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ABSTRACT
Foundation models (FMs) are a new paradigm in AI. First pretrained
on broad data at immense scale and subsequently adapted to more
specific tasks, they achieve high performances and unlock powerful
new capabilities to be leveraged in many domains, including health-
care. This SIG will bring together researchers and practitioners
within the CHI community interested in such emerging technology
and healthcare. Drawing attention to the rapid evolution of these
models and proposals for their wide-spread adoption, we aim to
demonstrate their strengths whilst simultaneously highlighting
deficiencies and limitations that give raise to ethical and societal
concerns. In particular, we will invite the community to actively
debate how the field of HCI – with its research frameworks and
methods – can help address some of these existing challenges and
mitigate risks to ensure the safe and ethical use of the end-product;
a requirement to realize many of the ambitious visions for how
these models can positively transform healthcare delivery. This
conversation will benefit from a diversity of voices, critical perspec-
tives, and open debate, which are necessary to bring about the right
norms and best practices, and to identify a path forward in devising
responsible approaches to future FM design and use in healthcare.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; • Computing methodologies → Artificial intelli-
gence.

KEYWORDS
Foundationmodels, healthcare, responsible AI, ethics, socio-technical
systems, interaction design

ACM Reference Format:
Anja Thieme, Aditya Nori, Marzyeh Ghassemi, Rishi Bommasani, Tariq
Osman Andersen, and Ewa Luger. 2023. Foundation Models in Healthcare:
Opportunities, Risks & Strategies Forward. In Extended Abstracts of the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9422-2/23/04.
https://doi.org/10.1145/3544549.3583177

2023 CHI Conference on Human Factors in Computing Systems (CHI EA ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3544549.3583177

1 INTRODUCTION
The latest wave of AI innovation sees the evolution of a new class
of AI models often referred to as foundation models (FMs) — a term
popularized by the Stanford Institute for Human-Centered AI [5].
Recent examples include models like Google’s LaMDA [10] and
OpenAI’s GPT-3.5 [28] that demonstrate impressive capabilities
to generate coherent text; or OpenAI’s DALL·E 2 [33], which can
create realistic images and art from a text description. These models
are based on deep learning and trained mostly via self-supervision
on broad data at immense scale and high resource costs. The re-
sulting general-purpose models are powerful and complex – often
containing billions, even trillions of model parameters – and can
be adapted to a wide range of downstream tasks [5].

1.1 Paradigm Shift in AI
The pretraining then task-adaptation approach to FMs presents a
paradigm shift away from a more traditional focus on task-specific
models that have dominated the AI landscape thus far. Instead,
pretrained models can be re-used and adapted to specific tasks
for which they were not specifically trained [5, 39]. Task adapta-
tion can be achieved in multiple ways, e.g., via user or engineer
prompts; continual learning; or a process of fine-tuning - whereby
incremental adjustments to the model are typically learned from a
much smaller training sample [38] as would be required by more
traditional ML approaches. This expands opportunities for domains
in which insufficient data is an obstacle for training task-specific
algorithms [39], and invites considerable excitement about a future
of more flexible, re-usable AI models that can be scaled and applied
to any domain or task. This includes healthcare, where FMs may
offer potentially remarkable new technology capabilities that could
completely transform clinical practice [40].

1.2 Opportunities for Healthcare
Existing proposals for healthcare applications include the adapta-
tion of FMs to achieve increased efficiency in specific tasks related
to diagnosis and treatment (e.g., disease prediction [34], triage or
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discharge recommendations [21]), and assistance with health ad-
ministration tasks [5] via workflow optimizations (e.g., clinical
notes summarization [22] or medical text simplication [19]).

FMs also present as a central storage of medical knowledge that
could be queried by healthcare professionals or the public, suggest-
ing its use in medical question-answering [26] and chatbot appli-
cations [12]. For example, recent developments like ChatGPT [28],
Bing Chat [24], or Bard [30] offer conversational UIs to help people
identify and extract useful insights and deepen understanding of
information, which can become adopted to search for health advice.

Furthermore, new FM-enabled services may not only accelerate
healthcare application development, but also research by providing
capabilities to automate, for example: structured data set genera-
tion [32]; data labelling; or aid synthetic data creation [7]. Future
work may also explore the development of entirely new FM-enabled
capabilities that could be afforded especially through multi-modal
data that the healthcare domain is particularly characteristic for.
Extending beyond natural language processing, we already find ex-
amples in biomedical research that demonstrate great advances in
predicting human proteins (e.g., AlphaFold [37]) to assist structure-
based drug development; alongside efforts in genome sequencing
to speed-up detection of variants that cause genetic disease [17],
through to proposals for optimized clinical trial design [8].

1.3 What makes FMs Powerful makes them
Risky: Emergence & Homogeneity

To gain their power, foundation models leverage deep learning (DL)
approaches, whereby higher-level features automatically emerge
from the raw data inputs as an implicitly induced learning pro-
cess [5] – based on values the model itself chooses and optimizes
during training. A central feature of deep learning is the possibility
to pretrain the model on large volumes of unannotated datasets via
self-supervised processes, which – contrary to earlier generations
of AI systems that relied on the curation of medical knowledge by
experts and required explicit expressions of robust decision rules
and labelled input-output pairs [40] – does not require any human
input. Self-supervised learning therefore is what unlocks an en-
tire new scale of data analysis, resulting in performance gains [5];
all of which is powered by advances in GPU throughput, memory
capacity, and model architectures like transformer networks [2, 39].

Subsequent pretrained models are then adapted to other tasks
using transfer learning [34], whereby knowledge inferred from
the intrinsic structure of data in one task becomes applied to an-
other [39]. In other words, the powerful FMs that evolve, for ex-
ample Google’s language model BERT [13], then come to serve as
the basis for new state-of-the art models as adaptations from that
FM (e.g., CXR-BERT [3], Med-BERT [34] or PubMedBERT [18] in
healthcare). However, this homogenization, whereby few models
become repeatedly re-used as basis for other applications to in-
creases cost-effectiveness of AI systems, is simultaneously a key
concern since any inherent defects of the FM become inherited by
all models fine-tuned on them [4, 5].

Furthermore, the scale, complexity and emergent nature of their
learning process make it difficult, if not impossible, to understand
how FMs and their derivatives work, or when they might fail [5].
Given early stages of FM development that leaves many of their

potential pitfalls under-explored, this requires particular caution
for any prospective use within sensitive, high-stakes domains like
healthcare to not accentuate risks of harm (i.e., how the use of
FM-based applications may exacerbate social inequalities) [5, 39];
and raises fundamental questions about the responsible, ethical and
safe use of such technologies going forward [2].

2 FM USE IN HEALTHCARE: CHALLENGES
Next, we extend on some of these risks of FM use and what re-
inforces them; suggesting topics for conversation to invite active
debate at CHI and solicit proposals for how the research community
may be able to help with addressing these issues.

2.1 Data is not Neutral & Algorithms are not
Objective: Health Disparities & Societal Bias

Data is the building block of sense-making in AI [11]. In health-
care, data can be widely sourced (e.g., from care providers, insurers,
publications) [39], and vary in type (e.g., clinical notes, medical
images), scale (e.g., patient vs. population level), or style (profes-
sional vs. lay language) [5]; suggesting unique opportunities for
multi-modal FMs as well as core challenges for their training (e.g.,
across patient cohorts; bias exacerbation). While ML methods are
generally considered well placed to handle and derive useful in-
sights from large volumes of diverse, multi-dimensional data [35],
it is important to recognize how societal bias and inequality manifest
in data. Disparities range from the types of healthcare problems
that are being prioritized and funded (e.g., as downstream appli-
cations of FMs); through to the exclusion of specific population
groups and their misrepresentation in data collected. This can be
due to lack of access to healthcare; strict restrictions in patient
criteria for participation in clinical research trials; or higher risks of
inaccurate data capture due to documentation errors and systemic
discrimination of individuals from disadvantaged communities [6].
For example, having to verify citizenship at hospitals in Califor-
nia meant that the rate of autism diagnosis for Hispanic children,
who are often undocumented immigrants, fell following aggressive
federal anti-immigration policies [15].

Aside from bias and harm resulting from: underrepresentation,
overrepresentation ormisrepresentation of certain groups in datasets
that serve as the training ground for FMs and their derivatives [39],
Bender et al. [2] discuss how stereotypical and derogatory asso-
ciations along gender, race, ethnicity, and disability status are en-
coded in large language models (LLMs) that are often built on
uncurated, static datasets mostly crawled from the internet (for
GPT) or Wikipedia and online books (for BERT), which entrenches
dominant viewpoints and reinforces inequalities (e.g., the term
‘women doctors’ subtly implies the term doctor entails not-women
and excludes non-binary gender identities). Generating text that
amplifies underlying bias leads to “harms of subjugation, denigra-
tion, belittlement, loss of opportunity and others on the part of
those discriminated against” [ibid]. With societal bias being deeply
rooted within language, post-hoc filtering mechanisms alone that
reduce occurrences of unintelligible or bad content in training data
are insufficient, nor will larger datasets be a guarantor for greater
diversity. This suggests a shift towards more thoughtful dataset
curation [2, 5], alongside efforts to increase systematic reporting
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and risk analysis (e.g., via datasheets, impact assessments); and to
provide appropriate training resources to sensitize towards these
broader social and ethical issues.

Furthermore, in subsequent algorithm design, model developers
make important choices in what they optimize model performance
for [35]; to what extent specific sensitive attributes are accounted
for in model design and testing; and how desired outcomes are
defined and measured [6], which can further exacerbate disparities.
For example, an algorithm used to optimize referrals to long-term
care programs gave a similar risk score to Black patients as White
patients, when Black patients were considerably sicker and needed
extra care – a racial biases due to care costs being used as proxy for
health by some measure of predictive accuracy; yet unequal care
access can mean less money is spend caring for Black patients [27].

An added difficulty in the FM pretraining fine-tuning paradigm
is to understand where in the model ecosystem harms occur, and
how responsibilities for initial model development and subsequent
downstream fine-tuning become allocated [5, 39]. Alongside calls
for appropriate bias detection techniques, it is important that de-
velopment teams do not approach challenges of societal disparities
and bias solely as a technical problem that can be ‘engineered out’,
but seek to better understand, i.e.,: how sensitive attributes and
other confounding factors relate to the outcome of interest and can
be causes of downstream harm [6]; or how different types of errors
may disproportionately affect different patient groups or health ser-
vice providers [36]. Recent research by Adam et al. [1] also showed
how framing the AI output in communications to end-users can
help mitigate discriminatory effects of biased AI advice; raising
promise in careful interaction design.

2.2 Over-trusting High Performance & Output
Coherence: Ensuring Safe & Reliable Use

Whilst it is evident that larger models achieve higher accuracy
and unlock new technology capabilities, it is important to also
bring careful consideration to ethical and legal requirements for
their use to be safe, fair, to protect peoples’ privacy [39], and ulti-
mately, to benefit patients and care providers. Safe use in healthcare
implies that the system provides factually accurate, reliable infor-
mation for clinical decision-making. However, being able to assess
whether FM-derived application outputs are correct or not becomes
increasingly difficult, even for experts. This is exemplified by Chat-
GPT, whose coherent text generation feels indistinguishable from
language produced by humans [21], leading us to interpret the gen-
erated text as meaningful and truthful, which in turn increases risk
of automation bias and opportunities for deliberate misuses (e.g.,
bad actors creating false, manipulative contents) [2]. And yet, even
highly plausible-sounding outputs can be incorrect. To better manage
risks resulting from AI errors, the field of explainable AI (XAI) has
brought forward various techniques to explain model workings to
facilitate scrutiny and enable contestation of offered results. How-
ever, in practice, clinicians often lack the extra time and mental
capacity required to engage with such explanations, which also
assume technical expertise and clinician interest in wanting to in-
terrogate AI outputs [36]. Whilst most post-hoc explanations can be
useful at an aggregate level (e.g., for model improvements or audit),
they are often unreliable and less useful for individual instances that

matter for justifying person-focused healthcare decisions [16, 20].
Research has also shown that the addition of explanations can in
fact increase rather than decrease over-reliance on AI outputs (e.g.,
due to anchoring and confirmation bias) [14, 31]. That aside, given
the scale and complexity of FMs and their derivatives, it may be too
difficult, if not impossible, to understand their workings. Amongst
others, this suggests more careful consideration: in choices when
and when not to deploy FM-enabled applications in healthcare [21];
for training and interface design (on-boarding and use) to make
transparent the limitations and probabilistic nature of AI outputs;
and to shift the focus more towards the development of rigorous
and thorough validation procedures [16]. Here we might ask: what
types of internal and external validations and continued testing
and monitoring approaches would be needed as guarantors that
these models are safe and reliable when in use; serve their intended
purpose(s); and do not unfairly discriminate against specific person
characteristics or population groups?

2.3 Building AI in a Vacuum: Decontextualized
& Centralized

In what has been described as “a race for getting the technol-
ogy right before exposing human-end users to new promising AI
tools” [29]; the tendency to develop AI “in a vacuum” [25] – discon-
nected from well-defined needs of intended uses and downstream
use contexts, is increasingly criticized [23]. The decontextualized
treatment of AI development has led to more calls for ethnographic
studies to better understand actual practices, applications and uses
that surround algorithmic technologies within their use environ-
ments. This is particularly complicated in the context of FMs, which
– as the term “foundation” suggests – present an early component
within the AI system development pipeline that needs further adap-
tation to be useful [5]. Nonetheless, developing a better under-
standing of especially the limitations of FM-enabled applications in
context can help: to reduce misleading hypes about their capabili-
ties and instead ensure a closer focus on the needs and use context
of the people who are intended to benefit from these technologies as
well as those, who may be adversely affected [2]; to identify context-
appropriate risk mitigation strategies (e.g., learning from human-
peer review practices in healthcare to identify and address errors);
or to encourage new research directions that do not necessarily
depend on having FMs [ibid]. It is also essential to close current
gaps in moving from compelling technical proof-of-concepts and
successful lab experiments towards the integration and deployment
of AI-enabled systems within routine care [36]. To date, only few
experimental studies examined whether AI models achieve their
intended effects when deployed in the real-world [29, 31]. However,
to validate clinical utility, and enable for new AI systems to reach
their full potential, requires their end-to-end design, integration
and continued performance monitoring within clinical workflows.
While the challenge of translating AI research into successfully
deployable clinical applications is not straight forward [40], the
HCI community is well equipped with frameworks and methods to
drive forward what has been termed the “last mile” of AI in health-
care [9, 29]. In this regard, Zajac et al. [41] provide detailed insights
and concrete guidance to HCI researchers and practitioners about
requirements for effectively realizing ML in medical practice.
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This journey has the added complication that broader inter-
disciplinary engagement and contributions to FM research is con-
strained to mostly a small number of high-resourced industry labs
or large non-profits like OpenAI, who have the financial means and
technology infrastructure to train FMs in the first place. Such cen-
tralization of power excludes much of the larger academic research
community, thereby reducing diversity in perspectives on how FM
development should be shaped [5, 11]. How to encourage more
inter-disciplinary engagement and discourse? And what should
and could industries and governments do to enable more resource
sharing and equitable access to compute infrastructures?
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