratio of
missed detections is substantially lower for REACT contributing to
increase inmAP (See Fig 3 (b)) from 10.6mAP@0.5 to 14.3mAP@0.5.
This indicates is that the cloud models help in detecting objects
that edge models are not able to detect (such as small and occluded
objects). We can observe the same trend on the D2City dataset in
Figure 9 ((c) and (e)).
Reducing Cloud and Edge Frequencies: Further, we analyze
the results by varying edge and cloud frequency from (5,30) to
(20, 100) on D2City dataset. From Figure 9 ((c) and (d)), the ratio
of localization errors increases as the overall mAP decreases (See
Figure 8) from 25 mAP@0.5 to 20.3 mAP@0.5. This indicates that
tracker error increases as we reduce the frequencies which could
be mitigated by using a more accurate yet more expensive tracker.

Figure 9: Error breakdown on the two datasets for different
REACT configurations. Cloud detections drastically lowermiss
rate, and increasing edge detection frequency lowers local-
ization errors.

However, if localization errors are tolerable in the end use-case, for
instance in person counting scenarios, then savings in both cloud
cost and energy on the edge device can be made.
Key Observations: The flexibility to adjust detection frequency
can immensely help resource-constrained scenarios. REACT provides
the flexibility to tradeoff computation at the edge and cloud, while
achieving similar performance. REACT can further mitigate different
types of errors by changing system parameters and iterating on specific
performance bottlenecks.

6.5 Performance on Edge Devices
We evaluate the feasibility of REACT on the Nvidia Jetson Xavier
device with installed JetPack SDK. Specifically, we deploy REACT
on the device and calculated the maximum FPS obtained for TinyY-
OLO edge model and the CSRT tracker employed in the REACT Edge
Manager. We achieve an average detection rate of 26.1 fps for a
video stream for an image resolution of 540 × 360. For streaming
applications (30 fps), we cannot invoke detection very often. Addi-
tionally, our tracker algorithm achieved 36.66 fps (> 30fps). Thus,
it is feasible to use REACT for many video analytics applications
where object detection is a crucial block.
Key Observations: It is feasible to run REACT on edge-class devices.
Reducing object detection frequency at the edge (while increasing the
cloud detection frequency) can offer opportunities to execute down-
stream tasks in the analytics pipeline.

6.6 Qualitative Results
We visualize representative frames from various sequences in the
D2City dataset and Visdrone dataset using REACT (TinyYOLO-
RetinaNet configuration from Section 6.1). REACT’s Edge Cloud
Fusion Algorithm helps in multiple scenarios. In Fig 10 (A), the

REACT: Streaming Video Analytics On The Edge With Asynchronous Cloud Support IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

Figure 10: Detections on D2City. Cloud detections are colored red, whereas Edge detections are colored blue. We observe that
Edge models detect larger objects, but fail when the object is small or heavily occluded, and those cases are rectified by cloud
models.

edge model is able to identify and localize most of the objects, how-
ever, cloud model identifies a highly occluded car. While in Fig 10
(B), the cloud model is able to identify small objects (such as the
cars far away) which the edge model could not. The cloud model
is able to identify the occluded bus, which is close to the camera
in Fig 10 (C). The edge model performs especially poorly in Fig 10
(D), as it’s not able to identify any of the trucks due to inconsistent
lighting conditions, which our cloud model can identify and localize
correctly. Similar patterns emerge in VisDrone dataset, as observed
in Fig 11. Moreover, as we can see in all the sub figures (specially in
Fig 11 (A)), the miss rate is significantly reduced by the detection
of smaller objects by the cloud model. These results are consistent
with prior observations that larger models are better at detecting
small, occluded and rare kinds of objects in Section 6.4.2.

7 RELATEDWORK
In this section, we contextualize our work with other studies.
Edge-based hardware: Hardware accelerators [15, 20, 33] have
shown to boost the performance of deep learning inference. Such ac-
celerators are deemed suitable for edge-AI use cases at a much lower
cost and energy needs. Our work uses similar resource-constrained
edge devices capable of executing lightweight deep learning-based
models. Today there is a performance gap between edge and cloud
computing capabilities that our work leverages. Thus, our work is
applicable in current and future systems where a similar perfor-
mance gap exists.

ML Model Optimizations: There have been a few major ways of
optimizing models themselves to reduce the inference time on the
resource-constrained edge devices — model pruning [16], quantiza-
tion [19], distillation [4] and hardware-aware neural architecture
search [39]. Unfortunately, the improvements in latency largely
come at a cost of lower accuracies and generalization. Our ap-
proach is complementary to these approaches as we expect the
performance arbitrage to exist and our results show that fusing the
output can improve the overall accuracy. Moreover, any comple-
mentary improvement in the performance of small models reduces
the dependence on the cloud for inference, increasing the concur-
rent clients our system can support.
Video Analytics Optimizations: Live video analytics is emerging
as an increasingly important problem because of its applications in
multiple domains [1]. However, providing efficient video inference
remains a challenge due to constraints in compute, latency and
bandwidth. As such, several studies have looked at optimizing sev-
eral aspects within the video analytics pipeline to improve overall
performance [2, 11, 30]. Several papers have considered offloading
the analysis to the cloud [3, 12, 22]. Most studies that offloadwork to
the cloud assume that there are no stringent latency requirements.
Some of them focus on optimizing video queries on the cloud by
selecting appropriate neural network and video configurations to
save compute resources [22].

Moreover, there have been studies that look at leveraging both
on-board compute and/or cloud resources to improve object de-
tection [2, 11, 30]. RedEye [27] performs early CNN computation

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkata N Padmanabhan

Figure 11: Detections on Visdrone. Cloud detections are colored red, whereas Edge detections are colored blue. We observe that
Edge models detect larger objects, but fail when the object is small or if it’s a rare class, and those cases are rectified by cloud
models.

in the analog domain on the image sensor. Marlin [2] proposed a
detection technique for mobile-based AR applications that switches
between lightweight object tracking and on-device inference for
object detection. Works like RedEye and Marlin’s frame selection
procedure are complementary to our approach. Reducto [26] in-
vestigates on-camera filtering, and dynamically adapts filtering
decisions according to the time-varying correlations. These ap-
proachs are complementary and can be used to reduce our edge
detection frequency further.

Glimpse [11] presents a real-time object recognition pipeline
that does object tracking locally but offloads DNN-based object
detection to the cloud. DeepDecision [34] is measurement driven
framework that considers running an object detector on the cloud
or the edge depending on network conditions and edge hardware
constraints. In contrast to these prior work, our analysis shows that
redundant inference on both edge and cloud are complementary
and improve accuracy compared to baseline techniques that are
based on these existing works.

Separately, there have been several recent efforts to partition
models across the cloud and edge (Eg. [23]). Such techniques are
not suitable for live analytics because the final result is primarily
computed on the cloud, which increases overall latency.

8 IMPLICATIONS AND DISCUSSIONS
Unlike prior works [2, 11, 30, 34] that consider the choice between
offloading to the cloud and on-device execution on the edge as
the only two possibilities, REACT demonstrates that for Edge AI
scenarios, a nuanced approach is useful as the decision need not

be binary. Approaches leveraging these two choices have their
inherent deficiencies — vision models on the edge are fast but suffer
from object classification errors due to small model size, while vision
models on the cloud are slow but suffer from object localization
errors due to network latency. Leveraging predictions both of these
choices, although imperfect, through our fusion algorithm of these
two leads to improved overall performance.
Flexibility:While we evaluate network latency and analyze the
impact of detection frequency on edge, network bandwidth is also
important. Since our approach allows the flexibility to change cloud
detection frequency, we can control the data sent across the net-
work to conserve bandwidth. However, we can still achieve similar
accuracy by increasing the detection frequency at the edge. Thus,
users of REACT can achieve comparable accuracy by choosing a
wide range of system parameters while satisfying use-case specific
constraints, such as limited bandwidth or edge GPU cycles. Further,
the modular design of REACT allows developers to swap models
at the edge or the cloud as and when newer and improved DNN
architectures are available. Our system also allows developers to
choose a model serving system of their choice.
Generalizability to Tasks and Applications: Even though we
evaluate our system on object detection tasks, we expect our ap-
proach to also work on human pose-estimation or instance seg-
mentation applications. For example, human pose-estimation ap-
plications require instantaneous feedback for sports and dance
activities and to understand full-body sign language — all of which
require low latency analysis. In addition, instance segmentation
tasks in security and surveillance applications with robots also

REACT: Streaming Video Analytics On The Edge With Asynchronous Cloud Support IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA

require low latency, making our approach useful in such scenarios.
Additionally, our approach can be applied to video-based activity
recognition to monitor physical activities (e.g., walking, running) in
a non-intrusive way, which is useful for health monitoring purposes.
Currently, these approaches rely on large machine-learning models
that are compute-intensive and not suitable for edge scenarios. Our
future work will involve extending our system to work for such
applications.
Adaptive parameter setting:Wenote that the detection frequency
was fixed for our evaluation to show trade-off opportunities. How-
ever, the detection frequency can be adaptive and change based on
variations in scene dynamism. For example, if the scene changes
less frequently, we can decrease the detection frequency at the edge
and/or the cloud to keep up with the desired accuracy. Detection
frequency can also change due to systems constraints. If there is
limited cloud resource available, one can reduce the cloud detection
frequency. When cloud resources are cheap, increasing the cloud
detection frequency can improve detection accuracy. Likewise, if
the edge device experiences thermal throttling or is constrained by
power consumption, then lowering edge detection frequency is nec-
essary (say for battery-operated drones). Concurrent work [14] has
shown the feasibility of learning configurations for live streaming
applications.

9 CONCLUSION
In this work, we introduced REACT— a novel approach that lever-
ages both edge and cloud resources to improve live video analytics
applications. Unlike prior work that optimizes cloud or edge-only
inference, our approach combines edge and cloud inference results
to improve overall accuracy. REACT utilizes higher accuracy object
detections from the cloud to improve the past edge detections and
cascade these to current predictions on edge. REACT is flexible, re-
silient to network latency, cost-effective, and scalable. We evaluated
the efficacy of our approach on two challenging real world datasets
and showed that our edge-cloud fusion approach can achieve higher
accuracy than edge-only and cloud-only scenarios. In particular,
by leveraging redundant computations at the cloud, our approach
outperforms baseline algorithms by as much as 50%.

REFERENCES
[1] Ganesh Ananthanarayanan, Victor Bahl, Landon Cox, Alex Crown, Shadi Nog-

bahi, and Yuanchao Shu. 2019. Demo: Video Analytics-Killer App for Edge
Computing. In Proc. ACM MobiSys.

[2] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V Krishnamurthy, and
Amit K Roy-Chowdhury. 2019. Frugal following: Power thrifty object detection
and tracking for mobile augmented reality. In Proc. SenSys. 96–109.

[3] Ashwin Ashok, Peter Steenkiste, and Fan Bai. 2015. Enabling vehicular ap-
plications using cloud services through adaptive computation offloading. In
Proceedings of the 6th International Workshop on Mobile Cloud Computing and
Services. 1–7.

[4] Mohammad Farhadi Bajestani and Yezhou Yang. 2020. TKD: Temporal Knowledge
Distillation for Active Perception. In Proc. WACV. 953–962.

[5] Ravi Bhandari, Akshay Uttama Nambi, Venkata N Padmanabhan, and Bhaskaran
Raman. 2018. DeepLane: camera-assisted GPS for driving lane detection. In Proc.
BuildSys. 73–82.

[6] Erik Bochinski, Volker Eiselein, and Thomas Sikora. 2017. High-speed tracking-
by-detection without using image information. In 2017 14th IEEE international
conference on advanced video and signal based surveillance (AVSS). IEEE, 1–6.

[7] Daniel Bolya, Sean Foley, James Hays, and Judy Hoffman. 2020. Tide: A general
toolbox for identifying object detection errors. In Proc. ECCV.

[8] Rainer E Burkard and Ulrich Derigs. 1980. The linear sum assignment problem.
In Assignment and Matching Problems: Solution Methods with FORTRAN-Programs.

Springer, 1–15.
[9] Zhengping Che, Guangyu Li, Tracy Li, Bo Jiang, Xuefeng Shi, Xinsheng Zhang,

Ying Lu, Guobin Wu, Yan Liu, and Jieping Ye. 2019. D2-City: A Large-Scale Dash-
cam Video Dataset of Diverse Traffic Scenarios. arXiv preprint arXiv:1904.01975
(2019).

[10] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,
Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng,
Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and
Dahua Lin. 2019. MMDetection: OpenMMLab Detection Toolbox and Benchmark.
arXiv preprint arXiv:1906.07155 (2019).

[11] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proc. SenSys. 155–168.

[12] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. Clonecloud: elastic execution between mobile device and cloud. In
Proceedings of the sixth conference on Computer systems. 301–314.

[13] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. IJCV
88, 2 (2010).

[14] Anurag Ghosh, Akshay Nambi, Aditya Singh, Harish YVS, and Tanuja Ganu.
2021. Adaptive streaming perception using deep reinforcement learning. arXiv
preprint arXiv:2106.05665 (2021).

[15] Google. 2020. Google Coral USB Accelerator. https://coral.ai/products/
accelerator.

[16] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[17] JonatanHeyman, Carl Byström, JoakimHamrén, andHugoHeyman. 2020. Locust:
An Open Source Load Testing Tool. https://locust.io/

[18] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al.
2017. Speed/accuracy trade-offs for modern convolutional object detectors. In
Proc. CVPR.

[19] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1 (2017), 6869–6898.

[20] Intel. 2020. Intel Neural Compute Stick 2. https://software.intel.com/en-us/neural-
compute-stick.

[21] Srinivasan Iyengar, Ravi Raj Saxena, Joydeep Pal, Bhawana Chhaglani, Anurag
Ghosh, Venkata N Padmanabhan, and Prabhakar T Venkata. 2021. Holistic energy
awareness for intelligent drones. In Proc. BuildSys.

[22] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and
Ion Stoica. 2018. Chameleon: scalable adaptation of video analytics. In Proc.
SIGCOMM. 253–266.

[23] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615–629.

[24] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[25] Mengtian Li, Yu-Xiong Wang, and Deva Ramanan. 2020. Towards Streaming
Image Understanding. arXiv preprint arXiv:2005.10420 (2020).

[26] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu,
and Ravi Netravali. 2020. Reducto: On-Camera Filtering for Resource-Efficient
Real-Time Video Analytics. In Proc. SIGCOMM.

[27] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin Zhong. 2016.
RedEye: analog ConvNet image sensor architecture for continuous mobile vision.
ACM SIGARCH Computer Architecture News 44, 3 (2016).

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proc. ICCV.

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Proc. ECCV.

[30] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time object
detection for mobile augmented reality. In Proc. MobiCom. 1–16.

[31] Alan Lukezic, Tomas Vojir, Luka Cehovin Zajc, Jiri Matas, and Matej Kristan.
2017. Discriminative correlation filter with channel and spatial reliability. In Proc.
CVPR.

[32] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate record-and-
replay for {HTTP}. In USENIX ATC. 417–429.

[33] Nvidia. 2020. Meet Jetson, the Platform for AI at the Edge. https://developer.
nvidia.com/embedded-computing.

[34] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. 2018.
Deepdecision: A mobile deep learning framework for edge video analytics. In
Proc. INFOCOM.

https://coral.ai/products/accelerator
https://coral.ai/products/accelerator
https://locust.io/
https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/neural-compute-stick
https://developer.nvidia.com/embedded-computing
https://developer.nvidia.com/embedded-computing

IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkata N Padmanabhan

[35] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only
look once: Unified, real-time object detection. In Proc. CVPR. 779–788.

[36] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In Proc. NeurIPS.
91–99.

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proc. CVPR.

[38] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.
2009. The case for vm-based cloudlets in mobile computing. IEEE pervasive
Computing 8, 4 (2009), 14–23.

[39] Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen Cheng, Yuhong Li,
Kyle Rupnow, Jinjun Xiong, Thomas Huang, Honghui Shi, et al. 2020. Skynet:

a hardware-efficient method for object detection and tracking on embedded
systems. In Proc. MLSys.

[40] Huajun Zhou, Zechao Li, Chengcheng Ning, and Jinhui Tang. 2017. Cad: Scale
invariant framework for real-time object detection. In Proc. ICCV Workshops.

[41] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. 2019. Objects as points.
arXiv preprint arXiv:1904.07850 (2019).

[42] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Qinghua Hu, and Haibin
Ling. 2020. Vision Meets Drones: Past, Present and Future. arXiv preprint
arXiv:2001.06303 (2020).

[43] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Haibin Ling, Qinghua Hu,
HaotianWu, Qinqin Nie, Hao Cheng, Chenfeng Liu, et al. 2018. Visdrone-vdt2018:
The vision meets drone video detection and tracking challenge results. In Proc.
ECCV Workshops.

	Abstract
	1 Introduction
	2 Background
	3 REACT Design
	3.1 REACT Edge Manager
	3.2 REACT Model Server
	3.3 Edge-Cloud Fusion Unit

	4 Implementation
	5 Evaluation Methodology
	5.1 Dataset Description
	5.2 Performance Metrics
	5.3 Evaluation Setup

	6 Experimental Results
	6.1 Performance Comparison
	6.2 Impact of Network
	6.3 REACT's Scalability
	6.4 REACT Parameter's Analysis
	6.5 Performance on Edge Devices
	6.6 Qualitative Results

	7 Related Work
	8 Implications and Discussions
	9 Conclusion
	References

