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ABSTRACT

The combinatorial pure exploration of causal bandits is the following online learn-
ing task: given a causal graph with unknown causal inference distributions, in
each round we choose a subset of variables to intervene or do no intervention, and
observe the random outcomes of all random variables, with the goal that using as
few rounds as possible, we can output an intervention that gives the best (or almost
best) expected outcome on the reward variable Y with probability at least 1− δ,
where δ is a given confidence level. We provide the first gap-dependent and fully
adaptive pure exploration algorithms on two types of causal models — the binary
generalized linear model (BGLM) and general graphs. For BGLM, our algorithm
is the first to be designed specifically for this setting and achieves polynomial
sample complexity, while all existing algorithms for general graphs have either
sample complexity exponential to the graph size or some unreasonable assumptions.
For general graphs, our algorithm provides a significant improvement on sample
complexity, and it nearly matches the lower bound we prove. Our algorithms
achieve such improvement by a novel integration of prior causal bandit algorithms
and prior adaptive pure exploration algorithms, the former of which utilize the rich
observational feedback in causal bandits but are not adaptive to reward gaps, while
the latter of which have the issue in reverse.

1 INTRODUCTION

Stochastic multi-armed bandits (MAB) is a classical framework in sequential decision making
(Robbins, 1952). In each round, a learner selects one arm based on the reward feedback from the
previous rounds, and receives a random reward of the selected arm sampled from an unknown
distribution, with the goal of accumulating as much rewards as possible. Pure exploration is an
important variant of the multi-armed bandit problem, where the goal is not to accumulate reward but
to identify the best arm through possibly adaptive explorations of arms.

Causal bandits, first introduced by Lattimore et al. (2016), integrates causal inference (Pearl, 2009)
with multi-armed bandits. In causal bandits, we have a causal graph structure G = (X∪{Y }∪U , E),
where X ∪ {Y } are observable causal variables with Y being a special reward variable, U are
unobserved hidden variables, and E is the set of causal edges between pairs of variables. For
simplicity, we consider binary variables in this paper. The arms are the interventions on variables
S ⊆ X together with the choice of null intervention (natural observation), i.e. the action set is
A ⊆ {a = do(S = s) | S ⊆ X, s ∈ {0, 1}|S|} with do() ∈ A, where do(S = s) is the standard
notation for intervening the causal graph by setting S to s (Pearl, 2009), and do() means null
intervention. The reward of an action a is the random outcome of Y , and thus the expected reward is
E[Y | a = do(S = s)]. In each round, one action in A is played, and the random outcomes of all
variables in X ∪ {Y } are observed. Given the causal graph G but without knowing the distributions
among nodes, the task of combinatorial pure exploration (CPE) of causal bandits is to select actions
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in each round, observe the feedback from all observable random variables, so that in the end the
learner can identify the best or nearly best actions. Causal bandits are useful in many real scenarios.
In drug testing, the physicians wants to adjust the dosage of some particular drugs to treat the patient.
In policy design, the policy-makers select different actions to reduce the spread of disease.

Existing studies on CPE of causal bandits either requires the knowledge of P (Pa(Y ) | a) for all
action a or only consider causal graphs without hidden variables, and the algorithms proposed are not
fully adaptive to reward gaps (Lattimore et al., 2016; Yabe et al., 2018). In this paper, we study fully
adaptive pure exploration algorithms and analyze their gap-dependent sample complexity bounds
in the fixed-confidence setting. More specifically, given a confidence bound δ ∈ (0, 1) and an error
bound ε, we aim at designing adaptive algorithms that output an action such that with probability at
least 1− δ, the expected reward difference between the output and the optimal action is at most ε.
The algorithms should be fully adaptive in the follow two senses. First, it should adapt to the reward
gaps between suboptimal and optimal actions similar to existing adaptive pure exploration bandit
algorithms, such that actions with larger gaps should be explored less. Second, it should adapt to the
observational data from causal bandit feedback, such that actions with enough observations already
do not need further interventional rounds for exploration, similar to existing causal bandit algorithms.
We are able to integrate both types of adaptivity into one algorithmic framework, and with interaction
between the two aspects, we achieve better adaptivity than either of them alone.

First we introduce a particular term named gap-dependent observation threshold, which is a non-
trivial gap-dependent extension for a similar term in Lattimore et al. (2016). Then we provide two
algorithms, one for the binary generalized linear model (BGLM) and one for the general model with
hidden variables. The sample complexity of both algorithms contains the gap-dependent observation
threshold that we introduced, which shows significant improvement comparing to the prior work.
In particular, our algorithm for BGLM achieves a sample complexity polynomial to the graph size,
while all prior algorithms for general graphs have exponential sample complexity; and our algorithm
for general graphs match a lower bound we prove in the paper. To our best knowledge, our paper
is the first work considering a CPE algorithm specifically designed for BGLM, and the first work
considering CPE on graphs with hidden variables, while all prior studies either assume no hidden
variables or assume knowing distribution P (Pa(Y ) | a) for the parents of reward variable Pa(Y )
and all action a, which is not a reasonable assumption.

To summarize, our contribution is to propose the first set of CPE algorithms on causal graphs with
hidden variables and fully adaptive to both the reward gaps and the observational causal data. The
algorithm on BGLM is the first to achieve a gap-dependent sample complexity polynomial to the
graph size, while the algorithm for general graphs improves significantly on sample complexity and
matches a lower bound. Due to the space constraint, further materials including experimental results,
an algorithm for the fixed-budget setting, and all proofs are moved to the appendix.

Related Work. Causal bandit is proposed by Lattimore et al. (2016), who discuss the simple regret
for parallel graphs and general graphs with known probability distributions P (Pa(Y ) | a). Nair et al.
(2021) extend algorithms on parallel graphs to graphs without back-door paths, and Maiti et al. (2021)
extend the results to the general graphs. All of them either regard P (Pa(Y ) | a) as prior knowledge,
or consider only atomic intervention. The study by Yabe et al. (2018) is the only one considering
the general graphs with combinatorial action set, but their algorithm cannot work on causal graphs
with hidden variables. All the above pure exploration studies consider simple regret criteria that
is not gap-dependent. Cumulative regret is considered in (Lu et al., 2020; Nair et al., 2021; Maiti
et al., 2021). To our best knowledge, Sen et al. (2017) is the only one discussing gap-dependent
bound for pure exploration of causal bandits for the fixed-budget setting, but it only considers the
soft interventions (changing conditional distribution P (X|Pa(X))) on one single node, which is
different from causal bandits defined in Lattimore et al. (2016).

Pure exploration of multi-armed bandit has been extensively studied in the fixed-confidence or fixed-
budget setting (Audibert et al., 2010; Kalyanakrishnan et al., 2012; Jamieson et al., 2013; Jamieson
& Nowak, 2014). PAC pure exploration is a generalized setting aiming to find the ε-optimal arm
instead of exactly optimal arm (Even-Dar et al., 2002; Mannor & Tsitsiklis, 2004). In this paper, we
utilize the adaptive LUCB algorithm in (Kalyanakrishnan et al., 2012). CPE has also been studied
for multi-armed bandits and linear bandits, etc.(Karnin et al. (2013b); Chen et al. (2014); Du et al.
(2021)), but the feedback model in these studies either have feedback at the base arm level or have
full or partial bandit feedback, which are all different from the causal bandit feedback.
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The binary generalized linear model (BGLM) is studied in (Li et al., 2017; Feng & Chen, 2022) for
cumulative regret MAB problems. We borrow the maximum likelihood estimation method and its
result in (Li et al., 2017; Feng & Chen, 2022) for our BGLM part, but its integration with our adaptive
sampling algorithm for the pure exploration setting is new.

2 MODEL AND PRELIMINARIES

Causal Models. From Pearl (2009), a causal graph G = (X ∪ {Y } ∪U , E) is a directed acyclic
graph (DAG) with a set of observed random variables X ∪ {Y } and a set of hidden random variables
U , where X = {X1, · · · , Xn}, U = {U1, · · · , Uk} are two set of variables and Y is the special
reward variable without outgoing edges. In this paper, for simplicity, we only consider that Xi’s and
Y are binary random variables with support {0, 1}. For any node V in G, we denote the set of its
parents in G as Pa(V ). The set of values for Pa(X) is denoted by pa(X). The causal influence
is represented by P (V | Pa(V )), modeling the fact that the probability distribution of a node V ’s
value is determined by the value of its parents. Henceforth, when we refer to a causal graph, we mean
both its graph structure (X ∪ {Y } ∪ U , E) and its causal inference distributions P (V | Pa(V ))
for all V ∈X ∪ {Y } ∪U . A parallel graph G = (X ∪ {Y }, E) is a special class of causal graphs
with X = {X1, · · · , Xn}, U = ∅ and E = {X1 → Y,X2 → Y, · · · , Xn → Y }. An intervention
do(S = s) in the causal graph G means that we set the values of a set of nodes S ⊆X to s, while
other nodes still follow the P (V | Pa(V )) distributions. An atomic intervention means that |S| = 1.
When S = ∅, do(S = s) is the null intervention denoted as do(), which means we do not set any
node to any value and just observe all nodes’ values.

In this paper, we also study a parameterized model with no hidden variables: the binary generalized
linear model (BGLM). Specifically, in BGLM, we have U = ∅, and P (X = 1 | Pa(X) =
pa(X)) = fX(θX · pa(X)) + eX , where fX is a strictly increasing function, θX ∈ RPa(X) is the
unknown parameter vector for X , eX is a zero-mean bounded noise variable that guarantees the
resulting probability to be within [0, 1]. To represent the intrinsic randomness of node X not caused
by its parents, we denote X1 = 1 as a global variable, which is a parent of all nodes.

Combinatorial Pure Exploration of Causal Bandits. Combinatorial pure exploration (CPE)
of causal bandits describes the following setting and the online learning task. The causal graph
structure is known but the distributions P (V |Pa(V ))’s are unknown. The action (arm) space A is a
subset of possible interventions on combinatorial sets of variables, plus the null intervention, that
is, A ⊆ {do(S = s) | S ⊆ X, s ∈ {0, 1}|S|} and {do()} ∈ A. For action a = do(S = s), define
µa = E[Y | do(S = s)] to be the expected reward of action do(S = s). Let µ∗ = maxa∈A µa.

In each round t, the learning agent plays one action a ∈ A, observes the sample values Xt =
(Xt,1, Xt,2 · · · , Xt,n) and Yt of all observed variables. The goal of the agent is to interact with
the causal model with as small number of rounds as possible to find an action with the maximum
expected reward µ∗. More precisely, we mainly focus on the following PAC pure exploration with
the gap-dependent bound in the fixed-confidence setting. In this setting, we are given a confidence
parameter δ ∈ (0, 1) and an error parameter ε ∈ [0, 1), and we want to adaptively play actions over
rounds based on past observations, terminate at a certain round and output an action ao to guarantee
that µ∗ − µao ≤ ε with probability at least 1− δ. The metric for this setting is sample complexity,
which is the number of rounds needed to output a proper action ao. Note that when ε = 0, the PAC
setting is reduced to the classical pure exploration setting. We also consider the fixed budget setting
in the appendix, where given an exploration round budget T and an error parameter ε ∈ [0, 1), the
agent is trying to adaptively play actions and output an action ao at the end of round T , so that the
error probability Pr{µao < µ∗ − ε} is as small as possible.

We study the gap-dependent bounds, meaning that the performance measure is related to the reward
gap between the optimal and suboptimal actions, as defined below. Let a∗ be one of the optimal arms.
For each arm a, we define the gap of a as

∆a =

{
µa∗ −maxa∈A\{a∗}{µa}, a = a∗;
µa∗ − µa, a ̸= a∗.

(1)

We further sort the gaps ∆a’s for all arms and assume ∆(1) ≤ ∆(2) · · · ≤ ∆(|A|), where ∆(1) is also
denoted as ∆min.
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3 GAP-DEPENDENT OBSERVATION THRESHOLD

In this section, we introduce the key concept of gap-dependent observation threshold, which is
instrumental to the fix-confidence algorithms in the next two sections. Intuitively, it describes for any
action a whether we can derive its reward from pure observations of the causal model.

We assume that Xi’s are binary random variables. First, we describe terms qa ∈ [0, 1] for each
action a ∈ A, which can have different definitions in different settings. Intuitively, qa represents
how easily the action a is to be estimated by observation. For example, in Lattimore et al. (2016),
for parallel graph with action set A = {do(Xi = x) | 1 ≤ i ≤ n, x ∈ {0, 1}} ∪ {do()}, for
action a = do(Xi = x), qa = P (Xi = x) represents the probability for action do(Xi = x) to be
observed, since in parallel graph we have P (Y | Xi = x) = P (Y | do(Xi = x)). Thus, when
qa = P (Xi = x) is larger, it is easier to estimate P (Y | do(Xi = x)) by observation. We will
instantiate qa’s for BGLM and general graphs in later sections. For a = do(), we always set qa = 1.
Then, for set qa, a ∈ A we define the observation thershold as follows:
Definition 1 (Observation threshold Lattimore et al. (2016)). For a given causal graph G and its
associated {qa | a ∈ A}, the observation threshold m is defined as:

m = min{τ ∈ [|A|] : |{a ∈ A | qa < 1/τ}| ≤ τ}. (2)

The observation threshold can be equivalently defined as follows: When we sort {qa | a ∈ A} as
q(1) ≤ q(2) ≤ · · · ≤ q|A|, m = min{τ : q(τ+1) ≥ 1

τ }. Note that m ≤ |A| always holds since
qdo() = 1. In some cases, m≪ |A|. For example, in parallel graph, when P (Xi = 1) = P (Xi =

0) = 1
2 for all i ∈ [n], qdo(Xi=1) = qdo(Xi=0) = 1

2 , qdo() = 1.Then m = 2 ≪ 2n + 1 = |A|.
Intuitively, when we collect passive observation data without intervention, arms corresponding to
q(j) with j ≤ m are under observed while arms corresponding to q(j) with j > m are sufficiently
observed and can be estimated accurately. Thus, for convenience we name m as the observation
threshold (the term is not given a name in Lattimore et al. (2016)).

In this paper, we improve the definition of m to make it gap-dependent, which would lead to a better
adaptive pure exploration algorithm and sample complexity bound. Before introducing the definition,
we first define the term Hr. Sort the arm set as qa1

·max{∆a1
, ε/2}2 ≤ qa2

·max{∆a2
, ε/2}2 ≤

· ≤ qa|A| ·max{∆a|A| , ε/2}2, then Hr is defined by

Hr =

r∑
i=1

1

max{∆ai
, ε/2}2

. (3)

Definition 2 (Gap-dependent observation threshold). For a given causal graph G and its associated
qa’s and ∆a’s, the gap-dependent observation threshold mε,∆ is defined as:

mε,∆ = min

{
τ ∈ [|A|] :

∣∣∣∣∣
{
a ∈ A

∣∣∣∣∣qa ·max {∆a, ε/2}2 <
1

Hτ

}∣∣∣∣∣ ≤ τ

}
. (4)

The Gap-dependent observation threshold can be regarded as a generalization of the observation
threshold. Intuitively, when considering the gaps, qa · max{∆a, ε/2}2 represents how easily the
action a would to be distinguished from the optimal arm. To show the relationship between mε,∆

and m, we provide the following lemma. The proof of Lemma is in Appendix D.1.
Lemma 1. mε,∆ ≤ 2m.

Lemma 1 shows that mε,∆ = O(m). In many real scenarios, mε,∆ might be much smaller than m.
Consider some integer n with 4 < n < |A|, ϵ < 1/n, qa = 1

n for a ∈ A \ {do()} and qdo() = 1.
Then m = n. Now we consider ∆a1

= ∆a2
= 1

n , while other arms a have ∆a = 1
2 . Then Hr ≥ n2

for all r ≥ 1. Then for a ̸= a1, a2, we have qa ·max{∆a, ε/2}2 ≥ 1
4n > 1

Hr
, which implies that

mε,∆ = 2. This lemma will be used to show that our result improves previous causal bandit algorithm
in Lattimore et al. (2016).

4 COMBINATORIAL PURE EXPLORATION FOR BGLM

In this section, we discuss the pure exploration for BGLM, a general class of causal graphs with
a linear number of parameters, as defined in Section 2. In this section, we assume U = ∅. Let
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θ∗ = (θ∗
X)X∈X∪{Y } be the vector of all weights. Since X1 is a global variable, we only need to

consider the action set A ⊆ {do(S = s) | S ⊆ X \ {X1}, s ∈ {0, 1}|S|}. Following Li et al.
(2017); Feng & Chen (2022), we have three assumptions:
Assumption 1. For any X ∈ X ∪ {Y }, fX is twice differentiable. Its first and second order
derivatives can be upper bounded by constant M (1) and M (2).
Assumption 2. κ := infX∈X∪{Y },v∈[0,1]Pa(X),||θ−θ∗

X ||≤1 ḟX(v · θ) > 0 is a positive constant.

Assumption 3. There exists a constant η > 0 such that for any X ∈X ∪ {Y } and X ′ ∈ Pa(X),
for any v ∈ {0, 1}|Pa(X)−2| and x ∈ {0, 1}, we have

Pr[X ′ = x | Pa(X) \ {X ′, X1} = v] ≥ η. (5)

Assumptions 1 and 2 are the classical assumptions in generalized linear model Li et al. (2017).
Assumption 3 makes sure that each parent node of X has some freedom to become 0 and 1 with a
non-zero probability, even when the values of all other parents of X are fixed, and it is originally
given in Feng & Chen (2022) with additional justifications. Henceforth, we use σ(θ, a) to denote the
reward µa on parameter θ.

Our main algorithm, Causal Combinatorial Pure Exploration-BGLM (CCPE-BGLM), is given in
Algorithm 1. The algorithm follows the LUCB framework Kalyanakrishnan et al. (2012), but has
several innovations. In each round t, we play three actions and thus it corresponds to three rounds
in the general CPE model. In each round t, we maintain µ̂t

O,a and µ̂t
I,a as the estimates of µa from

the observational data and the interventional data, respectively. For each estimate, we maintain its
confidence interval, [Lt

O,a, U
t
O,a] and [Lt

I,a, U
t
I,a] respectively.

At the beginning of round t, similar to LUCB, we find two candidate actions, one with the highest
empirical mean so far, at−1

h ; and one with the highest UCB among the rest, at−1
l . If the LCB of at−1

h

is higher than the UCB of at−1
l with an ε error, then the algorithm could stop and return at−1

h as
the best action. However, the second stopping condition in line 5 is new, and it is used to guarantee
that the observational estimates µ̂t

O,a’s are from enough samples. If the stopping condition is not
met, we will do three steps. The first step is the novel observation step comparing to LUCB. In this
step, we do the null intervention do(), collect observational data, use maximum-likelihood estimate
adapted from Li et al. (2017); Feng & Chen (2022) to obtain parameter estimate θ̂t, and then use θ̂t
to compute observational estimate µ̂t

O,a = σ(θ̂t, a) for all action a, where σ(θ̂t, a) means the reward
for action a on parameter θ̂t. This can be efficiently done by following the topological order of nodes
in G and parameter θ̂t. From µ̂t

O,a, we obtain the confidence interval [Lt
O,a, U

t
O,a] using the bonus

term defined later in Eq.(8). In the second step, we play the two candidate actions at−1
h and at−1

l
and update their interventional estimates and confidence intervals, as in LUCB. In the third step, we
merge the two estimates together and set the final estimate µ̂t

a to be the mid point of the intersection
of two confidence intervals. While the second step follows the LUCB, the first and the third step
are new, and they are crucial for utilizing the observational data to obtain quick estimates for many
actions at once.

Utilizing observational data has been explored in past causal bandit studies, but they separate the
exploration from observations and the interventions into two stages (Lattimore et al., 2016; Nair
et al., 2021), and thus their algorithms are not adaptive and cannot provide gap-dependent sample
complexity bounds. Our algorithm innovation is in that we interleave the observation step and the
intervention step naturally into the adaptive LUCB framework, so that we can achieve an adaptive
balance between observation and intervention, achieving the best of both worlds.

To get the confidence bound for BGLM, we use the following lemma from Feng & Chen (2022):
Lemma 2. For an action a = do(S = s) and any two weight vectors θ and θ′, we have

|σ(θ, a)− σ(θ′, a)| ≤ Ee

 ∑
X∈NS,Y

|V ⊤
X(θX − θ′

X)|M (1)

 , (6)

where NS,Y is the set of all nodes that lie on all possible paths from X1 to Y excluding S, V X

is the value vector of a sample of the parents of X according to parameter θ, M (1) is defined in
Assumption 1, and the expectation is taken on the randomness of the noise term e = (eX)X∈X∪{Y }
of causal model under parameter θ.
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Algorithm 1 CCPE-BGLM(G,A, ε, δ,M (1),M (2), κ, η, c)

1: Input:causal general graph G, action set A, parameter ε, δ,M (1),M (2), κ, η, c in Assumptions
1,2, 3 and Lemma 4 .

2: Initialize M0,X = I for all node X . Na = 0, µ̂0
a = 0, L0

a = −∞, U0
a =∞ for arms a ∈ A.

3: for t = 1, 2, · · · , do
4: at−1

h = argmaxa∈A µ̂t−1
a , at−1

l = argmaxa∈A\{at−1
h } U

t−1
a .

5: if U t−1

at−1
l

≤ Lt−1

at−1
h

+ ε and t ≥ max{ cDη2 log nt2

δ , 1024(M(2))2(4D2−3)D
κ4η (D2 + log 3nt2

δ )} then

6: return at−1
h .

7: end if
8: /* Step 1. Conduct a passive observation and estimate from the observational data */
9: Perform action do() and observe Xt and Yt. For a = do(), Na = Na + 1.

10: θ̂t = BGLM-estimate((X1, Y1), · · · , (Xt, Yt)).
11: For a = do(S = s) ∈ A, calculate µ̂O,a = σ(θ̂t,S), and [Lt

O,a, U
t
O,a] = [µ̂O,a −

βa
O(t), µ̂O,a + βa

O(t)]. /* βa
O(t) is defined in Eq.(8) */

12: /* Step 2. Do two interventions and estimate from the interventional data */
13: Perform actions at−1

l and at−1
h , get the reward Y

(l)
t and Y

(h)
t .

14: Nat−1
l

= Nat−1
l

+ 1, Nat−1
h

= Nat−1
h

+ 1.

15: For a ∈ {at−1
l , at−1

h , do()}, update the empirical mean
16: µ̂I,a =

∑t
j=1

1
Na

(I{a = aj−1
l }Y (l)

j +I{a = aj−1
h }Y (h)

j +I{a = do()}Yj) and [Lt
I,a, U

t
I,a] =

[µ̂I,a − βI(Na), µ̂I,a + βI(Na)]. /* βI(t) is defined in Eq.(8) */
17: /* Step 3. Merge the observational estimate and the interventional estimate */
18: For a ∈ A, calculate [Lt

a, U
t
a] = [Lt

O,a, U
t
O,a] ∩ [Lt

I,a, U
t
I,a] and µ̂t

a =
Lt

a+Ut
a

2 .
19: end for

The key idea in the design and analysis of the
algorithm is to divide the actions into two sets —
the easy actions and the hard actions. Intuitively,
the easy actions are the ones that can be easily
estimated by observational data, while the hard
actions require direction playing these actions
to get accurate estimates. The quantity qa men-
tioned in Section 3 indicates how easy is action
a, and it determines the gap-dependent obser-
vational threshold mε,∆ (Definition 2), which
essentially gives the number of hard actions. In
fact, the set of actions in Eq.(4) with τ = mε,∆

is the set of hard actions and the rest are easy
actions. We need to define qa representing the
hardness of estimation for each a.

Algorithm 2 BGLM-estimate
1: Input: data pairs

((X1, Y1), (X2, Y2), · · · , (Xt, Yt))
2: Construct (V t,X , Xt) for each X , where

V t,X is the value of parent of X at round t,
Xt is the value of X at round t.

3: for X ∈X ∪ {Y } do
4: Mt,X = Mt−1,X + V t,XV ⊤

t,X , cal-
culate θ̂t,X by solving

∑t
i=1(Xi −

fX(V T
i,X θ̂t,X))V i,X = 0.

5: end for
6: return θ̂t.

For CCPE-BGLM, we define its q
(L)
a as follows. Let D = maxX∈X∪{Y } |Pa(X)|. For node

S ⊆X , let ℓS = |NS,Y |. Then for a = do(S = s), we define

q(L)
a =

1

ℓ2SD
3
. (7)

Intuitively, based on Lemma 2 and ℓS = |NS,Y |, a large ℓS means that the right-hand side of
Inequality (6) could be large, and thus it is difficult to estimate µa accurately. Hence the term q

(L)
a

represents how easy it is to estimate for action a. Note that q(L)
a only depends on the graph structure

and set S. We can define m(L) and m
(L)
ε,∆ with respect to q

(L)
a ’s by Definitions 1 and 2. We use two

confidence radius terms as follows, one from the estimate of the observational data, and the other
from the estimate of the interventional data.

βa
O(t) =

αOM
(1)D1.5

κ
√
η

√
1

q
(L)
a t

log
3nt2

δ
, βI(t) = αI

√
1

t
log
|A| log(2t)

δ
. (8)
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Parameters αO and αI are exploration parameters for our algorithm. For a theoretical guarantee, we
choose αO = 6

√
2 and αI = 2, but more aggressive αO and αI could be used in experiments. (e.g.

Mason et al. (2020), Kaufmann et al. (2016a), Jamieson et al. (2013)) The sample complexity of
CCPE-BGLM is summarized in the following theorem.
Theorem 1. With probability 1− δ, our CCPE-BGLM(G,A, ε, δ/2) returns an ε-optimal arm with
sample complexity

T = O

(
H

m
(L)
ε,∆

log
|A|H

m
(L)
ε,∆

δ

)
, (9)

where m
(L)
ε,∆, Hm

(L)
ε,∆

are defined in Definition 2 and Eq.(3) in terms of q(L)
a ’s for a ∈ A \ {do()}

defined in Eq.(7).

If we treat the problem as a naive |A|-arms bandit, the sample complexity of LUCB1 is Õ(H) =

Õ(
∑

a∈A
1

max{∆a,ε/2}2 ), which may contain an exponential number of terms. Now note that q(L)
a ≥

1
n5 , it is easy to show that m(L)

ε,∆ ≤ 2n5. Hence H
m

(L)
ε,∆

contains only a polynomial number of terms.

Other causal bandit algorithms also suffer an exponential term, unless they rely on a strong and
unreasonable assumption as describe in the related work. We achieve an exponential speedup by
(a) a specifically designed algorithm for the BGLM model, and (b) interleaving observation and
intervention and making the algorithm fully adaptive.

The idea of the analysis is as follows. First, for the mε,∆ hard actions, we rely on the adaptive LUCB
to identify the best, and its sample complexity according to LUCB is O(H

m
(L)
ε,∆

log(|A|H
m

(L)
ε,∆

/δ)).

Next, for easy actions, we rely on the observational data to provide accurate estimates. According
to Eq.(4), every easy action a has the property that qa · max{∆a, ε/2}2 ≥ 1/Hmε,∆

. Using this
property together with Lemma 2, we would show that the sample complexity for estimating easy
action rewards is also O(H

m
(L)
ε,∆

log(|A|H
m

(L)
ε,∆

/δ)). Finally, the interleaving of observations and

interventions keep the samply complexity in the same order.

5 COMBINATORIAL PURE EXPLORATION FOR GENERAL GRAPHS

5.1 CPE ALGORITHM FOR GENERAL GRAPHS

In this section, we apply a similar idea to the general graph setting, which further allows the
existence of hidden variables. The first issue is how to estimate the causal effect (or the do effect)
E[Y | do(S = s)] in general causal graphs from the observational data. The general concept of
identifiability (Pearl, 2009) is difficult for sample complexity analysis. Here we use the concept of
admissible sequence (Pearl, 2009) to achieve this estimation.
Definition 3 (Admissible sequence). An admissible sequence for general graph G with respect to Y
and S = {X1, · · · , Xk} ⊆X is a sequence of sets of variables Z1, · · ·Zk ⊆X such that

(1) Zi consists of nondescendants of {Xi, Xi+1, · · · , Xk},
(2) (Y ⊥⊥ Xi | X1, · · · , Xi−1,Z1, · · · ,Zi)GXi,Xi+1,··· ,Xk

, where GX means graph G without
out-edges of X , and GX means graph G without in-edges of X .

Then, for S = {X1, · · · , Xk}, s = {x1, · · · , xk}, we can calculate E[Y | do(S = s)] by

E[Y | do(S = s)] =
∑
z

P (Y = 1 | S = s,Zi = zi, i ≤ k)

· P (Z1 = z1) · · ·P (Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1), (10)

where z means the value of ∪ki=1Zi, and zi means the projection of z on Zi. For a = do(S = s)
with |S| = k, we use {Za,i}ki=1 to denote the admissible sequence with respect to Y and S , and
Za = ∪ki=1Za,i. Za = |Za| and Z = maxa Za. In this paper, we simplify Za,i to Zi if there is no
ambiguity.

For any P ⊆X , denote P t = Xt|P as the projection of Xt on P . We define

7
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Algorithm 3 CCPE-General(G,A, ε, δ)

1: Input:causal graph G, action set A, parameter ε, δ, admissible sequence {(Za)i} for each action
a ∈ A

2: Initialize t = 1, Ta = 0, Ta,z = 0, Na = 0, µ̂a = 0 for all arms a ∈ A, z ∈ {0, 1}z , z ∈ [|X|].
3: for t = 1, 2, · · · , do
4: at−1

h = argmaxa∈A µ̂t−1
a , at−1

l = argmaxa∈A\at−1
h

(U t−1
a )

5: if Uat−1
l
≤ Lat−1

h
+ ε then

6: return at−1
h

7: end if
8: /* Step 1. Conduct a passive observation and estimate from the observational data */
9: Perform do() operation and observe Xt and Yt. For a = do(), Na = Na + 1.

10: for a = do(S = s) ∈ A \ {do()} with an admissible sequence and S = {X1, · · · , Xk}, s =
{x1, · · · , xk} do

11: Estimate µ̂O,a using (14) and [Lt
O,a, U

t
O,a] = [µ̂O,a−βa

O(Ta, t), µ̂O,a +βa
O(Ta)]. /* βa

O(t)
is defined in Eq.(16), Ta,z is defined in Eq.(11) and Ta = minz Ta,z. */

12: end for
13: /* Step 2. Do two interventions and estimate from the interventional data */
14: Perform actions at−1

l and at−1
h , get the reward Y

(l)
t and Y

(h)
t .

15: Nat−1
l

= Nat−1
l

+ 1, Nat−1
h

= Nat−1
h

+ 1.

16: For a ∈ {at−1
l , at−1

h , do()}, update the empirical mean µ̂I,a as Line 16 in Algorithm 1.
17: Update [Lt

I,a, U
t
I,a] = [µ̂I,a − βI(Na), µ̂I,a + βI(Na)]. /* βI(t) is defined in Eq.(16) */

18: /* Step 3. Merge the observational estimate and the interventional estimate */
19: For a ∈ A, calculate [Lt

a, U
t
a] = [Lt

O,a, U
t
O,a] ∩ [Lt

I,a, U
t
I,a] and µ̂t

a =
Lt

a+Ut
a

2 .
20: end for

Ta,z =

t∑
j=1

I{Sj = s, (Za)j = z}, ra,z(t) =
1

Ta,z

t∑
j=1

I{Sj = s, (Za)j = z}Yj (11)

na,z,l(t) =

t∑
j=1

I{(Zi)j = zi, (Xi)j = xi, i ≤ l − 1} (12)

pa,z,l(t) =
1

na,z,l(t)

t∑
j=1

I{(Zl)j = zl, (Zi)j = zi, (Xi)j = xi, i ≤ l − 1} (13)

where the ra,z(t) and pa,z,l(t) are the empirical mean of P (Y | S = s,Za = z) and P (Zl = zl |
Zi = zi, Xi = xi, i ≤ l − 1). Also, we denote Ta = minz Ta,z . Using the above Eq.(10), we
estimate each term of the right-hand side for every z ∈ {0, 1}Za to obtain an estimate for E[Y | a] as
follows:

µ̂O,a =
∑
z

ra,z(t)

k∏
l=1

pa,z,l(t). (14)

For general graphs, there is no efficient algorithm to determine the existence of the admissible
sequence and extract it when it exists. But we could rely on several methods to find admissible
sequences in some special cases. First, we can find the adjustment set, a special case of admissible
sequences. For a causal graph G, Z is an adjustment set for variable Y and set S if and only if
P (Y = 1 | do(S = s)) =

∑
z P (Y = 1 | S = s,Z = z)P (Z = z). There is an efficient

algorithm for deciding the existence of a minimal adjustment set with respect to any set S and Y
and finding it (van der Zander et al., 2019). Second, for general graphs without hidden variables,
the admissible sequence can be easily found by Zj = Pa(Xj) \ (Z1 ∪ · · ·Zj−1 ∪X1 · · · ∪Xj−1)
(See Theorem 4 in Appendix D.2). Finally, when the causal graph satisfies certain properties, there
exist algorithms to decide and construct admissible sequences Dawid & Didelez (2010).

Algorithm 3 provides the pseudocode of our algorithm CCPE-General, which has the same framework
as Algorithm 1. The main difference is in the first step of updating observational estimates, in which
we rely on the do-calculus formula Eq.(10).
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For an action a = do(S = s) without an admissible sequence, define q
(G)
a = 0, meaning that it is

hard to be estimated through observation. Otherwise, define qa as:

q(G)
a = min

z
{qa,z},where qa,z = P (S = s,Za = z),∀z ∈ {0, 1}Za . (15)

Similar to CCPE-BGLM, for a = do(S = s) with |S| = k, we use observational and interventional
confidence radius as:

βa
O(n, t) = αO

√
1

n
log

20k|A|ZaIa log(2t)

δ
;βI(t) = αI

√
1

n
log
|A| log(2t)

δ
, (16)

where αO and αI are exploration parameters, and Ia = 2Za . For a theoretical guarantee, we will
choose αO = 8 and αI = 2. Our sample complexity result is given below.
Theorem 2. With probability 1 − δ, CCPE-General(G,A, ε, δ/5) returns an ε-optimal arm with
sample complexity

T = O

(
H

m
(G)
ε,∆

log
|A|H

m
(G)
ε,∆

δ

)
, (17)

where m
(G)
ε,∆, Hm

(G)
ε,∆

are defined in Definitions 2 and 3 in terms of q(G)
a ’s defined in Eq.(15).

Comparing to LUCB1, since m
(G)
ε,∆ ≤ |A|, our algorithm is always as good as LUCB1. It is easy to

construct cases where our algorithm would perform significantly better than LUCB1. Comparing
to other causal bandit algorithms, our algorithm also performs significantly better, especially when
m

(G)
ε,∆ ≪ m(G) or the gap ∆a is large relative to ε. Some causal graphs with candidate action sets

and valid admissible sequence are provided in Appendix A, and more discussion is in Appendix B.

5.2 LOWER BOUND FOR THE GENERAL GRAPH CASE

To show that our CCPE-General algorithm is nearly minimax optimal, we provide the following lower
bound, which is based on parallel graphs. We consider the following class of parallel bandit instance ξ
with causal graph G = ({X1, · · · , Xn, Y }, E): the action set is A = {do(Xi = x) | x ∈ {0, 1}, 1 ≤
i ≤ n}∪{do()}. The q(G)

a in this case is reduced to q
(G)
do(Xi=x) = P (Xi = x) and qdo() = 1. Sort the

action set as q(G)
a1 ·max{∆a1

, ε/2}2 ≤ q
(G)
a2 ·max{∆a2

, ε/2}2 ≤ · · · ≤ q
(G)
a2n+1 ·max{∆a2n+1

, ε/2}2.
Let pmin = minx∈{0,1}n P (Y = 1 | X = x), pmax = maxx∈{0,1}n P (Y = 1 | X = x). Let
pmax + 2∆2n+1 + 2ε ≤ 0.9, pmin +∆min ≥ 0.1.
Theorem 3. For the parallel bandit instance class ξ defined above, any (ε, δ)-PAC algorithm has
expected sample complexity at least

Ω

((
H

m
(G)
ε,∆−1

− 1

min
i<m

(G)
ε,∆

max{∆ai
, ε/2}2

− 1

max{∆do(),ε/2}2

)
log

(
1

δ

))
. (18)

Theorem 3 is the first gap-dependent lower bound for causal bandits, which needs brand-new
construction and technique. Comparing to the upper bound in Theorem 2, the main factor H

m
(G)
ε,∆

is the same, except that the lower bound subtracts several additive terms. The first term Hmε,∆−1

is almost equal to Hmε,∆
appearing in Eq.(17), except the it omits the last and the smallest additive

term in Hmε,∆
. The second term is to eliminate one term with minimal ∆ai

, which is common in
multi-armed bandit. (Lattimore (2018),Karnin et al. (2013a)) The last term is because do()’s reward
must be in-between µdo(Xi=0) and µdo(Xi=1) and thus cannot be the optimal arm.

6 FUTURE WORK

There are many interesting directions worth exploring in the future. First, how to improve the
computational complexity for CPE of causal bandits is an important direction. Second, one can
consider developing efficient pure exploration algorithms for causal graphs with partially unknown
graph structures. Lastly, identifying the best intervention may be connected with the markov decision
process and studying their interactions is also an interesting direction.
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APPENDIX

A GENERAL CLASSES OF GRAPHS SUPPORTING THEOREM 2

For Theorem 2, in this section we show some graphs with small size of admissible sequence for
all arms, which makes our result much better than previous algorithms. By comparison in the
Appendix B, we show that if 2Z+l ≤ |A|, where Z = maxa Za, l = max{|S| | do(S = s) ∈ A},
our algorithm can perform better than previous classical bandit algorithms.

Two-layer graphs Consider X = A ∪ B, where A = {X1, · · · , Xk} is the set of key variables,
B = {Xk+1 · · · , Xn} are the rest of variables. Now we consider k ≤ 1

2 log2 n, and the edge set is in
E ⊆ {(Xi → Xj) | Xi ∈ A,Xj ∈ A}∪{(Xi → Xj) | Xi ∈ A,Xj ∈ B}∪{(Xi → Y ) | Xi ∈ B}.
There can also exist some hidden confounders between two variables in A, namely, A1 ← U → A2

for unobserved variables U and A1, A2 ∈ A.

Figure 1: An Example of Two-layer Graphs

We define the action set as {do(S = s) | S ⊂ B, |S| ≤ l, s ∈ {0, 1}|S|} for some l. Then, since for
arm do(S = s), A is the adjustment set for it, we know Za ≤ k ≤ 1

2 log2 n for all action a. Then
2Z+l ≤

√
n · 2l <

(
n
l

)
· 2l < |A|.

Consider the scenario in which a farmer wants to optimize the crop yield Lattimore et al. (2016).
A = {X1, X2, · · · , Xk} are key elements influencing crop yields, such as temperature, humidity,
and soil nutrient. B = {Xk+1, · · · , Xn} are different kinds of crops, and Y is the final total reward
collected from all crops. Each kind of crop may be influenced by key elements in A in different ways.
Moreover, the elements in A may have some causal relationships: higher humidity will lead to lower
temperature. The above causal graph represents this problem very well.

Collaborative graphs Consider X = X1 ∪X2 ∪ · · · ∪X l, where each Xi(1 ≤ i ≤ l) has at
most k ≤ 1

2 log n nodes. The edge set is contained in E = {X → Y | X ∈ X} ∪ {Xi → Xj |
Xi, Xj ∈Xt, 1 ≤ t ≤ l}. In each subgraph Xi, we allow the existence of unobserved confounders
between two variables in Xi. (We use dashed arrows to represent the confounders.) We call this class
of graphs collaborative graphs (see Figure 2), since it is modified by Addanki & Kasiviswanathan
(2021) on collaborative causal discovery.

For simplicity, the action set is defined by {do(S = s) | |{S ∩Xi}| ≤ 1, |S| ≤ d}. Then for
a particular S = {Xi1 , Xi2 , · · · , Xid} and i1, · · · , id such that Xij ∈ Xij , 1 ≤ j ≤ d for some
d ∈ [0, l] For these graphs, we know T = ∪dj=1X

ij \ S is a adjustment set (then also a admissible
sequence) for S and Y with |T | ≤ 1

2d log n. Then 2Z < nd/2 · 2d <
(
n/k
d

)
· 2d < |A| when n is

large. Collaborative graphs are useful in many real-world scenarios. For example, many companies
want to cooperate and maximize their profits. Then each subgraph Xi(1 ≤ i ≤ l) represents a
company, and they want to find the best intervention to generate the maximum profit.
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Figure 2: An Example of Collaborative Graphs

Causal Tree Causal tree is a useful structure in real scenario, which is consider in Lu et al. (2021)
and Greenewald et al. (2019). In this class of graph, the underlying causal graph of causal model is a
directed tree, in which all its edges point away from the root. Denote the root as layer 0, and layer
i, Li contains all the nodes with distance i to the root. For simplicity, we assume all unobserved
confounders point to two nodes in same layer. For a set T , its c-component CT means all the nodes
connected to T by only bi-directed edges (confounders) .

For each action set {do(S = s) | S ⊆ X}, we consider S ∩ Li = Si. Then the sequence
Zi = CSi

∪ Pa(CSi
) \ {Z0, · · · , Zi−1, S0, · · · , Si−1} is the admissible sequence. We give an

example in Figure 3. For example, if we consider action do({X3, X4, X8} = s, s ∈ {0, 1}3), then
the admissible sequence is Z1 = {X1, X2},Z2 = ∅,Z3 = {X7}, and we can write

P (Y | do(X3, X4, X8)) =
∑

X1,X2,X7

P (Y | X1, X2, X3, X4, X7, X8)

P (X1, X2)P (X7 | X1, X2, X3, X4).

Figure 3: An Example of Causal Tree with Confounders

B MORE DETAILED COMPARISON OF SAMPLE COMPLEXITY

Here we provide a bit more detailed sample complexity comparison between our Theorem 2 on
general graphs with hidden variables and prior studies.

Compare with LUCB1 algorithm Comparing to LUCB1, since m
(G)
ε,∆ ≤ |A|, our algorithm will

not perform worse than LUCB1. Our algorithm can also perform much better than LUCB1 algorithm
in some cases. For example, when we consider A = {do(S = s) | |S| = k, s ∈ {0, 1}|S|} for
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some constant k, we have |A| =
(
n
k

)
· 2k . Assume Z = maxa Za ≤ c log n for a constant c, and qa

can be approximately Θ( 1
2Za+k ) (qa = minz P (S = s,Za = z)) for all action a. Then we can get

m
(G)
ε,∆ ≈ 2Z+k ≤ nc · 2k = o(|A|). Thus our algorithm performs much better than LUCB1.

Compare with previous causal bandit algorithms Since there is no previous causal bandit
algorithm working on combinatorial action set with hidden variables, we compare two previous
causal bandit algorithms in some special cases. First, compare to Lattimore et al. (2016) with
parallel graph and atomic intervention, we first transfer the simple regret result in (Lattimore et al.,
2016) to sample complexity Õ(m

(G)

ε2 log( 1δ )). For parallel graph and a = do(Xi = x), we know
qa = P (Xi = x) since there is no parent for Xi, and our algorithm result is Õ(Hmε,∆

). Then since
m

(G)
ε,∆ = O(m(G)) and max{∆a, ε/2} ≥ ε/2, our algorithm always perform better. When the gap

∆a is large relative to ε, our algorithm perform much better because of our gap-dependent sample
complexity. Yabe et al. (2018) consider combinatorial intervention on graphs without hidden variables,
so we can compare our algorithm’s result with theirs in this setting. We also transfer their simple
regret result to sample complexity Õ(max{nC,n|A|}

ε2 log(1/δ)), where C =
∑

X∈X∪{Y } 2
|Pa(X)|.

Note that when |Pa(Y )| is large, C ≥ 2|Pa(Y )| can be really large. However, our algorithm even
does not need the knowledge of Pa(Y ). Indeed, considering maxa=do(S=s) |S| = k is a constant,
and assume Z ≤ logC − k and qa = Θ( 1

2Z+k ), we have m
(G)
ε,∆ ≤ Θ(C), then our dominating

term H
(G)
mε,∆ is smaller than nC

ε2 because both max{∆a, ε/2} ≥ ε/2 and |M (G)| = m
(G)
ε,∆ ≤ nC.

Also, at the worst case our algorithm’s sample complexity is not more than Õ( |A|
ε2 log( 1δ )), while the

algorithm in Yabe et al. (2018) may result in Õ(n|A|
ε2 log(1/δ)). The experiments are provided in

Appendix E.

In summary, when compared to prior studies on causal bandit algorithms, our algorithm wins when the
reward gaps are relatively large or the size of the admissible sequence is small; and when compared
to prior studies on adaptive pure exploration algorithms, our algorithm wins by estimating do effects
using observational data and saving estimates on those easy actions.

C PROOF OF THEOREMS

C.1 PROOF OF THEOREM 1

Proof. We first provide a lemma in Li et al. (2020) to show the confidence for the maximum likelihood
estimation.

Lemma 3. For one node X ∈X ∪ {Y }, assume Assumption 1 and 2 holds, and

λmin(Mt,X) ≥ 512D(M (2))2

κ4
(D2 + ln

3nt2

δ
),

with probability 1 − δ/nt2, for any vector v ∈ R|Pa(X)|, at all rounds t the estimator θ̂t,X in
Algorithm 2 satisfy

|v⊤(θ̂t,X − θ∗
X)| ≤ 3

κ

√
log(3nt2/δ)||v||M−1

t,X
.

Since we need to estimate θt,X for all nodes, let F1 be the event that the above inequality doesn’t
hold, then by union bound, Pr{F1} ≤ n

∑
t>1

δ
nt2 ≤ δ.(We can consider t > 1) Now from Feng &

Chen (2022), the true mean σ(θ̂t, Xi) and our estimation σ(θ∗, Xi) can be bounded by Lemma 2.
We rewrite the Lemma 2 here, and give proof in Appendix D.3.

Lemma 2. For an action a = do(S = s) and any two weight vectors θ and θ′, we have

|σ(θ, a)− σ(θ′, a)| ≤ Ee

 ∑
X∈NS,Y

|V ⊤
X(θX − θ′

X)|M (1)

 , (6)
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where NS,Y is the set of all nodes that lie on all possible paths from X1 to Y excluding S, V X

is the value vector of a sample of the parents of X according to parameter θ, M (1) is defined in
Assumption 1, and the expectation is taken on the randomness of the noise term e = (eX)X∈X∪{Y }
of causal model under parameter θ.

By definition, for any action a = do(M = s), |PS,Y | = ℓa ∈ {1, · · · , n}. We then introduce Lecué
and Mendelson’s Inequality represented in Nie (2021).

Lemma 4 (Nie (2021) Lecué and Mendelson’s Inequality ). Let random column vector v ∈ RD, and
v1, · · · ,vn are n independent copies of v. Assume z ∈ Sphere(D) such that

Pr[|v⊤z| > α1/2] ≥ β,

then there exists a constant c > 0 such that when n ≥ cD
β2

Pr

[
λmin

(
1

n

n∑
i=1

viv
⊤
i

)
≤ αβ

2

]
≤ e−nβ2/c.

This lemma can help us to bound the minimum eigenvalue for Mt,X =
∑

1≤i≤t V t,XV ⊤
t,X . To

satisfy the condition for Lemma 4, we provide a similar lemma in Feng & Chen (2022):

Lemma 5. Under Assumption 3, for any node X ∈X and v ∈ Sphere(|Pa(X)|),

Pr

[
|Pa(X) · z| > 1√

4D2 − 3

]
≥ η.

Proof. The proof is similar to Feng & Chen (2022) with a modification. For completeness, we
provide the full proof below. Let |Pa(X)| = d ≤ D, z = (z1, z2, · · · , zd). Let Pa(X) = (Xi1 =
X1, Xi2 , · · · , Xid) and pa(X) = (xi1 = 1, xi2 , · · · , xid). We denote d0 =

√
d− 1 + 1

2
√
d−1

. If

|z1| ≥ d0√
d2
0+1

, then by Cauchy-Schwarz inequality, we can deduce that

|pa(X) · v| ≥ |z1| −
d∑

i=2

|zi|

≥ d0√
d20 + 1

−

√√√√(d− 1)

d∑
i=2

|zi|2

≥ d0√
d20 + 1

−

√
(d− 1)(1− d20

d20 + 1
)

=
1

2
√

(d20 + 1)(d− 1)

=
1

4d2 − 3
.

Thus when |z1| ≥ d0√
d2
0+1

, |Pa(X) · z| > 1
4d2−3 ≥

1
4D2−3 . If |z1| < d0√

d2
0+1

, assume |z2| =
max2≤i≤d |zi|, then

|z2| ≥
1√
d− 1

√√√√ d∑
i=2

|zi|2 ≥

√
1− (d0/

√
d20 + 1)2

√
d− 1

=
1√

4d2 − 3
. (19)

By Assumption 3

Pr{Xi1 = 1, Xi2 = xi2 , · · · , Xid = xid}
= Pr{Xi2 = xi2 | Xi1 = 1, Xi3 = xi3 , · · · , Xid = xid} · Pr{Xi1 = 1, Xi3 = xi3 , · · · , Xid = xid}
≥ η · Pr{Xi1 = 1, Xi3 = xi3 , · · · , Xid = xid},

15
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we have

Pr

{
|Pa(X) · z| ≥ 1√

4D2 − 3

}
=

∑
xi3

,··· ,xid

Pr{Xi1 = 1, Xi2 = 1, Xi3 = xi3 · · · , Xid = xid} · I
{
|(1, 1, xi3 , · · · , xid) · (z1, · · · , zd)| ≥

1√
4D2 − 3

}

+
∑

xi3
,··· ,xid

Pr{Xi1 = 1, Xi2 = 0, Xi3 = xi3 · · · , Xid = xid} · I
{
|(1, 0, xi3 , · · · , xid) · (z1, · · · , zd)| ≥

1√
4D2 − 3

}

≥ η
∑

xi3
,··· ,xid

Pr{Xi1 = 1, Xi3 = xi3 · · · , Xid = xid} · I
{
|(1, 1, xi3 , · · · , xid) · (z1, · · · , zd)| ≥

1√
4D2 − 3

}

+ η
∑

xi3
,··· ,xid

Pr{Xi1 = 1, Xi3 = xi3 · · · , Xid = xid} · I
{
|(1, 0, xi3 , · · · , xid) · (z1, · · · , zd)| ≥

1√
4D2 − 3

}
≥ η

∑
xi3

,··· ,xid

Pr{Xi1 = 1, i3 = xi3 · · · , Xid = xid}·(
I
{
|(1, 1, xi3 , · · · , xid) · (z1, · · · , zd)| ≥

1√
4D2 − 3

}
+ I
{
|(1, 0, xi3 , · · · , xid) · (z1, · · · , zd)| ≥

1√
4D2 − 3

})
≥ η.

where the last inequality is because∑
xi3

,··· ,xid

Pr{Xi1 = 1, i3 = xi3 · · · , Xid = xid} = 1,

and(
I
{
|(1, 1, xi3 , · · · , xid) · (z1, · · · , zd)| ≥

1√
4D2 − 3

}
+ I
{
|(1, 0, xi3 , · · · , xid) · (z1, · · · , zd)| ≥

1√
4D2 − 3

})
≥ 1.

The above equation is because otherwise

|z2| = |(1, 1, xi3 , · · · , xid) · (z1, · · · , zd)− (1, 0, xi3 , · · · , xid) · (z1, · · · , zd)| <
2√

4D2 − 3
≤ 2√

4d2 − 3
,

which leads to a contradiction of Eq. (19). We thus complete the proof of Lemma 5.

Now let F2 be the event

F2 =

{
∃X ∈X ∪ {Y }, λmin

(
1

t

t∑
i=1

V i,XV ⊤
i,X

)
≤ η

2(4D2 − 3)
, ∀t ≥ cD

η2
log

nt2

δ

}
.

Then

Pr{F2} ≤ n
∑

t≥(cD/η2) log(nt2/δ)

e−tη2/c

≤ n
∑

t≥(cD/η2) log(nt2/δ)

δ

nt2

≤ (
π2

3
− 1)δ

≤ δ.

Now from Lemmas 2, 3 and 4, for all a = do(S = 1), with probability 1 − 2δ, for all t ≥
max{ cDη2 log nt2

δ , 1024(M(2))2(4D2−3)D
κ4η (D2 + ln 1

δ )}, we can deduce that

λmin(Mt,X) ≥ ηt

2(4D2 − 3)
.
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Then

|σ(θ̂t,S)− µa| ≤
∑

X∈PS,Y

|V ⊤
t,X(θ̂t − θ∗)|M (1)

≤ 3M (1)

κ

√
log(3nt2/δ)

∑
X∈PS,Y

||V t,X ||M−1
t,X

≤ 3M (1)

κ

√
log(3nt2/δ)

∑
X∈PS,Y

√
D√

λmin(Mt,X)

≤ 3
√
2M (1)

κ

√
D(4D2 − 3)

√
log(3nt2/δ)

∑
X′∈PS,Y

1√
ηt

≤ 6
√
2M (1)

κ
√
η

√
ℓ2aD

3

t
log(3nt2/δ)

=
6
√
2M (1)

κ
√
η

√
1

qat
log(3nt2/δ)

= βa
O(t).

Now we prove that Algorithm 1 must terminate after ⌈T ⌉ rounds, where T =
1152(M(1))2

κ2η H
m

(L)
ε,∆

log 3nT 2

δ + 16H
m

(L)
ε,∆

log 4|A| log(2T )
δ . In the following proof, we assume F1

and F2 do not happen. Then the true mean will not out of observational confidence bound and
interventional confidence bound.

When t ≥ T1 such that T1 = 1152(M(1))2

κ2η H
m

(L)
ε,∆

log
3nT 2

1

δ , for all a ̸= do() such that q(L)
a ≥

1
H

m
(L)
ε,∆

·max{∆a,ε/2}2 , let βa(t) =
Ut

a−Lt
a

2 , we have

βa(t) :=
U t
a − Lt

a

2
≤ βa

O(⌈T1⌉) ≤
6
√
2M (1)

κ
√
η

√
1

q
(L)
a ⌈T1⌉

log(3nt2/δ) ≤ max{∆a, ε/2}
4

.

Then we provide the following lemma:

Lemma 6. If at round t, we have

βat
h
(t) ≤

max{∆at
h
, ε/2}

4
, βat

l
(t) ≤

max{∆at
l
, ε/2}

4
,

where ath, a
t
l are the actions performed by algorithm at round t. then the algorithm will stop at round

t+ 1.

Proof. From above, if the optimal arm a∗ = ath,

µ̂at
l
+ βat

l
(t) ≤ µat

l
+ 2βat

l
(t)

≤ µat
l
+

max{∆at
l
, ε/2}

2

≤ µat
h
−∆at

l
+

max{∆at
l
, ε/2}

2

≤ µ̂at
h
+ βa∗(Ta∗(t))−∆at

l
+

max{∆at
l
, ε/2}

2

≤ µ̂at
h
− βa∗(Ta∗(t)) +

max{∆a∗ , ε/2}+max{∆at
l
, ε/2}

2
−∆at

l

≤ µ̂at
h
− βa∗(Ta∗(t)) +

∆a∗ + ε/2 + ∆at
l
+ ε/2

2
−∆at

l

17
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≤ µ̂at
h
− βa∗(Ta∗(t)) + ε.

If optimal arm a∗ ̸= ath, and the algorithm doesn’t stop at round t + 1, then we prove a∗ ̸= atl .
Otherwise, assume a∗ = atl

µ̂t
at
h
≤ µt

at
h
+

max{∆at
h
, ε/2}

4
(20)

= µt
at
l
−∆at

h
+

max{∆at
h
, ε/2}

4
(21)

≤ µt
at
l
−

3∆at
h

4
+ ε/4 (22)

≤ µ̂t
at
l
+

max{∆a∗ , ε/2}
4

−
3∆at

h

4
+ ε/4 (23)

≤ µ̂t
at
l
+ ε/2−

∆at
h

2
. (24)

From the definition of ath, we know ε > ∆at
h
≥ ∆a∗ , βat

h
(t) ≤ ε/4, βat

l
(t) ≤ ε/4. Then µ̂t

at
l
+

βat
l
(t) + βat

h
(t) ≤ µ̂at

l
+ ε/2 ≤ µ̂t

at
h
+ ε, which means the algorithm stops at round t+ 1.

Now we can assume a∗ ̸= atl , a
∗ ̸= ath. Then

µat
l
+ 2βat

l
(t) ≥ µ̂at

l
+ βat

l
(t) ≥ µ̂a∗ + βa∗(Ta∗(t)) ≥ µa∗ = µat

l
+∆at

l
. (25)

Thus

∆at
l
≤ 2βat

l
(t) ≤

max{∆at
l
, ε/2}

2
, (26)

which leads to ∆at
l
≤ ε/2, βat

l
(t) ≤ ε/8. Since

Also,

µat
h
+ βat

h
(t) ≥ µ̂at

h
≥ µ̂at

l
≥ µa∗ − βat

l
(t) = µat

h
+∆at

h
− βat

l
(t), (27)

which leads to

max{∆at
h
, ε/2}

4
≥ ∆at

h
− ε/8, (28)

and ∆at
h
≤ ε/2, βat

h
(t) ≤ ε/8. Hence µ̂t

at
l
+ βat

l
(t) + βat

h
(t) ≤ µ̂at

l
+ ε/2 ≤ µ̂t

at
h
+ ε, which means

the algorithm stops at round t+ 1.

Denote Na(t) as the value of variable Na at round t. So by Lemma 6, when t ≥ T1, at each
round at least one intervention will be performed on some actions a with βa(t) ≥ max{∆a,ε/2}

4 ,
which implies that qa < 1

H
m

(L)
ε,∆

·max{∆a,ε/2}2 , and Na(t) ≤ 64
max{∆a,ε/2}2 log

|A| log(2t)
δ (Since

βa(t) ≤ βa
I (t) = 2

√
1
t log

|A| log(2t)
δ ). Denote the set of these arms as M , so we have

T − T1 ≤
∑
a∈M

64

max{∆a, ε/2}2
log
|A| log(2t)

δ

≤ 64(H
m

(L)
ε,∆

) log
|A| log(2t)

δ
,

Hence

T ≤ 1152(M (1))2

κ2η
H

m
(L)
ε,∆

log
3nT 2

δ
+ 64H

m
(L)
ε,∆

log
|A| log(2T )

δ
.

Now we prove a sample complexity bound for Algorithm 1 by the lemma above:

18
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Lemma 7. If T = NQ log 3nT 2

δ + 64Q log |A| log(2T )
δ for some constant N , then T =

O(Q log(Q|A|/δ)).

Proof. Since f(x) = x−NQ log 3nx2

δ −64Q log |A| log(2x)
δ is a increasing function when T ≥ 64Q,

we only need to show that there exists a constant C ≥ 64 such that f(CQ log Q|A|
δ ) ≥ f(T ) = 0.

Then

f(CQ log
Q|A|
δ

) = CQ log
Q|A|
δ
−NQ log

3n

δ
− 2NQ log(

CQ log(Q|A|/δ)
δ

)

− 64Q log
|A| log(2(CQ log(Q|A|/δ)))

δ

≥ (C − 2N logC −N)Q log
Q|A|
δ
− 64Q log

|A|
δ

− (64 + 2N)Q log(log 2C + log(Q logQ|A|/δ))

≥ (C − 2N logC −N − 64)Q log
Q|A|
δ

− (64 + 2N)Q log(log 2CQ)− (64 + 2N)Q log(logQ|A|/δ) (29)
≥ (C − 2N logC −N − 192− (64 + 2N) log log 2C)Q log(Q|A|/δ). (30)

The equation (29) and (30) are based on log(x+ y) ≤ log(xy) = log x+ log y when x, y ≥ 2. Then
choose C such that C − 2N logC − N − 192 − (64 + 2N) log log 2C ≥ 0, so we complete the
proof.

Hence, by Lemma 7 with N = 1152(M(1))2

κ2η , we know the total sample complexity is

T = O(H
m

(L)
ε,∆

log
H

m
(L)
ε,∆

|A|

δ
).

Finally, we prove the correctness of our algorithm. Since the stopping rule is µ̂t
at
l
+ βat

l
(t) ≤

µ̂t
at
h
− βat

h
(t) + ε, if a∗ ̸= ath, we have

µat
h
+ ε ≥ µ̂at

h
− βat

h
(t) + ε ≥ µ̂at

l
+ βat

l
(t) (31)

≥ µ̂a∗ + βa∗(Ta∗(t)) (32)
≥ µa∗ . (33)

Hence either a∗ = ath or ath is ε-optimal arm. Thus, we complete the proof.

C.2 PROOF OF THEOREM 2

Proof. In this proof, we denote Ta,z(t), Ta(t), Na(t) are the value of Ta,z, Ta, Na respectively. For
conveniece, we prove CCPE-General(G, ε, δ) outputs a ε-optimal arm with probability 1− 3δ. For
simplity, we denote H

m
(G)
ε,∆

as H(G). In round t, Ta,z(t) =
∑t

j=1 I{Xj,i = x,Pa(X)j = z}, q̂a,z =

Ta,z(t)
t . By Chernoff bound, at round t such that qa,z(t) ≥ 6

t log
6|A|Ia

δ , with probability at most
δ/3|A|Ia,

|q̂a,z − qa,z| >
√

6qa,z
t

log
6|A|Ia

δ
.

Hence

q̂a = min
z
{q̂a,z} ≤ min

z
{qa,z +

√
6qa,z
t

log
6|A|Ia

δ
} = qa +

√
6qa
t

log
6|A|Ia

δ
. (34)
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When qa ≥ 3
t log

6|A|Ia
δ , f(x) = x−

√
6x
t log 6|A|Ia

δ is a increasing function.

q̂a ≥ min
z
{qa,z −

√
6qa,z
t

log
6|A|Ia

δ
} = qa −

√
6qa
t

log
6|A|Ia

δ
. (35)

Let F1 be the event that at least one of above inequalities doesn’t hold, then Pr{F1} ≤ δ. Now let F2

and F3 be the event that during some round t, when t is large the true mean of an arm is out of range
[Lt

O,a, U
t
O,a] and [Lt

I,a, U
t
I,a] respectively. Following anytime confidence bound,Pr{F3} ≤ δ. By

Lemma 8 and 10 we prove Pr{F2} ≤ 3δ.

To prove the concentration bound, we need the following lemma, which is a Chernoff-type anytime
confidence bound for Bernoulli variables. To our best knowledge, it is the first anytime confidence
bound based on Chernoff inequality.

Lemma 8. For X1, X2, · · · , Xn drawn from Bernoulli distribution with mean µ, denote X̄ =∑n
i=1 Xi, then for all round t we have

P (X − µ > 2

√
3µ

t
log

20 log(2t)

δ
,∀t ≥ 3

µ
log

20 log(2t)

δ
) ≤ 1− δ.

The main proof is achieved by modification on part of Lemma 1 in Jamieson et al. (2013). For

completeness, we provide the full proof here. Let St =
∑t

i=1(Xi−µ) and ϕ(x) =
√
3µx log( log(x)δ ).

We define the sequence {ui}i≥1 as follows: u0 = 1, uk+1 = ⌈(1 + C)uk⌉, where C is a constant.
Then for simple union bound and Chernoff inequality, we have

P (∃k ≥ 1 : Suk
≥
√
1 + Cϕ(uk)) ≤

∞∑
k=1

exp

{
−
(1 + C) · 3µuk log(

log(uk)
δ )

3µ · uk

}

≤ exp

{
−(1 + C) log

(
log(uk)

δ

)}
≤

∞∑
k=1

(
δ

k log(1 + C)

)1+C

≤
(
1 +

1

C

)
log

(
δ

log(1 + C)

)1+C

.

Then we proof Chernoff-type maximal Inequality:

P (∃t ∈ [n], St ≥ x) ≤ exp

{
− x2

3µn

}
. (36)

First, we know {St} is a martingale and then {eSt} is a non-negative submartingale. By Doob’s
submartingale inequality, we have

P ( sup
0≤i≤n

Si ≥ x) = P ( sup
0≤i≤n

eSi ≥ esx) ≤ E[es·Sn ]

esx
=

(µes·(1−µ) + (1− µ)e−sµ)n

esx

=
((1− µ) + µes)n

esx+snµ

≤ enµ·(e
s−1)

esx+snµ
.

Choose s = ln(1 + x
nµ ), by the proof of Chernoff bound with µ ≥ 3

t log
20 log(2t)

δ , we can easily get

P ( sup
0≤i≤n

Si ≥ x) ≤ exp

{
−x2

3µn

}
.
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Now with this inequality, we can derive the lemma.

P (∃t ∈ {uk + 1, · · · , uk+1 − 1} : St − Suk
≥
√
Cϕ(uk+1))

≤ P (∃t ∈ [uk+1 − uk − 1] : St ≥
√
Cϕ(uk+1))

≤ exp

{
−C · uk+1

uk+1 − uk − 1
log

(
log(uk+1)

δ

)}
≤ exp

{
−(1 + C) log

(
log(uk+1)

δ

)}
≤
(

δ

(k + 1) log(1 + C)

)1+C

≤
(

δ

log(1 + C)

)1+C

.

Now with probability at least 1− (2 + 1/C)
(

δ
log(1+C)

)1+C

, for uk ≤ t ≤ uk+1, we have

St = St − Suk
+ Suk

≤
√
Cϕ(uk+1) +

√
1 + Cϕ(uk)

≤ (1 +
√
C)ϕ((1 + C)t).

Now denote δ′ = (2+ 1/C)
(

δ
log(1+C)

)1+C

, δ = log(1+C)
(

Cδ′

2+C

) 1
1+C

, we have with probability
1− δ′

P

St ≥ (1 +
√
C)

√√√√3(1 + C)µt log

((
2 + C

Cδ′

) 1
1+C

· log(1 + C)t

log(1 + C)

) ≤ 1− δ′.

Choose C = 0.25, and note that log(1.25t)
log(1.25) ≤

log(2t)
log 2 , (2.25/0.25)0.8/ log(2) < 10 and 1.5∗

√
1.25 <

2, we complete the lemma’s proof.

Lemma 9. Denote Ta,z,l(t) is the number of observations from round 1 to round t in which Za,i =

zi, Xi = xi, i ≤ l − 1. Then we have Ta,z,l(t) ≥ 2k−l+1+|Za,l|Ta,z(t).

Proof. The proof is straightforward. Since Ta,z(t) is the number of observations from round 1 to
round t in which Zi = zi, Xi = xi, 1 ≤ i ≤ k. Hence the number of observations for Zi =
zi, Xi = xi for i ≤ l − 1 is at least 2|Zl| · 2k−(l−1) · Ta,z(t) = 2k−l+1+|Zl|Ta,z(t)

Lemma 10. With probability 1− 3δ, for all round t,

|µ̂obs,a − µa| < 8

√
1

Ta(t)
log

20kZaIa|A| log(2t)
δ

, (37)

where Ia = 2|Za|.

Proof. If Ta(t) ≤ 12 log 20kZaIa|A| log(2t)
δ , then the right term of (37) is greater than 1, and this

lemma always holds. In this proof, we denote Za,i as Zi for simplity. By classical anytime confidence
bound, we know with probability 1− δ/(k · Ia), for all round t we have

|ra,z(t)− P (Y = 1 | X = x,Za = z)| ≤

√
4

Ta,z(t)
log
|A| log(2t)

δ
.
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First, let s(t) = 20kZaIa|A| log(2t), if t < 6
qa

log(s(t)/δ), then let Q = 6
qa

log(s(t)/δ), based on

Ta(t) ≥ 12 log s(t)
δ , then

P

(
t <

6

qa
log(1/δ)

)
≤ P

(
Ta(Q) ≥ 12 log

s(t)

δ

)
.

Thus by Chernoff bound, we know

P

(
Ta(Q) ≥ 12 log

s(t)

δ

)
= P (q̂a(Q) ≥ 2qa) ≤ δ,

where q̂a(Q) = Ta(Q)
Q .

Hence with probability at least 1 − δ, now we have t ≥ 6
qa

log(s(t)/δ). Also, since P̂ (Zi =

zi, Xi = xi, i ≤ l− 1) = Ta,z,l(t)/t, by Chernoff bound, when t ≥ 6
qa

log(s(t)/δ), with probability

1− exp{−P (Zi=zi,Xi=xi,i≤l−1)·t
3 } ≥ 1− δ, we have

P̂ (Zi = zi, Xi = xi, i ≤ l − 1) ≤ 2P (Zi = zi, Xi = xi, i ≤ l − 1).

Now by Lemma 8 and Lemma 9, with probability 1− δ/(k · Ia), since

P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1) ≥ qa
P (Zi = zi, Xi = xi, i ≤ l − 1)

≥ qa

2P̂ (Zi = zi, Xi = xi, i ≤ l − 1)

≥ qat

2Ta,z,l(t)

≥ 3

Ta,z,l(t)
log

20kIa|A| log(2t)
δ

.

By Lemma 8 we have

|pa,z,l(t)− P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1)|

≤ 2

√
3P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1)

Ta,z,l(t)
log

20kIa|A| log(2t)
δ

≤ 2

√
3P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1)

2k−l+|Zl|+1Ta,z(t)
log

20kZaIa|A| log(2t)
δ

.

Thus by union bound, with probability 1− δ, we have∑
zl

(pa,z,l(t)− P (Zl = zk | Zi = zi, Xi = xi, i ≤ l − 1))

≤
∑

z:pa,z,l(t)≥P (Zl=zl|Zi=zi,Xi=xi,i≤l−1)

(pa,z,l(t)− P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1))

=
1

2

∑
z

|pa,z,l(t)− P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1)| (38)

≤
∑
z

√
3P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1)

2k−l+|Zl|+1Ta,z(t)
log

20kZaIa|A| log(2t)
δ

.

The equation (38) is because
∑

zk
pa,z,k(t) =

∑
z P (Zk = zk | Zi = zi, Xi = xi, i ≤ k−1) = 1.

Now we denote
P̂a,z,l(t) = pa,z,1(t) · · · pa,z,k(t),
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Pa,z,l = P (Z1 = z1) · · ·P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1).

Hence we get

µ̂obs,a (39)

=
∑
z

ra,z(t) · P̂a,z,k(t)

≤
∑
z

ra,z(t) · P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

+
∑
z

ra,z(t)P̂a,z,k−1(t)

√
3P (Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

2|Zk|+1Ta,z(t)
log

20kZaIa|A| log(2t)
δ

≤
∑
z

ra,z(t) · P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

+
∑
z

P̂a,z,k−1(t) ·

√
3P (Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1))

2|Zk|+1Ta,z(t)
log

20kZaIa|A| log(2t)
δ

≤
∑
z

ra,z(t) · P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

+
∑
zk

·

√
3P (Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1))

2|Zk|+1Ta,z(t)
log

20kZaIa|A| log(2t)
δ

≤
∑
z

ra,z(t)P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

+

√
3 · 2|Zk|

2 · 2|Zk|Ta,z(t)
log

20kZaIa|A| log(2t)
δ

(Cauchy-Schwarz Inequality)

≤
∑
z

ra,z(t) · P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1) (40)

+

√
3

2 · Ta,z(t)
log

20kZaIa|A| log(2t)
δ

≤ · · ·

≤
∑
z

ra,z(t)Pa,z,k +

k∑
i=1

√
3

2iTa,z(t)
log

20kZaIa|A| log(2t)
δ

≤ µa +

√
2√

2− 1

√
3

Ta,z(t)
log

20kZaIa|A| log(2t)
δ

+

√
4

Ta,z(t)
log

log(2t)

δ
.

≤ µa + 8

√
1

Ta(t)
log

20kZaIa|A| log(2t)
δ

.

The above inequality holds for probability 1− 3δ.

Thus by union bound, Pr{F2} ≤ 3δ. In later proof, we will always assume that F1, F2

and F3 don’t happen. In this case, true mean µa ∈ [Lt
a, U

t
a] for all rounds t. Denote

T1 = 2048H(G) log(20k|A|H(G) log(2T1)/δ), then when t ≥ T1, for all arm a such that
qa ≥ 1

H(G)·max{∆a,ε/2}2 , note that Ia ≤ 1
qa
≤ H(G), we have

qa ≥
1

H
m

(G)
ε,∆

·max{∆a, ε/2}2
≥ 3

t
log

6|A|Ia
δ

.
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Since F1 doesn’t happen, by (35), |q̂a − qa| ≤
√

6qa
t log 6|A|Ia

δ and√
6qa
t

log
6|A|Ia

δ
≤ qa

2
,

we have q̂a ≥ qa −
√

6qa
t log 6|A|Ia

δ ≥ 1
2H(G)·max{∆a,ε/2}2 .

Hence

Ta(t) = q̂a · t ≥
1024

max{∆a, ε/2}2
log

20kZaIa|A| log(2t)
δ

.

Thus

βO(Ta(t)) =

√
64

Ta(t)
log

20kZaIa|A| log(2Ta(t))

δ

≤ max{∆a, ε/2}
4

,

and by Lemma 10, we know the estimation lies in the confidence interval. Now we prove the main
theorem. The following lemma provides the upper bound of sample complexity

Lemma 11. With probability 1-5δ, the algorithm 3 takes at most ⌈T ⌉ rounds such that T ≥
2112H(G) log 20H(G)|A| log(2t)

δ .

Proof. In the proof we assume F1, F2 and F3 don’t happen. The probability for these events are
1− 5δ. Assume when t = ⌈T ⌉, the algorithm don’t terminate at t rounds.

Then since f(x) = x
log(20k|A|H(G) log(2t)/δ)

is a increasing function, t ≥

2048H(G) log 20H(G)k|A| log(2t)
δ for any t ∈ [T1, T ]. Then from above, for arm a such

that qa ≥ 1
H(G) max{∆a,ε/2}2 , we have βa(t) ≤ βO(Ta(t)) ≤ max{∆a,ε/2}

4 . Then by
Lemma 6, at each round at least one intervention will be performed on some arm a with
βI(Na(t)) ≥ βa(t) ≥ max{∆a,ε/2}

4 , which implies that Na(t) ≤ 64
max{∆a,ε/2}2 log

H(G) log(2t)
δ .

Since these arms are M , we have |M | ≤ mε,∆ and

T − T1 ≤
∑
a∈S

64

max{∆a, ε/2}2
log

(
20H(G)k|A| log(2T )

δ

)

≤ 64H(G) log

(
20H(G)k|A| log(2T )

δ

)
.

Hence

T ≤ T1 + 64H(G) log

(
20H(G)k|A| log(2T )

δ

)
≤ 2112H(G) log

(
20H(G)k|A| log(2T )

δ

)
,

which completes the proof of Lemma. 11.

Lemma 12. Suppose T = NQ log( 20k|A|Q log(2T )
δ ), then T = O(Q log( |A|Q

δ )).

Proof. Similar to Lemma 7, for f(x) = x − NQ log( 20k|A|Q log(2T )
δ )we only need to show that

there exists a constant C such that f(CQ log Q|A|
δ ) ≥ f(T ) = 0.

We have

f(CQ log
Q|A|
δ

) = CQ log
Q|A|
δ
−NQ log(

20k|A|Q log(2CQ log Q|A|
δ )

δ
)

≤ CQ log
Q|A|
δ
− 2NQ log(

20|A|Q log(2CQ log Q|A|
δ )

δ
)
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= (C − 2N)Q log
Q|A|
δ
− log(log 40CQ log

Q|A|
δ

))

≥ (C − 2N)Q log
Q|A|
δ
− log(log 40C) · log(Q log

Q|A|
δ

)

≥ (C − 2N − log log 40C)Q log
Q|A|
δ

.

Thus we choose C such that C − 2N − log log 40C ≥ 0, then we complete the Lemma 12.

By the Lemma 12 above, with probability 1− 5δ, we have

T = O

(
H(G) log

(
|A|H(G)

δ

))
.

The correctness has been proved in Section C.1, so we complete the proof of Theorem 2.

C.3 PROOF OF THEOREM 3

Proof. We consider a bandit instance ξ with q and probability distribution P (X1, X2, · · · , Xn, Y ).
Recall minx∈{0,1}n P (Y = 1 | X = x) = pmin,maxx∈{0,1}n P (Y = 1 | X = x) = pmax and
pmax + 2∆2n+1 + 2ε ≤ 1. For arm a ∈ A with qa ≤ 1

Hmε,∆−1·max{∆a,ε/2}2 , we denote the set of

these arms are M . By definition of mε,∆, we know |M | ≥ mε,∆. Then for a = do(Xi = x) ̸=
argmina′∈M ∆′

a (if optimal arm a∗ ∈M,a ̸= a∗), we construct bandit instance ξ′a with probability
distribution

P ′(Y | X1, · · · , Xn) =

{
P (Y | X1, · · · , Xn) Xi ̸= x

P (Y | X1, · · · , Xn) + 2(∆a + ε) Xi = x

Thus for arm a with qa ≤ 1

H
(P )
mε,∆

·max{∆a,ε/2}2
. Denote amin = argmina′∈S max{∆a′ , ε/2}, (We

break the tie arbitrarily),for a ̸= amin, qa ≤ 1
2 .

P ′(Y | do(Xi = x)) = P ′(Y | Xi = x)

=
∑
x−i

P ′(Y | Xi = x,X−i = x−i)P
′(X−i = x−i)

=
∑
x−i

(P (Y | Xi = x,X−i = x−i) + 2(∆a + ε))P ′(X−i = x−i)

=
∑
x−i

(P (Y | Xi = x,X−i = x−i) + 2(∆a + ε))P (X−i = x−i)

= P (Y | Xi = x) + 2(∆a + ε)

= P (Y | do(Xi = x)) + 2(∆a + ε),

Now we consider other arms a′ = do(Xj = x′) ∈ A, we have

P ′(Y | do(Xj = x′)) = P ′(Y | Xj = x′)

=
∑
x−j

P ′(Y | Xj = x′,X−j = x−j)P
′(X−j = x−j)

=
∑
x−j

P (Y | Xj = x′,X−j = x−j)P (X−j = x−j)

+ 2(∆a + ε)
∑

x−j,−i

P (X−j,−i = x−j,−i, Xi = x)

= P (Y | Xj = x′) + 2(∆a + ε) · P (Xi = x) ·
∑

x−j,−i

P (X−j,−i = x−j,−i)

= P (Y | Xj = x′) + 2(∆a + ε) · qa ·
∑

x−j,−i

P (X−j,−i = x−j,−i)
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≤ P (Y | Xj = x′) + (∆a + ε).

Also, if a′ = do(), we have

P ′(Y | a′) = P ′(Y ) =
∑
x

P ′(Y |X = x)P ′(X = x)

=
∑
x

P (Y |X = x)P (X = x) + 2(∆a + ε) ·
∑
x−i

P (X−i = x−i, Xi = x)

= P (Y ) + 2(∆a + ε) · P (Xi = x) ·
∑
x−i

P (X−i = x−i)

≤ P (Y ) + (∆a + ε).

Thus for all a′ ∈ A, we have

P ′(Y | a′) ≤ P (Y | a′) + ∆a + ε

≤ (P (Y | a) + ∆a + ε) + ∆a + ε

= P (Y | a) + 2(∆a + ε)

= P ′(Y | a),

which means that a is the best arm in bandit environment ξ′a. Then denote the probability measure
for ξ′a and ξ as Pra and Pr. Denote Yt and Xt as the reward and observed value at time t. Define
stopping time for the algorithm σ with respect to Ft, Then from Lemma 19 in Kaufmann et al.
(2016b), for any event ζ ∈ Fσ

Eξ

[
σ∑

t=1

log

(
Pr(Yt)

Pra(Yt)

)]
= d(Pr(ζ),Pra(ζ)),

where d(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) is the binary relatively entropy.

Denote the output of our algorithm is ao. Then since a ̸= a∗, when we choose ζ = {ao = a}, we
have Pr(ζ) ≤ δ,Pra(ζ) ≥ 1− δ and d(Pr(ζ),Pra(ζ)) ≥ log( 1

2.4δ )

Now note that

Eξ

[
σ∑

t=1

log

(
Pr(Yt)

Pra(Yt)

)]
(41)

=

σ∑
t=1

Eξ

[
log

(
Pr(Yt)

Pra(Yt)

)]

=

σ∑
t=1

Pr((Xt)i = x)

 ∑
y∈{0,1}

Pr(Yt = y | (Xt)i = x) log
Pr(Yt = y | (Xt)i = x)

Pra(Yt = y | (Xt)i = x)

 (42)

Denote B = Pr(Yt = y | (Xt)i = x) ∈ [pmin, pmax]∑
y∈{0,1}

Pr(Yt = y | (Xt)i = x) log
Pr(Yt = y | (Xt)i = x)

Pra(Yt = y | (Xt)i = x)

= B log
B

B + 2(∆a + ε)
+ (1−B)

1−B

1−B − 2(∆a + ε)

≤ −2B(∆a + ε)

B + 2∆a
+

2(1−B)(∆a + ε)

1−B − 2(∆a + ε)

≤ 4(∆a + ε)2

(B + 2(∆a + ε))(1−B − 2(∆a + ε))

≤ 4(∆a + ε)2

0.9 · 0.1
,
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Then (42) becomes

log

(
1

2.4δ

)
≤ Eξ

[
σ∑

t=1

log

(
Pr(Yt)

Pra(Yt)

)]
≤ 4(∆a + ε)2

0.09

σ∑
t=1

Pr((Xt)i = x)

≤ 16max{∆a, ε/2}2

0.09
Eξ[Ta(σ)],

where Ta(σ) for a = do(Xi = x) means the number of times that Xi = x. Suppose the sample
complexity is T for ξ, denote Na(σ) be the number of times that At = a. We have

Eξ[Na(σ) + qa · σ] ≥ Eξ[Ta(σ)] ≥
0.09

16max{∆a, ε/2}2
log

(
1

2.4δ

)
.

By summing over all a = do(Xi = x) ∈M,a ̸= amin, we get

0.09
∑

a∈M\{do()}
a̸=amin

1

16max{∆a, ε/2}2
log

(
1

2.4δ

)
≤

∑
a∈M\{do()}

a ̸=amin

Eξ[Na(σ) + qa · σ] (43)

≤ Eξ

σ +
∑

a∈M\{do()}
a ̸=amin

qa · σ

 (44)

≤ Eξ[σ]

1 +
∑

a∈M\{do()}
a ̸=amin

1

max{∆a, ε/2}2Hmε,∆−1

 .

(45)

Denote

Q =
∑

a∈M\{do()}
a ̸=amin

1

max{∆a, ε/2}2
≥ Hmε,∆−1 − min

i<mε,∆

1

max{∆ai
, ε/2}2

− 1

max{∆do(), ε/2}2
,

then

Eξ[σ] ≥
0.09Q log

(
1

2.4δ

)
1 +Q/Hmε,∆−1

≥ 0.09

2

(
Hmε,∆−1 − min

i<mε,∆

1

max{∆ai
, ε/2}2

− 1

max{∆do(),ε/2}2

)
log

(
1

2.4δ

)
.

D SOME PROOFS OF LEMMA

D.1 PROOF OF LEMMA 1

Proof. By definition, we only need to show that |{a | qa · max{∆a, ε/2}2 < 1/H2m}| ≤ 2m.
Assume it does not hold, then qai

· max{∆ai
, ε/2}2 < 1

H2m
for i = 1, 2, · · · , 2m + 1. Then for

i ≥ m+ 1,m+ 2, · · · , 2m+ 1, we have

qai
<

1

H2m ·max{∆ai
, ε/2}2

<
1∑m

j=1
1

max{∆aj
,ε/2}2 ·max{∆ai

, ε/2}2
≤ 1

m
.

The inequality above implies the |{a | qa < 1
m}| ≥ m + 1, which leads to a contradiction for the

definition of m.
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D.2 THE EXISTENCE FOR ADMISSIBLE SEQUENCE IN GRAPHS WITHOUT HIDDEN VARIABLES

In graph without hidden variables, the admissible-sequence is important for identifying the causal
effect. Now we provide an algorithm to show how to find the admissible-sequence in this condition.
Theorem 4. For causal graph G = (X ∪ {Y }, E) without hidden variables, for a set S =
{X1, · · · , Xk} and X1 ⪰ X2 ⪰ · · · ⪰ Xk, the admissible-sequence with respect to S and Y can be
found by

Zi = Pa(Xi) \ (Z1 ∪ · · · ∪Zi−1 ∪X1 ∪ · · · ∪Xi−1).

Proof. The proof is straightforward. First, Zi ⊆ Pa(Xi) consists of nondescendants of
{Xi, Xi+1, · · · , Xk} by topological order. Second, we need to prove

(Y ⊥⊥ Xi | X1, · · · , Xi−1,Z1, · · · ,Zi)GXi,Xi+1,··· ,Xk
. (46)

We know that the Pa(Xi) ⊆ X1 ∪X2 · · ·Xi−1 ∪Z1 ∪ · · ·Zi. Then it blocks all the backdoor path
from Xi to Y . Also, since X1 ∪X2 · · ·Xi−1 ∪Z1 ∪Z2 · · ·Zi consists of nondescendants of Xi,
it cannot block any forward path from Xi to Y . Also, for any forward path with colliders, namely,
Xi → · · · → X ′ ← X ′′ · · ·Y , the X ′ cannot be conditioned since it is a descendant for Xi. So
conditioning on X1 ∪X2 · · ·Xi−1 ∪Z1 ∪Z2 · · ·Zi will not active any extra forward path. Hence,
there is only original forward path from Xi to Y , which means that (46) holds.

D.3 PROOF OF LEMMA 2

Lemma 2. For an action a = do(S = s) and any two weight vectors θ and θ′, we have

|σ(θ, a)− σ(θ′, a)| ≤ Ee

 ∑
X∈NS,Y

|V ⊤
X(θX − θ′

X)|M (1)

 , (6)

where NS,Y is the set of all nodes that lie on all possible paths from X1 to Y excluding S, V X

is the value vector of a sample of the parents of X according to parameter θ, M (1) is defined in
Assumption 1, and the expectation is taken on the randomness of the noise term e = (eX)X∈X∪{Y }
of causal model under parameter θ.

Proof. Note that our BGLM model is equivalent to a threshold model: For each node X , we randomly
sample a threshold ΓX ∈ [0, 1], and if fX(θTXPa(X)) + eX ≥ ΓX , we let X = 1, which means it
is activated. At timestep 1, the X1 is activated, then at timestep i ≥ 2, Xi is either activated (set it to
1) or deactivated (set it to 0). Then, the BGLM is equivalent to the propagating process above if we
uniformly sample ΓX for each node X , i.e. ΓX ∼ U [0, 1]. Now we only need to show

|σ(θ, a)− σ(θ′, a)| ≤ Ee,Γ

 ∑
X∈NS,Y

|V ⊤
X(θX − θ′

X)|M (1)

 , (47)

Firstly, we have

|σ(θ, a)− σ(θ′, a)| = Ee,Γ

[
I{Y is activated on θ ̸= I{Y is activated on θ′}}

]
,

and we define the event Ee0 (X) as

Ee0 (X) =
{
Γ|I{X is activated under Γ, e,θ} ≠ I{X is activated under Γ, e,θ′}

}
.

Hence

∣∣σ(θ, a)− σ(θ′, a)
∣∣ ≤ Ee

[
Pr

Γ∼(U [0,1])n
{Ee0 (Y )}

]
.
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Now since only nodes in NS,Y will influence Y , we can only consider node X in NS,Y .

Let ϕe(θ,Γ) = (ϕe
0(θ,Γ) ⊆ S, ϕe

1(θ,Γ), · · · , ϕe
n(θ,Γ)) be the sequence of activated sets on θ,

0-mean noise e and threshold factor Γ. More specifically, ϕi(θ,Γ) is the set of nodes activated by
time step i. For every node X ∈ NS,Y , we define the event that X is the first node that has different
activation under θ and θ′ as below:

Ee
1 (X) = {Γ|∃i ∈ [n], ∀i′ < i, ϕe

i′(θ,Γ) = ϕe
i′(θ

′,Γ), X ∈ (ϕe
i (θ,Γ)\ϕe

i (θ
′,Γ) ∪ (ϕe

i (θ
′,Γ)\ϕe

i (θ,Γ)))}.

Then we have Ee0 (Y ) ⊆ ∪X∈NS,Y
Ee1 (X). We also define other events:

Ee2,0(X, i) = {Γ|∀i′ < i, ϕe
i′(θ,Γ) = ϕe

i′(θ
′,Γ), X ̸∈ ϕe

i−1(θ,Γ)},
Ee2,1(X, i) = {Γ|∀i′ < i, ϕe

i′(θ,Γ) = ϕe
i′(θ

′,Γ), X ∈ ϕe
i (θ,Γ)\ϕe

i (θ
′,Γ)},

Ee2,2(X, i) = {Γ|∀i′ < i, ϕe
i′(θ,Γ) = ϕe

i′(θ
′,Γ), X ∈ ϕe

i (θ
′,Γ)\ϕe

i (θ,Γ)},
Ee3,1(X, i) = {Γ|X ∈ ϕe

i (θ,Γ)\ϕe
i (θ

′,Γ)}
Ee3,2(X, i) = {Γ|X ∈ ϕe

i (θ
′,Γ)\ϕe

i (θ,Γ)}.

Then since Ee2,1(X, i) and Ee2,2(X, i) are exclusive, we have

Pr
Γ
{Ee1 (X)} =

n∑
i=1

Pr
Γ
{Ee2,1(X, i)}+

n∑
i=1

Pr
Γ
{Ee2,2(X, i)}.

Now we need to bound the two terms above. First, consider PrΓ{Ee2,1(X, i)}, we set Γ−X is
the vector with all value ΓX′ of node X ′ ̸= X , then we also define the corresponding sub-event
Ee2,1(X, i,Γ−X) ⊂ Ee2,1(X, i) as the event with value Γ−X . Define Ee2,0(X, i,Γ−X) ⊂ Ee2,0(X, i),
Ee3,1(X, i,Γ−X) ⊂ Ee3,1(X, i), Ee3,2(X, i,Γ−X) ⊂ Ee3,2(X, i) in a similar way.

From definition, Ee2,1(X, i,Γ−X) = Ee3,1(X, i,Γ−X) ∪ Ee2,0(X, i,Γ−X), then we have

Pr
Γ
{Ee2,1(X, i,Γ−X)} = Pr

Γ
{Ee2,0(X, i)} · Pr

Γ
{Ee3,1(X, i,Γ−X)|Ee2,0(X, i,Γ−X)}.

Thus, by the definition of BGLM, in Ee2,0(X, i,Γ−X), the value of ΓX must lie in an interval with
highest value 1. Denote it as [We

2,0(X, i,Γ−X), 1], then

Pr
ΓX∼U [0,1]

Ee2,0(X) = 1−We
2,0(X, i,Γ−X).

Now we consider

Pr
ΓX

{Ee3,1(X, i,Γ−X)|Ee2,0(X, i,Γ−X)}.

We first assumeWe
2,0(X, i,Γ−X) < 1, otherwise our statement holds trivially. Then we denote that

the nodes activated at timestep t under Ee2,0(X, i,Γ−X) as ϕe
t (Ee2,0(X, i,Γ−X)). If the conditional

event above holds, we have

fX

 ∑
X′∈ϕe

i−1
(Ee

2,0(X,i,Γ−X ))∩N(X)

θX′,X

 + eX < ΓX ≤ fX

 ∑
X′∈ϕe

i−1
(Ee

2,0(X,i,Γ−X ))∩N(X)

θ
′
X′,X

 + eX ,

or

fX

 ∑
X′∈ϕe

i−1
(Ee

2,0(X,i,Γ−X ))∩N(X)

θX′,X

 + eX ≥ ΓX > fX

 ∑
X′∈ϕe

i−1
(Ee

2,0(X,i,Γ−X ))∩N(X)

θ
′
X′,X

 + eX ,

where θX′,X is the element corresponding to X ′ in θX .

Thus,

Pr
ΓX∼U[0,1]

{Ee
3,1(X, i,Γ−X) ∪ Ee

3,2(X, i,Γ−X)|Ee
2,0(X, i,Γ−X)}
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=
|fX

(∑
X′∈ϕe

i−1(E
e
2,0(X,i,Γ−X ))∩N(X) θX′,X

)
− fX

(∑
X′∈ϕe

i−1(E
e
2,0(X,i,Γ−X ))∩N(X) θ

′
X′,X

)
|

1−We
2,0(X, i,Γ−X)

Thus we have

Pr
Γ
{Ee2,1(X, i,Γ−X) ∪ Ee2,2(X, i,Γ−X)}

= Pr
Γ
{Ee2,0(X, i)} · Pr

Γ
{Ee3,1(X, i,Γ−X) ∪ Ee3,2(X, i,Γ−X)|Ee2,0(X, i,Γ−X)}

=

∣∣∣∣∣∣fX
 ∑

X′∈ϕe
i−1(Ee

2,0(X,i,Γ−X))∩N(X)

θX′,X

− fX

 ∑
X′∈ϕe

i−1(Ee
2,0(X,i,Γ−X))∩N(X)

θ′
X′,X

∣∣∣∣∣∣
≤M (1)

∣∣∣∣∣∣
 ∑

X′∈ϕe
i−1(Ee

2,0(X,i,Γ−X))∩N(X)

θX′,X

−
 ∑

X′∈ϕe
i−1(Ee

2,0(X,i,Γ−X))∩N(X)

θ′
X′,X

∣∣∣∣∣∣ .
When Ee2,0(X) = ∅, both two sides are zero, so it holds in general.

Now we define Ee4,0(X, i,Γ−X) = {Γ | Γ = (ΓX ,Γ−X) | X /∈ ϕe
i−1(θ,Γ)},

then Ee2,0(X, i,Γ−X) ⊆ Ee4,0(X, i,Γ−X). In addition, when Ee2,0(X, i,Γ−X) ̸= ∅,
ϕe
i′(Ee2,0(X, i,Γ−X)) = ϕe

i′(Ee4,0(X, i,Γ−X)) for all i′ < i. Thus we have

Pr
Γ
{Ee2,1(X, i,Γ−X) ∪ Ee2,2(X, i,Γ−X)}

≤M (1)

∣∣∣∣∣∣
 ∑

X′∈ϕe
i−1(Ee

4,0(X,i,Γ−X))∩N(X)

θX′,X

−
 ∑

X′∈ϕe
i−1(Ee

4,0(X,i,Γ−X))∩N(X)

θ′
X′,X

∣∣∣∣∣∣ .
Now we can get

Pr
Γ
{Ee1 (X)} =

∫
Γ−X

n∑
i=1

Pr
γX∼U [0,1]

{Ee2,1(X, i,Γ−X) ∪ Ee2,2(X, i,Γ−X)}dΓ−X

=

∫
Γ−X

Pr
γX∼U [0,1]

{Ee2,1(X, i∗,Γ−X) ∪ Ee2,2(X, i∗,Γ−X)}dΓ−X

≤
∫
Γ−X

∣∣∣∣∣∣
∑

X′∈ϕe
i∗−1

(Ee
4,0(X,i∗,Γ−X))∩N(X)

(θX′,X − θ′X′,X)

∣∣∣∣∣∣M (1)dΓ−X

= EΓ−X

∣∣∣∣∣∣
∑

X′∈ϕe
i∗−1

(Ee
4,0(X,i∗,Γ−X))∩N(X)

(θX′,X − θ′X′,X)

∣∣∣∣∣∣
M (1)

= EΓ−X

[
|V X(θX − θ′X)|M (1)

]
,

where i∗ is the topological order of X in graph G, and the second inequality is because
Ee2,1(X, i,Γ−X) ̸= ∅ only when i = i∗. Summing over all node X ∈ NS,Y , we complete the
proof.

D.4 PROOF OF LEMMA 3

Lemma 3. For one node X ∈X ∪ {Y }, assume Assumption 1 and 2 holds, and

λmin(Mt,X) ≥ 512D(M (2))2

κ4
(D2 + ln

3nt2

δ
),
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with probability 1 − δ/nt2, for any vector v ∈ R|Pa(X)|, at all rounds t the estimator θ̂t,X in
Algorithm 2 satisfy

|v⊤(θ̂t,X − θ∗
X)| ≤ 3

κ

√
log(3nt2/δ)||v||M−1

t,X
.

Proof. The all proof is very similar to the proof in Feng & Chen (2022), for the completeness, we
provide them here. Note that θ̂t,X satisfies∇Lt,X(θ̂t,X) = 0, where

∇Lt,X(θX) =

t∑
i=1

[Xt − fX(V T
i,XθX)]V i,X .

Define G(θX) =
∑t

i=1(fX(V T
i,XθX) − fX(V T

i,Xθ∗
X))V i,X . Thus G(θ∗

X) = 0 and G(θ̂t,X) =∑t
i=1 ε

′
i,XV i,X , where ε′i,X = Xi − fX(V T

i,Xθ∗
X). Now note that E[ε′i,X |V i,X ] = 0 and ε′i,X =

Xi − fX(V T
i,Xθ∗

X) ∈ [−1, 1], then ε′i,X is 1-subgaussian. Let Z = G(θ̂t,X) =
∑t

i=1 ε
′
i,XV i,X

Step 1: Consistency of θ̂t,X For any θ1,θ2 ∈ R|Pa(X)|, ∃θ̄ = sθ1 + (1− s)θ2, 0 < s < 1 such
that

G(θ1)−G(θ2) =

[
t∑

i=1

ḟX(V T
i,X θ̄)V i,XV T

i,X

]
(θ1 − θ2)

≜ F (θ̄)(θ1 − θ2).

Since f is strictly increasing, ḟ > 0, then G(θ) is an injection and G−1 is well-defined.

Now let Bη = {θ | ||θ − θ∗|| ≤ η}, then define κη := infθ∈Bη,X ̸=0 ḟ(X
Tθ) > 0. The following

lemma helps our proof, and it can be found in Lemma A of Yin & Zhao (2005):

Lemma 13 (Yin & Zhao (2005)). {θ | ||G(θ)||M−1
t,X
≤ κηη

√
λmin(Mt,X)} ⊆ Bη.

The next lemma provides an upper bound of ||Z||M−1
t,X

:

Lemma 14 (Zhang et al. (2022)). For any δ > 0, the event EG := {||Z||M−1
t,X

≤
4
√
|Pa(X)|+ ln(1/δ)} holds with probability at least 1− δ.

By the above two lemmas, when EG holds, for any η ≥ 4
κη

√
|Pa(X)|+ln(1/δ)

λmin(Mt,X) , we have ||θ̂t,X−θ∗|| ≤

η. Choose η = 1, we know 1 ≥ 4
κ

√
|Pa(X)|+ln(1/δ)

λmin(Mt,X) , then with probability 1− δ ||θ̂t,X − θ∗|| ≤ 1.

Step 2: Normality of θ̂t,X . Now we assume ||θ̂t,X − θ∗|| ≤ 1 holds. Define ∆ = θ̂t,X − θ∗,
then ∃s ∈ [0, 1] such that Z = G(θ̂t,X) − G(θ∗

X) = (H + E)∆, where θ̄ = sθ∗
X + (1 − s)θ̂t,X ,

H = F (θ∗
X) =

∑t
i=1 ḟX(V T

i,Xθ∗
X)V i,XV T

i,X and E = F (θ̄)− F (θ∗
X). Then, according to mean

value theorem, we have

E =

t∑
i=1

(ḟX(V i,X · θ)− ḟX(V i,X · θ∗
X))V i,XV T

i,X

=

t∑
i=1

f̈X(ri)V
T
i,X∆V i,XV T

i,X

≤
t∑

i=1

M (2)V T
i,X∆V i,XV T

i,X
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for some ri ∈ R. Thus we have

vTH−1/2EH−1/2v ≤
t∑

i=1

L
(2)
fX
||V i,X ||||∆||||vTH−1/2V i,X ||2

≤M (2)
√
|Pa(X)|||∆||(vTH−1/2(

t∑
i=1

V i,XV T
i,X)H−1/2v)

≤
M (2)

√
|Pa(X)|
κ

||∆||||v||2,

hence we know

||H−1/2EH−1/2|| ≤
M (2)

√
|Pa(X)|
κ

||∆||

≤
4M (2)

√
|Pa(X)|
κ2

√
|Pa(X)|+ ln 1

δ

λmin(Mt,X)

≤ 1

2
,

where the last inequality is because

λmin(Mt,X) ≥ 512
(M (2))2

κ4
|Pa(X)|

(
|Pa(X)|+ ln

1

δ

)
> 64

(M (2))2

κ4
|Pa(X)|

(
|Pa(X)|+ ln

1

δ

)
.

Now for any v ∈ R|Pa(X)|, we have

vT (θ̂t,X − θ∗
X) = vT (H + E)−1Z

= vTH−1Z − vTH−1E(H + E)−1Z.

The second equality is correct from H + E = F (θ̄) ⪰ κMt,X ⪰ 0.

Define D ≜ (V 1,X ,V 2,X , · · · ,V t,X)T ∈ Rt×|Pa(X)|. Then DTD =
∑t

i=1 V i,XV T
i,X = Mt,X .

By the Hoeffding’s inequality Hoeffding (1994),

Pr(
∣∣vTH−1Z ≥ a

∣∣) ≤ exp

(
− a2

2||vTH−1DT ||2

)
= exp

(
− a2

2vTH−1DTDH−1v

)

≤ exp

− a2κ2

2||v||2
M−1

t,X

 .

The last inequality holds because H ⪰ κMt,X = κDTD.

Thus with probability 1− 2δ, |vTH−1Z| ≤
√

2 ln 1/δ

κ ||v||M−1
t,X

.

For the second term, we know

|vTH−1E(H + E)−1Z| ≤ ||v||H−1 ||H− 1
2E(H + E)−1Z||

≤ ||v||H−1 ||H− 1
2E(H + E)−1H

1
2 || ||Z||H−1

≤ 1

κ
||v||M−1

t,X
||H− 1

2E(H + E)−1H
1
2 || ||Z||M−1

t,X
. (48)

Then we get

||H− 1
2E(H + E)−1H

1
2 || = ||H− 1

2E(H−1 −H−1E(H + E)−1)−1H
1
2 ||

= ||H− 1
2EH

1
2 +H− 1

2EH−1E(H + E)−1H
1
2 ||
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≤ ||H− 1
2EH

1
2 ||+ ||H− 1

2EH− 1
2 || ||H− 1

2E(H + E)−1H
1
2 ||,

where the first inequality is derived by (H + E)−1 = H−1 −H−1E(H + E)−1.

Then we can get

||H− 1
2E(H + E)−1H

1
2 || ≤ ||H− 1

2EH
1
2 ||

1− ||H− 1
2EH

1
2 ||
≤ 2||H− 1

2EH
1
2 ||

≤
8M (2)

√
|Pa(X)|
κ2

√
|Pa(X)|+ ln 1

δ

λmin(Mt,X)

Thus by (48) and Lemma 14

∣∣vTH−1E(H + E)−1Z
∣∣ ≤ 32L

(2)
fX

√
|Pa(X)|(|Pa(X)|+ log 1

δ )

κ3
√

λmin(Mt,X)
||v||M−1

t,X
.

So we have∣∣∣vT (θ̂t,X − θ∗
X)
∣∣∣ ≤ (32L

(2)
fX

√
|Pa(X)|(|Pa(X)|+ log 1

δ )

κ3
√
λmin(Mt,X)

+

√
2 ln 1/δ

κ

)
||v||M−1

t,X

≤ 3

κ

√
log(1/δ)||v||M−1

t,X
,

where the last inequality is because

λmin(Mt,X) ≥
512|Pa(X)|(L(2)

fX
)2

κ4

(
|Pa(X)|2 + ln

1

δ

)
.

By replace δ with δ/3nt2, we complete the proof.

E EXPERIMENTS

In this section, we provide some experiments supporting our theoretical result for CCPE-BGLM and
CCPE-General.

E.1 CCPE-BGLM

Experiment 1 First, we provide the experiments for our CCPE-BGLM algorithm. We construct
a causal graph with 9 nodes X1, · · · , X8 and X0, such that Xi ⪰ Xi+1. Then, we randomly
choose two nodes in X1, · · · , Xi−1 and also X0 to be the parent of Xi(i ≥ 1). Y has 4 parents,
and they are randomly chosen in X = {X1 · · · , X8}. For X0, we know P (X0 = 1) = 1. For
node Xi and their parent X(1)

i , X
(2)
i , P (Xi = 1) = 0.4X0 + 0.1X

(1)
i + 0.1X

(2)
i . (If i = 2,

P (Xi = 1) = 0.4X0 + 0.1X
(1)
i = 0.4X0 + 0.1X1; If i = 1, P (X1 = 1) = 0.4X0.) Suppose the

parents of reward variable are X(1), X(2), X(3), X(4) The reward variable is defined by P (Y = 1) =
0.3X(1)+0.3X(2)+0.3X(3)+0.05X(4). The action set is {do(S = 1 | |S| = 3,S ⊂X)}. Hence
the optimal arm is do({X(1), X(2), X(3)} = 1).

We choose 4 algorithms in this experiment: LUCB in Kalyanakrishnan et al. (2012), lilUCB-heuristic
in Jamieson et al. (2013), Propagating-Inference in Yabe et al. (2018) and our CCPE-BGLM. LUCB
and lilUCB-heuristic are classical pure exploration algorithm. Because in previous causal bandit
literature, Propagating-Inference is the only algorithm considering combinatorial action set without
prior knowledge P (Pa(Y ) | a) for action a ∈ A, we choose it in this experiment. Note that the
criteria of Propagating-Inference algorithm is simple regret, hence it cannot directly compare to our
pure exploration algorithm. We choose to compare the error probability at some fixed time T instead.
In this criteria, Propagating-Inference algorithm will have an extra knowledge of budget T while
LUCB, lilUCB-heuristic and CCPE-BGLM not. To implement the Propagating Inference algorithm,
we follows the modification in Yabe et al. (2018) to make this algorithm more efficient and accurate
by setting λ = 0 and ηA = 1/C. (Defined and stated in Yabe et al. (2018).) For CCPE-BGLM,
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we ignore the condition that t ≥ max{ cDη2 log nt2

δ , 1024(M(2))2(4D2−3)D
κ4η (D2 + ln 3nt2

δ )}, to make it
more efficient. During our experiment, the error probability is smaller than other algorithm even
if we ignore this condition. Also, to make this algorithm more efficient, we update observational
confidence bound (Line 11) each 50 rounds. (This will not influence the proof of Theorem 1.) For
LUCB, lilUCB-heuristic and CCPE-BGLM, we find the best exploration parameter α, αI and αO by
grid search from {0.05, 0.1, · · · , 1}. (Exploration parameter α for UCB-type algorithm is a constant
multiplied in front of the confidence radius, which should be tuned in practice. e.g.(Li et al. (2010),
Mason et al. (2020).) For this task, we find α = 0.3, αO = 0.05, αI = 0.4. We choose T = 50+50i
for 0 ≤ i ≤ 9. For each time T , we run 100 iterations and average the result.

As the Figure 4 shows, even if our algorithm does not know the budget T , our algorithm converges
quicker than all other algorithms.

Figure 4: Error Probability for Experiment 1

E.2 CCPE-GENERAL

In this subsection, we provide the experiments for CCPE-General algorithm. We also choose 4
algorithms, LUCB, lilUCB-heuristic, Propagating-Inference and CCPE-General (called ”adm seq”
in figure because it utilizes admissible sequence.). Since the Propagating-Inference cannot hold for
general graph with hidden variables, we first compare them in graphs without hidden variables. Then
we also compare LUCB, lilUCB-heuristic and our algorithm in the graphs with hidden variables.

Experiment 2 we construct the graph with 7 nodes X1, · · · , X7 such that Xi ⪰ Xi+1. Then,
we randomly choose two nodes in X1, · · · , Xi−1 as parents of Xi. The reward variable Y has 5
parents X(i) = Xi+2, 1 ≤ i ≤ 5. We choose P (X1 = 1) = 0.5, P (X2 = 1) = 0.55 if X0 = 1 and
otherwise P (X2 = 1) = 0.45. For i ≥ 2, and two parents X(1)

i , X
(2)
i of Xi, P (Xi = 1) = 0.55 if

X
(1)
i = X

(2)
i and otherwise P (Xi = 1) = 0.45. For reward variable Y ,

P (Y = 1) =

 0.9 X
(1)
i = X

(2)
i = 1

0.7 + 0.05X
(1)
i + 0.05X

(2)
i X

(3)
i = X

(4)
i = 1

0 Otherwise
(49)

We define the action set {do(S = s) | |S| = 2, s ∈ {0, 1}2}, then the optimal arm is
do({X(1)

i , X
(2)
i } = 1). We choose αO = 0.25, αI = 0.4, and exploration parameters α for

LUCB and lilUCB are both 0.3. For each time T = 150 + 50i for 0 ≤ i ≤ 9, we run 100 times
and average the result to get the error probability. The result is shown in Figure 5. We note that
our algorithm performs almost the same as Propagating-Inference algorithm. Our CCPE-General
algorithm is a fixed confidence algorithm without requirement for budget T , and our algorithm can
be applied to causal graphs with hidden variables.
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Figure 5: Error Probabiltiy for Experiment 2

Experiment 3 In this paragraph, we provide an experiment to show that CCPE-General algorithm
can be applied to broader causal graphs with hidden variables. Since there is no previous algorithm
working on both combinatorial action set and existence of hidden variable, we compare our result
with LUCB and lilUCB-heuristic.

Our causal graph are constructed as follows: X = X0, X1, · · · , Xn+1, where Xi → Y and
X1 → Xi for 2 ≤ i ≤ n + 1, X1 → X0. U = {U1, · · · , Un} and Ui → Xi+2, Ui → X0

for 2 ≤ i ≤ n + 1. For action set {do(S = s) | |S| = 2,S ⊂ {X2, · · · , Xn+1}}. Each Ui

satisfies P (Ui = 1) = 0.5. P (X0 = 1) = min{ 1n
∑n−1

i=0 Ui + 0.1X1, 1},. P (X1 = 1) = 0.5.
P (Xi = 1) = 0.5 if X1 = Ui−2 = 1 and otherwise 0.4. For the reward variable Y , P (Y = 1) =

0.4X2 + 0.4X3 +
0.2
n

∑n+2
i=4 Xi.

For this task, by grid search, we set α = 0.25 for exploration parameter of LUCB and lilUCB,
and αO = 0.3, αI = 0.4 for CCPE-General algorithm (In the figures below, we call our algorithm
”adm seq” since it uses admissible sequence.) We compare the error probability and sample complex-
ity for them. The results are shown in Figure 6(a) and Figure 6(b). Our CCPE-General algorithm
wins in both metrics.

(a) Sample Complexity for Experiment 3 (b) Error Probability for Experiment 3

Figure 6: Experiment 3

F FIXED BUDGET CAUSAL BANDIT ALGORITHM

In this section, we provide a preliminary fixed budget causal bandit algorithm, which based on
successive reject algorithm and our previous analysis for causal bandit. The previous causal bandit
algorithm in fixed budget always directly estimate the observation threshold m. However, to derive a
gap-dependent result, this method does not work. Our Causal Successive Reject avoids the estimation

35



Published as a conference paper at ICLR 2023

for observation threshold and get a better gap-dependent result. Note that Ta(t) = minz Ta,z(t) for
z ∈ {0, 1}|Za|, then we can get the simple causal successive reject algorithm as follows:

Algorithm 4 Causal Successive Reject
1: Input: Causal Graph G, action set A, budget T , parameter ε.
2: Initialize t = 1, Ta = 0, µ̂a = 0 for all arms a ∈ A. Define |A| = N . A0 = A
3: Perform do() for T/2 times, and update Ta(t) for all a.

4: Set nk =
T
2 −N

logN(N+1−k)
for k = 1, 2, · · · , n− 1.

5: for each phase k = 1, 2, · · · , n− 1: do
6: for i = 1, 2, · · · , ⌈(N + 1− k)(nk − nk−1)⌉ do
7: Perform intervention a for action with least Ta +Na, and Na = Na + 1.
8: end for
9: Denote ak = argmina∈Ak−1

µ̂a, where µ̂a follows the same definition of Algorithm 2. Ak =

Ak−1\{ak}.
10: if |Ak| = 1 then
11: return Ak.
12: end if
13: end for

Theorem 5. The algorithm 4 will return the ε-optimal arm within error probability

P (µao < µa∗ − ε) ≤ 4IaN
2 exp

{
−

T
2 −N

128logNH3

}
,

where H3 = maxk=1,2,··· ,N{α−1
k (max{∆(k), ε})−2}, and αk is defined by

αk =


1 +

∑N
i=k+1

1
i

m
if k > m

1

k
+

∑N
i=m+1

1
i

m
if k ≤ m

where m is defined in 1 with respect to qa similar to Theorem 2

To show that our algorithm outperforms the classical successive reject and sequential halving algo-
rithm, it is obvious that H3 ≤ H2, where H2 = maxk=1,2,··· ,N{kmax{∆(k), ε}−2}, since αk ≥ 1

k .

Proof. We also denote Ta(t), Na(t) as the value of Ta and Na at the round t. The main idea is that:
Each stage we spend half budget to observe, and spend the remaining budget to supplement the arms
which are not observed enough. The main idea of proof is to show that in each stage, each arm in Ak

has Ta(t) +Da(t) ≥ mk times, which leads to a brand-new result.

Denote the set of arm S = {a ∈ A | qa < 1/m}, then |S| ≤ m. First, for a /∈ S, by chernoff bound,
it has been observed by q̂a · T/2 ≥ T

4m with probability 1− δ, where δ = 6N · exp{− T
24m}. Hence

Ta(T/2) ≥ T
4m for a /∈ S.

First we prove the following lemma:

Lemma 15. After stage 1 ≤ k ≤ N −m, all the arms in Ak must have Na(t) + Ta(t) ≥ mk, where

mk =
∑k

i=1
(N+1−i)(ni−ni−1)

2m ≥ ⌈
T
2 −N

2logN ·m (1 +
∑N

i=N+2−k
1
i )⌉.

Proof. Let Da(t) = Ta(t) + Na(t). Denote m0 = n0 = 0, then For a /∈ S, Ta(t) ≥ T
4m . Thus

number of arm a with Ta(t) ≤ T
4m is less than m. Then the intervention in stage k will only

performed on Da(t) ≤ T
4m unless all the arms have Da(t) ≥ T

4m ≥ mk times.

If all arms have Da(t) ≥ T
4m ≥ mk times, the lemma holds. If it is not true, the (N + 1 −

k)(nk − nk−1) interventions will performed on at most m arms. Hence all the arms must have
Na(t) ≥ mk−1+

(N+1−k)(nk−nk−1)
m = mk−1+2(mk−mk−1) ≥ mk times after stage k ≤ N−m.
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Then mk =
∑k

i=1
(N+1−i)(ni−ni−1)

2m ≥
∑k−1

i=1
ni

2m + (N+1−k)nk

2m ≥
T
2 −N

logN ·2m (1 +
∑N

i=N+2−k
1
i ).

Lemma 16. After stage k > N − m, all the arms in Ak have Ta(t) + Na(t) ≥ m′
k, where

m′
k =

T
2 −N

2 ¯logN
· αN+1−k.

Proof. For a ∈ Ak, in stage k > N −m, |Ak| = N − k + 1 ≤ m. All the arms in Ak must have
Ta(t) + Na(t) ≥ m′

k−1 + (N + 1 − k)(nk − nk−1)/(N + 1 − k) = m′
k−1 + nk − nk−1 times,

where m′
N−m = mN−m.

Thus after stage k > N −m, all the arms in Ak must have

Ta(t) +Na(t) ≥ mN−m +
∑

N−m<i≤k

(ni − ni−1)

= mN−m + (nk − nN−m)

≥
T
2 −N

logN ·m
(1 +

N∑
i=m+2

1

i
) + 1 + (

T
2 −N

logN
(

1

N + 1− k
− 1

m+ 1
))− 1

=
T
2 −N

logN ·m
(

N∑
i=m+1

1

i
) + (

T
2 −N

logN
(

1

N + 1− k
))

=
T
2 −N

logN
(

1

N + 1− k
+

1

m(
∑N

i=m+1
1
i )

−1
)

=
T
2 −N

logN
· αN+1−k

≥ m′
k.

Lemma 17. In round t, with probability 1− δ
8nt3 ,

|µ̂obs,a − µa| < 4

√
1

Ta(t)
log

4Ia
δ

. (50)

Proof. When Ta(t) ≥ 12 log 4Ia
δ , we know this lemma is trivial since µa, µ̂obs,a ∈ [0, 1]. Otherwise,

if t < 6
qa

, define Q = 6
qa

log( 4Iaδ ), based on Ta(t) ≥ 12 log 4Ia
δ , then

P

(
t <

6

qa
log(1/δ)

)
≤ P

(
Ta(Q) ≥ 12 log

4Ia
δ

)
.

Thus by Chernoff bound, we know

P

(
Ta(Q) ≥ 12 log

4Ia
δ

)
= P (q̂a(Q) ≥ 2qa) ≤ δ,

where q̂a(Q) = Ta(Q)
Q .

Hence with probability at least 1 − δ, now we have t ≥ 6
qa

log(4Ia/δ). Also, since P̂ (Zi =

zi, Xi = xi, i ≤ l − 1) = Ta,z,l(t)/t, by Chernoff bound, when t ≥ 6
qa

log(4Ia/δ), with probability

1− exp{−P (Zi=zi,Xi=xi,i≤l−1)·t
3 } ≥ 1− δ, we have

P̂ (Zi = zi, Xi = xi, i ≤ l − 1) ≤ 2P (Zi = zi, Xi = xi, i ≤ l − 1).

Now since
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P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1) ≥ qa
P (Zi = zi, Xi = xi, i ≤ l − 1)

≥ qa

2P̂ (Zi = zi, Xi = xi, i ≤ l − 1)

≥ qat

2Ta,z,l(t)

≥ 3

Ta,z,l(t)
log

4Ia
δ

.

By Hoeffding’s inequality and Chernoff bound, for a = do(X = x),

|ra,z(t)− P (Y = 1 | S = s, z = z)| ≤

√
1

2Ta,z(t)
log

4Ia
δ

,

|pa,z,l(t)− P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1)|

≤
√

3P (Zl = zl | Zi = zi, Xi = xi, i ≤ l − 1)

t
log

4Ia
δ

at round 2t with probability 1− 2Z δ
2Ia

= 1− δ. Hence by Lemma 9, Eq (38), we get

µ̂obs,a (51)

=
∑
z

ra,z(t) · P̂a,z,k(t)

≤
∑
z

ra,z(t) · P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

+
1

2

∑
z

ra,z(t)P̂a,z,k−1(t)

√
3P (Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

2|Zk|+1Ta,z(t)
log

4Ia
δ

≤
∑
z

ra,z(t) · P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

+
1

2

∑
z

P̂a,z,k−1(t) ·

√
3P (Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1))

2|Zk|+1Ta,z(t)
log

4Ia
δ

≤
∑
z

ra,z(t) · P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

+
1

2

∑
zk

·

√
3P (Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1))

2|Zk|+1Ta,z(t)
log

4Ia
δ

≤
∑
z

ra,z(t) · P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1)

+
1

2

√
3 · 2|Zk|

2 · 2|Zk|Ta,z(t)
log

4Ia
δ

(Cauchy-Schwarz Inequality)

≤
∑
z

ra,z(t) · P̂a,z,k−1(t) · Pt(Zk = zk | Zi = zi, Xi = xi, i ≤ k − 1) (52)

+
1

2

√
3

2 · Ta,z(t)
log

4Ia
δ

≤ · · ·

≤
∑
z

ra,z(t)Pa,z,k +
1

2

k∑
i=1

√
3

2iTa,z(t)
log

4Ia
δ
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≤ µa +
1

2−
√
2

√
3

Ta,z(t)
log

4Ia
δ

+

√
1

2Ta,z(t)
log

2

δ
.

≤ µa + 4

√
1

Ta(t)
log

4Ia
δ

.

Now we prove another lemma to bound the error probability of each stage.

Lemma 18. For an arm a ∈ A, Na(t) + Ta(t) = Da(t), then we have

P (|µ̂a − µa| > ϵ) < 4Ia exp{−Da(t)(ϵ
2/32}. (53)

Proof. We know Na(t) ≥ Da(t)
2 or Ta(t) ≥ Na(t)

2 . When Na(t) ≥ Na(t)
2 , by Hoeffding’s inequality,

we know that

P (|µ̂a − µa| > ϵ) < 2 exp{−2Na(t)(ϵ/2)
2} < 2 exp{−Da(t)(ϵ/2)

2}.

When Ta(t) ≥ Da(t)
2 , by Lemma 17, we know

P (|µ̂a − µa| > ϵ) < 4Ia exp{−Na(t)ϵ
2/16} < 4Ia exp{−Da(t)ϵ

2/32}.

Then we complete the proof.

Hence the event that

ζ =

{
∀i ∈ {1, 2, · · · , N},∀a ∈ Ai, |µ̂a − µa| <

1

2
max{∆(N+1−i), ε}

}
doesn’t happen within probability at most

n∑
i=1

∑
a∈Ai

4Ia exp{−mi(
max{(∆(N+1−i))2, ε}

2
)2/32}

≤
n∑

i=1

∑
a∈Ai

4Ia exp

{
−αN+1−k ·max{(∆(N+1−i)), ε}2

T
2 −N

128logN

}

≤ 4IaN
2 exp

{
−

T
2 −N

128logNH3

}
,

where H3 = maxi=1,2,··· ,n{α−1
i (max{∆(i), ε})−2}.

Now we prove that under event ζ, the algorithm output a ε-optimal arm.

For each stage k, we prove that one of the following condition will be satisfied:

(1). All arms in Ak−1 are ε−optimal.

(2). Stage k eliminate an non-optimal arm ak ̸= a∗

In fact, assume (1) does not hold, then there exists at least one arm which is not ε−optimal. Since
|Ak−1| = N + 1 − k, there must exist an arm a ∈ Ak−1 with µa∗ − µa ≥ max{ε,∆(N+1−k)}.
Hence because of event ζ, after stage k, all arms in Ak satisfy µ̂a − µa < 1

2 max{∆(N+1−k), ε}.
Hence

µ̂a ≤ µa +
1

2
max{∆(N+1−k), ε}

≤ µa∗ −max{∆(N+1−k), ε}+ 1

2
max{∆(N+1−k), ε}
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< µ̂a∗ +max{∆(N+1−k), ε} −max{∆(N+1−k), ε}
= µ̂a∗ .

So the optimal arm a∗ will not be eliminated.

Hence if (2) always happen, the remaining arm will be the optimal arm. Otherwise, if (1) happens,
the algorithm will return an ε-optimal arm. Hence we complete the proof.
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