
T-ReX: Optimizing Pattern Search on Time Series
(Extended Version†)

Silu Huang∗
Microsoft Research
Redmond, WA, U.S.A.

silu.huang@microsoft.com

Erkang Zhu∗
Microsoft Research
Redmond, WA, U.S.A.
ekzhu@microsoft.com

Surajit Chaudhuri
Microsoft Research
Redmond, WA, U.S.A.

surajitc@microsoft.com

Leonhard Spiegelberg∗∗
Brown University

Providence, RI, U.S.A.
leonhard@brown.edu

ABSTRACT
Pattern search is an important class of queries for time series data.
Time series patterns often match variable-length segments with a
large search space, thereby posing a significant performance chal-
lenge. The existing pattern search systems, for example, SQL query
engines supporting MATCH_RECOGNIZE, are ineffective in pruning the
large search space of variable-length segments. In many cases, the
issue is due to the use of a restrictive query language modeled on
time series points and a computational model that limits search
space pruning. We built T-ReX to address this problem using two
main building blocks: first, a MATCH_RECOGNIZE language extension
that exposes the notion of segment variable and adds new oper-
ators, lending itself to better optimization; second, an executor
capable of pruning the search space of matches and minimizing to-
tal query time using an optimizer. We conducted experiments using
5 real-world datasets and 11 query templates, including those from
existing works. T-ReX outperformed an optimized NFA-based pat-
tern search executor by 6× in median query time and an optimized
tree-based executor by 19×.

1 INTRODUCTION
Variable-length time series patterns are ubiquitous in scientific
research and business decision making [24, 40, 45], but searching
for these patterns over large historical data can be computationally
challenging. For example, a climate scientist interested in finding all
past occurrences of cold waves that reversed a seasonal trend may
look for a short segment of steeply decreasing temperature within
a longer segment of multi-week meandering warm-up [3] from
historical temperature time series. Figure 1a shows an occurrence
of cold wave in Austin, Texas in February 2021. The steep drop
segment can be matched using a linear regression’s goodness-of-fit
measure (𝑅2), and the warm-up segment can be matched using
Mann-Kendall test for monotone trends [51]. Unfortunately, due
to the variable-length nature of these segments, simply testing all
possible segments has a quadratic complexity with respect to the
series length. Another example is illustrated by Figure 1b, which
shows a variable-length period of high correlation between each
stock’s daily returns and those of the S&P 500 Index. A stock analyst

† Conference proceeding accepted at SIGMOD 2023.
∗ Equal Contributors.
∗∗Work done at Microsoft.

2021-01-01 2021-02-15 2021-04-01

10

0

10

20

30

Ai
r

Te
m

pe
ra

tu
re

Austin, TX, USA

(a) Cold Wave Pattern

0.1
0.0
0.1

S&P500

0.1
0.0
0.1

IQV

2020-01-01 2020-07-01 2021-01-01

0.1
0.0
0.1

V

(b) Stock Correlation Pattern
Figure 1: Examples of time series patterns.

may search for stocks highly correlated to the index when creating
an investment portfolio, but the duration of high correlation is not
known ahead of time. Simply testing all segments for potential
matches leads to high latency and frustration for the user.

To perform pattern search over historical time series using SQL,
the standard solution is MATCH_RECOGNIZE, which provides a declar-
ative and composable query interface as part of the 2016 SQL stan-
dardized syntax [9]. MATCH_RECOGNIZE is supported in several query
engines including Oracle [13], Apache Flink SQL [14], Azure Stream
Analytics [15], Snowflake [12], and Trino [11]. It has been used to
perform web session analysis [19] and financial audit [18].

Example 1. Figure 2 lists a query for finding the cold wave pattern in
a dataset of historical temperature observations over many weather
stations. The PARTITION BY and ORDER BY clauses instruct the system
to construct one time series per weather station, each ordered
by the timestamp attribute tstamp. The PATTERN clause specifies a
regular expression that consists of variables, each matching a record
of temperature observation. The DEFINE clauses provide Boolean
matching conditions that define those variables. If a variables is
not defined in the DEFINE clause, e.g., A and B, then this variable can
match any record. The regular expression declares that the query
pattern contains a sub-pattern of a steep decreasing segment D+,
with “+” indicating a repeated occurrence of at least one D record
using Kleene Closure. A* and B* represent two other segments with
zero or more records using Kleene Star; together with D+ they form a
complex segment Uwith an upward trend over a larger timewindow.
The steep decreasing trend is defined by, first, the difference in
temperature, and second, the linear regression’s goodness-of-fit
measure, 𝑅2, as an aggregate over timestamp and temperature.

1

1 -- Record Schema in table Weather: [tstamp, station, temp]
2 SELECT * FROM Weather MATCH_RECOGNIZE(
3 PARTITION BY station ORDER BY tstamp
4 PATTERN (A* D+ B* Z)
5 SUBSET U = (A, D, B)

6 DEFINE D AS tstamp - first(D.tstamp) <= INTERVAL '5' DAY,

7 Z AS last(U.tstamp) - first(U.tstamp) BETWEEN
8 INTERVAL '25' DAY AND INTERVAL '30' DAY
9 AND mann_kendall_test(U.temp) >= 3.0
10 AND linear_regression_r2(D.tstamp, D.temp) >= 0.95
11 AND last(D.temp) - first(D.temp) < -20)

Figure 2: A MATCH_RECOGNIZE query for finding cold wave pat-
terns in historical temperature data.

The upward trend on U is defined by a Mann-Kendall monotone
trend test aggregate. The extra variable Z is needed to evaluate the
conditions on D+ and U under the “final semantics”1.

Poor Performance in Current Systems. Though pattern search
queries with complex matching conditions on variable-length seg-
ments are common [24, 40, 45], their performance in existing sys-
tems is poor for queries such as the one shown in Example 1. They
either use a Non-deterministic Finite Automaton (NFA) [28, 30]
or a tree-based executor [34, 35, 41]. For an NFA-based executor,
the cold wave pattern query took 85 minutes2 over 36 time series
with an average length of 1,854 on a Trino server with 16 parallel
threads; this query timed out after 2 hours on Apache Flink SQL.
For a tree-based executor, ZStream [41] took 16 minutes.

The poor performance has two causes. First, these executors are
ineffective in pruning the large search space of possible matches
in the pattern. Given the temporal constraints, the search space
contains as many as 1.4M possible matches3 for the query in Ex-
ample 1. However, both the NFA-based and tree-based executor do
not prune this search space at all, since non-temporal conditions
are all defined on Z and Z can only be evaluated after instantiat-
ing {A, D, B}. As a result, all 1.4M partial matches are generated
before being evaluated against the conditions on Z. Second, redun-
dant computation is performed when evaluating these 1.4M partial
matches against the conditions on Z, since these partial matches cor-
respond to overlapping segments and consequently aggregates such
as linear_regression_r2() are evaluated on overlapping segments.
Our Proposal.We built T-ReX, a time series pattern search engine
with a novel executor and optimizer to address this performance
issue. For the cold wave pattern, T-ReX found all results in 6 seconds
using a single thread on the same machine – an 850× speedup over
Trino and 160× speedup over ZStream.

1If a condition, say linear_regression_r2(D.tstamp, D.temp) >= 0.95,
was defined on the variable D instead, then a sequence of records that satisfies the
condition would not have been matched unless all prefixes of the sequence matched
the condition, according to the “running semantics” of MATCH_RECOGNIZE. Thus,
conditions such as those involving D+ must be evaluated after the corresponding
sequence has been matched to avoid discarding matches prematurely. For details see
the SQL standard [9], Trino’s [11] and Oracle’s [13] documentation.
2We removed the Mann-Kendall test condition for Trino which currently does not
support this aggregate; we also propagate the upper bound (i.e., 30 days) of the window
condition to A and B to avoid wasting computation beyond the current window.
3Assuming 1 point per day, count possible matches for the overall window (25 to 30
days) and possible matches for the steep-decrease window (1 to 5 days) given each
overall window size:

∑30
𝑤=25 (1854 − 𝑤)

(∑5
𝑣=1 (𝑤 − 𝑣 + 1)

)
= 1, 397, 185.

By reasoning about patterns in terms of segments, i.e., contiguous
sequences of points, T-ReX is able to utilize a new set of perfor-
mance optimizations. First, T-ReX exploits selective and inexpen-
sive sub-patterns to prune the search space of other sub-patterns.
For example, when interpreting the cold wave pattern in terms of
segments, we can decompose it into three major sub-patterns: the
steep-drop segment (DIFF), linear-decrease segment (DOWN), and the
overall warm-up segment (UP). If DIFF is more selective and less
expensive to evaluate than DOWN, we first evaluate DIFF in the full
search space (i.e., all segments satisfying the temporal conditions),
and then use the results as anchors to prune the search space of
DOWN, since these segments should satisfy both DIFF and DOWN sub-
patterns. Such selectivity and cost information has to be reasoned
about at segment level, as the Boolean expressions in DIFF and DOWN

are defined on a segment not a point. Second, reasoning about the
pattern in terms of segments enables computation-sharing within a
query. Instead of evaluating the Boolean expression in DOWN for each
candidate segment, its computation can be shared and amortized
across all candidate segments.

T-ReX supports the MATCH_RECOGNIZE syntax but also extends it
by introducing segment variable and two new operators, And (&)
and Not (∼), in the regular expression syntax. With segment vari-
ables and the new operators, pattern regular expressions can be
specified in terms of segments. Though T-ReX shares the same
expressiveness as standard MATCH_RECOGNIZE, the language exten-
sion enables significant performance improvement. Furthermore,
to fulfill our insight on search space pruning, we designed (1) a
tree-based executor with search space awareness, (2) novel physical
operators capable of search space pruning, and (3) a new optimizer
that incorporates the search space in its cardinality and cost esti-
mation. Empirically, on a benchmark of 5 real-world datasets and
11 query templates including those from existing works [20, 28],
T-ReX outperforms an optimized NFA-based [28] by 6× and an
optimized tree-based executor [41] by 19×, in median query time,
with computation-sharing enabled for the baseline executors.

To outline the content of this paper: we introduce the language
extension and discuss its expressiveness and complexity in Sec-
tion 2; we discuss query processing in Section 3, physical operators
in Section 4, and optimizer in Section 5; we present experimental
evaluation in Section 6; finally in Section 7 we put T-ReX in the
context of existing works.

2 LANGUAGE EXTENSION
In this section, we describe our extension to MATCH_RECOGNIZE.

2.1 Point and Segment Variables
A point is a timestamped record in a time series. We use the term
"point" and "record" interchangeably. A point variable X [9] is de-
fined using the clause DEFINE P AS Boolean_Condition(P). A point 𝑝
is said tomatch point variable P if Boolean_Condition(p) is True. In
our extension, point variables maintain the same syntax as variables
in existing MATCH_RECOGNIZE [9].

A segment is a contiguous sequence of points, denoted as [𝑖, 𝑗]
where 𝑖 and 𝑗 are the inclusive start and end integer index positions
of the time series. All points including the start and end are part of

2

1 -- Record Schema: [tstamp, station, temp]
2 PARTITION BY station
3 ORDER BY tstamp
4 PATTERN ((W (DOWN & DIFF & WAVE_WINDOW) W) & UP & OVERALL_WINDOW)

5 DEFINE SEGMENT W AS true, -- matches any segment

6 SEGMENT WAVE_WINDOW AS window(WAVE_WINDOW.tstamp, 1, 5, DAY),

7 SEGMENT DIFF AS last(DIFF.temp) - first(DIFF.temp) < -20,

8 SEGMENT DOWN AS linear_regression_r2(DOWN.tstamp, DOWN.temp) >= 0.95,

9 SEGMENT OVERALL_WINDOW AS window(tstamp, 25, 30, DAY),

10 SEGMENT UP as mann_kendall_test(temp) >= 3.0

Figure 3: A MATCH_RECOGNIZE query with T-ReX extension.

the segment. A single point is a segment where the start and end
are the same, i.e., [𝑖, 𝑖].

A segment variable is defined using clause DEFINE SEGMENT S AS

Boolean_Condition(S)with keyword SEGMENT or SEG. A segment 𝑠 is
said to match segment variable S if Boolean_Condition(s) is True.

For instance, Figure 3 shows a T-ReX query for the cold wave
pattern discussed in Section 1. In this query, W, DOWN, DIFF and UP are
all segment variables. Segment variable W is used to represent a time
window before or after the cold wave segment. T-ReX provides
built-in aggregates to help define segment variables, for example,
linear_regression_r2(x, y) and mann_kandall_test(x). It also sup-
port user-defined aggregates. Besides, the window(x, lo, hi, unit)

function is used to define window condition4.

2.2 Operators
A variable is an atomic unit of a pattern. An operator is a function
that takes one or two patterns as inputs and returns a new pattern.
Complex patterns can be composed from variables using operators.

We first describe how existing MATCH_RECOGNIZE operators work
with segment and point variables. Then we introduce two new
operators: And and Not.

Definition 2.1 (Concatenation). Given two patterns (A) and
(B), a Concatenation operator on (A) and (B) is denoted as (A B).
• If (A) and (B) contain only point variables, then a segment [𝑖, 𝑗]
matches pattern (A B) if and only if there exists some 𝑘 such that
[𝑖, 𝑘] matches (A) and [𝑘 + 1, 𝑗] matches (B);

• Else, i.e., either (A) or (B) contains segment variable, then a segment
[𝑖, 𝑗] matches pattern (A B) if and only if there exists some 𝑘 such
that [𝑖, 𝑘] matches (A) and [𝑘, 𝑗] matches (B).

When A and B contain only point variables, Concatenation falls
back to what is currently in MATCH_RECOGNIZE. When there is a seg-
ment variable in either pattern (A) or (B), Concatenation’s seman-
tics changes slightly: the ending point of the first segment is the
starting point of the second – they share the boundary point 𝑘 .

Definition 2.2 (Alternation). AnAlternation operator (|) unions
two patterns (A) and (B) so that the pattern (A | B) is matched to a
segment if at least one of A and B are matched to this segment.

4There are two types of windows: time-based windows and point-based windows. For
time-based window, it can be specified as window(x, lo, hi, unit) on column
x with lower bound size lo and upper bound size hi. For point-based window, it can
be specified as window(lo, hi). There are also fixed-sized windows: window(x,
size, unit) for time-based and window(size) for point-based.

Definition 2.3 (Kleene). A Kleene, or quantifier operator (*, ?, +,
{n}, {m, n}) repeats a pattern (A) a given number of times so that the
resulting pattern is matched to a segment if and only if the segment
is matched by pattern (A) concatenated to itself appearing the same
number of times. Specifically, (A*) means zero or more, (A?) means
zero or one, (A+) means at least one, (A{n}) means exactly n times,
and (A{m,n}) means between m and n times inclusive.

Definition 2.2 and 2.3 are what in the original MATCH_RECOGNIZE
where there is only point variables and they work in the same way
when there exists segment variables. Next, we describe two new
operators not yet supported by MATCH_RECOGNIZE.

Definition 2.4 (And). An And operator (&) joins two patterns (A)
and (B). The pattern (A & B) matches a segment if and only if both
(A) and (B) match this segment.

For example, the sub-pattern (DOWN & DIFF & WAVE_WINDOW) (Fig-
ure 3) specifies that a matching segment, e.g., [10, 14], must meet
all the conditions defined for DOWN, DIFF and WAVE_WINDOW. The sub-
pattern (W (DOWN & DIFF & WAVE_WINDOW) W) concatenates three
sub-patterns to match segments such as [5, 20]: the segment [10, 14]
is “padded” by segments [5, 10] and [14, 20]. Lastly, the sub-pattern
is combined with UP & OVERALL_WINDOW through an And operator
to specify the Mann-Kendall test and window conditions for the
overall pattern.

Definition 2.5 (Not). A Not operator (∼) negates a pattern A so
that the pattern (∼A) matches a segment if and only if the segment
does not match (A).

The Not operator is useful when expressing none existence of
some segment. For example, in the temperature dataset, if we were
to find segments of warming-up without any cold wave occurrence,
we can use the pattern ((∼(W (DOWN & DIFF & WAVE_WINDOW) W)) &

UP & OVERALL_WINDOW).

2.3 Comparison with MATCH_RECOGNIZE
Next, we will compare T-ReX’s extension with MATCH_RECOGNIZE by
answering the following two questions: (1) does the language exten-
sion add expressiveness to MATCH_RECOGNIZE? (2) does the language
extension lead to lower complexity of query evaluation?

2.3.1 Language Expressiveness. While T-ReX’s language extension
provides a syntactic sugar for expressing patterns involving con-
ditions on segments, T-ReX shares the same expressiveness as the
standard MATCH_RECOGNIZE. Below we provide a sketch of how to
prove the expressiveness equivalence between MATCH_RECOGNIZE and
T-ReX. See the complete proof in Appendix A.

Proposition 2.1. The introduction of segment variable in T-ReX’s
language does not add expressiveness to MATCH_RECOGNIZE.

Proof sketch: given any segment variable S, we can replace S

with (p* z) DEFINE p As true, z as S_Boolean_Condition(p, z),
where p and z are point variables, and S_Boolean_Condition is the
Boolean Condition in S’s definition.

Proposition 2.2. The introduction of new operators (And and Not)
in T-ReX’s language does not add expressiveness to MATCH_RECOGNIZE.

3

Proof sketch: based on Proposition 2.1, we can assume a given
pattern contains only point variables and no segment variables.
Next, we show an invariant that any pattern can be expressed using
only operators in standard MATCH_RECOGNIZE. This is proved via an
induction: assume sub-pattern A and B satisfy this invariant, we
prove (A & B) and (∼A) would also satisfy this invariant by first
decomposing sub-pattern A (and B) into alternations of special
patterns (i.e., patterns involving only concatenation operators, see
LemmaA.1 in Appendix A for details) and then performing a rewrite
on (A & B) and (∼A).

Theorem 2.3. T-ReX shares the same expressiveness as standard
MATCH_RECOGNIZE.

Proof. This follows directly from Proposition 2.1 and 2.2. □

2.3.2 Runtime complexity. T-ReX’s extension to MATCH_RECOGNIZE

provides a direct way to reason about patterns in terms of segments.
As described in Section 1, this offers a few performance advantages.
For one, placing the matching conditions at their corresponding
variables, e.g., DOWN and DIFF, as opposed to placing the conditions
at the last variable, e.g., Z as in the original query (Figure 2), enables
selectivity reasoning for each variable and makes earlier pruning
of partial matches possible. Furthermore, the explicit Boolean ex-
pression defined on each segment variable enables the reasoning
of computation sharing across candidate segments (see Section 4.2
for details). Last, using operators (e.g., And) to compose finer grain
variables into complex patterns (e.g., DOWN & DIFF & WAVE_WINDOW)
surfaces more opportunities for the optimizer to select better phys-
ical operators and evaluation order. We will discuss the executor
and query optimization in detail in the next three sections.

Such performance improvement is both data- and query-dependent.
Following the runtime analysis in [52], if the pattern is without
Kleene operator, both the standard MATCH_RECOGNIZE executor and
T-ReX have linear complexity in 𝑛, where 𝑛 is the series length;
else, both have exponential complexity in 𝑛 in the worst case for
exponential matches in the output. However, as we will show in
Section 3 and 4, T-ReX achieves significant performance gain over
prior executors when the query involves a large search space and
there exist low selective and inexpensive sub-patterns.

While we hope that the syntax extension makes it easier to
express time series patterns, it is also possible to translate a standard
MATCH_RECOGNIZE query into one using the extension, which we
discuss in Appendix B.

3 QUERY PROCESSING OVERVIEW
In this section, we presents an overview of T-ReX’s query engine.
Time Series Data Model. In T-ReX, a time series is constructed
from the input data according to a query’s PARTITION BY and ORDER

BY clauses, and stored in memory. A segment can be directly ac-
cessed via its start and end index positions.
Tree-based Executor. T-ReX uses a tree-based executor. Figure 4
illustrates a logical execution plan for the cold wave pattern query
from Section 2. The plan is generated by parsing the query pattern
and variable definitions. As in existing tree-based executors [32, 41],
T-ReX’s executor follows a top-down iterator model to obtain inter-
mediate results from sub-trees. Every leaf operator is a “Segment

SegmentGenerator:
window(DIFF.tstamp, 1, 5, DAY),

DIFF: last(DIFF.temp) -
first(DIFF.temp) < -20

And

SegmentGenerator:
window(tstamp, 25, 30, DAY),

UP: mann_kendall_test(temp) >= 3

SegmentGenerator:
window(DOWN.tstamp, 1, 5, DAY),

DOWN:
linear_reg_r2(DOWN.tstamp,

DOWN.temp) >= 0.95

And

SegmentGenerator:
W: window(X1.tstamp, 1,

30, DAY)

SegmentGenerator:
W: window(X2.tstamp, 1,

30, DAY)

Concat

Figure 4: The logical execution plan of the cold wave pattern.

Generator”. It produces segments matching its embedded Boolean
conditions. The internal operators implement the query operators:
“Concat” and “And” as shown in this example, as well as “Or” (Alter-
nation), “Kleene”, and “Not” not shown here. They assemble match-
ing segments from sub-trees to produce new segments matching
their own sub-patterns. For example, the sub-pattern (DOWN & DIFF)

is implemented by the lowest sub-tree rooted at an And operator.
Main Insights and Contributions. The core challenge for T-ReX
is to prune search space and minimize the total query process-
ing cost. We have three main insights and make corresponding
contributions to the space of pattern search executors:
(1) Sub-trees with cheaper or more selective conditions can be used

to prune the search space of those with more expensive or less
selective ones, e.g., use DIFF to prune DOWN. We introduce probe
operators (Section 4.3.1 and 4.4.2) to support data-dependent
pruning during execution.

(2) Since segments can overlap, it may be desirable to share the com-
putation of aggregation functions on overlapping segments. We
introduce new aggregation primitives index() and lookup()
(Section 4.2.1) to support computation sharing.

(3) The optimizer must be aware of search space when estimating
cost and cardinality but the actual search space of each oper-
ator is only available during execution. To overcome this, our
optimizer (Section 5) uses range sizes of search space as proxies
for cost estimation.
Apart from these, ideas from relational databases are also ap-

plied, namely: (1) windows as the simplest and cheapest-to-evaluate
conditions should be pushed-down to the leaf nodes to prune the
search space of other variables; (2) having multiple physical opera-
tor implementations and operator reordering allows the optimizer
to adapt the execution plan toward query and data.
Life of a Query. The first step of query processing is logical query
plan rewrite. The following plan rewrite rules are used: (1)Window
embedding: variables with window conditions through the And
operator have the windows embedded in them directly; point vari-
ables are assigned a window of size 1. (2)Window push-down: win-
dows assigned to the parent patterns are pushed down to child sub-
patterns, with appropriate relaxing of the length conditions for Con-
catenation and Kleene operators. The logical plan in Figure 4 has
been rewritten by these rules: (1) WAVE_WINDOW, i.e., window(tstamp,
1, 5, DAY), is embedded directly in variable DIFF and DOWN, and
OVERALL_WINDOW, i.e., window(tstamp, 25, 30, DAY), is embedded in
variable UP; (2) OVERALL_WINDOW is pushed down to W, DIFF, and DOWN

by taking OVERALL_WINDOW’s upper bound, i.e., 30 days.
4

The second step is physical query plan optimization: logical oper-
ators with more than two sub-trees are split into binary operators;
the choices of physical operators and the order of the splits are
determined. For the optimizer to work, T-ReX must collect sampled
statistics about selectivity of variables with respect to the input time
series. The statistics are fed into a cardinality model to estimate the
input and output cardinalities of all physical operators in a physical
plan, and then a cost model, which is bootstrapped off-line, is used
to calculate the estimated cost of the plan. T-ReX uses the dynamic
programming approach similar to many relational databases to
obtain the minimal-cost plan.

Finally, the plan is executed following the iterator model [32].

4 PHYSICAL OPERATORS
In this section, we describe T-ReX’s physical operators, how they
perform search space pruning and support language features.

4.1 Physical Operator Interface
In T-ReX each operator implements an eval() method producing
an iterator of segments, given the input series, search space (sp)
and references (refs), as shown in the Python snippet below.

1 class RightProbeConcatOperator(RightProbeOperator, Concat):
2 def eval(self, series: Series, sp: SearchSpace, refs: Reference):
3 # Implementation.
4
5 class Segment:
6 segment: Tuple[int, int] # a tuple of start and end positions.
7 payload: List[Tuple[int, int]] # segments matched to sub-patterns.

The series argument is the time series object. sp is the search
space, it specifies the possible ranges of start and end index posi-
tions in the time series that the returning segments should follow.
For example, a search space could be (𝑆 = [5, 10], 𝐸 = [10, 10]),
meaning the start position is in the range from 5 to 10 (inclusive),
and the end position is fixed at 10. At the root operator, the search
space is (𝑆 = [0, 𝑛−1], 𝐸 = [0, 𝑛−1]), 𝑛 being the number of points
in the time series. The inclusion of search space in eval() method
enables a native support of search space pruning in our execution
framework and lays a foundation for implementing our main in-
sight (1) in Section 3. Physical operators can achieve performance
gain by reducing the search space of its child operator (Section 4.3.1
and 4.4.2).

The refs argument is for implementing variable references. It
is a reference object that carries the referenced segments that
are needed for variable with conditions on segments matched
to other variables. For example, in the query shown in Figure 5,
CORRELATE’s condition corr(CORRELATE.x, UP.x) references the seg-
ment matched by UP. During execution, the sub-tree containing the
referenced sub-patterns are executed first to obtain the referenced
segments; then those segments are used to evaluate the sub-tree
that requires them. A segment matches a referenced sub-pattern
is stored in the payload field of its upper-level pattern’s segment,
and this payload data is passed all the way up until it is no longer
required by an eval() through the refs argument (or by the query
itself5). Figure 5 illustrates a possible physical query plan tree, and

5MATCH_RECOGNIZE’s MEASURES clause can be used to customize a match’s out-
put [9, 11, 13].

shows how the payload field is used to store referenced segments.
As we will discuss in Section 4.4.2, the refs argument removes the
need for special handling the Not operator, such as post-processing
in existing CEP systems. This reduces intermediate results, leading
to better performance as shown in our experiments (Section 6.3).

4.2 Segment Generators
In T-ReX, Segment Generators are the leaf operators of a physical
query plan tree. Each Segment Generator is embedded with a vari-
able and a window, and its eval()method produces segments from
the time series matching the Boolean conditions of the embedded
variable and window. They are designed following our main insight
(2) discussed earlier in Section 3.

Because segments often overlap, for aggregates in Boolean con-
ditions, T-ReX uses computation sharing: at query time, it first
builds an “index-like” data structure over the whole series, such as
the complete result materialized using dynamic programming for
mann_kendall_test. Such computation can be amortized because af-
ter building the index, T-ReX can simply lookup the index to check
if a segment is a match, instead of invoking a full aggregation. Still,
the upfront cost may out-weigh the benefits of faster lookup, espe-
cially when the number of lookup is small. Thus, T-ReX provides
two different implementations of Segment Generator.

4.2.1 Segment Generator with Indexing. The SegGenIndexing op-
erator in T-ReX implements the indexing approach. Variables with
conditions involving aggregates that have implemented an index()
method are eligible to be part of an SegGenIndexing operator. For
each built-in aggregate, whenever possible, we analyze and imple-
ment an index() method. For user-defined aggregates, we provide
an interface for advanced users to implement their own index()
methods. In SegGenIndexing’s eval() method, this physical op-
erator first builds an index by calling the index() method on the
given series , and then for each segment produced by its embed-
ded window’s iterate(), it calls the index’s lookup() method to
check if this segment is a match and should be emitted.

Example 2. For the aggregate linear_reg_r2(x,y), its index()
method computes accumulative sums on 5 expressions: 𝑥 , 𝑦, 𝑥2, 𝑦2
and 𝑥𝑦, over the input series. Let 𝑃𝑥 (𝑖) denote the accumulative sum
of 𝑥 from index 0 to 𝑖 , similarly 𝑃𝑦 (𝑖) for𝑦 and so on. The lookup()
method takes input a segment (𝑖, 𝑗) and returns the value of 𝑅2

over this segment, using the formula: 𝑅2 = (𝑥𝑦−𝑥𝑦)2

(𝑥2−𝑥2) (𝑦2−𝑦2)
, where

𝑥 can be computed using the accumulated sum as 𝑃𝑥 (𝑗)−𝑃𝑥 (𝑖−1)
𝑗−𝑖+1 ,

similarly for 𝑦, 𝑥2, 𝑦2 and 𝑥𝑦.

4.2.2 Segment Generator with Filter. The SegGenFilter operator
in T-ReX implements a simpler approach: for each segment pro-
duced by its embedded window’s iterate() method, it evaluates
the embedded variable’s condition to determine whether to emit
the segment. By pushing embedded window down to the very
bottom of processing, T-ReX avoids unnecessary evaluations of the
embedded variable’s conditions. For a window-only leaf operator
with no embedded variable, this becomes SegGenWindow, which
only generates the windowed segments.

5

4.3 Binary Operators
Binary physical operators (Concatenation, And, and Or) find pairs
of “joinable” segments with one from the left child and the other
from the right child, and create a new segment.

For a Concatenation, the left segment’s end position must equal
the right segment’s start position to form a pair6, and the new
segments has the left’s start and right’s end. Therefore, the search
space is expanded when passed to its children. For example, if the
Concatenation’s search space is (𝑆 = [𝑠𝑖 , 𝑠 𝑗], 𝐸 = [𝑒𝑖 , 𝑒 𝑗]), then its
left child’s search space is expanded to (𝑆 = [𝑠𝑖 , 𝑠 𝑗], 𝐸 = [𝑠𝑖 , 𝑒 𝑗])
– same 𝑆 but larger 𝐸, and the right’s becomes (𝑆 = [𝑠𝑖 , 𝑒 𝑗], 𝐸 =

[𝑒𝑖 , 𝑒 𝑗]) – same 𝐸 but larger 𝑆 , because the intersecting point of
two joined segments can be anywhere between 𝑠𝑖 and 𝑒 𝑗 . For a
And, it requires both the left and right segments to have identical
positions. For an Or, all segments from both children are accepted
and emitted. Unlike Concatenation, search space of an And or an
Or is passed to the children unchanged.

4.3.1 Probe Operators. The search space is either unchanged (And,
Or) or expanded (Concatenation) by a binary operator. So how can
we prune search space? To this point, we use our first insight: the
sub-tree with cheaper or more selective conditions can be used
to prune the search space of the one with more expensive or less
selective ones (Section 3). This leads to the design of Left and Right
Probe operators.

A Left/Right Probe operator performs pruning of one of its child’s
search space. It first calls eval() on one child, for example, the left
child, using the child’s search space as discussed earlier. For each
segment from the left child, it calls the eval() method on the right
child, but using a smaller search space conditioned on the segment
of the left child – a “probe”. For example, if the left segment is
[𝑙𝑖 , 𝑙 𝑗], for RightProbeConcat, because the right segment starts
from the end position of the left segment (𝑙 𝑗), the search space for
the right child in this probe is reduced to (𝑆 = [𝑙 𝑗 , 𝑙 𝑗], 𝐸 = [𝑒𝑖 , 𝑒 𝑗])
– the size of 𝑆 is reduced from 𝑒 𝑗 − 𝑠𝑖 to 1. For RightProbeAnd,
given the same left segment, because the right segment must be
the same as the left, the right search space for this probe is reduced
to (𝑆 = [𝑙𝑖 , 𝑙𝑖], 𝐸 = [𝑙 𝑗 , 𝑙 𝑗]) with a size of 1 for both 𝑆 and 𝐸. An Or
operator does not have a Probe operator as it simply unions the
segments from both children.

For example, if we choose RightProbeAnd for both of the And
operators in the execution plan in Figure 4, segments matching DIFF

is used to prune DOWN, and segments matching (W (DIFF & DOWN &

WAVE_WINDOW) W) is used to prune UP. Assuming 1% of WAVE_WINDOW
windows match DIFF, and 1% out of those matches DOWN, then the
total number of segments to be evaluated for mann_kendall_test in
UP’s condition is about 140, instead of 1.4M using NFA (Figure 2).

Due to search space pruning, a Left/Right Probe operator can
effectively reduce the total processing cost when one of the child is
selective – producing few segments, and/or cheap – costing little to
evaluate. However, there is potentially redundant computation at
the leaf operators. When the probed child’s sub-tree has an operator
that expands search space (i.e., Concatenation or Kleene), redun-
dant computation can happen at the leaf operators that receive

6For simplicity we only discuss segment variables. The specific join rules for points
and segments is orthogonal to the implementation.

SortMergeConcat

window(0, 50)

SegGenIndexing

window(10), Ref: 'UP'

UP: linear_reg_r(UP.x)

>= 0.95

SegGenIndexing

window(1,50), DOWN:

linear_reg_r(DOWN.x) <=
-0.95

)Probe
RightProbeConcat

window(0, 50)

Probe
RightProbAnd

window(10)

SegGenFilter

window(10), CORRELATE:
corr(CORRELATE.x, UP.x)

>= 0.9

SegGenIndexing

window(10), DIFF:

last(DIFF.x) -
first(DIFF.x) > 10

((1,10), []) ((10, 14), [])

((1,14), [(1, 10)])

eval(sp=((14, 14), (14, n-1)), refs=[(1, 10)])

((14, 23), [])

((14, 23), [])

eval(sp=((14, 14), (23, 23)),
 refs=[(1, 10)])

payload

((14, 23), [])

((1, 23), [])

start end

segment

1

2

3

4

5

6

7

8

SortMergeConcat

window(1, 50)

RightProbeConcat

window(1, 50)

1 PATTERN (((UP & W1) DOWN
2 (DIFF & CORRELATE & W1)) & W2)
3 DEFINE SEG UP AS linear_reg_r2(UP.x) >= 0.95,
4 SEG DOWN AS linear_reg_r2(DOWN.x) <= -0.95,
5 SEG DIFF AS last(DIFF.x)-first(DIFF.x) > 10,
6 SEG CORRELATE AS corr(CORRELATE.x, UP.x) >= 0.9,
7 SEG W1 AS window(10), SEG W2 AS window(0, 50)

Timestamps

V
al

u
es

(1, 11.38)

(10, 51.36)

(14, 21.42)

(23, 55.47)

UP

DOWN DIFF &

CORRELATE

Figure 5: A time series, a query and its physical plan for
finding correlated sub-patterns, (UP) and (CORRELATE), with
segment variable references defined in CORRELATE. Ordered
blue boxes mark the flow of segments through the plan tree.

overlapping search space across probes. Thus, when neither child
is selective or cheap, a Left/Right Probe operator may be costly.

4.3.2 Sort-Merge Operators. This type of operator uses the Sort-
Merge join algorithm in relational systems so both children must
be evaluated independently. Unlike Left and Right Probe opera-
tors, Sort-Merge operators do not have the issue of search space
overlap across probes because each child is evaluated exactly once.
However, it requires the children to be executed independently of
one-another, that is, there can be no condition from one sub-tree
referencing a operator in the other sub-tree because the second
sub-tree must be executed to pass the referenced segments to the
first.

While hash join algorithm has the same time complexity, in
practice the Sort-Merge algorithm often early-terminates due to
exhaustion of one sub-tree’s segments, and gets a significant run
time reduction. So T-ReX does not use hash join algorithm.

4.3.3 A Data Flow Example. Figure 5 illustrates a physical query
plan with a SortMergeConcat, a RightProbeConcat, and a
RightProbeAnd. We can visualize the working of these operators
by following the data flow through the plan tree:

1 Two segments, [1,10] and [10,14] matched variables UP

and DOWN are independently generated by the two SegGenIndexing
operators. Because they have no sub-tree, segments from SegGen
always have empty payload. 2 SortMergeConcat joins the two
segments to produce a new segment [1,14] with a payload car-
rying the referenced segment matched by UP with reference key
‘UP’. 3 After receiving the left segment, RightProbeConcat calls
the eval() method on the right child, setting the search space
argument to ([14,14],[14,n-1]) where n is the series length.
because the right segment must start from the end position of the
left segment. The refs argument is set with the referenced seg-
ment obtained from the payload of the left segment, as the right
sub-tree requires it to evaluate the condition corr(CORRELATE.x,

6

SortMergeConcat

window(1,50)

SegGenIndexing

window(10), Ref: 'prev'

UP: linear_reg_r(UP.x)

>= 0.95

SegGenIndexing

window(1,50), DOWN:

linear_reg_r(DOWN.x) <=
0.95

SortMergeConcat

window(1,50)

Probe
RightProbAnd

window(10)

SegGenWindow

window(10),
CORRELATE

SegGenIndexing

window(10), DIFF:

last(DIFF.x) -
first(DIFF.x) > 10

((1,10), []) ((10, 14), [])

((1,14), [(1, 10)]) ((14, 23), [(14, 23)])

((14, 23), [])((14, 23), [])

((1, 23), [(1, 10), (14, 23)])

1

3

1

2

4
Filter

window(10),
corr(CORRELATE.x,

UP.x) >= 0.9

((1,23), []) 5

eval(sp=((14, 14), (23, 23)),
 refs=[])

payload

Figure 6: An equivalent physical query plan to Figure 5 with
the condition corr(CORRELATE.x, UP.x) >= 0.9 placed in a Filter
after the SortMergeConcat, with a SegGenWindow as the
leaf operator to generate unfiltered segments.

UP.x) >= 0.9. 4 RightProbeAnd evaluates its left sub-tree us-
ing the search space ([14,14],[14,n-1]) and receives a segment
[14,23]. 5 This segment is then used to form the search space, to-
gether with the referenced segment [1,10], to form the arguments
to call eval() on the right sub-tree of the And operator. 6 The
SegGenFilter confirms the segment to be a match, thus 7 the And
operator emits this segment. 8 The right segment is joined with
the left segment to form the final output segment [1,23], which
has empty payload because there is no more referenced segment
consumer in the upper levels of the tree.

4.4 Unary Operators
A unary physical operator has exactly one child. It calls its child’s
eval() method to obtain segments, processing them, and emits
transformed/filtered segments.

4.4.1 Filter Operators. A Filter physical operator (Filter) has an
embedded Boolean condition. When called on its eval() method,
the Filter calls its own child’s eval() and uses the embedded
condition to filter out unmatched segments, while emitting matched
ones. Filter is used to complement a Sort-Merge operator that
must evaluate both children independently. Similarly, Filter is also
useful when there exists cyclic dependencies among multiple sub-
patterns that reference each other. Specifically, we can place the
Filter operator as a parent to the sub-trees that contain such cyclic
dependencies. This way, all dependent conditions are lifted and
evaluated at the Filter operator, and each SegGenFilter operator
is replaced by a SegGenWindow.

As an example, the query plan in Figure 5 cannot use a Sort-
MergeConcat for the top-level Concatenation operator because
in the right sub-tree CORRELATE in the SegGenFilter references the
segment matched by UP in the left sub-tree, so the two children
cannot be evaluated independently. Filter operator can solve this
issue. Figure 6 shows an equivalent query plan but with a Sort-
MergeConcat: the original SegGenFilter in the right is replaced
by a SegGenWindow that has no dependency, and a Filter with
the condition corr(CORRELATE.x, UP.x) >= 0.9 is placed right above
the SortMergeConcat. In this Filter, the condition is evaluated
using the payloads of the segments joined by the SortMergeCon-
cat. An analogy can be made with relational databases: a Filter is
like evaluating a predicate involving two relations on their JOIN

result because this predicate cannot be “pushed-down”. In the end,
Filter operator adds more flexibility to the plan space, but the
optimizer still needs to choose which plan to use.

4.4.2 Not Operators. A Not operator negates the result of its child:
when called on its eval(), the Not operator emits segments that
are not matched by its child given the same search space. T-ReX
uses two physical implementations of the Not operator: Material-
izeNot and ProbeNot. MaterializeNot calls the child’s eval()
once and uses a cache to materialize all segments matched by its
child in the given search space, and then emits the complement.
ProbeNot, on the other hand, iterates over all windowed segments
in the search space, and calls the child’s eval() on every segment
to check if the segment is a match: skip the matched ones and emits
the unmatched ones. The two implementations impact performance
differently: if the number of probes is small because the Not’s search
space is small, then ProbeNot may be preferred; when the opposite
is true, then MaterializeNot may be better. It is the job of the
optimizer to decide which one to use.

Because referenced segments are provided by refs in eval(), T-
ReX’s Not operator supports arbitrary sub-patterns with unlimited
references to outside of the operator. It is more general than existing
CEP systems’ Not operators thatmust be on a single event (i.e., point
variable) [20], and must use post-processing in case of multiple
references [41].

It is also useful to note that a condition in the sub-tree of a Not
operator cannot be placed into a Filter above the Not because that
would produce incorrect result.

4.4.3 Kleene Operators. MaterializeKleene is the only imple-
mentation of the Kleene operator in T-ReX. It calls its child’s eval()
once and materialize all segments in a hash table using their start
positions as keys. From there, the operator assembles “linked” seg-
ments into Kleene results using a breadth-first search algorithm
with search space pruning using the embedded window.

4.5 Special Operators
Besides the operators discussed so far, T-ReX uses a several special
operators that potentially improve execution performance, and we
will discuss them briefly.

4.5.1 Sub-patternMaterialization. The SubPattern operator mate-
rializes a repeated sub-pattern in a query pattern to avoid redundant
evaluation.

4.5.2 Wild Window Concatenation. A wild window is a window
with no length constraint. A query pattern such as UP, WINDOW,

DOWNwhere WINDOW AS window() specifies a “gap” of arbitrary length
between the two segmentsmatching UP and DOWN respectively.When
implemented as two physical Concatenation operators, the first
operator is between a sub-pattern and a SegGenWindow with a
wild window, so every segment produced by the sub-pattern will
be “amplified” by concatenating with all possible next segments
of lengths from 1 to the maximum allowed given the time series
length. This potentially creates a huge intermediate result set and
increases the input size of the second Concatenation operator. In
order avoid this issue, T-ReX would fuse such chain of two physical
Concatenations into a single Wild Window Concatenation physical

7

operator (WConcat), which uses a Nested-Loop algorithm to join
segments such that the left’s ending position is less or equal to the
right’s starting position. Because the segments are paired directly,
the intermediate results are avoided.

5 OPTIMIZATION
T-ReX’s optimizer is responsible for the selection of physical opera-
tors and ordering binary physical operators like Concatenations and
And. Using a cost model, the optimizer searches over the complete
plan space7, including bushy plans, using dynamic programming
to find the minimal-cost plan. This section dives into the details of
the optimizer. Following our third insight discussed in Section 3,
the highlights of the optimizer are: (1) using range size as proxy for
the search space for a light-weight cost model; (2) incorporating
embedded windows for better cardinality estimates; and (3) using
parametrized functions of running time as cost estimates.

5.1 Cost Model
Search space affects plan cost. Consider a physical plan with a root
search space (𝑆 = [𝑠𝑖 , 𝑠 𝑗], 𝐸 = [𝑒𝑖 , 𝑒 𝑗]) – a matched segment’s start
position must be within [𝑠𝑖 , 𝑠 𝑗] and its end position in [𝑒𝑖 , 𝑒 𝑗]. The
larger the search space, the higher number of possible segments.

One challenge in incorporating search space in the cost model
is that it is not feasible to use search space directly. As discussed
in Section 4, search space may be data-dependent. For example,
in a RightProbeConcat, the right sub-tree’s search space is con-
ditioned on the segment from the left sub-tree. This leads to a
heavy-weight cost models needing many complex statistics.

In order to keep the cost model light-weight, T-ReX uses search
space’s range sizes (i.e., the lengths of the start position’s range and
end position’s range, respectively) as a proxy for the real search
space. Let ℓ𝑠 and ℓ𝑒 denote the start and end position’s range size
respectively, i.e., ℓ𝑠 = |𝑆 | = |𝑠 𝑗 − 𝑠𝑖 | and ℓ𝑒 = |𝐸 | = |𝑒 𝑗 − 𝑒𝑖 |, and let
COST𝑜𝑝 (ℓ𝑠 , ℓ𝑒) denote the plan’s cost rooted at 𝑜𝑝 and with search
space range sizes (ℓ𝑠 , ℓ𝑒).

The cost of a plan tree with root 𝑜𝑝 has three components:
(1) The cost of the sub-tree(s), or the cost of its children’s eval():

denoted by COST𝑙𝑒 𝑓 𝑡 and COST𝑟𝑖𝑔ℎ𝑡 for binary operators, and
COST𝑠𝑢𝑏 for unary operators.

(2) The cost of evaluating the embedded Boolean condition in 𝑜𝑝:
when the condition contains an aggregate, the unit cost of each
aggregation is 𝑓𝛿 , and the unit cost of each lookup() call using
index is 𝑓𝛿 ′ ; when the condition has no aggregate, the cost is 0.

(3) The cost of the operator 𝑜𝑝 itself, denoted by 𝑓𝑜𝑝 .
Cost of Sub-trees. For non-probe operators, the cost of sub-trees
is obtained by using the range sizes of the sub-trees’ search space.
For probe operators, their cost models become interesting because
the probed sub-tree’s eval() is called multiple times. We discuss
three operators, while all are listed in Table 1.

For RightProbeConcat with search space (𝑆 = [𝑠𝑖 , 𝑠 𝑗], 𝐸 =

[𝑒𝑖 , 𝑒 𝑗]), it calls the left’s eval()with (𝑆 = [𝑠𝑖 , 𝑠 𝑗], 𝐸 = [𝑠𝑖 , 𝑒 𝑗]), and
the cost is COST𝑙𝑒 𝑓 𝑡 (ℓ𝑠 , ℓ𝑠𝑒), where ℓ𝑠𝑒 denotes the concatenation
point’s search space range size |𝑒 𝑗 − 𝑠𝑖 |. Since the search space of
the root operator is (𝑆 = [0, 𝑛 − 1], 𝐸 = [0, 𝑛 − 1]) (Section 4.1), the
7Conditions on multiple variables can constrain the order of sub-tree executions so a
validator is built into our execution plan to enforce such constraints.

search space of any sub-tree falls into one of 4 cases based on how
search space is propagated among operators: (1) 𝑠𝑖 = 𝑠 𝑗 < 𝑒𝑖 = 𝑒 𝑗 ;
(2) 𝑠𝑖 = 𝑠 𝑗 = 𝑒𝑖 < 𝑒 𝑗 ; (3) 𝑠𝑖 < 𝑠 𝑗 = 𝑒𝑖 = 𝑒 𝑗 ; (4) 𝑠𝑖 = 𝑒𝑖 < 𝑠 𝑗 = 𝑒 𝑗 .
For (1), ℓ𝑠 = ℓ𝑒 = 1, the expected value of ℓ𝑠𝑒 = 𝑛/3 (uniform
assumption [4]). For (2), ℓ𝑠𝑒 = ℓ𝑒 ; for (3), ℓ𝑠𝑒 = ℓ𝑠 ; for (4), ℓ𝑠𝑒 =

ℓ𝑠 = ℓ𝑒 . Please refer to Appendix C.1 for an expanded discussion.
For each left segment [𝑙𝑖 , 𝑙 𝑗], RightProbeConcat calls the right
eval()with search space (𝑆 = [𝑙 𝑗 , 𝑙 𝑗], 𝐸 = [𝑒𝑖 , 𝑒 𝑗]) which has range
sizes of (1, ℓ𝑒) So the total cost is 𝐷 (C𝑙 , ℓ𝑠𝑒) × COST𝑟𝑖𝑔ℎ𝑡 (1, ℓ𝑒),
where C𝑙 is the cardinality of left sub-tree, and 𝐷 (C𝑙 , ℓ𝑠𝑒) is the
number of unique end positions in left segments due to caching—it
calculates the expected number of distinct items from C𝑙 number
of draws with replacement from a collection of ℓ𝑠𝑒 items, assuming
independent uniform draws [5].

RightProbeAnd calls its left’s eval() with the same search
space as itself, which has range sizes (ℓ𝑠 , ℓ𝑒). So the left’s total cost
is COST𝑙𝑒 𝑓 𝑡 (ℓ𝑠 , ℓ𝑒). For each left segment [𝑙𝑖 , 𝑙 𝑗], the right’s eval()
is called with the search space (𝑆 = [𝑙𝑖 , 𝑙𝑖], 𝐸 = [𝑙 𝑗 , 𝑙 𝑗]) (range size
equals (1, 1)). Because sub-trees of an And have identical embedded
windows due to push-down, the total cost of the right is rectified
with a factor of 1/Sel𝑤 , where 𝑤 is the window embedded in 𝑜𝑝

and Sel𝑤 is the selectivity of𝑤 given the search space.
ProbeNot calls the sub-tree’s eval() once per candidate seg-

ment with search space range size (ℓ′𝑠 , ℓ′𝑒) = (1, 1) and there is
in total ℓ𝑠 ℓ𝑒 × Sel𝑤 candidate segments. Since the Not operator is
looking for the negation of matching condition, the iterator from
each call to the sub-tree’s eval() closes after one segment gets
emitted. Thus the cost per call is COST𝑠𝑢𝑏 (1,1)

max(C′
𝑖𝑛
,1) , where C′

𝑖𝑛
is the

input cardinality per call.
Cost of Operator. T-ReX approximates 𝑓𝑜𝑝 using a linear function
with one parameter 𝜃 on one variable. The choice of this variable is
based on the operator’s implementation. For a Right Probe operator,
the variable is (C𝑙 + C𝑜𝑢𝑡) because only the left sub-tree is enu-
merated over. Similarly for a Left Probe the variable is (C𝑟 + C𝑜𝑢𝑡).
For other operators, (C𝑙 + C𝑟 + C𝑜𝑢𝑡) if it is binary; otherwise,
(C𝑖𝑛 + C𝑜𝑢𝑡). T-ReX bootstraps their parameters in an offline pro-
filing procedure, using synthetic data generated by uniform distri-
butions. Higher order functions potentially achieve better accuracy,
however, because they are more expensive to get low-variance
estimate in bootstrapping, we do not use them.
Cost of Evaluating Aggregates. Only three physical operators,
SegGenFilter, SegGenIndexing, and Filter, may have aggregate
evaluation. SegGenFilter and Filter evaluate once for each seg-
ment, taking C𝑖𝑛 × 𝑓𝛿 cost in total for each aggregation. SegGenIn-
dexing incurs an additional overhead of query-time index building,
𝑓𝑖𝑛𝑑 , but smaller unit time 𝑓𝛿 ′ using the index’s lookup() method,
taking 𝑓𝑖𝑛𝑑 + C𝑖𝑛 × 𝑓𝛿 ′ .

We have observed that the query-time indexing cost typically
depends on start-end range size of search space, thus 𝑓𝑖𝑛𝑑 takes
ℓ𝑠𝑒 as a parameter; while aggregation cost per segment typically
depends on segment length, hence 𝑓𝛿 and 𝑓𝛿 ′ takes average segment
length ℓ𝑖𝑛 as a parameter. Cost functions (𝑓𝑖𝑛𝑑 , 𝑓𝛿 , 𝑓𝛿 ′) depend on
the specific aggregate function 𝑃 . For instance, mann_kendall_test
and linear_reg_r2 have quadratic and linear relationship between
indexing cost and start-end range size, respectively. Therefore, T-
ReX uses different cost functions (e.g., constant, linear, or quadratic)

8

Logical Op Input Card C𝑖𝑛 (ℓ𝑠 , ℓ𝑒) Output Card C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑒) Physical Op Plan Cost (COST𝑜𝑝)

Segment
Generator C𝑖𝑛=ℓ𝑠 ℓ𝑒 × Sel𝑤 C𝑖𝑛 × Sel𝑃 |𝑤

SegGenWindow 𝑓𝑜𝑝 (C𝑖𝑛,C𝑜𝑢𝑡)
SegGenFilter 𝑓𝑜𝑝 (C𝑖𝑛,C𝑜𝑢𝑡) + C𝑖𝑛 × 𝑓𝛿 (𝑃, ℓ𝑖𝑛)
SegGenIndexing 𝑓𝑜𝑝 (C𝑖𝑛,C𝑜𝑢𝑡) + 𝑓𝑖𝑛𝑑 (𝑃, ℓ𝑠𝑒) + C𝑖𝑛 × 𝑓𝛿′ (𝑃, ℓ𝑖𝑛)

Filter C𝑖𝑛= 𝑠𝑢𝑏.C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑒) C𝑖𝑛 × Sel𝑃 |𝑤 Filter 𝑓𝑜𝑝 (C𝑖𝑛,C𝑜𝑢𝑡) + C𝑖𝑛 × 𝑓𝛿 (𝑃, ℓ𝑖𝑛) + COST𝑠𝑢𝑏 (ℓ𝑠 , ℓ𝑒)
Not C𝑖𝑛= 𝑠𝑢𝑏.C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑒) ℓ𝑠 ℓ𝑒 × Sel𝑤 - C𝑖𝑛

MaterializeNot 𝑓𝑜𝑝 (C𝑖𝑛,C𝑜𝑢𝑡) + COST𝑠𝑢𝑏 (ℓ𝑠 , ℓ𝑒)
C′𝑖𝑛= 𝑠𝑢𝑏.C𝑜𝑢𝑡 (1, 1) ProbeNot 𝑓𝑜𝑝 (C′𝑖𝑛,C𝑜𝑢𝑡) + ℓ𝑠 ℓ𝑒 × Sel𝑤 × COST𝑠𝑢𝑏 (1,1)

𝑚𝑎𝑥 (C′
𝑖𝑛

,1)

Kleene C𝑖𝑛= 𝑠𝑢𝑏.C𝑜𝑢𝑡 (ℓ𝑠𝑒 , ℓ𝑠𝑒)
C𝑖𝑛 × ℓ𝑠 ℓ𝑒

ℓ2𝑠𝑒
× Sel𝑤 |𝑤𝑠 +

C2𝑖𝑛 × ℓ𝑠 ℓ𝑒

ℓ3𝑠𝑒
× Sel𝑤 |𝑤𝑠 ,𝑤𝑠

MaterializeKleene 𝑓𝑜𝑝 (C𝑖𝑛,C𝑜𝑢𝑡) + COST𝑠𝑢𝑏 (ℓ𝑠𝑒 , ℓ𝑠𝑒)

Concat

C𝑙=𝑙𝑒 𝑓 𝑡 .C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑠𝑒)
C𝑟 =𝑟𝑖𝑔ℎ𝑡 .C𝑜𝑢𝑡 (ℓ𝑠𝑒 , ℓ𝑒)

C𝑙 ×C𝑟
ℓ𝑠𝑒

×Sel𝑤 |𝑤𝑙 ,𝑤𝑟

SortMergeConcat 𝑓𝑜𝑝 (C𝑙 ,C𝑟 ,C𝑜𝑢𝑡) + COST𝑙𝑒 𝑓 𝑡 (ℓ𝑠 , ℓ𝑠𝑒) + COST𝑟𝑖𝑔ℎ𝑡 (ℓ𝑠𝑒 , ℓ𝑒)

C′
𝑙
=𝑙𝑒 𝑓 𝑡 .C𝑜𝑢𝑡 (ℓ𝑠 , 1)

C𝑟 =𝑟𝑖𝑔ℎ𝑡 .C𝑜𝑢𝑡 (ℓ𝑠𝑒 , ℓ𝑒)
LeftProbeConcat 𝑓𝑜𝑝 (C′𝑙 ,C𝑟 ,C𝑜𝑢𝑡) + COST𝑟𝑖𝑔ℎ𝑡 (ℓ𝑠𝑒 , ℓ𝑒) + 𝐷 (C𝑟 , ℓ𝑠𝑒)COST𝑙𝑒 𝑓 𝑡 (ℓ𝑠 , 1)

C𝑙=𝑙𝑒 𝑓 𝑡 .C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑠𝑒)
C′𝑟 =𝑟𝑖𝑔ℎ𝑡 .C𝑜𝑢𝑡 (1, ℓ𝑒)

RightProbeConcat 𝑓𝑜𝑝 (C𝑙 ,C′𝑟 ,C𝑜𝑢𝑡) + COST𝑙𝑒 𝑓 𝑡 (ℓ𝑠 , ℓ𝑠𝑒) + 𝐷 (C𝑙 , ℓ𝑠𝑒)COST𝑟𝑖𝑔ℎ𝑡 (1, ℓ𝑒)

And

C𝑙=𝑙𝑒 𝑓 𝑡 .C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑒)
C𝑟 =𝑟𝑖𝑔ℎ𝑡 .C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑒)

C𝑙 ×C𝑟
ℓ𝑠 ℓ𝑒 ×Sel𝑤

SortMergeAnd 𝑓𝑜𝑝 (C𝑙 ,C𝑟 ,C𝑜𝑢𝑡) + COST𝑙𝑒 𝑓 𝑡 (ℓ𝑠 , ℓ𝑒) + COST𝑟𝑖𝑔ℎ𝑡 (ℓ𝑠 , ℓ𝑒)

C′
𝑙
=𝑙𝑒 𝑓 𝑡 .C𝑜𝑢𝑡 (1, 1)

C𝑟 =𝑟𝑖𝑔ℎ𝑡 .C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑒)
LeftProbeAnd 𝑓𝑜𝑝 (C′𝑙 ,C𝑟 ,C𝑜𝑢𝑡) + COST𝑟𝑖𝑔ℎ𝑡 (ℓ𝑠 , ℓ𝑒) + C𝑟 ×

COST𝑙𝑒 𝑓 𝑡 (1,1)
Sel𝑤

C𝑙=𝑙𝑒 𝑓 𝑡 .C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑒)
C′𝑟 =𝑟𝑖𝑔ℎ𝑡 .C𝑜𝑢𝑡 (1, 1)

RightProbeAnd 𝑓𝑜𝑝 (C𝑙 ,C′𝑟 ,C𝑜𝑢𝑡) + COST𝑙𝑒 𝑓 𝑡 (ℓ𝑠 , ℓ𝑒) + C𝑙 ×
COST𝑟𝑖𝑔ℎ𝑡 (1,1)

Sel𝑤

Or
C𝑙=𝑙𝑒 𝑓 𝑡 .C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑒)
C𝑟 =𝑟𝑖𝑔ℎ𝑡 .C𝑜𝑢𝑡 (ℓ𝑠 , ℓ𝑒)

C𝑙 × Sel𝑤 |𝑤𝑙
+ C𝑟 × Sel𝑤 |𝑤𝑟 SortMergeOr 𝑓𝑜𝑝 (C𝑙 ,C𝑟 ,C𝑜𝑢𝑡) + COST𝑙𝑒 𝑓 𝑡 (ℓ𝑠 , ℓ𝑒) + COST𝑟𝑖𝑔ℎ𝑡 (ℓ𝑠 , ℓ𝑒)

Table 1: T-ReX Operators, Cardinality Estimators, and Cost Models

for different aggregates. Similar to operators, T-ReX bootstraps
parameters of aggregate cost functions offline, and average segment
length ℓ𝑖𝑛 is sampled at query time.

We discuss offline parameter bootstrapping in Appendix D.

5.2 Cardinality Estimation
T-ReX’s cost model requires estimates of input and output cardi-
nalities. Unlike existing works, T-ReX’s cardinality estimator uses
search space and embedded window to generate estimations.

The cardinality estimation of a physical plan is performed bottom-
up starting from the leaf nodes, which are always Segment Genera-
tors. The input cardinality is ℓ𝑠 ℓ𝑒 without window and ℓ𝑠 ℓ𝑒 × Sel𝑤
with window due to window’s selectivity. For a non-leaf operator
node, its input cardinality is the output cardinality of its child(s).
Table 1 lists the input cardinality and the range sizes for each child.

Given a plan and a search space, its output should be the same
regardless of the selection of physical operators. Observing this, our
cardinality estimator returns the same result for physical plans of
the same logical plan. Table 1 lists the output cardinality for every
logical operator. We discuss the details for each operator below.
Segment Generator and Filter. Both operators take a Boolean
condition and only output segments satisfying it, so the output
cardinality is C𝑖𝑛 × Sel𝑃 |𝑤 , where Sel𝑃 |𝑤 denotes the condition 𝑃 ’s
selectivity within the windowed search space. T-ReX samples data-
dependent statistics like selectivity (Sel𝑃 |𝑤) at query time. Please
refer to Appendix D.3 for details. In our experiments, the sampling
cost is negligible compared to the overall query processing cost.
Not.As a Not’s output is the complement of the set of the sub-tree’s
segments in the search space, its output cardinality is ℓ𝑠 ℓ𝑒 × Sel𝑤 −
C𝑖𝑛 . Sel𝑤 denotes the selectivity of the embedded window condi-
tion𝑤 , which is assigned to the Not operator and pushed down to

its child sub-tree during logical plan rewrite (Section 3). We provide
an expanded discussion in Appendix C.2. When there is Concate-
nation within Not operator, we rectify C𝑖𝑛 as 𝐷 (C𝑖𝑛, ℓ𝑠 ℓ𝑒 × Sel𝑤)
to accommodate for the duplicates caused by the Concatenation.
Concatenation. Concatenation can be modeled as a Cartesian
product followed by a filter for left.end=right.start. We esti-
mate this filter selectivity as 1

ℓ𝑠𝑒
assuming uniform distribution of

start and end positions over the start-end range. Combined with
the window’s selectivity conditioned on the sub-trees’ windows,
the estimated output cardinality is C𝑙×C𝑟ℓ𝑠𝑒

× Sel𝑤 |𝑤𝑙 ,𝑤𝑟
.

Kleene. Kleene is a self-concatenation and its cardinality depends
on the number of occurrences specified by the query. For simplicity,
we use the estimator for A* for all cases. The estimator is approxi-
mated as a sum the of single occurrence, A, and two occurrences,
Con(A, A). For the single occurrence, we check whether the segment
from sub-tree falls in the search space of Kleene. Assuming uniform
distribution of start and end positions, the selectivity is estimated as
ℓ𝑠
ℓ𝑠𝑒

ℓ𝑒
ℓ𝑠𝑒

and the output cardinality is C𝑖𝑛 × ℓ𝑠 ℓ𝑒
ℓ2𝑠𝑒

× Sel𝑤 |𝑤𝑠
, where𝑤𝑠

denotes its sub-tree’s window. For two occurrences, the estimation
is similar to Concatenation: the cardinality is C

2
𝑖𝑛

ℓ𝑠𝑒
after accounting

for the concatenation condition (i.e., left’s end is right’s start), com-
bined with the same search space selectivity as above, all together
it is C2

𝑖𝑛
× ℓ𝑠 ℓ𝑒

ℓ3𝑠𝑒
×Sel𝑤 |𝑤𝑠 ,𝑤𝑠

. The general case is approximated using
one and two occurrences because we empirically observed that the
number of three or more occurrences drops significantly due to the
concatenation condition, the window and search space constraint
in Kleene. Such approximation also incurs lower estimation cost.
And. The estimator is similar to concatenation operator with an
equality filter condition – the left and right segments must have
identical starts and ends. Again assuming uniform distribution,

9

Dataset SP500 COVID-19 Weather Taxi NASDAQ

of Series 503 3342 36 1 1
Series Length 252 64 1854 10320 351795

Table 2: Dataset Statistics

RightProbeConcat vs. SortMergeConcat

window()

SegGenIndexing

window()

linear_reg_r2(DN.val)

SegGenIndexing

window()

linear_reg_r2(UP.val)

ProbeNot vs. MaterializeNot

window()

RightProbeConcat

window()

SegGenFilter

window()

last(FALL.val)/first(FALL.val)

SegGenWindow

window()

SegGenIndexing vs. SegGenFilter

window()

man_kendall_test(values)

(a) Segment Generator

(b) Concatenation (c) Not

Figure 7: Physical Plans Used in Section 6.1

the filter selectivity is 1
ℓ𝑠 ℓ𝑒×Sel𝑤 . Due to window push-down, the

windows embedded in the And node and its sub-trees are the same.
Hence, Sel𝑤 |𝑤𝑙 ,𝑤𝑟

= 1 and the output cardinality is C𝑙×C𝑟
ℓ𝑠 ℓ𝑒×Sel𝑤 .

Or. Because this operator emits segments coming from both sub-
trees, the cardinality estimate is simply C𝑙 ×Sel𝑤 |𝑤𝑙

+C𝑟 ×Sel𝑤 |𝑤𝑟
.

Note that all window selectivity used in the cardinality estimator,
such as Sel𝑤 , Sel𝑤 |𝑤𝑠

, and Sel𝑤 |𝑤𝑙 ,𝑤𝑟
, are calculated with closed

form formulas based on the each window’s length constraints.

6 EXPERIMENTS
We start with a micro-benchmark that demonstrates the relative
performance of physical operators under different scenarios while
highlighting the need for the new physical operators in T-ReX (Sec-
tion 6.1). Next, we move on to end-to-end performance evaluations
to measure our cost-based optimizer’s performance (Section 6.2)
and how does T-ReX stand up to existing works in (Section 6.3).
Datasets. Table 2 lists the datasets used in our experiment, along
with the number of series and the length per series. SP500 con-
tains the daily opening prices of stock tickers in the S&P500 in the
past year, following the literature [28, 41]. NASDAQ is used by Open-
CEP [20]. COVID-19 contains weekly confirmed cases per county in
the U.S. (aggregated from the daily cases [1]) since 2020-01 and there
are in total 3342 counties. Weather [6] contains 5 years of hourly
temperature in 36 cities. Taxi [16] contains taxi trips counted every
half-hour in New York City from 2014-07-01 to 2015-01-31.
Platform We conduct experiments on a Windows 11 PC with
Intel® CoreTM i7-9800X CPU @3.80GHz and 64GB memory at
2666MHz. All executors are single-thread.

6.1 Benefits of Multiple Physical Operators
T-ReX designs and implements multiple physical algorithms per
logical operator. In this section, we show that different physical
operators are preferred under different scenarios.

6.1.1 Queries. This micro-benchmark uses SP500 dataset. The
physical plans used are depicted in Figure 7 with varying parame-
ters including window length ℓ , R2 threshold 𝛼 , and search space
range size (ℓ𝑠 , ℓ𝑒). The meaning of the corresponding queries are:
(a) identify sub-series with downward trend; (b) identify sub-series

5 10 20 30
total lewindow size: l

0

200

400

600

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d

)

SegGenIndexing

SegGenFilter

(a) Execution time vs. window size
with search space being (252, 252) .

(1, 1) (1, 252) (252, 1)(252, 252)
Search Space Size: (ls, le)

0

100

200

300

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d

)

SegGenIndexing

SegGenFilter

(b) Execution time vs. search
space size, max window size 20.

Figure 8: SegGenIndexing vs. SegGenFilter.

0.30 0.50 0.70 0.90
down threshold: α

20

40

60

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d

)

RightProbeConcat

SortMergeConcat

(a) Execution time vs. thresholds
and search space size (252, 252)

(1, 1) (1, 252) (252, 1)(252, 252)
Search Space Size: (ls, le)

0

20

40

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d

)

RightProbeConcat

SortMergeConcat

(b) Execution time vs. search space
size with a threshold of 0.5.

Figure 9: RightProbeConcat vs. SortMergeConcat.

5 15 30 60 90
total lewindow size: l

0.0

2.5

5.0

7.5

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d

)

ProbeNot

MaterializeNot

(a) Execution time vs. window
size, search space size(1, 252) .

5 15 30 60 90
total lewindow size: l

0

100

200

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d

)

ProbeNot

MaterializeNot

(b) Execution time vs. window
size, search space size (252, 252) .

Figure 10: ProbeNot vs.MaterializeNot.

with V-shape; (c) identify sub-series that does not exist 5% drop
from the starting price. The queries are used to test Segment Gen-
erators, Concatenation, and Not operators, respectively. We omit
And operators due to its similarity to Concatenation.

6.1.2 Results and Discussion. The results are shown in Figure 8,
9, and 10. The highlights are: (1) there exists no single physical
operator that is always better than the other; (2) SegGenIndexing
is useful in eliminating duplicated computation among segments
especiallywhen there aremany segments; (3) Probe-based operators
have an edge when the probe count is small under smaller search
space or having selective sub-trees.
Segment Generator. SegGenIndexing and SegGenFilter out-
perform each other when with different values of 𝑙 and (ℓ𝑠 , ℓ𝑒). In
Figure 8a, SegGenIndexing’s execution time stays relatively stable,
while SegGenFilter’s increases with 𝑙 . With the help of compu-
tation sharing, the cost per aggregate function call in SegGenIn-
dexing is much smaller than in SegGenFilter. As a trade-off,
SegGenIndexing incurs a one-time index-building overhead. Thus,
only when the number of candidate segments is small, such as when
the window size or search space is small (Figure 8b), SegGenFilter
has the opportunity to outperform SegGenIndexing.
Concatenation. As shown in Figure 9a, SortMergeConcat’s
time stays stable since the time spent in its sub-trees dominates

10

and it remains the same regardless of 𝛼 . On the other hand, Right-
ProbeConcat’s time decreases with increasing 𝛼 , due to more
selective linear_reg_r2(DN.val) ≤ −𝛼 in the left sub-tree, hence
less number of left segments and right probes. Similar observations
can be made from Figure 9b: when the input search space makes
the left search space small (i.e., [1, 1] and [1, 252]) thereby more
selective, RightProbeConcat performs better.
Not. Figure 10a shows that when the input search space size is small,
i.e., (𝑙𝑠 , 𝑙𝑒) = (1, 252), ProbeNot is faster than MaterializeNot.
Figure 10b shows when the search pace size is large, i.e., (𝑙𝑠 , 𝑙𝑒) =
(252, 252), ProbeNot is more expensive. This is because smaller
input search space leads to smaller number of probes in ProbeNot.

6.2 Optimizer Evaluation
To evaluate the effectiveness of T-ReX’s optimizer, we compare
optimizer-generated plans with plans generated using rules.

6.2.1 Baselines. There are two dimensions of variations for gener-
ating baseline plans: the join ordering of binary operators and the
choice of physical operators (see Table 1). There are two join orders:
Left-Deep and Right-Deep. The selection rules are: (1) for Left-Deep
a binary operator is either a Sort-Merge or a Right-Probe, and for
Right-Deep a binary operator is either Sort-Merge or Left-Probe;
(2) if a plan contains a Not operator, we can choose either Materi-
alizeNot or ProbeNot; (3) always choose SegGenIndexing over
SegGenFilter whenever the variable involving aggregates that
have implemented the index() method because we observe that
baselines with SegGenIndexing is always faster. Thus, there are
in total 2 × 2 = 4 baselines for plans without a Not operator, and
2× 2× 2 = 8 baselines for plans with a Not operator as shown in Ta-
ble 4. For instance, pr_left refers to the baseline using Left-Deep
with Probe operators for Binary operator and MaterializeNot.

6.2.2 Queries. We use 11 parameterized queries, and all of them
have variable-length patterns. First 6 queries have conditions with
aggregate functions on segments, and the next 5 queries including
limit_sell and those from prior works [20, 28] have no condi-
tion with aggregate. v_shape, head_shldr, outlier, limit_sell,
AFA_Q1 and AFA_Q2 use the SP500 dataset; rebound uses the COVID-19
dataset; cld_wave uses the Weather dataset; rptd_pttrn uses the
Taxi dataset; and OpenCEP_Q1 and OpenCEP_Q2 use the NASDAQ
dataset. We use at least 9 parameter sets for every query except for
OpenCEP_Q1 and OpenCEP_Q2which use 5. For each query instance,
we count the total time to find all matches from all time series in
the dataset it uses.

Table 3 lists the queries’ regular expression patterns; all variables
are segment variables except for the point variabels A1, A2 and A3

in OpenCEP queries. In these patterns, DOWN and UP are defined
using linear regression 𝑅2; UP_MK is defined using Mann-Kendall
test for up trend; RISE and FALL are defined by comparing the first
and last points’ values; W, W1, WINDOW, etc. are segment variables with
window conditions. In head_shdlr, NCK_2_HD, SHDLR_2_HD, HD_2_NCK
and HD_2_SHDLR are defined using the ratio of the first and last points’
values. In OpenCEP_Q1 and OpenCEP_Q2, A1, A2 and A3 are point
variables defined by equality conditions on stock tickers; INC1 is
defined as checking if A2’s value is greater than A1, similarly for
INC2. For a query, each parameter set specifies the parameters such

Query Pattern
v_shape ((DOWN & W) (UP & W)) & WINDOW

head_shldr

((UP1 & W)

((DN1 & W) (UP2 & W & NCK_2_HD)) & SHLDR_2_HD
((DN2 & W & HD_2_NCK) (UP3 & W)) & HD_2_SHLDR
(DN3 & W)) & WINDOW

outlier (UP1 OUTLIER UP2) & WINDOW

rebound (UP1 ((DOWN & FALL) UP2) & RISE) & WINDOW

cld_wave (W1 (DOWN & FALL & W2) W1) & UP_MK & WINDOW

rptd_pttrn
((W1 (UP & RISE & W2) W3 (DOWN & FALL & W2)

W1) & WINDOW){n}

limit_sell RISE & WINDOW & ∼(FALL W)

OpenCEP_Q1 (A1 W (A2 & INC1) W (A3 & INC2)) & WINDOW

OpenCEP_Q2 (((A1 W A2) & FALL)+) & WINDOW

AFA_Q1
(LARGE_FALL & W ((FALL & W)+ (RISE & W)+){k}

& EQ_FALL_AND_RISE) & WINDOW

AFA_Q2
(LARGE_FALL & W ((FALL & W)+ (RISE & W)+)+)

& RECOVER & WINDOW

Table 3: Queries used in experiments.

0 20 40
Plan

107

4× 106

6× 106

2× 107

E
st

im
at

ed
C

os
t

102

6× 101

2× 102

3× 102

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(a) rebound (NDCG = 1.00)

0 10 20 30
Plan

109

1011

1013

1015

1017

E
st

im
at

ed
C

os
t

100

101

102

103

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(b) OpenCEP_Q1 (NDCG = 0.74)
Figure 11: Estimated costs and execution times for queries
with the best (left) and worst (right) NDCG scores.

as the thresholds on the difference in RISE and ratios in HD_2_SHDLR.
The complete query definitions and parameter sets are listed in
Appendix E.

6.2.3 Results and Discussion. The results are shown in Table 4. The
numbers show the median slow-down ratio of each method over
the fastest plan for each query. So the smaller the ratio, the better
the performance, and 1.0 indicates the fastest plan. For instance,
pr_left is 12.9× (median) slower than the fastest query plan across
the parameter space of cld_wave query. Box-plots of all queries
can be found in Appendix F. A few takeaways from Table 4: (1) no
single baseline performs consistently well across all baselines on
all queries; (2) T-ReX optimizer outperforms all baselines for all
queries in terms of the median slow-down over the fastest plan; (3)
T-ReX optimizer successfully selects the best plan for at least 50%
instantiated queries for all query templates.

To test the optimizer’s accuracy in ranking plans based on costs,
we calculated the Normalized Discounted Cumulative Gain (NDCG)
scores [33] using the physical plans generated in the previous ex-
periment. The score, between 0 and 1, measures agreement between
two lists of plans respectively ordered by estimated cost and execu-
tion time. T-ReX’s optimizer produces accurate ranking of plans –
its NDCG score is greater than 0.9 for 8 out of 11 queries using only
5 series samples and 1 ms of profiling time. On SP500, increasing
the series sampled from 5 to 500 brought at most 0.13 improvement
on two queries while other queries saw less than 0.01 difference.

11

v_shape head_shldr outlier rebound cld_wave rptd_pttrn OpenCEP_Q1 OpenCEP_Q2 AFA_Q1 AFA_Q2
pr_left 1.0 2.0 4.4 3.6 12.9 3.4 4.0 1.1 7.0 7.9
pr_right 1.0 4.4 4.5 1.5 1.3 4.4 1333.2 t.o. 210.7 1841.8
sm_left 1.5 5.0 1.8 1.7 12.2 8.3 1.6 6104.4 6.1 9.6
sm_right 1.5 3.8 1.7 1.7 11.9 9.1 1.5 6059.4 6.2 9.6
optimizer 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

pr_left pr_right sm_left sm_right pr_left_pnot pr_right_pnot sm_left_pnot sm_right_pnot optimizer
limit_sell 1.1 6.0 2.4 2.4 1.1 65.9 1.3 1.3 1.0

Table 4: Median slow-downs of methods over the fastest method for each query. Each cell refers to a method and query. Cell
value of 1.0 indicates the method selected the best plan for the query; ‘t.o.’ indicates time-out of query instances at 2 hours.

Figure 11 shows the estimated costs using 5 series sampled versus
execution times of the two queries with the best and worst NDCG
scores respectively. We can observe positive association in both
plots. Figure 23 in Appendix F shows the complete results.

6.3 Comparing with Other Executors
In this section, we compare T-Rex with other executors on the same
queries used in Section 6.2. The goal is to investigate the effec-
tiveness of the three insights discussed in Section 3: search space
pruning, computation sharing for aggregates, and optimization.

6.3.1 Baselines. The following baselines are used.
• T-ReXBatch.We disabled probe-based operators (LeftProbeCon-
cat, RightProbeAnd, ProbeNot, etc.) to set T-ReX’s tree-based
executor in batch mode – every operator works on the whole
series’ search space.

• AFA [28], an improved version of NFA using augmented registers,
eliminating the need to track matched records for every partial
matching state. AFA represents the state-of-the-art of NFA-based
pattern search executors used by existing systems such as Trino
and Apache Flink. It is part of the Trill [27] framework for stream-
ing analytic and we implemented a Python version based on the
original. For each query, we created the state transition graph
manually so that (1) we put cheaper Boolean conditions ahead
of more expensive ones whenever possible; and (2) we pushed
window conditions as early in the graph as possible. We note that
our hand-tuned transition graph favors this AFA-based baseline,
compared to automatically generated transition graph [25, 52].

• Nested-AFA, an AFA-based executor that evaluates nested pat-
tern (e.g., limit_sell) “top-down”: parent pattern (e.g., RISE &

WINDOW) is evaluated first while treating inner patterns as match-
all placeholders; then, evaluate inner patterns (e.g., ∼(FALL W)) un-
der the search space conditions inferred from the parent pattern
matches. For patterns without nested sub-patterns, Nested-AFA
reverts back to AFA. We implemented the algorithm proposed
by [43] and optimized it for batch execution.

• OpenCEP [20], a Python library for pattern search on streaming
data, developed based on existing research works [34–37, 41].
We used its default tree-based executor.

• ZStream [41], the original tree-based executor. We use the imple-
mentation provided by the OpenCEP library [20].

All executors including T-ReX are implemented using Python.

6.3.2 Result and Discussion. Figure 12 shows the query time (in-
cluding optimizer time for T-ReX) of all queries and parameters.
Figure 22a in Appendix F shows the median speedups or slowdowns

(negative) of T-ReX over the baselines. Computation sharing was
used for aggregate functions for all baselines – indexing-building
was the first step of every baseline’s query execution, in order to
measure the effect of search space pruning and optimizer. From the
result, T-ReX out-performed all baselines except for some parame-
ters on AFA_Q1 and AFA_Q2 in comparison with AFA, within less
than 5 seconds.

Comparing T-ReX with T-ReX Batch, the observed speedups are
explained by the availability of probe operators. The median of
median speedups of all queries is 3.9×, with the highest median
speedup reaching 6269× for OpenCEP_Q2 (Figure 12h). The highest
speedup was due to T-ReX Batch using a SortMergeAnd operator
that passed a whole-series search space on a long series (351K
points) to both sub-trees, while in fact one sub-tree was much more
selective than the other and a probe operator would have been able
to take advantage of the difference. The result shows that probe
operators can be extremely effective for search space pruning, and
because of them T-ReX is able to perform well in a wider range of
scenarios than batch-based executors.

AFA performed relatively well due to our manual optimization
mentioned previously, however, such optimization is not performed
in existing systems such as Trino and Apache Flink, which translate
user’s query directly into state transition graph without modifica-
tion. Nevertheless, T-ReX achieved 6× over AFA in median across
median speedups, the highest among them is 147× for OpenCEP_Q1.
This is a feat of T-ReX’s optimizer which reorders the evaluation of
Boolen conditions to minimize net processing cost. For example,
for cld_wave (result in Figure 12e; see queries and execution plans
in Section 1), AFA was manually optimized so the cheap condition
on temperature difference was evaluated before linear regression
condition, and both of these conditions were evaluated at the end
of each DOWN+. Still, AFA evaluated A+ (least selective) first before
D+. T-ReX on the other hand evaluated DIFF (most selective) first
to reduce evaluations of subsequent conditions. For AFA_Q1 and
AFA_Q2, large_fall_ratio controls the ratio of the last and first
values in LARGE_FALL. When the ratio approached 1.0, T-ReX under-
performed AFA by a few seconds because the MaterializeKleene
operator’s cost increased with larger input size due to decreas-
ing selectivity of LARGE_FALL. AFA’s query time leveled because
LARGE_FALL remained the most selective segment and happened
to be evaluated first in these queries. A more efficient physical
operator for Kleene patterns is part of our future work.

For queries with nested sub-patterns, Nested-AFA performed
similarly to AFA with some slow-downs (e.g., head_shldr) and
some speed-ups (e.g., cld_wave). Since Nested-AFA still uses a

12

(1
.0
, 30

)

(0
.9
, 30

)

(0
.7
, 30

)

(1
.0
, 60

)

(0
.7
, 60

)

(1
.0
, 90

)

(0
.9
, 60

)

(0
.9
, 90

)

(0
.7
, 90

)

Queries: (up r2 min, total window size)

101

102

103

Q
u

er
y

T
im

e
(S

ec
on

d
)

19.6

44.6

82.9

16.6

93.8 95.3

412.6

731.4
811.2

174.8

267.6 292.4

12.5

44.4
52.6

T-Rex Batch

AFA, Nested-AFA

OpenCEP

ZStream

T-Rex

(a) v_shape

(1
5,

2.
63

)

(2
0,

2.
63

)

(1
5,

2.
61

)

(2
5,

2.
65

)

(2
0,

2.
61

)

(2
5,

2.
61

)

(2
5,

2.
63

)

(1
5,

2.
65

)

(2
0,

2.
65

)

Queries: (outlier context size, z score min)

101
Q

u
er

y
T

im
e

(S
ec

on
d

)

11.3 13.3 11.5

69.8 69.9 70.2

24.6
26.7 25.7

13.8
15.3 15.1

7.1 7.2 7.3

T-Rex Batch

AFA, Nested-AFA

OpenCEP

ZStream

T-Rex

(b) outlier

(1
5,

0.
9)

(1
5,

0.
8)

(1
5,

0.
7)

(3
0,

0.
8)

(3
0,

0.
7)

(3
0,

0.
9)

(6
0,

0.
8)

(6
0,

0.
7)

(6
0,

0.
9)

Queries: (total window size, fall ratio)

101

102

Q
u

er
y

T
im

e
(S

ec
on

d
)

4.6

18.4

47.7

6.8
11.6

20.5
17.0

20.3

33.1

203.1 211.7
237.7

87.8 93.3 105.2

2.6

4.9

9.2

T-Rex Batch

AFA

NestedAFA

OpenCEP

ZStream

T-Rex

(c) limit_sell

(0
.4
0,

5.
0)

(0
.4
0,

4.
0)

(0
.4
0,

3.
0)

(0
.6
0,

5.
0)

(0
.6
0,

4.
0)

(0
.6
0,

3.
0)

(0
.8
0,

5.
0)

(0
.8
0,

4.
0)

(0
.8
0,

3.
0)

Queries: (fall ratio, rise ratio)

102

103

Q
u

er
y

T
im

e
(S

ec
on

d
)

127.9 132.8 136.4

297.1
350.5

374.2

263.0
328.3

386.6

1474.0
1738.1

1918.2

1183.1

1360.3
1447.6

69.2 76.6 82.5

T-Rex Batch

AFA

NestedAFA

OpenCEP

ZStream

T-Rex

(d) rebound

(2
0,

0.
95

)

(2
0,

0.
90

)

(1
8,

0.
95

)

(2
0,

0.
85

)

(1
8,

0.
90

)

(1
8,

0.
85

)

(1
6,

0.
95

)

(1
6,

0.
90

)

(1
6,

0.
85

)

Queries: (fall diff, down r2 min)

101

102

103

Q
u

er
y

T
im

e
(S

ec
on

d
)

73.5 95.7
101.5

156.1
155.9

154.6

25.3
35.1

53.7
109.8

110.0 116.5

1319.2 1376.9 1354.5

1036.1 966.5 937.0

165.4 160.8

8.4

17.5
36.9

T-Rex-Alt

T-Rex

T-Rex Batch

AFA

AFA-No-PreComp

NestedAFA

OpenCEP

ZStream

(e) cld_wave

(5
.0
, 2)

(5
.0
, 3)

(4
.0
, 1)

(4
.0
, 2)

(4
.0
, 4)

(3
.0
, 3)

(5
.0
, 1)

(5
.0
, 4)

(3
.0
, 2)

(3
.0
, 1)

(4
.0
, 3)

(3
.0
, 4)

Queries: (rise ratio, k)

100

101

102

103

Q
u

er
y

T
im

e
(S

ec
on

d
)

2.1 2.1 2.1 2.1

8.8 10.0 9.9 10.1

245.1

2564.7

1079.9

4801.3

247.2

2615.0

1099.7

4802.7

0.3 0.3 0.4 0.4

T-Rex Batch

AFA, Nested-AFA

OpenCEP

ZStream

T-Rex

(f) rptd_pttrn

5 20 40 60 80 10
0

12
0

Queries: (total window size)

100

101

102

103

Q
u

er
y

T
im

e
(S

ec
on

d
)

4.4

7.3 10.4

82.6

639.6

1897.8

8.4

16.9
34.7

5.8

12.0
27.6

1.5

4.3
7.5

T-Rex Batch

AFA, Nested-AFA

OpenCEP

ZStream

T-Rex

(g) OpenCEP_Q1

4 2 6 8 10

Queries: (total window size)

100

101

102

103

Q
u

er
y

T
im

e
(S

ec
on

d
) 1304.1

4189.4

4.9

73.9

7.7

69.2

5.4

55.4

0.5 0.6

T-Rex Batch

AFA, Nested-AFA

OpenCEP

ZStream

T-Rex

(h) OpenCEP_Q2

0.
72

0.
75

0.
78

0.
80

0.
82

0.
85

0.
88

0.
93

0.
90

Queries: (large fall ratio)

100

101

Q
u

er
y

T
im

e
(S

ec
on

d
)

4.9
6.0

10.0

1.0 1.1 1.1

0.7
0.7

1.0

0.4

1.0

3.9

T-Rex Batch

AFA

NestedAFA

T-Rex

(i) AFA_Q1 (large_fall_ratio ≤ 1)

0.
72

0.
75

0.
78

0.
80

0.
82

0.
85

0.
88

0.
90

0.
93

Queries: (large fall ratio)

100

Q
u

er
y

T
im

e
(S

ec
on

d
)

5.6 5.6
6.9

0.5 0.5
0.6

0.3

0.5

2.5

0.3

1.0

5.5

T-Rex Batch

AFA

NestedAFA

T-Rex

(j) AFA_Q2 (large_fall_ratio ≤ 1)

(8
0,

1.
10

, 1.
15

)

(6
0,

1.
10

, 1.
15

)

(4
0,

1.
05

, 1.
15

)

(8
0,

1.
05

, 1.
15

)

(6
0,

1.
05

, 1.
15

)

(8
0,

1.
00

, 1.
15

)

(4
0,

1.
00

, 1.
15

)

(6
0,

1.
00

, 1.
15

)

(4
0,

1.
10

, 1.
15

)

(6
0,

1.
10

, 1.
10

)

(8
0,

1.
10

, 1.
10

)

(4
0,

1.
10

, 1.
10

)

(4
0,

1.
05

, 1.
10

)

(8
0,

1.
05

, 1.
10

)

(6
0,

1.
05

, 1.
10

)

(4
0,

1.
00

, 1.
10

)

(8
0,

1.
00

, 1.
10

)

(6
0,

1.
00

, 1.
10

)

Queries: (total window size, head to shoulder ratio, head to neck ratio)

101

102

103

Q
u

er
y

T
im

e
(S

ec
on

d
)

21.5 24.9

20.2
32.6 38.6 42.0

35.8
54.3

35.1 35.3
47.9 51.4

166.2

1408.2

62.3 62.4

217.1

1051.4

1083.0
1069.0

979.6 1016.7 1128.0 1242.3

444.1 375.1 436.0 441.7 494.5
560.0

6.3 6.5 6.8 8.0 8.8 9.4

T-Rex Batch

AFA

NestedAFA

OpenCEP

ZStream

T-Rex

(k) head_shldr

Figure 12: Query time versus parameter set.

fixed execution order, it does not guarantee optimality. Because T-
ReX’s optimizer chooses execution order based on data, it generally
performs better, with a median of median speedups of 3.9× over
Nested-AFA for queries with nested sub-patterns. Such queries have
separate lines for AFA and Nested-AFA in Figure 12. For queries
without nested sub-patterns, Nested-AFA reverts to AFA as shown
by the same line. Besides, the algorithm proposed by [43], which
we use, cannot evaluate nested segments inside Kleene closure, so
for those queries it reverts to AFA as well.

T-ReX out-performed OpenCEP and ZStream on all queries, with
a median of median speedups of 42× and 19× respectively; the
highest median speedup is 4177× over OpenCEP and 4104× over

ZStream for rptd_pttrn. T-ReX’s window-aware physical opera-
tors played an important role. Specifically, both OpenCEP’s and
ZStream’s execution times for OpenCEP_Q2 (Figure 12h) increased
significantly with window size and reached 267 and 227 seconds
respectively when the maximum window size is 10 minutes – a
small window considering the time series spans one trading day.
On the contrary, benefiting from our window-aware Material-
izeKleene operator, T-ReX’s execution time stayed within 1 second.
The OpenCEP library’s query interface does not support AFA_Q1
and AFA_Q2which involve nested Kleene closures, so OpenCEP and
ZStream have no result for these two queries.

To measure the effect of computation sharing on aggregate func-
tions, we compare every executor (T-ReX and baselines) with itself

13

on whether computation sharing is enabled or disabled. Figure 22b
in Appendix F shows the median speedups or slowdowns (nega-
tive) of enabling over disabling computation sharing. Queries with
expensive aggregate functionsmostly saw performance gain. Specif-
ically, T-ReX, T-ReX Batch, AFA and Nested-AFA saw 10× gain for
v_shape and at least 3× gain for rebound in median query time;
OpenCEP and ZStream also saw their greatest gains from executing
rebound and v_shape. Interestingly, AFA suffered a 4.9× slowdown
for cld_wave for pre-computing Mann-Kendall test (Figure 12e),
while T-ReX’s optimizer did not choose computation sharing. The
cost of computingMann-Kendall test (𝑂 (𝑛2)) one time for the whole
series is more expensive than the total cost of individual evalua-
tions on segments as the condition is located last in the optimized
AFA’s state transition graph. This observation demonstrated again
the need for a search-space-aware optimizer to determine whether
computation sharing for aggregates is needed.

We also looked at how query specification itself impacts per-
formance. For instance, we use an alternative query for cld_wave:
((W1 (DOWN_AND_FALL & W2) W1) & UP_MK & WINDOW), in which
DOWN_AND_FALL combines the conditions for DOWN and FALL in the
sub-pattern (DOWN & FALL). In Figure 12e the line T-Rex-Alt corre-
sponds to the query time of this alternative specification, which is
at least 4× slower than the original query. Based on all results in
Figure 12, we recommend finer-grained specification utilizing the
And (&) operator for more optimization opportunities and replacing
point variables with segment-variables when dependent conditions
exist across point variables.

7 RELATEDWORK
Complex Event Processing (CEP). Existing works in CEP study
pattern search for streaming scenario [21, 29, 34–37, 41, 44, 49, 52].
Pattern search languages such as SASE [21, 49] and Cayuga [29],
share the same core features with slightly different syntax and
grammar. Similar to SQL 2016’s MATCH_RECOGNIZE [9], pattern vari-
ables in these languages are defined at event level with Boolean
constraints on events or records. The execution model of most ex-
isting works in CEP [21, 28, 49, 52] is based on non-deterministic
finite automaton (NFA).
NFA-based ExecutionModel. Plain NFA is insufficient in express-
ing query patterns with dependent conditions across pattern vari-
ables. Recognizing this limitation, executionmodels like NFA𝑏 [21]8
and AFA [28] have been proposed to allow added runtime informa-
tion to be associated with NFA states — such automata are called
augmented NFA (AFA) in [28]. Hence, when talking about NFA-
based executor in CEP and row pattern recognition literature, we are
essentially referring to AFA instead of the Plain NFA. Furthermore,
iterative nested AFA [39] has been proposed for queries involving
sub-queries. In essence, the outer query is evaluated using AFA
first, followed by its inner sub-queries. Observing that the eval-
uation of inner sub-queries can repeat for multiple outer results,
nested AFA with sharing is proposed by materializing intermediate
results [43]. T-ReX is shown to outperform AFA [28] and nested
AFA with sharing-enabled [43] in our experiments.

8Symbol 𝑏 in NFA𝑏 is short for ‘buffer’.

Translation from Query to NFA-based Execution Graph. How
to construct an efficient transition graph under AFA is left to the
users in [28]. Other works have studied how to construct efficient
transition graphs automatically for the core language constructs
(Concatenation, Alternation, Kleene closure, Not) [52] in
CEP and also for special operators like Permutation [25]. In our
experiment, we focused on the core language constructs [52] and
hand-tuned an efficient transition graph for each query, which is
more favorable to the NFA-based baseline.

Nested AFA is particularly useful when the compiler is unable to
compile a nested pattern into one single AFA, although this is not
an issue for standard MATCH_RECOGNIZE since it does not contain And
and Not operator and the translation from a pattern to one single
AFA is straight-forward. Given a nested pattern, the nested AFA is
constructed iteratively with one sub-AFA per sub-query [39, 43].
In our experiments, we not only hand-tuned a single holistic AFA
for each query pattern, but also automatically constructed a nested
AFA with sharing based on [43].
Tree-based Execution Model. In NFA-based executor, the match-
ing conditions are evaluated in the same order as they appear in the
query. This misses optimization opportunities like reordering for
selective conditions. To enable reordering, ZStream [41] leverages
a tree-based execution model, while [37] proposes a tree-based
NFA. In T-ReX, we adapts tree-based execution model, but with
different physical operators allowing search space refinement and
reference passing. Together with the optimizer, this design helps
T-ReX achieve better performance over a wider range of queries.
Techniques Applicable to Any Execution Model. Cadonna et
al. [26] proposes a two-phase matching strategy, consisting of (1) a
pre-processing phase to eliminate irrelevant events and (2) a pattern-
matching phase. Any executor, including T-ReX, can be plugged into
phase (2) and potentially benefit. Ray et al. speeds up concurrent
queries in streaming scenario using common sub-patterns across
queries [42], and proposes to materialize common sub-query within
one query for reducing redundant computation [43]. In T-ReX, we
have also proposed computation sharing for aggregation functions,
however, it is only applicable in historical setting and is orthogonal
to the sub-pattern sharing in [42, 43]. That is, we can potentially
improve T-ReX using shared sub-patterns within one query too. In
all, such techniques are orthogonal to our proposed T-ReX executor
and can be applied to T-ReX for further improvement.
Shape Search. Several existing works [22, 31, 40, 45] focus specif-
ically on shape-related patterns. Among them, Qetch [40] and
ShapeSearch [45] have segment-level abstraction for patterns.
Still, Qetch and ShapeSearch only support a limited set of shape-
related patterns, let alone user-defined matching conditions as in
T-ReX. Another difference is that they only support a subset of
T-ReX’s operators. Specifically, Qetch only supports Kleene and
Not operator; ShapeSearch supports Concatenation, And, and Or
operator. These systems have different focuses: Qetch proposes
a novel matching algorithm and distance function for matching
user sketches to time series; ShapeSearch proposes a pre-defined
scoring function and a novel approximation algorithm for return-
ing top-1 match. They are different from T-ReX which supports a
MATCH_RECOGNIZE interface and returns all matches exactly.

14

Time series Database. Lately, many efforts have been made in
developing time series databases (TSDBs). Popular TSDB includes
InfluxDB[7], Kdb+[10], TimescaleDB[17], andAzureData Explorer[2].
TSDBs focus mainly on data ingestion and storage, while also pro-
vide query interface for analytics. Both SEQ and TSDBs focusmostly
on the traditional data analytics operators like Select, Project, Ag-
gregate, and Join. How to cross-optimize MATCH_RECOGNIZE, with or
without T-ReX’s extension, and these operators is still an open and
interesting research problem.
Aggregates and Window Functions. Many papers have stud-
ied efficient evaluation of aggregates and window functions in
databases [23, 38, 47, 48, 50]. Vogelsgesang et al. [47] showed merge
sort tree to be a promising underlying index structure for imple-
menting a wide range of aggregates and window functions with
state sharing across evaluations. In T-ReX, every aggregate im-
plements the interface functions index() and lookup(), and the
implementation can use techniques in these works.

8 CONCLUSION
We presented T-ReX, a search engine for time series patterns. T-
ReX addresses the performance issue in existing historical time
series pattern search systems for handling variable-length query
patterns. T-ReX leverages two major insights: (1) reasoning about
query patterns in terms of segments enables a set of optimization
opportunities, including variable evaluation reordering and com-
putation sharing; (2) a search-space-aware executor and optimizer
are needed for effective search space pruning and efficient query
processing. Specifically, T-ReX extends the MATCH_RECOGNIZE syntax
with segment variables and new operators. Its query processing
framework uses an optimized tree-based executor to automatically
exploit the relative difference in the cost and selectivity of segment
variables to prune search space, employs novel physical operators
capable of search space pruning, and enables computation sharing
for aggregates. In our experiments on new and existing bench-
marks, T-ReX demonstrated clear advantage in a wider range of
patterns than existing executors, due to its reasoning at segment
level, search-space-aware executor, new physical operators, and
optimizer. For future work, we will investigate the possibilities of
operator-level parallel execution and integration with SQL systems.

15

REFERENCES
[1] Covid-19 data repository by the center for systems science and engineering

(csse) at johns hopkins university. https://github.com/CSSEGISandData/COVID-
19/tree/master/archived_data/archived_time_series, 2021.

[2] Azure Data Explorer. https://azure.microsoft.com/en-us/services/data-explorer/,
2022.

[3] Cold Wave. https://en.wikipedia.org/wiki/Cold_wave, 2022.
[4] Expected Distance Between Random Points on a Line Segment.

https://math.stackexchange.com/questions/195245/average-distance-between-
random-points-on-a-line-segment, 2022.

[5] Expected Number of Distinct Items from a Multi-Set. https://math.stackexchange.
com/a/72351, 2022.

[6] Historical hourly weather data 2012-2017. https://www.kaggle.com/selfishgene/
historical-hourly-weather-data, 2022.

[7] Influxdb. https://www.influxdata.com/, 2022.
[8] Internals of PostgreSQL – Rewriter. http://www.interdb.jp/pg/pgsql03.html, 2022.
[9] ISO/IEC TR 19075-5:2016 Information technology – Database languages – SQL

Technical Reports – Part 5: Row Pattern Recognition in SQL. https://www.iso.
org/standard/65143.html, 2022.

[10] Kdb+. https://code.kx.com/q/learn/, 2022.
[11] MATCH_RECOGNIZE. https://trino.io/docs/current/sql/match-recognize.html,

2022.
[12] MATCH_RECOGNIZE - Snowflake Documentation. https://docs.snowflake.com/

en/sql-reference/constructs/match_recognize.html, 2022.
[13] MATCH_RECOGNIZE for Pattern Recognition. https://docs.oracle.com/en/

middleware/fusion-middleware/osa/19.1/cqlreference/pattern-recognition-
match_recognize.html, 2022.

[14] MATCH_RECOGNIZE for Pattern Recognition. https://nightlies.apache.org/
flink/flink-docs-release-1.14/docs/dev/table/sql/queries/match_recognize/, 2022.

[15] MATCH_RECOGNIZE (Stream Analytics). https://docs.microsoft.com/en-us/
stream-analytics-query/match-recognize-stream-analytics, 2022.

[16] The numenta anomaly benchmark (nab). https://github.com/numenta/NAB/tree/
master/data/realKnownCause, 2022.

[17] TimescaleDB. https://www.timescale.com/, 2022.
[18] Snowflake MATCH_RECOGNIZE for finding transactions that do NOT match

a pattern. https://livenewcapital.com/snowflake-match_recognize-for-finding-
transactions-that-do-not-match-a-pattern/, 2023.

[19] Snowflake MATCH_RECOGNIZE for performing A/B analysis on streaming
data. https://livenewcapital.com/match_recognize-for-performing-a-b-analysis/,
2023.

[20] Kolchinsky, Ilya and Schuster, Assaf. OpenCEP. https://research.redhat.
com/blog/research_project/complex-event-processing-2/ https://github.com/
ilya-kolchinsky/OpenCEP, 2021.

[21] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching
over event streams. In J. T. Wang, editor, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008, pages 147–160. ACM, 2008.

[22] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zaït. Querying shapes of histories.
In U. Dayal, P. M. D. Gray, and S. Nishio, editors, VLDB’95, Proceedings of 21th
International Conference on Very Large Data Bases, September 11-15, 1995, Zurich,
Switzerland, pages 502–514. Morgan Kaufmann, 1995.

[23] A. Arasu and J. Widom. Resource sharing in continuous sliding-window aggre-
gates. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley,
and K. B. Schiefer, editors, (e)Proceedings of the Thirtieth International Conference
on Very Large Data Bases, VLDB 2004, Toronto, Canada, August 31 - September 3
2004, pages 336–347. Morgan Kaufmann, 2004.

[24] P. Buono, A. Aris, C. Plaisant, A. Khella, and B. Shneiderman. Interactive pattern
search in time series. In R. F. Erbacher, J. C. Roberts, M. T. Gröhn, and K. Börner,
editors, Visualization and Data Analysis 2005, San Jose, CA, USA, January 17, 2005,
volume 5669 of SPIE Proceedings, pages 175–186. SPIE, 2005.

[25] B. Cadonna, J. Gamper, and M. H. Böhlen. Sequenced event set pattern matching.
In A. Ailamaki, S. Amer-Yahia, J. M. Patel, T. Risch, P. Senellart, and J. Stoy-
anovich, editors, EDBT 2011, 14th International Conference on Extending Database
Technology, Uppsala, Sweden, March 21-24, 2011, Proceedings, pages 33–44. ACM,
2011.

[26] B. Cadonna, J. Gamper, and M. H. Böhlen. Efficient event pattern matching
with match windows. In Q. Yang, D. Agarwal, and J. Pei, editors, The 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’12, Beijing, China, August 12-16, 2012, pages 471–479. ACM, 2012.

[27] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, J. C. Platt, J. F. Terwilliger,
and J. Wernsing. Trill: A high-performance incremental query processor for
diverse analytics. Proc. VLDB Endow., 8(4):401–412, 2014.

[28] B. Chandramouli, J. Goldstein, and D. Maier. High-performance dynamic pattern
matching over disordered streams. Proc. VLDB Endow., 3(1):220–231, 2010.

[29] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M. White.
Cayuga: A general purpose event monitoring system. In Third Biennial Conference
on Innovative Data Systems Research, CIDR 2007, Asilomar, CA, USA, January 7-10,

2007, Online Proceedings, pages 412–422. www.cidrdb.org, 2007.
[30] Y. Diao, N. Immerman, and D. Gyllstrom. Sase+: An agile language for kleene

closure over event streams. UMass Technical Report, 2007.
[31] T. Fu, K. F. Chung, R. W. P. Luk, and C. Ng. Stock time series pattern matching:

Template-based vs. rule-based approaches. Eng. Appl. Artif. Intell., 20(3):347–364,
2007.

[32] G. Graefe. Volcano - an extensible and parallel query evaluation system. IEEE
Trans. Knowl. Data Eng., 6(1):120–135, 1994.

[33] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[34] I. Kolchinsky and A. Schuster. Efficient adaptive detection of complex event
patterns. Proc. VLDB Endow., 11(11):1346–1359, 2018.

[35] I. Kolchinsky and A. Schuster. Join query optimization techniques for complex
event processing applications. Proc. VLDB Endow., 11(11):1332–1345, 2018.

[36] I. Kolchinsky and A. Schuster. Real-time multi-pattern detection over event
streams. In P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska,
editors, Proceedings of the 2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
pages 589–606. ACM, 2019.

[37] I. Kolchinsky, I. Sharfman, and A. Schuster. Lazy evaluation methods for detecting
complex events. In F. Eliassen and R. Vitenberg, editors, Proceedings of the 9th
ACM International Conference on Distributed Event-Based Systems, DEBS ’15, Oslo,
Norway, June 29 - July 3, 2015, pages 34–45. ACM, 2015.

[38] V. Leis, K. Kundhikanjana, A. Kemper, and T. Neumann. Efficient processing of
window functions in analytical SQL queries. Proc. VLDB Endow., 8(10):1058–1069,
2015.

[39] M. Liu, M. Ray, E. A. Rundensteiner, D. J. Dougherty, C. Gupta, S. Wang, I. Ari, and
A.Mehta. Processing nested complex sequence pattern queries over event streams.
In D. Zeinalipour-Yazti and W. Lee, editors, Proceedings of the 7th Workshop on
Data Management for Sensor Networks, in conjunction with VLDB, DMSN 2010,
Singapore, September 13, 2010, ACM International Conference Proceeding Series,
pages 14–19. ACM, 2010.

[40] M. Mannino and A. Abouzied. Expressive time series querying with hand-drawn
scale-free sketches. In R. L. Mandryk, M. Hancock, M. Perry, and A. L. Cox,
editors, Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI 2018, Montreal, QC, Canada, April 21-26, 2018, page 388. ACM, 2018.

[41] Y. Mei and S. Madden. Zstream: a cost-based query processor for adaptively
detecting composite events. In U. Çetintemel, S. B. Zdonik, D. Kossmann, and
N. Tatbul, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July
2, 2009, pages 193–206. ACM, 2009.

[42] M. Ray, C. Lei, and E. A. Rundensteiner. Scalable pattern sharing on event
streams. In F. Özcan, G. Koutrika, and S. Madden, editors, Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 495–510. ACM, 2016.

[43] M. Ray, E. A. Rundensteiner, M. Liu, C. Gupta, S. Wang, and I. Ari. High-
performance complex event processing using continuous sliding views. In
G. Guerrini and N. W. Paton, editors, Joint 2013 EDBT/ICDT Conferences, EDBT
’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 525–536. ACM, 2013.

[44] R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi. Expressing and optimizing
sequence queries in database systems. ACM Trans. Database Syst., 29(2):282–318,
2004.

[45] T. Siddiqui, P. Luh, Z. Wang, K. Karahalios, and A. G. Parameswaran. Shapesearch:
A flexible and efficient system for shape-based exploration of trendlines. In
D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, editors,
Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, pages
51–65. ACM, 2020.

[46] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedure,
caching and views in data base systems. ACM SIGMOD Record, 19(2):281–290,
1990.

[47] A. Vogelsgesang, T. Neumann, V. Leis, and A. Kemper. Efficient evaluation of
arbitrarily-framed holistic SQL aggregates and window functions. In Z. Ives,
A. Bonifati, and A. E. Abbadi, editors, SIGMOD ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 1243–1256.
ACM, 2022.

[48] R. Wesley and F. Xu. Incremental computation of common windowed holistic
aggregates. Proc. VLDB Endow., 9(12):1221–1232, 2016.

[49] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over
streams. In S. Chaudhuri, V. Hristidis, and N. Polyzotis, editors, Proceedings of the
ACM SIGMOD International Conference on Management of Data, Chicago, Illinois,
USA, June 27-29, 2006, pages 407–418. ACM, 2006.

[50] J. Yang and J. Widom. Incremental computation and maintenance of temporal
aggregates. In D. Georgakopoulos and A. Buchmann, editors, Proceedings of the
17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg,
Germany, pages 51–60. IEEE Computer Society, 2001.

[51] S. Yue, P. Pilon, and G. Cavadias. Power of the mann–kendall and spearman’s rho
tests for detecting monotonic trends in hydrological series. Journal of Hydrology,

16

https://github.com/CSSEGISandData/COVID-19/tree/master/archived_data/archived_time_series
https://github.com/CSSEGISandData/COVID-19/tree/master/archived_data/archived_time_series
https://azure.microsoft.com/en-us/services/data-explorer/
https://en.wikipedia.org/wiki/Cold_wave
https://math.stackexchange.com/questions/195245/average-distance-between-random-points-on-a-line-segment
https://math.stackexchange.com/questions/195245/average-distance-between-random-points-on-a-line-segment
https://math.stackexchange.com/a/72351
https://math.stackexchange.com/a/72351
https://www.kaggle.com/selfishgene/historical-hourly-weather-data
https://www.kaggle.com/selfishgene/historical-hourly-weather-data
https://www.influxdata.com/
http://www.interdb.jp/pg/pgsql03.html
https://www.iso.org/standard/65143.html
https://www.iso.org/standard/65143.html
https://code.kx.com/q/learn/
https://trino.io/docs/current/sql/match-recognize.html
https://docs.snowflake.com/en/sql-reference/constructs/match_recognize.html
https://docs.snowflake.com/en/sql-reference/constructs/match_recognize.html
https://docs.oracle.com/en/middleware/fusion-middleware/osa/19.1/cqlreference/pattern-recognition-match_recognize.html
https://docs.oracle.com/en/middleware/fusion-middleware/osa/19.1/cqlreference/pattern-recognition-match_recognize.html
https://docs.oracle.com/en/middleware/fusion-middleware/osa/19.1/cqlreference/pattern-recognition-match_recognize.html
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/table/sql/queries/match_recognize/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/table/sql/queries/match_recognize/
https://docs.microsoft.com/en-us/stream-analytics-query/match-recognize-stream-analytics
https://docs.microsoft.com/en-us/stream-analytics-query/match-recognize-stream-analytics
https://github.com/numenta/NAB/tree/master/data/realKnownCause
https://github.com/numenta/NAB/tree/master/data/realKnownCause
https://www.timescale.com/
https://livenewcapital.com/snowflake-match_recognize-for-finding-transactions-that-do-not-match-a-pattern/
https://livenewcapital.com/snowflake-match_recognize-for-finding-transactions-that-do-not-match-a-pattern/
https://livenewcapital.com/match_recognize-for-performing-a-b-analysis/
https://research.redhat.com/blog/research_project/complex-event-processing-2/
https://research.redhat.com/blog/research_project/complex-event-processing-2/
https://github.com/ilya-kolchinsky/OpenCEP
https://github.com/ilya-kolchinsky/OpenCEP

259(1):254–271, 2002.
[52] H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization of ex-

pensive queries in complex event processing. In C. E. Dyreson, F. Li, and M. T.
Özsu, editors, International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages 217–228. ACM, 2014.

17

A PROOF ON LANGUAGE EXPRESSIVENESS
A.1 Proof of Proposition 2.1

Proof. We first show a segment variable is expressible using
standard MATCH_RECOGNIZE. Consider a segment variable S defined
via clause ‘DEFINE SEGMENT S AS S_Boolean_Condition(S)’, we
can express S using point variables and operators in standard
MATCH_RECOGNIZE as follows: ‘(p* z) DEFINE p As true, z as

S_Boolean_Condition(p, z)’. Note that p in S_Boolean_Condition(p,

z) is bound to all events that have matched p so far in a partial
match. As a concrete example, letting S_Boolean_Condition(S) be
AVG(S.temp)>70, equivalently we can use ‘(p* z) DEFINE p As true,

z as
SUM(p.temp)+z.temp
COUNT(p.temp)+1 >70’. This way, the whole event sequence

matching pattern (p* z) collectively matches the segment variable
S, and vice versa. Hence, S and (p* z) are equivalent.

Given a pattern with segment variables, we can replace each seg-
ment variable Swith (p* z), as illustrated above. Hence proved. □

A.2 Proof of Proposition 2.2

Proof. We prove this by showing that any pattern involving
And or Not can be reduced to a pattern with only existing oper-
ators in standard MATCH_RECOGNIZE via induction. Without loss of
generality, we assume a given pattern contains only point variables
and no segment variables based on Proposition 2.1.

Let us first consider And operator: (A & B). Assuming sub-
pattern A and B are expressed using standard MATCH_RECOGNIZE,
we will prove that (A & B) can also be rewritten to a pattern
expressible using standard MATCH_RECOGNIZE. To prove this, we first
show some property of the sub-pattern as described in Lemma A.1.

Lemma A.1. Given a pattern A in standard MATCH_RECOGNIZE, A
can be reduced to a form of (𝐴1 | 𝐴2 |...| 𝐴𝑙𝐴

), where 𝐴𝑖 is a
special pattern containing only Concatenation operator ∀1 ≤ 𝑖 ≤ 𝑙𝐴 .

Proof. The rewriting procedure contains two steps: (1) con-
struct an NFA based on pattern A; (2) enumerate all possible paths
from Start node to Finish node in this constructed transition graph
via a DFS recursion: each path 𝐴𝑖 generated refers to a special pat-
tern with Concatenation operator only, i.e., 𝐴𝑖 = (𝑎1

𝑖
𝑎2
𝑖
· · ·𝑎𝑙𝑖

𝑖
)

where each 𝑎𝑥
𝑖
denotes a point variable ∀1 ≤ 𝑥 ≤ 𝑙𝑖 . Hence, we

have A=(𝐴1 | 𝐴2 |...| 𝐴𝑖 |..). Next, we prove the number of
enumerated paths is finite for any given pattern A.

If pattern A contains no Kleene operator (e.g., Figure 13a), the

Split

b

a

Start Split

d

c

Finish

(a) A: ((a | b) (c | d))

Split

b

a

Start Splitc Finish

 | | | | ...

(b) A: ((a | b) c+)

Figure 13: Rewriting general pattern to special patterns
transition graph is a directed acyclic graph (DAG) and the num-
ber of enumerated paths is finite; otherwise (e.g., Figure 13b), the

transition graph contains cycles and the number of paths can be
potentially infinite – however, we can safely terminate the enu-
meration process when the path length exceeds the series length 𝑛,
since each point variable 𝑎𝑥

𝑖
in path 𝐴𝑖 must match a distinct event

and any path 𝐴𝑖 with length greater than 𝑛 will have no match.
Hence, we can rewriteA=(𝐴1 | 𝐴2 |...| 𝐴𝑙𝐴

)where 𝑙𝐴 ∈ N+. □

Based on Lemma A.1, (A & B)=((𝐴1 | 𝐴2 |...| 𝐴𝑙𝐴
) & (𝐵1

| 𝐵2 |...| 𝐵𝑙𝐵))=((𝐴1 & 𝐵1) | (𝐴1 & 𝐵2) |...| (𝐴𝑙𝐴
& 𝐵𝑙𝐵)),

where𝐴𝑖 and 𝐵 𝑗 are both special patterns containing only Concate-
nation operator ∀1 ≤ 𝑖 ≤ 𝑙𝐴, 1 ≤ 𝑗 ≤ 𝑙𝐵 . Next, we rewrite (𝐴𝑖 &

𝐵 𝑗)=((𝑎1𝑖 𝑎2
𝑖
· · · 𝑎𝑙𝑖

𝑖
) & (𝑏1

𝑗
𝑏2
𝑗
· · ·𝑏𝑙 𝑗

𝑗
)). Since each 𝑎𝑥

𝑖
and 𝑏𝑦

𝑗
denote

a point variable ∀1 ≤ 𝑥 ≤ 𝑙𝑖 , 1 ≤ 𝑦 ≤ 𝑙 𝑗 : if 𝑙𝑖 ≠ 𝑙 𝑗 , (𝐴𝑖 & 𝐵 𝑗)=∅;
else, (𝐴𝑖 & 𝐵 𝑗)=(𝑐1𝑖 𝑗 𝑐2

𝑖 𝑗
· · · 𝑐𝑙𝑖 𝑗

𝑖 𝑗
), where 𝑙𝑖 𝑗 = 𝑙𝑖 = 𝑙 𝑗 and 𝑐𝑧𝑖 𝑗 denotes

a point variable defined with Boolean conditions from both 𝑎𝑧
𝑖
and

𝑏𝑧
𝑗
∀1 ≤ 𝑧 ≤ 𝑙𝑖 𝑗 . Hence, (A & B) is reduced to a pattern with only

Concatenation and Alternation operator.
Similarly, given a pattern (!A), assume sub-pattern A is ex-

pressed using standard MATCH_RECOGNIZE and we will prove (!A)

can also be rewritten to a pattern using standard MATCH_RECOGNIZE.
Based on Lemma A.1, (!A)=(!(𝐴1 | 𝐴2 |...| 𝐴𝑙𝐴

))=(!𝐴1 & !𝐴2

&...& !𝐴𝑙𝐴
). For each 𝐴𝑖 , !𝐴𝑖=!(𝑎1𝑖 𝑎2

𝑖
· · · 𝑎𝑙𝑖

𝑖
)=((𝑐1

𝑖
) | (𝑐1

𝑖
𝑐2
𝑖
)...

|(𝑐1
𝑖

𝑐2
𝑖
· · · 𝑐𝑙𝑖

𝑖
) | ... | (𝑐1

𝑖
𝑐2
𝑖
· · · 𝑐𝑛

𝑖
)), where 𝑛 is the series

length, point variable 𝑐𝑧
𝑖
is defined as true ∀𝑧 ≠ 𝑙𝑖 , 𝑐𝑙𝑖𝑖 is defined

as (𝑎1
𝑖
_Boolean_Condition(𝑐1

𝑖
) && 𝑎2

𝑖
_Boolean_Condition(𝑐2

𝑖
)...&&

𝑎
𝑙𝑖
𝑖
_Boolean_Condition(𝑐

𝑙𝑖
𝑖
)) == false, and𝑎𝑥

𝑖
_Boolean_Condition()

denotes the Boolean condition associated with point variable 𝑎𝑥
𝑖

∀1 ≤ 𝑥 ≤ 𝑙𝑖 . The last equation is derived by enumerating all
complementary patterns to (𝑎1

𝑖
𝑎2
𝑖
· · · 𝑎𝑙𝑖

𝑖
). Hence, each !𝐴𝑖 is ex-

pressible in standard MATCH_RECOGNIZE. Combined with the above
claim on (A & B), (!A) is rewritten to a pattern using standard
MATCH_RECOGNIZE. □

B TRANSLATING MATCH_RECOGNIZE QUERY TO
T-REX QUERY

In Section 2, we introduce an extension to MATCH_RECOGNIZE to en-
able the direct reasoning about query in terms of segment.While we
hope users can write queries using the extended language directly,
it is also possible to implement our extension as an intermediate
representation (IR) and translate queries written with standard
MATCH_RECOGNIZE into our IR. Firstly, T-ReX’s language is an exten-
sion of MATCH_RECOGNIZE, and any pattern expressed in standard
MATCH_RECOGNIZE can be executed directly in T-ReX. However, as
pointed out in Section 2.3.2, alternative expression of the same
pattern using T-ReX’s language extension, i.e., segment variables
and newly added operators, offers a few performance optimization
opportunities. In the following, we present our initial trial of build-
ing a rewriter that rewrites a given MATCH_RECOGNIZE query into a
T-ReX query via a rule system — this is similar to the rewriter [8]
in SQL optimizer, which transforms a query tree using rules stored
in the rule system [46]. Below we list a few rewrite rules and new
rules can be extended easily. We omit the correctness proof of each
rewrite rule, since they are rather straight-forward and not the
focus of this paper. With these rules, the rewriter can then generate
various query patterns in our IR. Ideally, a cost-based optimizer

18

shall pick the best rewritten pattern, similar to SQL’s cost-based
optimizer.
Rewrite Rule 1 (Convert point variable to segment variable).
If x is a point variable with condition that is always true, then
rewrite (x*) into (X) DEFINE SEGMENT X as true and replace all
references to x in variable definitions with X.
If x is a point variable and its definition only involves time-related
condition in the form of DEFINE x as (col - first(x.col) <=

time_delta), then (1) rewrite (x*) into (X) with DEFINE SEGMENT X

as window(col, 0, time_delta, unit) and replace all references to
x with X; (2) rewrite (x+) into (X & W) with DEFINE SEGMENT X as

window(col, 0, time_delta, unit), SEGMENT 𝑊 as window(1, ∞)

and replace all references to x with X.
Rewrite Rule 2 (Convert subset variable to segment variable).
Consider a given pattern P and a subset variable U, let A be the
minimal sub-pattern of P that contains all point variables from U. If
sub-pattern A contains only point variables from U and only Con-
catenation and Kleene Closure operator, then rewrite sub-pattern
A into (A & UU) DEFINE SEGMENT UU as true and replace all
references to U in variable definitions with UU.
Rewrite Rule 3 (Reassign Boolean condition). Consider a (point
or segment) variable z, normalize its Boolean condition into con-
junctive normal form (CNF), i.e., (𝑐1 AND 𝑐2 AND · · · AND 𝑐𝑙) where
each clause 𝑐𝑖 is a disjunction of literals ∀1 ≤ 𝑖 ≤ 𝑙 . If clause 𝑐𝑖 de-
pends only on some other segment variable 𝑋 , then remove clause
𝑐𝑖 from z’s Boolean condition and add 𝑐𝑖 to X’s Boolean condition
via conjunction operator.
Rewrite Rule 4 (Decompose segment variables into finer gran-
ularity). If X is a segment variable and its definition contains a
Boolean condition that can be decomposed into CNF with more
than two clauses, i.e., (𝑐1 AND 𝑐2 AND · · · AND 𝑐𝑙), then rewrite
(X) into (X1 & X2 & · · · & X𝑙) DEFINE X𝑖 as c𝑖 ∀1 ≤ 𝑖 ≤ 𝑙 .
Rewrite Rule 5 (Remove irrelevant variables).Consider a (point
or segment) variable Z, if Z is defined as true, not referenced in other
variables’ DEFINE clause or in MEASURE clause, and there exists some
sub-pattern A: (1) connecting with Z via And operator, i.e., (A &

Z), then rewrite (A & Z) into A; (2) such that the given pattern is
in the form of (A Z), then rewrite (A Z) into A.

Next, we show how the rewriter applies these rules to generate
patterns in our IR using the cold wave pattern example (Figure 2).

1 PATTERN (((A* D+ B*) & UU) Z)

2 DEFINE D AS tstamp - first(D.tstamp) <= INTERVAL '5' DAY,

3 Z AS last(UU.tstamp) - first(UU.tstamp) BETWEEN
4 INTERVAL '25' DAY AND INTERVAL '30' DAY
5 AND mann_kendall_test(UU.temp) >= 3.0
6 AND linear_regression_r2(D.tstamp, D.temp) >= 0.95
7 AND last(D.temp) - first(D.temp) < -20,

8 SEGMENT UU AS true

Figure 14: Pattern after rewrite step-1.

Example 3. [Rewrite Step-1]: given pattern (A* D+ B* Z) in Figure 2,
both rewrite rule 1 and 2 can get fired. The rewriter will apply rule
1 and rule 2 separately, and obtain two alternative patterns. In the
following, we only illustrate one branch where rule 2 is first applied.

Based on rule 2, (A* D+ B* Z) is rewritten into (((A* D+ B*) & UU)

Z) as shown in Figure 14.

1 PATTERN (((AA (DD & WW) BB) & UU) Z)

2 DEFINE SEGMENT DD AS window(DD.tstamp, 0, 5, DAY),

3 SEGMENT WW AS window(1, ∞),

4 Z AS last(UU.tstamp) - first(UU.tstamp) BETWEEN
5 INTERVAL '25' DAY AND INTERVAL '30' DAY
6 AND mann_kendall_test(UU.temp) >= 3.0
7 AND linear_regression_r2(DD.tstamp, DD.temp) >= 0.95
8 AND last(DD.temp) - first(DD.temp) < -20,

Figure 15: Pattern after rewrite step-2.

[Rewrite Step-2]: after step-1, only rule 1 can be triggered. Applying
rewrite rule 1, (((A* D+ B*) & UU) Z) is rewritten into (((AA (DD &

WW) BB) & UU) Z) as depicted in Figure 15, where segment variable
AA, BB and UU’s definition defaults to true.

1 PATTERN ((AA (DD & WW) BB) & UU) Z)

2 DEFINE SEGMENT DD AS linear_regression_r2(DD.tstamp, DD.temp) >= 0.95
3 AND last(DD.temp) - first(DD.temp) < -20
4 AND window(DD.tstamp, 0, 5, DAY),

5 SEGMENT WW AS window(1, ∞),

6 SEGMENT UU AS mann_kendall_test(UU.temp) >= 3.0,
7 AND window(UU.tstamp, 25, 30, DAY),

8 Z AS true

Figure 16: Pattern after rewrite step-3.

[Rewrite Step-3]: after step-2, rule 3 gets fired. The Boolean condi-
tion in variable 𝑍 is already in CNF form. Applying rule 3, clauses
are removed from Z’s Boolean condition and added to DD and UU’s
definition respectively as illustrated in Figure 16.

1 PATTERN ((AA (DD1 & DD2 & DD3 & WW) BB) & UU1 & UU2) Z)

2 DEFINE SEGMENT DD1 AS linear_regression_r2(DD.tstamp, DD.temp) >= 0.95,

3 SEGMENT DD2 AS last(DD.temp) - first(DD.temp) < -20,

4 SEGMENT DD3 AS window(DD.tstamp, 0, 5, DAY),

5 SEGMENT WW AS window(1, ∞)

6 SEGMENT UU1 AS mann_kendall_test(UU.temp) >= 3.0,

7 SEGMENT UU2 AS window(UU.tstamp, 25, 30, DAY),

8 Z AS true

Figure 17: Pattern after rewrite step-4.

[Rewrite Step-4]: next, rewrite rule 4 gets fired. The Boolean con-
dition associated with segment variable DD are decomposed into
three clauses and thus we can rewrite DD into (DD1 & DD2 & DD3) as
shown in Figure 17. Similarly, UU is decomposed into (UU1 & UU2).
[Rewrite Step-5]: lastly, rewrite rule 5 gets fired, removing irrelevant
variable Z.

Comparing the automatically translated pattern in Figure 18
with our hand-written pattern in Figure 3, segment variable AA and
BB in Figure 18 correspond to W in Figure 3; DD1 and DD2 correspond
to DOWN and DIFF respectively; DD3 and WW together correspond to

19

1 PATTERN (AA (DD1 & DD2 & DD3 & WW) BB) & UU1 & UU2)

2 DEFINE SEGMENT DD1 AS linear_regression_r2(DD.tstamp, DD.temp) >= 0.95,

3 SEGMENT DD2 AS last(DD.temp) - first(DD.temp) < -20,

4 SEGMENT DD3 AS window(DD.tstamp, 0, 5, DAY),

5 SEGMENT WW AS window(1, ∞)

6 SEGMENT UU1 AS mann_kendall_test(UU.temp) >= 3.0,

7 SEGMENT UU2 AS window(UU.tstamp, 25, 30, DAY),

Figure 18: Pattern after rewrite step-5.

WAVE_WINDOW9; UU1 and UU2 correspond to UP and OVERALL_WINDOW re-
spectively. We note Figure 18 only depicts one possible rewritten
pattern in our IR, obtained by applying the rewrite rules in a par-
ticular order, and there exists other alternative rewritten patterns
in our IR. A cost-based optimizer can be employed to pick the best
rewritten pattern and is left as future work. From our lessons work-
ing with different patterns, our intuition is that patterns expressed
using segment variable when dependent conditions exist across
points, using finer granular variables, and without Kleene Closure
operator in general have better performance.

C REASONING OF COST MODEL
C.1 Estimating ℓ𝑠𝑒 in RightProbeConcat

(1) = = < (2) < = = (3) = < = (4) = < =

Figure 19: 4 Cases of any Physical Operator’s Search Space.

Based on all the physical operators in Table 1, if the search
space of the root operator is (𝑆 = [0, 𝑛 − 1], 𝐸 = [0, 𝑛 − 1]), which
is always the case under MATCH_RECOGNIZE, then the search space
(𝑆 = [𝑠𝑖 , 𝑠 𝑗], 𝐸 = [𝑒𝑖 , 𝑒 𝑗]) of any physical operator in this tree falls
into one of the following 4 cases as depicted in Figure 19:

(1) 𝑠𝑖 = 𝑒𝑖 = 𝑠 𝑗 < 𝑒 𝑗
(2) 𝑠𝑖 < 𝑠 𝑗 = 𝑒𝑖 = 𝑒 𝑗
(3) 𝑠𝑖 = 𝑠 𝑗 < 𝑒𝑖 = 𝑒 𝑗
(4) 𝑠𝑖 = 𝑒𝑖 < 𝑠 𝑗 = 𝑒 𝑗

Recall that ℓ𝑠𝑒 = 𝑒 𝑗 −𝑠𝑖 , ℓ𝑠 = 𝑠 𝑗 −𝑠𝑖 , and ℓ𝑒 = 𝑒 𝑗 −𝑒𝑖 . Now because we
do not have access to the actual segments during query optimization,
we can only estimate ℓ𝑠𝑒 . We are given the search space sizes of the
start and end positions, ℓ𝑠 and ℓ𝑒 , respectively, of the concatenated
segment. So, we estimate ℓ𝑠𝑒 as follows:
• If ℓ𝑠 = 1 and ℓ𝑒 = 1 (Case (3)), then we know there is only one
choice for the start position (i.e., 𝑠𝑖) and end position (i.e., 𝑒𝑖)
of the concatenated segment. We don’t actually know what the
choice is as we don’t have access to the data, so we use uniform
assumption: consider drawing two integers x and y from the
integer range [1, 𝑛] and 𝑥 <= 𝑦, the expected value of |𝑥 − 𝑦 | is

9When we hand write the pattern in Figure 3, DD3 and WW are combined to form
WAVE_WINDOW since we know each point corresponds to 1 DAY in this dataset.

𝑛/3. Therefore, we use 𝑛/3, where 𝑛 is the number of points in
the series, or series length.

• If ℓ𝑠 > 1 or ℓ𝑒 > 1, then it is one of Cases (1), (2), and (4):
– Case (1): ℓ𝑠𝑒 = 𝑒 𝑗 − 𝑒𝑖 = ℓ𝑒
– Case (2): ℓ𝑠𝑒 = 𝑠 𝑗 − 𝑠𝑖 = ℓ𝑠
– Case (4): ℓ𝑠𝑒 = 𝑠 𝑗 − 𝑠𝑖 = ℓ𝑠 = 𝑒 𝑗 − 𝑒𝑖 = ℓ𝑒
Thus we can use ℓ𝑠𝑒 =𝑚𝑎𝑥 (𝑙𝑠 , 𝑙𝑒).

C.2 Cardinality Estimator for Not Operator
Not operator outputs the complement of the sub-tree’s segments
in the search space. The search space’s cardinality is estimated as
ℓ𝑠 ℓ𝑒 × 𝑆𝑒𝑙𝑤 , where 𝑆𝑒𝑙𝑤 denotes the selectivity of the embedded
window condition𝑤 . The embedded window condition is assigned
during plan rewrite as described in Section 3. Using a query pattern
((∼A) & W) as an example, W is a window condition. The original
logical query plan is as shown in the left-hand side of Figure 20(a);
through rewrite,𝑊 gets “fused” with Not and pushed down to A,
and the plan becomes the right-hand side of Figure 20(a). The output
segment has to satisfy this window condition, hence the output
cardinality is estimated as ℓ𝑠 ℓ𝑒 × 𝑆𝑒𝑙𝑤 − C𝑖𝑛 . If we want output
segments that do not satisfy both A and the window condition,
we can write the query pattern as (∼(A & W)), and the plan after
rewrite is as shown in the right-hand side of Figure 20(b). There
would be no embedded window condition on the Not with 𝑆𝑒𝑙𝑤 = 1
and the output cardinality estimate equals ℓ𝑠 ℓ𝑒 − C𝑖𝑛 .

Not W

A

And Not (w=W)

A (w=W)

Not

A (w=W)And

WA

Not

(a) (b)

Rewrite Rewrite

Figure 20: Not Operator with/without Embedded Window.

D STATISTICS COLLECTION
A few building blocks in the cost model require instantiating: the
operator cost function (𝑓𝑜𝑝), the aggregate’s indexing cost function
(𝑓𝑖𝑛𝑑), and the aggregate’s evaluation cost functions with and with-
out index (𝑓𝛿 ′ and 𝑓𝛿 , respectively). T-ReX bootstraps these param-
eters in an offline profiling procedure, while other data-dependent
statistics like Sel𝑃 |𝑤 are sampled at query time.

D.1 Offline Profiling for the Cost of Operator
For each physical operator 𝑜𝑝 in Table 1, T-ReX estimates its𝑤 in
𝑓𝑜𝑝 (Equation 1) during an offline profiling procedure, which could
be run just before code release or during the software’s installation
for better platform-specific tuning. Specifically, T-ReX first gen-
erates synthetic segments for each operator with varying C𝑖𝑛 for
unary operators; C𝑙 and C𝑟 for binary operators. Next, T-ReX eval-
uates each operator on its synthetic segments, counts the output
cardinality C𝑜𝑢𝑡 , and measures the run-time 𝑡𝑜𝑝 (in nanosecond)
spent inside this operator’s eval() method. With these data points,
i.e., (C𝑖𝑛,C𝑜𝑢𝑡 , 𝑡𝑜𝑝) for unary operator and (C𝑙 ,C𝑟 ,C𝑜𝑢𝑡 , 𝑡𝑜𝑝) for

20

binary operator, T-ReX then estimates 𝑤 for each 𝑓𝑜𝑝 using lin-
ear regression. Table 5 depicts each𝑤 in 𝑓𝑜𝑝 for different physical
operators obtained from our offline profiling.

𝑓𝑜𝑝 =


𝑤 · (C𝑖𝑛 + C𝑜𝑢𝑡), if op is Unary
𝑤 · (C𝑟 + C𝑜𝑢𝑡), if op is LeftProbe
𝑤 · (C𝑙 + C𝑜𝑢𝑡), if op is RightProbe
𝑤 · (C𝑙 + C𝑟 + C𝑜𝑢𝑡), otherwise

(1)

Physical Operator 𝑤 Physical Operator 𝑤

SegGenWindow 193 MaterializeNot 440
SegGenFilter 502 ProbeNot 2168
SegGenIndexing 501 MaterializeKleene 1577
SortMergeConcat 671 SortMergeAnd 588
RightProbeConcat 1583 LeftProbeAnd 2077
LeftProbeConcat 1583 RightProbeAnd 2077
SortMergeOr 747

Table 5:𝑤 in 𝑓𝑜𝑝 Obtained In Our Offline Profiling.

D.2 Offline Profiling for the Cost of Evaluating
Aggregates

T-ReX implements three cost functions: (a) constant cost function;
(b) linear cost function; and (c) quadratic cost function. For instance,
given a specific aggregate function 𝐹 , 𝑓𝑖𝑛𝑑 can be expressed as
Equation 2.

𝑓𝑖𝑛𝑑 (𝐹, ℓ𝑠𝑒) =


𝑤, if 𝐹 conforms constant cost model
𝑤 · ℓ𝑠𝑒 , if 𝐹 conforms linear cost model
𝑤 · ℓ2𝑠𝑒 , if 𝐹 conforms quadratic cost model

(2)

Similarly for 𝑓𝛿 (𝐹, ℓ𝑖𝑛) and 𝑓𝛿 ′ (𝐹, ℓ𝑖𝑛). During offline profiling, we
generate synthetic segments with varying ℓ𝑠𝑒 and ℓ𝑖𝑛 , measure the
indexing time (𝑡𝑖𝑛𝑑) and matching time (𝑡𝛿 and 𝑡𝛿 ′), and then profile
𝑤 according to this primitive’s cost function. Table 6 depicts some
example𝑤 in 𝑓𝑖𝑛𝑑 , 𝑓𝛿 ′ , and 𝑓𝛿 of our built-in aggregate functions. For
user defined primitives, we rely on users to provide annotations for
a proper cost function, otherwise, we will use linear cost function
by default. We perform profiling when users register their defined
primitives.

Aggregate 𝑤 (𝑓𝑖𝑛𝑑) 𝑤 (𝑓𝛿 ′) 𝑤 (𝑓𝛿)

linear_regression_r2(x, y) 380 (L) 0 (C) 903 (L)
mann_kandall_test(x) 761 (Q) 0 (C) 99 (Q)
ZScoreOutlier(ℓ) - - 34 (L)

Table 6:𝑤 in 𝑓𝑖𝑛𝑑 , 𝑓𝛿 , and 𝑓𝛿 ′ Obtained In Our Offline Profiling.
(C), (L), and (Q) denote constant, linear, and quadratic cost
model, respectively.

D.3 Online Profiling for Estimating Sel𝑃 |𝑤
Unlike𝑤 in cost functions, primitives’ selectivity is almost always
data-dependent. T-ReX estimates the selectivity (Sel𝑃 |𝑤) based on
samples at query time.

Online latency can hurt user experience, thus T-ReX estimates
variables’ selectivity on a sampled set of series, denoted asX𝑆 . If the

aggregate involved in a variable’s condition 𝑃 does not implements
an index() method, T-ReX estimates Sel𝑃 |𝑤 by (1). randomly sam-
pling segments from the windowed search space, denoted as 𝑂 ;
(2). counting the number of segments that passes the variable’s
match method, denoted as |𝑂 |; (3). estimating Sel𝑃 |𝑤 as |𝑂 |

|𝑂 | . On
the other hand, if the aggregate involved in a variable’s condition 𝑃
implements index(), T-ReX first performs indexing and then con-
duct step (1-3) above, but use the index’s match() method instead,
which likely reduces the overall cost. Based on experiments, the
online sampling cost is negligible compared to the overall query
processing cost. Another statistics from sampling is the estimated
average segment length ℓ𝑖𝑛 as avg𝑜∈𝑂 |𝑜 |.

E QUERIES USED IN EXPERIMENTS

1 -- Query name: V-shape (v_shape)
2 -- Schema: [tstamp: int, ticker: string, price: float]
3 PARTITION BY ticker
4 ORDER BY tstamp
5 PATTERN (((DN & W) (UP & W)) & WINDOW)
6 DEFINE
7 SEGMENT W AS window(15, null), -- window at least 15 points.
8 SEGMENT DN AS
9 linear_reg_r2_signed(DN.tstamp, DN.temp) <= down_r2_max,
10 SEGMENT UP AS linear_reg_r2_signed(UP.tstamp, UP.temp) >= up_r2_min,
11 SEGMENT WINDOW AS window(1, total_window_size)
12 -- Parameters:
13 -- down_r2_max = [-0.7]
14 -- up_r2_min = [0.7, 0.9, 1.0]
15 -- total_window_size = [30, 60, 90]

1 -- Query name: Header and Shoulder (head_shldr)
2 -- Schema: [tstamp: int, ticker: string, price: float]
3 PARTITION BY ticker
4 ORDER BY tstamp
5 PATTERN (((UP1 & W)
6 ((DN1 & W) (UP2 & W & NECK_TO_HEAD)) & SHLDER_TO_HEAD
7 ((DN2 & W & HEAD_TO_NECK) (UP3 & W)) & HEAD_TO_SHLDER
8 (DN3 & W)) & WINDOW)
9 DEFINE
10 SEGMENT W AS window(3, 10),
11 SEGMENT DN1 AS linear_reg_r2_signed(DN1.tstamp, DN1.temp) <= -t,
12 SEGMENT DN2 AS linear_reg_r2_signed(DN2.tstamp, DN2.temp) <= -t,
13 SEGMENT DN3 AS linear_reg_r2_signed(DN3.tstamp, DN3.temp) <= -t,
14 SEGMENT UP1 AS linear_reg_r2_signed(UP1.tstamp, UP1.temp) >= t,
15 SEGMENT UP2 AS linear_reg_r2_signed(UP2.tstamp, UP2.temp) >= t,
16 SEGMENT UP3 AS linear_reg_r2_signed(UP3.tstamp, UP3.temp) >= t,
17 SEGMENT NECK_TO_HEAD AS
18 last(NECK_TO_HEAD.price) / first(NECK_TO_HEAD.price) > r1,
19 SEGMENT HEAD_TO_NECK AS
20 first(HEAD_TO_NECK.price) / last(HEAD_TO_NECK.price) > r1,
21 SEGMENT SHLDER_TO_HEAD AS
22 last(SHLDER_TO_HEAD.price) / first(SHLDER_TO_HEAD.price) > r2,
23 SEGMENT HEAD_TO_SHLDER AS
24 first(HEAD_TO_SHLDER.price) / last(HEAD_TO_SHLDER.price) > r2,
25 SEGMENT WINDOW AS window(1, total_window_size)
26 -- Parameters:
27 -- t = [0.7]
28 -- total_window_size = [40, 60, 80]
29 -- r1 (head_to_neck_ratio) = [1.1, 1.15]
30 -- r2 (head_to_shoulder_ratio) = [1.0, 1.05, 1.11]

1 -- Query name: Outlier (outlier)
2 -- Schema: [tstamp: int, ticker: string, price: float]
3 PARTITION BY ticker
4 ORDER BY tstamp
5 PATTERN ((UP1 OUTLIER UP2) & WINDOW)
6 DEFINE
7 OUTLIER AS ZScoreOutlier(outlier_context_size) > z_score_min,

21

8 SEGMENT UP1 AS
9 linear_reg_r2_signed(UP1.tstamp, UP1.temp) >= up_r2_min,
10 SEGMENT UP2 AS
11 linear_reg_r2_signed(UP2.tstamp, UP2.temp) >= up_r2_min,
12 SEGMENT WINDOW AS window(1, total_window_size)
13 -- Parameters:
14 -- up_r2_min = [0.7]
15 -- total_window_size = [30]
16 -- outlier_context_size = [15, 20, 25]
17 -- z_score_min = [2.61, 2.63, 2.65]

1 -- Query name: Rebound (rebound)
2 -- Schema [tstamp: int, county: string, confirmed: int]
3 PARTITION BY county
4 ORDER BY tstamp
5 PATTERN (UP1 ((DOWN & FALL) UP2) & RISE) & WINDOW)
6 DEFINE
7 SEGMENT FALL AS
8 last(FALL.confirmed) / first(FALL.confirmed) < fall_ratio,
9 SEGMENT RISE AS
10 last(RISE.confirmed) / first(RISE.confirmed) > rise_ratio,
11 SEGMENT UP1 AS linear_reg_r2_signed(UP1.tstamp, UP1.confirmed) >= t,
12 SEGMENT UP2 AS linear_reg_r2_signed(UP2.tstamp, UP2.confirmed) >= t,
13 SEGMENT DOWN AS
14 linear_reg_r2_signed(DOWN.tstamp, DOWN.confirmed) <= -t,
15 SEGMENT WINDOW AS window(0, 60)
16 -- Parameters:
17 -- t = [0.7]
18 -- fall_ratio = [0.4, 0.6, 0.8]
19 -- rise_ratio = [3, 4, 5]

1 -- Query name: Cold Wave (cld_wave)
2 -- Schema [tstamp: int, city: string, temp: float]
3 PARTITION BY city
4 ORDER BY tstamp
5 PATTERN ((W1 (DOWN & FALL & W2) W1) & UP_MK & WINDOW)
6 DEFINE SEGMENT W1 AS true,
7 SEGMENT W2 AS window(1, 5),
8 SEGMENT FALL AS last(FALL.temp) - first(FALL.temp) < -fall_diff,
9 SEGMENT DOWN AS
10 linear_reg_r2_signed(DOWN.tstamp, DOWN.temp) <= -down_r2_min,
11 SEGMENT WINDOW AS window(25, 30),
12 SEGMENT UP_MK as mann_kendall_test(temp) >= 3.0
13 -- Parameters:
14 -- fall_diff = [16, 18, 20]
15 -- down_r2_min = [0.85, 0.9, 0.95]

1 -- Query name: Repeated Pattern (rptd_pttrn)
2 -- Schema [tstamp: int, rides: int]
3 ORDER BY tstamp
4 PATTERN (((W1 (UP & RISE & W2) W3 (DOWN & FALL & W2) W1)
5 & WINDOW){k})
6 DEFINE SEGMENT W1 AS true,
7 SEGMENT W2 AS window(20),
8 SEGMENT W3 AS window(4),
9 SEGMENT WINDOW AS window(48),
10 SEGMENT UP AS linear_reg_r2_signed(UP.tstamp, UP.rides) >= t,
11 SEGMENT DOWN AS linear_reg_r2_signed(DOWN.tstamp, DOWN.rides) <= -t,
12 SEGMENT FALL AS
13 last(FALL.confirmed) / first(FALL.confirmed) < 1/rise_ratio,
14 SEGMENT RISE AS
15 last(RISE.confirmed) / first(RISE.confirmed) > rise_ratio
16 -- Parameters:
17 -- t = [0.7]
18 -- rise_ratio = [3, 4, 5]
19 -- k = [1, 2, 3, 4]

1 -- Query name: Limit Sell (limit_sell)
2 -- Schema: [tstamp: int, ticker: string, price: float]
3 PARTITION BY ticker
4 ORDER BY tstamp
5 PATTERN (RISE & WINDOW & ~(FALL W))

6 DEFINE SEGMENT W AS true,
7 SEGMENT RISE AS last(RISE.price) / first(RISE.price) > rise_ratio,
8 SEGMENT WINDOW AS window(1, total_window_size),
9 SEGMENT FALL AS last(FALL.price) / first(FALL.price) < fall_ratio
10 -- Parameters:
11 -- rise_ratio = [2.0]
12 -- fall_ratio = [0.7, 0.8, 0.9]
13 -- total_window_size = [15, 30, 60]

1 -- Query name: OpenCEP Q1 (OpenCEP_Q1)
2 -- Schema [tstamp: int, ticker: string, open: float,
3 -- peak: float, close: float]
4 ORDER BY tstamp
5 PATTERN ((A1 W (A2 & INC1) W (A3 & INC2)) & WINDOW)
6 DEFINE SEGMENT W AS true,
7 A1 AS A1.ticker = a,
8 A2 AS A2.ticker = a,
9 A3 AS A3.ticker = a,
10 INC1 AS INC1.peak > A1.peak,
11 INC2 AS INC2.peak > A2,peak,
12 SEGMENT WINDOW AS window(0, total_window_size, MINUTE)
13 -- Parameters:
14 -- a = ["GOOG"]
15 -- total_window_size = [5, 20, 40, 60, 80, 100, 120]

1 -- Query name: OpenCEP Q2 (OpenCEP_Q2)
2 -- Schema [tstamp: int, ticker: string, open: float, peak: float]
3 ORDER BY tstamp
4 PATTERN ((((A1 W A2) & FALL)+) & WINDOW)
5 DEFINE SEGMENT W AS true,
6 A1 AS A1.ticker = a,
7 A2 AS A2.ticker = a,
8 SEGMENT FALL AS last(FALL.peak) < first(FALL.peak),
9 SEGMENT WINDOW AS window(0, total_window_size, MINUTE),
10 -- Parameters:
11 -- a = ["GOOG"]
12 -- total_window_size = [5, 20, 40, 60, 80, 100, 120]

1 -- Query name: AFA Q1 (AFA_Q1)
2 -- Schema: [tstamp: int, ticker: string, price: float]
3 ORDER BY tstamp
4 PATTERN (((LARGE_FALL & W) (((FALL & W)+ (RISE & W)+){K})
5 & EQ_FALL_AND_RISE) & WINDOW)
6 DEFINE
7 SEGMENT W AS window(2),
8 SEGMENT LARGE_FALL AS
9 last(LARGE_FALL.price) / first(LARGE_FALL.price)
10 < large_fall_ratio,
11 SEGMENT FALL AS last(FALL.price) < first(FALL.price),
12 SEGMENT RISE AS last(RISE.price) > first(RISE.price),
13 SEGMENT EQ_FALL_AND_RISE AS EqualUpDownTicks(EQ.price),
14 SEGMENT WINDOW AS window(0, 30)
15 -- Parameters:
16 -- K = [5]
17 -- large_fall_ratio = [0.925, 0.9, 0.875, 0.85, 0.825,
18 -- 0.8, 0.775, 0.75, 0.725]

1 -- Query name: AFA Q2 (AFA_Q2)
2 -- Schema: [tstamp: int, ticker: string, price: float]
3 ORDER BY tstamp
4 PATTERN (((LARGE_FALL & W) ((FALL & W)+ (RISE & W)+)+)
5 & RECOVER & WINDOW)
6 DEFINE
7 SEGMENT W AS window(2),
8 SEGMENT LARGE_FALL AS
9 last(LARGE_FALL.price) / first(LARGE_FALL.price)
10 < large_fall_ratio,
11 SEGMENT FALL AS last(FALL.price) < first(FALL.price),
12 SEGMENT RISE AS last(FALL.price) > first(FALL.price),
13 SEGMENT RECOVER AS last(FALL.price) >= first(FALL.price),
14 SEGMENT WINDOW AS window(0, 30)
15 -- Parameters:

22

NDCG Score Median Stats Collection (ms)
Queries 5 50 500 5 50 500

v_shape 0.92 0.92 0.93 0.07 0.55 4.96
head_shldr 1.00 0.99 0.99 0.16 1.56 13.46
outlier 0.95 0.95 0.95 0.08 0.67 6.20
limit_sell 0.95 0.95 0.94 0.01 0.08 0.68
rebound 1.00 1.00 1.00 0.07 0.73 6.76
cld_wave 0.96 0.93 0.93 1.02 7.20 6.98
rptd_pttrn 0.97 0.97 0.97 0.01 0.01 0.01
OpenCEP_Q1 0.74 0.74 0.74 0.00 0.00 0.00
OpenCEP_Q2 0.99 0.99 0.99 0.02 0.02 0.02
AFA_Q1 0.84 0.97 0.98 0.01 0.13 1.09
AFA_Q2 0.84 0.97 0.98 0.01 0.06 0.57

Table 7: NDCG scores and median statistics collection times
grouped by series sampled (5, 50, and 500). For datasets with
less than 500 series, the sample size “tops-out” at the number
of available series.

16 -- large_fall_ratio = [0.925, 0.9, 0.875, 0.85, 0.825,
17 -- 0.8, 0.775, 0.75, 0.725]

F DETAILED EXPERIMENTAL RESULTS
Figure 21 depicts the detailed comparison between T-ReX optimizer
and some baselines using rules. It is easy to see T-ReX optimizer
returns consistently better plan than rule-based baselines across
different pattern templates and query instances. No single baseline
performs well across all queries, e.g., pr_left has low latency
in OpenCEP_Q2, limit_sell, and v_shape, but not in outlier,
rebound, and cld_wave.

Figure 22a presents a summarized view of Figure 12 for each pat-
tern template, showing themedian speedup of T-ReX over each base-
line with pre-computation enabled for aggregate functions. In sum-
mary, T-ReX achieves a median speedup of 3.9×, 4×, and 147× over
T-ReX Batch, which approximates the behavior of ZStream [41],
AFA [28], and OpenCEP [20].

Figure 22b depicts themedian speedups of enabling pre-computation
over disabling pre-computation for aggregate functions. In general,
enabling pre-computation is beneficial for most queries. Two ex-
ceptions occur for cld_wave and AFA_Q1, AFA performs worse
when using aggregate function pre-computation. This is because
pre-computating Mann-Kendall test on the whole series incurs
unnecessary computation, compared to independent computation
on necessary segments. We note that T-ReX optimizer success-
fully chooses to not use pre-computation for these two queries, i.e.,
cld_wave and AFA_Q1, even when allowing pre-computation. This
showcases the effectiveness of T-ReX optimizer and the need for
such an optimizer to determine whether aggregate pre-computation
shall be used or not.

23

pr left
pr right

sm
left

sm
right

optimizer
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.1

1.0
1.0

1.1

1.0

1.3

1.0
1.0

1.2

1.0

1.7

1.5

1.1

1.7

1.1

1.7

1.5

1.1

1.7

1.1

1.0

(a) v_shape

pr left
pr right

sm
left

sm
right

optimizer

2

4

6

8

10

2.5

2.0
1.8

2.4

1.5

10

4.4

3.2

6.3

1.9

6.0

5.0

4.5

5.5

3.6

4.8

3.8
3.5

4.3

2.9
1.0

(b) head_shldr

pr left
pr right

sm
left

sm
right

optimizer
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

4.5

4.4
4.3

4.4

4.3

4.6

4.5
4.5

4.6

4.4

2.1

1.8

1.5

2.0

1.4

1.8

1.7
1.5

1.7

1.4

1.0

(c) outlier

pr left
pr right

sm
left

sm
right

optimizer
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.2

3.6
3.5

3.9

3.2

1.5

1.5
1.4

1.5

1.4

1.9

1.7
1.6

1.8

1.6

1.9

1.7
1.7

1.8

1.6
1.0

(d) rebound

pr left
pr right

sm
left

sm
right

optimizer
0

10

20

30

40

24

13

10

23

4.8

1.5

1.3
1.2

1.5

1.1

22

12

9.6

21

4.6

38

12

9.5

21

4.5

1.0

(e) cld_wave

pr left
pr right

sm
left

sm
right

optimizer

2

4

6

8

10

12

4.1

3.4
2.9

3.7

2.3

5.1

4.4
3.8

4.7

3.1

10

8.3

7.2

9.0

6.0

12

9.1

7.3

9.6

6.4

1.0

(f) rptd_pttrn

pr left
pr right

sm
left

sm
right

optimizer
0

2000

4000

6000

8000

4.9

4.0
3.7

4.4

3.3

3897

1333
890

2981

583

3.0

1.6
1.4

2.5

1.2

2.9

1.5
1.4

2.4

1.3

1.0

(g) OpenCEP_Q1

pr left
pr right

sm
left

sm
right

optimizer
0

2500

5000

7500

10000

12500

15000

17500

1.2

1.1
1.0

1.1

1.0

16668

15172

12599

15818

9175

6914

6104

4626

6338

2937

6836

6059

4571

6306

2893
1.0

(h) OpenCEP_Q2

pr left
pr right

sm
left

sm
right

optimizer
0

100

200

300

400

500

600

9.2

7.0
4.8

8.5

4.1

602

211

69

408

34

17

6.1
2.1

12

1.2

17

6.2
2.1

12

1.2

1.0

(i) AFA_Q1

pr left
pr right

sm
left

sm
right

optimizer
0

1000

2000

3000

4000

14

7.9
5.1

9.4

3.9

4528

1842

587

3121

200

23

9.6
3.1

18

1.3

23

9.6
3.2

17

1.3

1.0

(j) AFA_Q2

pr left

pr left pnot
pr right

pr right pnot
sm

left

sm
left pnot

sm
right

sm
right pnot

optimizer
0

20

40

60

80

100

120

1.2

1.1
1.1

1.1

1.1

1.2

1.1
1.1

1.2

1.1

6.3

6.0
5.7

6.1

5.6

119

66

39

102

37
3.8

2.4
2.1

3.2

1.9

2.2

1.3
1.2

2.0

1.1

3.9

2.4
2.1

3.2

1.9

2.2

1.3
1.2

2.0

1.1

1.0

(k) limit_sell
Figure 21: Slow-Down Ratios Over the Fastest Method.

24

100 101 102 103

Median Speedup

v_
sh
ap
e

he
ad
_s
hl
dr

ou
tl
ie
r

li
mi
t_
se
ll

re
bo
un
d

cl
d_
wa
ve

rp
td
_p
tt
rn

Op
en
CE
P_
Q1

Op
en
CE
P_
Q2

AF
A_
Q1

AF
A_
Q2

T-Rex Batch: 1.4

T-Rex Batch: 3.9

T-Rex Batch: 1.7

T-Rex Batch: 2.4

T-Rex Batch: 1.8

T-Rex Batch: 6.5

T-Rex Batch: 5.9

T-Rex Batch: 1.7

T-Rex Batch: 6269.1

T-Rex Batch: 7.3

T-Rex Batch: 9.5

AFA: 1.5

AFA: 6.0

AFA: 9.7

AFA: 2.6

AFA: 4.5

AFA: 10.7

AFA: 25.9

AFA: 147.1

AFA: 61.3

AFA: 1.4

AFA: 0.8

NestedAFA: 1.5

NestedAFA: 30.0

NestedAFA: 9.7

NestedAFA: 4.1

NestedAFA: 3.8

NestedAFA: 7.4

NestedAFA: 25.9

NestedAFA: 147.1

NestedAFA: 61.3

NestedAFA: 1.0

NestedAFA: 0.7

OpenCEP: 18.2

OpenCEP: 148.3

OpenCEP: 3.7

OpenCEP: 44.7

OpenCEP: 23.2

OpenCEP: 93.1

OpenCEP: 4177.4

OpenCEP: 4.6

OpenCEP: 42.3

ZStream: 8.1

ZStream: 57.7

ZStream: 2.1

ZStream: 19.6

ZStream: 17.6

ZStream: 73.2

ZStream: 4104.4

ZStream: 3.6

ZStream: 32.6

(a) Median speedups of T-ReX over baselines with aggregate function
pre-computation. OpenCEP and ZStream do not support nested Kleene
Closure in AFA_Q1 and AFA_Q2.

100 101

Median Speedup

v_
sh
ap
e

he
ad
_s
hl
dr

ou
tl
ie
r

li
mi
t_
se
ll

re
bo
un
d

cl
d_
wa
ve

rp
td
_p
tt
rn

Op
en
CE
P_
Q1

Op
en
CE
P_
Q2

AF
A_
Q1

AF
A_
Q2

T-Rex: 10.9

T-Rex: 1.6

T-Rex: 1.0

T-Rex: 1.1

T-Rex: 3.1

T-Rex: 1.1

T-Rex: 0.9

T-Rex: 1.2

T-Rex: 1.1

T-Rex: 1.1

T-Rex: 1.2

T-Rex Batch: 11.6

T-Rex Batch: 5.9

T-Rex Batch: 4.7

T-Rex Batch: 1.0

T-Rex Batch: 7.6

T-Rex Batch: 1.0

T-Rex Batch: 1.5

T-Rex Batch: 1.1

T-Rex Batch: 1.0

T-Rex Batch: 1.0

T-Rex Batch: 1.0

AFA: 9.6

AFA: 4.3

AFA: 3.9

AFA: 1.0

AFA: 8.1

AFA: 0.2

AFA: 1.3

AFA: 1.0

AFA: 1.0

AFA: 0.5

AFA: 1.0

NestedAFA: 9.6

NestedAFA: 3.8

NestedAFA: 3.9

NestedAFA: 1.0

NestedAFA: 2.6

NestedAFA: 1.4

NestedAFA: 1.3

NestedAFA: 1.0

NestedAFA: 1.0

NestedAFA: 0.7

NestedAFA: 1.1

OpenCEP: 1.3

OpenCEP: 1.2

OpenCEP: 1.1

OpenCEP: 1.0

OpenCEP: 2.4

OpenCEP: 0.9

OpenCEP: 1.0

OpenCEP: 1.1

OpenCEP: 1.1

ZStream: 2.4

ZStream: 1.4

ZStream: 1.0

ZStream: 1.0

ZStream: 2.2

ZStream: 0.9

ZStream: 1.0

ZStream: 1.0

ZStream: 1.1

(b) Median speedups of T-ReX and baselines over each of themselves
resulted from using pre-computation for aggregate functions.

Figure 22: Median Speedups

25

0 20 40
Plan

104

105

106

107

E
st

im
at

ed
C

os
t

101

2× 101

3× 101

4× 101

6× 101

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(a) v_shape

0 25 50 75
Plan

106

107

E
st

im
at

ed
C

os
t

101

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(b) head_shldr

0 20 40
Plan

105

106

E
st

im
at

ed
C

os
t

101

2× 101

3× 101

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(c) outlier

0 20 40
Plan

107

4× 106

6× 106

2× 107

E
st

im
at

ed
C

os
t

102

6× 101

2× 102

3× 102

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(d) rebound

0 20 40
Plan

107

108

109

1010

E
st

im
at

ed
C

os
t

101

102

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(e) cld_wave

0 20 40 60
Plan

108

109

E
st

im
at

ed
C

os
t

100

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(f) rptd_pttrn

0 25 50 75
Plan

105

107

109

E
st

im
at

ed
C

os
t

101

102

103

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(g) limit_sell

0 10 20 30
Plan

109

1011

1013

1015

1017

E
st

im
at

ed
C

os
t

100

101

102

103

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(h) OpenCEP_Q1

0 10
Plan

108

1010

1012

E
st

im
at

ed
C

os
t

100

101

102

103

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(i) OpenCEP_Q2

0 20 40
Plan

107

108

109

E
st

im
at

ed
C

os
t

100

101

102

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(j) AFA_Q1

0 20 40
Plan

107

108

109

1010

E
st

im
at

ed
C

os
t

100

101

102

103

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Estimated Cost

Execution Time

(k) AFA_Q2

Figure 23: T-ReX Estimated Cost Versus Actual Execution Time (Series Sampled for Estimation: 5).

26

	Abstract
	1 Introduction
	2 Language Extension
	2.1 Point and Segment Variables
	2.2 Operators
	2.3 Comparison with MATCH_RECOGNIZE

	3 Query Processing Overview
	4 Physical Operators
	4.1 Physical Operator Interface
	4.2 Segment Generators
	4.3 Binary Operators
	4.4 Unary Operators
	4.5 Special Operators

	5 Optimization
	5.1 Cost Model
	5.2 Cardinality Estimation

	6 Experiments
	6.1 Benefits of Multiple Physical Operators
	6.2 Optimizer Evaluation
	6.3 Comparing with Other Executors

	7 Related Work
	8 Conclusion
	References
	A Proof on Language Expressiveness
	A.1 Proof of Proposition 2.1
	A.2 Proof of Proposition 2.2

	B Translating MATCH_RECOGNIZE query to T-ReX query
	C Reasoning of Cost Model
	C.1 Estimating se in RightProbeConcat
	C.2 Cardinality Estimator for Not Operator

	D Statistics Collection
	D.1 Offline Profiling for the Cost of Operator
	D.2 Offline Profiling for the Cost of Evaluating Aggregates
	D.3 Online Profiling for Estimating SelP|w

	E Queries used in Experiments
	F Detailed Experimental Results

