
Empowering Azure Storage with RDMA

Microsoft

MSR-TR-2023-13

Abstract
Given the wide adoption of disaggregated storage in public
clouds, networking is the key to enabling high performance
and high reliability in a cloud storage service. In Azure, we
choose Remote Direct Memory Access (RDMA) as our trans-
port and aim to enable it for both storage frontend traffic
(between compute virtual machines and storage clusters) and
backend traffic (within a storage cluster) to fully realize its
benefits. As compute and storage clusters may be located
in different datacenters within an Azure region, we need to
support RDMA at regional scale.

This work presents our experience in deploying intra-region
RDMA to support storage workloads in Azure. The high com-
plexity and heterogeneity of our infrastructure bring a series
of new challenges, such as the problem of interoperability
between different types of RDMA network interface cards.
We have made several changes to our network infrastructure
to address these challenges. Today, around 70% of traffic in
Azure is RDMA and intra-region RDMA is supported in all
Azure public regions. RDMA helps us achieve significant
disk I/O performance improvements and CPU core savings.

1 Introduction

High performance and highly reliable storage is one of the
most fundamental services in public clouds. In recent years,
we have witnessed significant improvements in storage media
and technologies [73] and customers also desire similar perfor-
mance in the cloud. Given the wide adoption of disaggregated
storage in the cloud [35, 46], the network interconnecting
compute and storage clusters becomes a key performance
bottleneck for cloud storage. Despite the sufficient bandwidth
capacity provided by Clos-based network fabrics [25, 48],
the legacy TCP/IP stack suffers from high processing delay,
low single-core throughput, and high CPU consumption, thus
making it ill-suited for this scenario.

Given these limitations, Remote Direct Memory Access
(RDMA) offers a promising solution. By offloading the

Figure 1: Traffic statistics of all Azure public regions between
January 18 and February 16, 2023. Traffic was measured by
collecting switch counters of server-facing ports on all Top of
Rack (ToR) switches. Around 70% of traffic was RDMA.

network stack to the network interface card (NIC) hard-
ware, RDMA achieves ultra-low processing latency and high
throughput with near zero CPU overhead. In addition to per-
formance improvements, RDMA also reduces the number of
CPU cores reserved on each server for network stack process-
ing. These saved CPU cores can then be sold as customer
virtual machines (VMs) or used for application processing.

To fully utilize the benefits of RDMA, we aim to enable
it for both storage frontend traffic (between compute VMs
and storage clusters) and backend traffic (within a storage
cluster). This is different from previous work [46] that targets
RDMA only for the storage backend. In Azure, due to capacity
issues, corresponding compute and storage clusters may be
located in different datacenters within a region. This imposes
a requirement that our storage workloads rely on support for
RDMA at regional scale.

In this paper, we summarize our experience in deploy-
ing intra-region RDMA to support Azure storage workloads.
Compared to previous RDMA deployments [46, 50], intra-
region RDMA deployment introduces many new challenges
due to high complexity and heterogeneity within Azure re-

1

Figure 2: The network architecture of an Azure region.

gions. As Azure infrastructure keeps evolving incrementally,
different clusters may be deployed with different RDMA
NICs. While all the NICs support DCQCN [112], their imple-
mentations are very different. This results in many undesir-
able behaviors when different NICs communicate with each
other. Similarly, heterogeneous switch software and hardware
from multiple vendors significantly increase our operational
effort. In addition, long-haul cables interconnecting datacen-
ters cause large propagation delays and large round-trip time
(RTT) variations within a region. This brings new challenges
to congestion control.

We have made several changes to our network infrastruc-
ture, from application layer protocols to link layer flow con-
trol, to safely enable intra-region RDMA for Azure storage
traffic. We developed new RDMA-based storage protocols
with many optimizations and failover support, and seamlessly
integrated them into the legacy storage stack (§4). We built
RDMA Estats to monitor the status of the host network stack
(§5). We leveraged SONiC to enforce a unified software stack
across different switch platforms (§6). We updated firmware
of NICs to unify their DCQCN behaviors and used the com-
bination of Priority-based Flow Control (PFC) and DCQCN
to achieve high throughput, low latency and near zero packet
losses (§7).

In 2018, we started to enable RDMA for storage backend
traffic. In 2019, we started to enable RDMA to serve customer
frontend traffic. Figure 1 gives traffic statistics of all Azure
public regions between January 18 and February 16, 2023.
As of February 2023, around 70% of traffic in Azure was
RDMA and intra-region RDMA was supported in all Azure
public regions. RDMA helps us achieve significant disk I/O
performance improvements and CPU core savings.

2 Background

In this section, we first present background on Azure’s net-
work and storage architecture. Then, we introduce the moti-
vation for and challenges to enabling intra-region RDMA.

Figure 3: High-level architecture of Azure storage.

2.1 Network Architecture of an Azure Region
In cloud computing, a region [2,5,8] is a group of datacenters
deployed within a latency-defined perimeter. Figure 2 shows
the simplified topology of an Azure region. The servers within
a region are connected through an Ethernet-based Clos net-
work with four tiers of switches1: tier 0 (T0), tier 1 (T1), tier 2
(T2) and regional hub (RH). We use external BGP (eBGP) for
routing and equal-cost multi-path (ECMP) for load balancing.
We deploy the following four types of units.
• Rack: a T0 switch and the servers connected to it.
• Cluster: a set of racks connected to the same set of T1

switches.
• Datacenter: a set of clusters connected to the same set of

T2 switches.
• Region: datacenters connected to the same set of RH

switches. In contrast with short links (several to hundreds
of meters) in datacenters [50], T2 and RH switches are
connected by long-haul links whose lengths can be as long
as tens of kilometers.
There are two thing to notice about this architecture. First,

due to long-haul links between T2 and RH, the base round-
trip time (RTT) varies from a few microseconds within a
datacenter to as large as 2 milliseconds within a region. Sec-
ond, we use two types of switches: pizza box switches for
T0 and T1, and chassis switches for T2 and RH. The pizza
box switch, which has been widely studied in the research
community, typically has a single switch ASIC with shallow
packet buffers [31]. In contrast, chassis switches are built
using multiple switch ASICs with deep packet buffers based
on the Virtual Output Queue (VoQ) architecture [3, 6].

2.2 High Level Architecture of Azure Storage
In Azure, we disaggregate compute and storage resources for
cost savings and auto-scaling. There are two main types of

1In this paper, we use switch to denote the layer 3 switch which can
perform IP routing. We use the terms switch and router interchangeably.

2

clusters in Azure: compute and storage. VMs are created in
compute clusters but the actual storage of Virtual Hard Disks
(VHDs) resides in storage clusters.

Figure 3 shows the high-level architecture of Azure stor-
age [35]. Azure storage has three layers: the frontend layer,
the partition layer, and the stream layer. The stream layer is
an append-only distributed file system. It stores bits on the
disk and replicates them for durability, but it does not un-
derstand higher level storage abstractions, e.g., Blobs, Tables
and VHDs. The partition layer understands different storage
abstractions, manages partitions of all the data objects in a
storage cluster, and stores object data on top of the stream
layer. The daemon processes of the partition layer and the
stream layer are called the Partition Server (PS) and the Ex-
tent Node (EN), respectively. PS and EN are co-located on
each storage server. The frontend (FE) layer consists of a set
of servers that authenticate and forward incoming requests
to corresponding PSs. In some cases, FE servers can also
directly access the stream layer for efficiency.

When a VM wants to write to its disks, the disk driver
running in the host domain of the compute server issues I/O
requests to the corresponding storage cluster. The FE or PS
parses and validates the request, and generates requests to
corresponding ENs in the stream layer to write the data. At the
stream layer, a file is essentially an ordered list of large storage
chunks called "extents". To write a file, data is appended to the
end of an active extent, which is replicated three times in the
storage cluster for durability. Only after receiving successful
responses from all the ENs, the FE or PS sends the final
response back to the disk driver. In contrast, disk reads are
different. The FE or PS reads data from any EN replica and
sends the response back to the disk driver.

In addition to user-facing workloads, there are also many
background workloads in the storage clusters, e.g., garbage
collection and erasure coding [57]. We classify our storage
traffic into two categories: frontend (between compute and
storage servers, e.g., VHD write and read requests) and back-
end (between storage servers, e.g., replication and disk recon-
struction). Our storage traffic has incast-like characteristics.
The most typical example is data reconstruction, which is im-
plemented in the stream layer [57]. The stream layer erasure
codes a sealed extent to several fragments, and then sends
encoded fragments to different servers to store. When the user
wants to read a fragment which is unavailable due to a failure,
the stream layer will read the other fragments from multiple
storage servers to reconstruct the target fragment.

2.3 Motivation for Intra-Region RDMA

Storage technology has improved significantly in recent years.
For example, Non-Volatile Memory Express (NVMe) Solid-
State Drives (SSDs) can provide tens of Gbps of throughput
with request latencies in the hundreds of microseconds [105].
Many customers demand similar performance in the cloud.

High performance cloud storage solutions [1, 4] impose strin-
gent performance requirements to the underlying network
due to the disaggregated and distributed storage architecture
(§2.2). While datacenter networks generally provide sufficient
bandwidth capacity, the legacy TCP/IP stack in the OS kernel
becomes a performance bottleneck due to its high processing
latency and low single-core throughput. What is worse, the
performance of the legacy TCP/IP stack also depends on OS
scheduling. To provide predictable storage performance, we
must reserve enough CPU cores on both compute and storage
nodes for the TCP/IP stack to process peak storage workloads.
Burning CPU cores takes away the processing power that
could otherwise be sold as customer VMs, thus increasing the
overall cost of providing cloud services.

Given these limitations, RDMA offers a promising solu-
tion. By offloading the network stack to the NIC hardware,
RDMA achieves predictable low processing latency (a few
microseconds) and high throughput (line rate for a single flow)
with near zero CPU overhead. In addition to its performance
benefits, RDMA also reduces the number of CPU cores re-
served on each server for network stack processing. These
saved CPU cores can then be sold as customer VMs or used
for storage request processing.

To fully achieve the benefits of RDMA, we must enable
RDMA for both storage frontend traffic and backend traffic.
Enabling RDMA for backend traffic is relatively easy because
almost all the backend traffic stays within a storage cluster.
In contrast, frontend traffic crosses different clusters within
a region. Even though we try to co-locate corresponding
compute and storage clusters to minimize latency, sometimes
they may still end up located in different datacenters within a
region due to capacity issues. This imposes the requirement
that our storage workloads rely on support for RDMA at
regional scale.

2.4 Challenges
We faced many challenges when enabling intra-region RDMA
because our design was limited by many practical constraints.
Practical considerations: We aimed to enable intra-region
RDMA over the legacy infrastructure. While we had some
flexibility to reconfigure and upgrade software stacks, e.g.,
the NIC driver, the switch OS, and the storage stack, it was op-
erationally infeasible to replace the underlying hardware, e.g.,
the NICs and switches. Hence, we adopted RDMA over com-
modity Ethernet v2 (RoCEv2) [29] to keep compatibility with
our IP-routed networks (§2.1). Before starting this project,
we had deployed a significant number of our first generation
RDMA NICs, which implement go-back-N retransmission in
the NIC firmware with limited processing capacity. Our mea-
surements showed that it took hundreds of microseconds to
recover a lost packet, which was even worse than the TCP/IP
software stack. Given such a large performance degradation,
we made the decision to adopt Priority-based Flow Control

3

(PFC) [60] to eliminate packet losses due to congestion.
Challenges: Before this project, we had deployed RDMA in
some clusters to support Bing services [50], and we learnt
several lessons from this deployment. Compared to intra-
cluster RDMA deployments [46, 50], intra-region RDMA
deployments introduce many new challenges due to the high
complexity and heterogeneity of the infrastructure.
• Heterogeneous NICs: Cloud infrastructure keeps evolving

incrementally, often one cluster or one rack at a time with
the latest generation of server hardware [91]. Different
clusters within a region may have different NICs. We have
deployed three generations of commodity RDMA NICs
from a popular NIC vendor: Gen1, Gen2 and Gen3. Each
NIC generation has a different implementation of DCQCN.
This results in many undesired interactions when different
NIC generations communicate with each other.

• Heterogeneous switches: Similar to server infrastructure,
we keep deploying new switches to reduce costs and in-
crease the bandwidth capacity. We have deployed many
switch ASICs and multiple switch OSes from different ven-
dors. However, this has increased our operational effort
significantly because many aspects are vendor specific, for
example, buffer architectures, sizes, allocation mechanisms,
monitoring and configuration, etc.

• Heterogeneous latency: As shown in §2.1, there are large
RTT variations from several microseconds to 2 millisec-
onds within a region, due to long-haul links between T2
and RH. Hence, RTT fairness re-emerges as a key chal-
lenge. In addition, the large propagation delay of long-haul
links also imposes large pressure on PFC headroom [12].
Like other services in public clouds, availability, diagno-

sis, and serviceability are key aspects for our RDMA storage
system. To achieve high availability, we always prepare for
unexpected zero-day problems despite large investments in
testing. Our system must detect performance anomalies and
perform automatic failover if necessary. To understand and
debug faults, we must build fine-grained telemetry systems
to deliver crystal clear visibility into every component in the
end-to-end path. Our system also must be serviceable: stor-
age workloads should survive NIC driver updates and switch
software updates.

3 Overview

We have made several changes to our network infrastructure,
from application layer protocols to link layer flow control,
to safely empower Azure storage with RDMA. We devel-
oped two RDMA-based protocols: sU-RDMA (§4.1) and
sK-RDMA (§4.2), which we have seamlessly integrated into
our legacy storage stack to support backend communication
and frontend communication, respectively. Between the stor-
age protocols and the NIC, we deployed a monitoring system
RDMA Estats (§5), giving us visibility into the host network

stack by providing an accurate breakdown of cost for each
RDMA operation.

In the network, we use the combination of PFC and DC-
QCN [112] to achieve high throughput, low latency, and near
zero losses due to congestion. DCQCN and PFC were the
state-of-the-art commercial solutions when we started the
project. To optimize the customer experience, we use two pri-
orities to isolate storage frontend traffic and backend traffic.
To mitigate the switch heterogeneity problem, we developed
and deployed SONiC [15] to provide a unified software stack
across different switch platforms (§6). To mitigate the in-
teroperability problem of heterogeneous NICs, we updated
the firmware of NICs to unify their DCQCN behaviors (§7).
We carefully tuned DCQCN and switch buffer parameters to
optimize performance across different scenarios.

3.1 PFC Storm Mitigation Using Watchdogs

We use PFC to prevent congestion packet losses. However,
malfunctioning NICs and switches can continually send PFC
pause frames in the absence of congestion [50], thus com-
pletely blocking the peer device for a long time. Moreover,
these endless PFC pause frames can eventually propagate
into the whole network, thus causing collateral damage to
innocent devices. Such endless PFC pause frames are called
a PFC storm. In contrast, normal congestion-triggered PFC
pause frames only slow down the data transmission of the
peer device through intermittent pauses and resumes.

To detect and mitigate PFC storms, we designed and de-
ployed a PFC watchdog [11, 50] on every switch and bump-
in-the-wire FPGA card [42] between T0 switches and servers.
When the PFC watchdog detects that a queue has been in the
paused state for an abnormally long duration, e.g., hundreds
of milliseconds, it disables PFC and drops all the packets on
this queue, thereby preventing PFC storms from propagating
into the whole network.

3.2 Security

We use RDMA to empower first-party storage traffic in a
trusted environment, including storage servers, the host do-
main of compute servers, switches and links. Therefore we
are secure against issues described in [69, 94, 104, 109].

4 Storage Protocols over RDMA

In this section, we introduce two storage protocols built on
top of RDMA Reliable Connections (RC): sU-RDMA and sK-
RDMA. Both protocols aim to optimize performance while
keeping good compatibility with legacy software stacks.

4

Figure 4: Azure storage backend network stack.

4.1 sU-RDMA

sU-RDMA [87] is used for storage backend (storage to stor-
age) communication. Figure 4 shows the architecture of our
storage backend network stack with the sU-RDMA modules
highlighted. The Azure Storage Network Protocol is an RPC
protocol directly used by applications to send request and
response objects. It leverages socket APIs to implement con-
nection management, sending and receiving messages.

To simplify RDMA integration with storage stack, we built
sU-RDMALib, a user space library that exposes socket-like
byte-stream APIs to upper layers. To map socket-like APIs
to RDMA operations, sU-RDMALib needs to handle the fol-
lowing challenges:

• When the RDMA application cannot directly write into
an existing memory regions (MR), it must either register
the application buffer as a new MR or copy its data into
an existing MR. Both options can introduce large latency
penalties and we should minimize these overhead.

• If we use RDMA Send and Receive, the receiver must
pre-post enough Receive requests.

• The RDMA sender and receiver must be in agreement on
the size of data being transferred.

To reduce memory registrations, which are especially ex-
pensive for small messages [44], sU-RDMALib maintains a
common buffer pool of pre-registered memory shared across
multiple connections. sU-RDMALib also provides APIs to
allow applications to request and release registered buffers. To
avoid Memory Translation Table (MTT) cache misses on the
NIC [50], sU-RDMALib allocates large memory slabs from
the kernel and registers memory over these slabs. This buffer
pool can also autoscale based on runtime usage. To avoid over-
whelming the receiver, sU-RDMALib implements a receiver-
driven credit-based flow control where credits represent the re-
sources (e.g., available buffers and posted Receive requests)
allocated by the receiver. The receiver sends credit update mes-
sages back to the sender regularly. When we started design-
ing sU-RDMALib, we did consider using RDMA Send and

Figure 5: sK-RDMA’s data flow. We use blue arrows and
red arrows to represent control messages and data massages,
respectively. Arrow width represents data size.

Receive with a fixed buffer size S for each Send/Receive re-
quest to transfer data. However, this design causes a dilemma.
If we use a large S, we may waste much memory space be-
cause a Send request fully uses the receive buffer of the
Receive request, regardless of its actual message size. In
contrast, a small S causes large data fragmentation overhead.
Hence, sU-RDMALib uses three transfer modes based on the
message size [87].
• Small messages: Data is transferred using RDMA Send

and Receive.
• Medium messages: The sender posts a RDMA Write re-

quest to transfer data, and a Send request with "Write
Done" to notify the receiver.

• Large messages: The sender first posts a RDMA Send
request carrying the description of the local data buffer to
the receiver. Then the receiver posts a Read request to pull
the data. Finally, the receiver posts a Send request with
"Read Done" to notify the sender.
On top of sU-RDMALib, we built modules to enable dy-

namic transitions between TCP and RDMA, which is critical
for failover and recovery. The transition process is gradual.
We periodically close a small portion of all connections and
establish new connections using the desired transport.

Unlike TCP, RDMA uses rate based congestion con-
trol [112] without tracking the number of in-flight packets
(the window size). Hence, RDMA tends to inject excessive
in-flight packets, thus triggering PFC. To mitigate this, we im-
plemented a static flow control mechanism in the Azure Stor-
age Network Protocol by dividing a message into fixed-sized
chunks and only allowing a single in-flight chunk for each
connection. Chunking can significantly improve performance
under high-degree incast with negligible CPU overhead.

4.2 sK-RDMA
sK-RDMA is used for storage frontend (compute to stor-
age) communication. In contrast with sU-RDMA which runs

5

RDMA in user space, sK-RDMA runs RDMA in kernel space.
This enables the disk driver, which runs in kernel space in the
host domain of compute servers, to directly use sK-RDMA to
issue network I/O requests. sK-RDMA leverages and extends
Server Message Block (SMB) Direct [14] which provides
socket-like kernel-mode RDMA interfaces. Similar to sU-
RDMA, sK-RDMA also provides credit-based flow control
and dynamic transition between RDMA and TCP.

Figure 5 shows sK-RDMA’s data flow for reading and
writing disks. The compute server first posts a Fast Memory
Registration (FMR) request to register data buffers. Then it
posts an RDMA Send request to transfer a request message
to the storage server. The request carries a disk I/O com-
mand, and a description of FMR registered buffers available
for RDMA access. According to the InfiniBand (IB) speci-
fication, the NIC should wait for the completion of the FMR
request before processing any subsequently posted requests.
Hence, the request message is actually pushed onto the wire
after the memory registration. The data transfer is initiated
by the storage server using RDMA Read or Write. After the
data transfer, the storage server sends a response message to
the compute server using RDMA Send With Invalidate.

To detect data corruptions, which can happen silently due
to various software and hardware bugs along the path, both
sK-RDMA and sU-RDMA implement a Cyclical Redundancy
Check (CRC) on all application data. In sK-RDMA, the com-
pute server calculates the CRC of the data for disk writes.
These calculated CRCs are included in the request messages,
and used by the storage server to validate the data. For disk
reads, the storage server performs the CRC calculations and
includes them in the response messages, and the compute
server uses them to validate the data.

5 RDMA Estats

To understand and debug faults, we need fine-grained teleme-
try tools to capture behaviors of every component in the end-
to-end path. Despite many existing tools [51, 97, 114] to diag-
nose switch and link faults, none of these tools gives us good
visibility into the RDMA network stack at end hosts.

Inspired by diagnostic tools for TCP [79], we developed
RDMA Extended Statistics (Estats) to diagnose performance
problems in both the network and the host. If an RDMA
application is performing poorly, RDMA Estats enables us
to tell if the bottleneck is in the sender, the receiver, or the
network.

To this end, RDMA Estats provides a fine-grained break-
down of latency for each RDMA operation, in addition to
collecting regular counters such as bytes sent/received and
number of NACKs. The requester NIC records timestamps at
one or more measurement points as the work queue element
(WQE) traverses the transmission pipeline. When a response
(ACK or read response) is received, the NIC records addi-
tional timestamps at measurement points along the receive

Figure 6: RDMA Estats measurement points. There are four
NIC timestamps and two host timestamps. We use blue arrows
and red arrows to represent PCIe transactions and network
transfers, respectively. Arrow width represents data size.

pipeline (Figure 6). The following measurement points are
required in any RDMA Estats implementation in Azure

T1: WQE posting: Host processor timestamp when the WQE
is posted to the submission queue.

T5: CQE generation: NIC timestamp when the completion
queue element (CQE) is generated in the NIC.

T6: CQE polling: Host timestamp when the CQE is polled
by software.

In Azure, the NIC driver reports various latencies derived
from the above timestamps. For example, T6 −T1 is the oper-
ation latency seen by the RDMA consumer, while T5 −T1 is
the latency seen by the NIC. A user-mode agent groups the
latency samples by connection, operation type, and (success/-
failure) status to create latency histograms for each group. By
default, a histogram covers a one-minute interval. Each his-
togram’s quantiles and summary statistics are fed into Azure’s
telemetry pipeline. As our diagnostics evolved, we added to
our user-mode agent the ability to collect and upload NIC
and QP state dumps during high latency events. Finally, we
extended the scope of event-triggered data collection by the
user-mode agent to include NIC statistics and state dumps in
case of events not specific to RDMA (e.g., servicing opera-
tions that impact connectivity).

The collection of latency samples adds overhead to the
WQE posting and completion processing code paths. This
overhead is dominated by keeping the NIC and host time
stamps synchronized. To reduce the overhead, we developed
a clock synchronization procedure that attempts to minimize
the frequency of reading the NIC clock registers, while main-
taining low deviations.

RDMA Estats can significantly reduce the time to debug
and mitigate storage performance incidents by quickly ruling
out (or in) network latency. In §8.3, we share our experience
in diagnosing the FMR hidden fence bug using RDMA Estats.

6

6 Switch Management

6.1 Overcoming Heterogeneity with SONiC

Our RDMA deployment heavily relies on the support of
switches. However, heterogeneous switch ASICs and OSes
from multiple vendors have brought significant challenges
to network management. For example, commercial switch
OSes are designed to satisfy diverse requirements of all the
customers, thus leading to complex software stacks and slow
feature evolution [39]. In addition, different switch ASICs
provide different buffer architectures and mechanisms, thus in-
creasing the effort to qualify and test them for Azure’s RDMA
deployment.

Our solutions to the above challenges were two-fold. On
one hand, we worked closely with our vendors to define con-
crete feature requirements and test plans, and to understand
their low-level implementation details. On the other hand,
in collaboration with many partners, we developed and de-
ployed an in-house cross-platform switch OS called Software
for Open Networking in the Cloud (SONiC) [15]. Based on
a Switch Abstraction Interface (SAI) [20], SONiC manages
heterogeneous switches from multiple vendors with a sim-
plified and unified software stack. It breaks apart monolithic
switch software into multiple containerized components. Con-
tainerization provides clean isolation, improves development
agility, and enables choices on a per-component basis. Net-
work operators can customize SONiC with only the features
they require, thereby creating a "lean stack".

6.2 Buffer Model and Configuration Practices
of SONiC on Pizza Box Switches

SONiC provides all the features required by RDMA deploy-
ments, such as ECN marking, PFC, a PFC watchdog (§3.1)
and a shared buffer model. In the interest of space, we briefly
introduce the buffer model and configuration practices of
SONiC on pizza box switches, which are used at T0 and T1
(§2.1). We provide a buffer configuration example in §A.

We typically allocate three buffer pools on a pizza
box switch: (1) the ingress_pool for ingress admission
control of all packets, (2) the egress_lossy_pool for
egress admission control of lossy packets, and (3) the
egress_lossless_pool for egress admission control of
lossless packets. Note that these buffer pools and queues are
not backed by separate dedicated buffers, but instead are essen-
tially counters applied to a single physical shared buffer and
used for admission control purposes. Each counter is updated
only by the packets mapped to it, and the same packet can be
mapped to multiple queues and pools simultaneously. For ex-
ample, a lossless (lossy) packet of priority p from source port
s to destination port d updates ingress queue (s, p), egress
queue (d, p), ingress_pool and egress_lossless_pool
(egress_lossy_pool). A packet is accepted only if it passes

both ingress and egress admission controls. Counters incre-
ment by the size of the admitted packet, and decrement by
the size of the departing packet. We use both dynamic thresh-
olds [40] and static thresholds to limit the queue lengths.

We apply ingress admission control only to lossless traffic,
and we apply egress admission control only to lossy traffic.
If the switch buffer size is B, then the ingress_pool size
must be smaller than B, reserving enough space for PFC head-
room buffer (§7.1). When an ingress lossless queue hits the
dynamic threshold, the queue enters the “paused” state, and
the switch sends PFC pause frames to the upstream device.
Future arriving packets on this ingress lossless queue use the
PFC headroom buffer rather than ingress_pool. In contrast,
for ingress lossy queues we configure a static threshold which
equals to the switch buffer size B. Since ingress lossy queue
lengths cannot hit the switch buffer size, lossy packets can
bypass ingress admission control.

At egress, lossy and lossless packets are mapped to the
egress_lossy_pool and egress_lossless_pool,
respectively. We configure both the size of the
egress_lossless_pool and the static thresholds for
egress lossless queues to B so that lossless packets bypass
egress admission control. In contrast, the size of the
egress_lossy_pool must be no larger than the size of the
ingress_pool because lossy packets should not use any of
the PFC headroom buffer at ingress. Egress lossy queues are
configured to use dynamic thresholds [40] to drop packets.

6.3 Testing RDMA Features with SONiC
We use nightly tests to track the quality of SONiC switches.
In this section, we briefly introduce our methods for testing
RDMA features with SONiC switches.
Software-based Tests: We leveraged the Packet Testing
Framework (PTF) [10] to develop test cases for SONiC in
general. PTF is mostly used for testing packet forwarding be-
haviors, with which testing RDMA features require additional
effort.

Our testing approach is inspired by breakpoints in software
debugging. To set a “breakpoint” for the switch, we first block
the transmission of a switch port using SAI APIs. We then
generate a series of packets destined for the blocked port and
capture one or several snapshots of the switch states (e.g.,
buffer watermark), analogous to dumping the values of vari-
ables in software debugging. Next, we release the port and
dump the received packets. We determine if the test passes by
analyzing both the captured switch snapshots and the received
packets. We use this approach to test buffer management
mechanisms, buffer related counters, and packet schedulers.
Hardware-based Tests: While the above approach gives us
good visibility into switch states and packet micro-behaviors,
it cannot meet the stringent performance requirements of
some tests. For example, to test PFC watchdog [50], we need
to generate continuous PFC pause frames at high speed and ac-

7

curately control their intervals due to the small pause duration
enforced by each PFC frame.

To conduct such performance-sensitive tests, we need to
control traffic generation at µs or even ns timescales and
have high-resolution measurement of data plane behaviors.
This motivated us to build a hardware-based test system by
leveraging hardware programmable traffic generators [9]. Our
hardware-based system focuses on testing features like PFC,
PFC watchdog, RED/ECN marking.

As of February 2023, we built 32 software test cases and 50
hardware test cases for RDMA features. The documentation
and implementation of our test cases are available at [18].

7 Congestion Control

We use the combination of PFC and DCQCN to mitigate
congestion. In this section, we discuss how we scale both
techniques at regional scale.

7.1 Scaling PFC over Long Links
Once an ingress queue pauses the upstream device, it requires
a dedicated headroom buffer to absorb in-flight packets be-
fore the PFC pause frame takes effect on the upstream de-
vice [50, 112]. The ideal PFC headroom value depends on
many factors, e.g., link capacity and propagation delay [12].
The total demand on the headroom buffer for a switch is also
in proportion to the number of lossless priorities2.

To extend RDMA from cluster scale [46, 50] to regional
scale, we must deal with long links between T2 and RH (tens
of kilometers), and between T1 and T2 (hundreds of meters),
which demand much larger PFC headroom than that of intra-
cluster links. At first glance, it may seem that a T1 switch in
our production environment can reserve half of the total buffer
for PFC headroom and other usages. At T2 and RH, given
the high port density (100s) of chassis switches and long-haul
links, we need to reserve several GB of PFC headroom buffer.

To scale PFC over long links, we leverage the fact that
pathological cases, e.g., all the ports are congested simulta-
neously, and ingress lossless queues of a port pause peers
sequentially, are likely to be rare. Our solution is two-fold.
First, on chassis switches at T2 and RH, we use deep packet
buffers of off-chip DRAM3 to store RDMA packets. Our
analysis shows that our chassis switches in production can
provide abundant DRAM buffers for PFC headroom. Second,
instead of reserving PFC headroom per queue, we allocate a
PFC headroom pool shared by all the ingress lossless queues
on the switch. Each ingress lossless queue has a static thresh-
old to limit its maximum usage in the headroom pool. We

2For an ingress port, the worst case is that its lossless queues sequentially
pause the peer queues, and none of its packets can be drained from the buffer.

3Unlike on-chip SRAM, the bandwidth of off-chip DRAM is slightly
smaller than the forwarding capacity of the switch ASIC. When all the ports
send and receive traffic at line rate, DRAM will suffer from packet drops.

oversubscribe the headroom pool size with a reasonable ratio,
thus leaving more shared buffer space to absorb bursts. Our
production experience shows that the oversubscribed PFC
headroom pool can effectively eliminate congestion losses
and improve burst tolerance.

7.2 DCQCN Interoperability Challenges
We use DCQCN [112] to control the sending rate of each
queue pair (QP). DCQCN consists of three entities: the sender
or reaction point (RP), the switch or congestion point (CP),
and the receiver or notification point (NP). The CP performs
ECN marking at the egress queue based on the RED algo-
rithm [43]. The NP sends Congestion Notification Packets
(CNPs) when it receives ECN-marked packets. The RP re-
duces its sending rate when it receives CNPs. Otherwise, it
leverages a byte counter and a timer to increase the rate.

We deployed three generations of commodity NICs from
a popular NIC vendor: Gen1, Gen2 and Gen3, for different
types of clusters. While all of them support DCQCN, their
implementation details differ significantly. This causes an
interoperability problem when different generations of NICs
communicate with each other.
DCQCN implementation differences: On Gen1, most of the
DCQCN functionality, such as the NP and RP state machines,
is implemented in firmware. Given the limited processing
capacity of the firmware, Gen1 minimizes CNP generation
through coalescing at the NP side. As described in [112], the
NP generates at most one CNP in a time window for a flow,
if any arriving packets within this window are ECN marked.
Correspondingly, the RP reduces the sending rate upon re-
ceiving a CNP. In addition, Gen1 also has limited cache re-
sources. Cache misses can significantly impact RDMA’s per-
formance [50, 63]. To mitigate cache misses, we increase the
granularity of rate limiting on Gen1 from a single packet to a
burst of packets. Burst transmissions can effectively reduce
the number of active QPs in a fixed interval, thus lowering
pressure on the very limited cache resources of Gen1 NICs.

In contrast, Gen2 and Gen3 have hardware-based DCQCN
implementations and adopt a RP-based CNP coalescing mech-
anism, which is the exact opposite of the NP-based CNP co-
alescing used by Gen1. In Gen2 and Gen3, the NP sends a
CNP for every arriving ECN-marked packet. However, the
RP only cuts the sending rate for a flow at most once in a
time window if it receives any CNPs within that window. It
is worthwhile to note that RP-based and NP-based CNP coa-
lescing mechanisms essentially provide the same congestion
notification granularity. The rate limiting is on a per-packet
granularity on Gen2 and Gen3.
Interoperability challenges: Storage frontend traffic, which
crosses different clusters, may lead to communication be-
tween different generations of NICs. In this scenario, the DC-
QCN implementation differences cause undesirable behaviors.
First, when a Gen2/Gen3 node sends traffic to a Gen1 node,

8

its per-packet rate limiting tends to trigger many cache misses
on the Gen1 node, thus slowing down the receiver pipeline.
Second, when a Gen1 node sends traffic to a Gen2/Gen3 node
through a congested path, the Gen2/Gen3 NP tends to send
excessive CNPs to the Gen1 RP, thus causing excessive rate
reductions and throughput losses.
Our solution: Given the limited processing capacity and
resources of Gen1, we cannot make it behave like Gen2 and
Gen3. Instead, we try to make Gen2 and Gen3 behave like
Gen1 as much as possible. Our solution is two-fold. First, we
move the CNP coalescing on Gen2 and Gen3 from the RP
side to the NP side. On the Gen2/Gen3 NP side, we add a
per-QP CNP rate limiter and set the minimal interval between
two consecutive CNPs to the value of CNP coalescing timer
of the Gen1 NP. On the Gen2/Gen3 RP side, we minimize the
time window for rate reduction so that the RP almost always
reduces the rate upon receiving a CNP. Second, we enable
per-burst rate limiting on Gen2 and Gen3.

7.3 Tuning DCQCN

There were certain practical limitations when we tuned DC-
QCN in Azure. First, our NICs only support global DCQCN
parameter settings. Second, to optimize customer experience,
we classify RDMA flows into two switch queues based on
their application semantics, rather than RTTs. Hence, instead
of using different DCQCN parameters for inter-datacenter
and intra-datacenter traffic, we use global DCQCN parameter
settings (on the NICs and switches) that work well given the
large RTT variations within a region.

We took a three-step approach to tune DCQCN parameters.
First, we leveraged the fluid model [113] to understand theo-
retical proprieties of DCQCN. Second, we ran experiments
with synthetic traffic in our lab testbed to evaluate solutions to
the interoperability problem and deliver reasonable parameter
settings. Third, we finalized the parameter settings in test clus-
ters, which use the same setup as production clusters carrying
customer traffic. We ran stress tests with real storage applica-
tions and tuned DCQCN parameters based on the application
performance.

To illustrate our findings, we use Kmin, Kmax, and Pmax to
denote the minimum threshold, the maximum threshold, and
the maximum marking probability of RED/ECN [43], respec-
tively. We make the following three key observations (more
experiment results appear in §B):

• DCQCN does not suffer from RTT unfairness as it is a
rate-based protocol and its rate adjustment is independent
of RTT.

• To provide high throughput for DCQCN flows with large
RTTs, we use sparse ECN marking with large Kmax −Kmin
and small Pmax.

• DCQCN and switch buffers should be jointly tuned [112].
For example, before increasing Kmin, we ensure that ingress

thresholds for lossless traffic are large enough. Otherwise,
PFC may be triggered before ECN marking.

8 Experience

In 2018, we started to enable RDMA to serve customer back-
end traffic. In 2019, we started to enable RDMA to serve
customer frontend traffic, with storage and compute clusters
co-located in the same datacenter. In 2020, we enabled intra-
region RDMA in the first Azure region. As of February 2023,
around 70% of traffic in Azure public regions was RDMA
(Figure 1) and intra-region RDMA was supported in all Azure
public regions.

8.1 Deployment and Servicing
We took a three-step approach to gradually enable RDMA in
production environments. First, we leveraged the lab testbed
to develop and test each individual component. Second, we
conducted end-to-end stress tests in test clusters with the same
software and hardware setups as those of production coun-
terparts. In addition to normal workloads, we also injected
common errors, e.g., random packet drops, to evaluate the
robustness of the system. Third, we cautiously increased the
deployment scale of RDMA in production environments to
carry more customer traffic. During our deployment, NIC
driver/firmware and switch OS updates were common. Thus
it was crucial to minimize the impact of such updates to cus-
tomer traffic.
Servicing switches: Compared to switches in T1 or tiers
above, T0 switches, especially in compute clusters, were more
challenging to service as they could be a single point of failure
(SPOF) for customer VMs. In this scenario, we leveraged fast
reboot [17] and warm reboot [19] to reduce the data plane
disruption time from a few minutes to less than a second.
Servicing NICs: In some cases, servicing the NIC driver
or firmware required unloading the NIC driver. The driver
could safely unload only after all the NIC resources had been
released. To this end, we needed to signal consumers, e.g., disk
driver, to close RDMA connections and shift traffic to TCP.
Once RDMA and other NIC features with similar concerns
had been disabled, we could reload the driver.

8.2 Performance

Storage backend: Currently almost all the storage backend
traffic in Azure is RDMA. It is no longer feasible to run large-
scale A/B tests with customer traffic because the CPU cores
saved by RDMA have been used for other purposes, not to
mention customer experience degradation. Hence we demon-
strate results of an A/B test conducted in a test cluster in 2018.
In this test, we ran storage workloads with high transactions
per second (TPS) and switched transport between RDMA and

9

Figure 7: Average CPU usage of storage servers of a storage
tenant. We normalize results to the maximum CPU usage. We
switched traffic between RDMA and TCP twice.

Figure 8: Message completion times of storage backend traf-
fic measured in a test cluster. We normalize results to the
maximum message completion time.

TCP. Figure 7 plots normalized CPU utilization of storage
servers during two transport switches. It is worthwhile to note
that CPU utilization here includes all the types of processing
overhead, e.g., storage application, Azure Storage Network
Protocol, and TCP/IP stack. Figure 8 gives message comple-
tion times measured in Azure Storage Network Protocol layer
(Figure 4), which excludes the overhead of application pro-
cessing. Compared to TCP, RDMA achieved obvious CPU
saving and significantly accelerated network data transfer.
Storage frontend: Since we cannot perform large-scale
A/B tests with customer traffic, we present results of an A/B
test conducted in a test cluster in 2018. In this test, we used
DiskSpd to generate read and write workloads at A IOPS
and B IOPS (A < B). The I/O size was 8 KB. Figure 9 gives
average CPU utilization of the host domain during the test
period. Compared to TCP, RDMA could reduce the CPU
utilization by up to 34.5%.

To understand the performance improvement introduced by
RDMA, we leverage an always-on storage monitoring service.
This service allocates some VMs in each region, uses them to
periodically generate disk read and write workloads, and col-

Figure 9: Average CPU usage of the host domain. We normal-
ize results to the maximum value.

Figure 10: Average access latencies of a type of SSDs across
all Azure public regions between February 22, 2022, and
February 22, 2023. We normalize RDMA results to corre-
sponding TCP results.

lects end-to-end performance results. The monitoring service
covers different I/O sizes, types of disks, and transports for
storage frontend traffic.

Figure 10 shows the overall average access latencies of a
type of SSDs across all Azure public regions collected by the
monitoring service for a year. Note that the RDMA and TCP
in this figure only refer to the transport of frontend traffic
generated by test VMs. We normalize RDMA results to cor-
responding TCP results. Compared to TCP, RDMA yielded
better access latencies with every I/O size. In particular, 1
MB I/O requests benefited the most from RDMA with 23.8%
and 15.6% latency reductions for read and write, respectively.
This is due to the fact that large I/O requests are more sen-
sitive to throughput than smaller I/O requests, and RDMA
improves throughput drastically since it can run at line rate
using a single connection without slow starts.
Congestion control: We ran stress tests in a test cluster to
drive the DCQCN parameter setting that could achieve rea-
sonable performance even under peak workloads. Figure 11
gives results of the 99th percentile message completion time,
the key metric we used to guide our tuning. At the beginning,

10

Figure 11: The 99th percentile message completion times of
different schemes measured in a test cluster.

we disabled DCQCN and only tuned switch buffer parame-
ters, e.g., the dynamic threshold of ingress lossless queues,
to explore the best performance achieved by PFC only. After
reaching the best performance of PFC only, we enabled DC-
QCN using the default parameter setting, which was derived
on the lab testbed using synthetic traffic. While DCQCN re-
duced the number of PFC pause frames, it degraded the tail
message completion time as the default setting reduced the
sending rate too aggressively. Given this, we adjusted ECN
marking parameters to improve DCQCN’s throughput. With
optimized setting, DCQCN performs better than using PFC
alone. Our key takeaway from this tuning experience was that
DCQCN and switch buffer should be jointly tuned to optimize
the application performance, rather than PFC pause duration.

8.3 Problems Discovered and Fixed

During tests and deployments, we discovered and fixed a
series of problems in NICs, switches and our RDMA applica-
tions.
FMR hidden fence: In sK-RDMA (§4.2), every I/O request
from compute servers requires a FMR request followed by a
Send request to the storage server, which contains the de-
scription of FMR registered memory and storage commands.
Therefore, the send queue consists of many FMR/Send pairs.

When we deployed sK-RDMA in compute and storage clus-
ters located in different datacenters, we found that the frontend
traffic showed extremely low throughput, even though we kept
many outstanding FMR/Send pairs in the send queue. To debug
this problem, we used RDMA Estats to collect T5−T1 latency
for every Send request (§5). We found a strong correlation
between T5 −T1 and inter-datacenter RTT, and noticed that
there was only a single outstanding Send request per RTT.
After we shared these findings with the NIC vendor, they iden-
tified the root cause: to simplify the implementation, NICs
processed the FMR request only after the completions of previ-
ously posted requests. In sK-RDMA, the FMR request created
a hidden fence between two Send requests, thus only allowing

a single Send request in the air, which could not fill the large
network pipe between datacenters. We have worked with the
NIC vendor to fix this problem in the new NIC driver.

PFC and MACsec: After we enabled PFC on long-haul
links between T2 and RH, many long-haul links reported
high packet corruption rates, thus triggering many alerts and
even auto-mitigation. When we debugged this problem, we
found that there was a strong correlation between the number
of PFC frames and the number of corrupted packets. Then we
suspected this was probably due to unexpected behaviors in
the interactions between PFC and MACsec, since MACsec
was only enabled on long-haul links within the region. We
found that MACSec standard [21] did not specify whether
PFC frames should be encrypted. After we checked with ven-
dors, we found that different switches had no agreement on
whether PFC frames sent should be encrypted and what to
do with arriving encrypted PFC frames. Some switches (A)
did not encrypt outbound PFC frames. Other switches (B)
encrypted outbound PFC frames and also expected inbound
PFC frames to be encrypted. As a result, when A switches
sent unencrypted PFC frames to B switches, B switches would
treat those PFC frames as corrupted packets and report errors.
We validated the above analysis by running interoperability
tests in our testbed. We have worked with switch vendors
to standardize how MACsec enabled switch ports encrypt
outgoing PFC frames and process arriving PFC frames.

Congestion leaking: The problem was found in the testbed.
When we enabled interoperability features (§7.2) on Gen2
NICs, we found that their throughput would be degraded. To
dig into this problem, we used the water filling algorithm
to calculate theoretical per-QP throughput results and com-
pared them with actual throughput results measured from the
testbed. We had two interesting observations when comparing
the results. First, flows sent by a Gen2 NIC always had near
identical sending rates regardless of their congestion degrees.
Second, actual sending rates were very close to the theoret-
ical sending rate of the slowest flow sent from the NIC. It
seemed that all the flows from a Gen2 NIC were throttled by
the slowest flow. We reported these observations to the NIC
vendor, and they identified a head-of-line blocking in the NIC
firmware. We have fixed this problem on all the NICs with
interoperability features.

Slow receiver due to loopback RDMA: This problem was
found in a test cluster. During stress tests, we found that a
large number of servers sent PFC pause frames to T0 switches.
However, unlike slow receivers found before, PFC watchdog
was not triggered on any T0 switches. It seemed that those
servers only gracefully slowed down the traffic coming from
T0 switches, rather than completely blocking T0 switches for
a long duration. In addition, where slow receivers were com-
mon at Azure’s scale, it was very unlikely that a significant
portion of servers in a cluster became “mad” simultaneously.

Based on the above observations, we suspected that these

11

slow receivers were caused by our applications. We found that
each server actually ran multiple RDMA application instances.
All the inter-instance traffic ran on RDMA, regardless of their
locations. Therefore, loopback traffic and external traffic co-
existed on every NIC, thus creating a 2:1 congestion on PCIe
lanes of the NIC. Since the NIC could not mark ECN, it could
only throttle loopback traffic and external traffic through PCIe
back pressure and PFC pause frames. To validate the above
analysis, we disabled RDMA for loopback traffic on some
servers, then these servers stopped sending PFC frames. We
notice that recent work [61, 70] also found this problem.

9 Lessons and Open Problems

In this section, we summarize the lessons learned from our
experience and discuss open problems for future exploration.
Failovers are very expensive for RDMA. While we have
implemented failover solutions in both sU-RDMA and sK-
RDMA as the last resort, we find that failovers are particularly
expensive for RDMA, and should be avoided as much as pos-
sible. Cloud providers adopt RDMA to save CPU cores and
then use freed CPU cores for other purposes. To move traffic
away from RDMA, we need to allocate extra CPU cores to
carry these traffic. This increases CPU utilization, and even
runs out of CPU cores at high loads. Hence, it is risky to per-
form large-scale RDMA failovers, which we treat as serious
incidents in Azure. Given the risk, only after all the tests have
passed, we gradually increase the RDMA deployment scale.
During the rollout, we continuously monitor network perfor-
mance and immediately stop the rolltout once anomalies are
detected. After unavoidable failovers, we should aggressively
switch back to RDMA when possible.
Host network and physical network should be converged.
In 8.3, we present a new type of slow receivers, which is es-
sentially due to congestion inside the host. Recent work [24]
also presents evidence and characterization of host conges-
tion in production clusters. We believe this problem is just
a tip of the iceberg, while many problematic behaviors be-
tween host network and physical network remain unexposed.
In conventional wisdom, host network and physical network
are separated entities and NIC is their border. If we look into
the host, it is essentially a network connecting heterogeneous
nodes (e.g., CPU, GPU, DPU) with proprietary high speed
links (e.g., PCIe link and NVLink) and switches (e.g., PCIe
switch and NVSwitch). Inter-host traffic can be treated as
north-south traffic for the host. With the increase of the data-
center link capacity and wide adoptions of hardware offload-
ing and device direct access technologies (e.g., GPUDirect
RDMA), inter-host traffic tends to consume larger and more
various resources inside the host, thus resulting in more com-
plex interactions with intra-host traffic.

We believe that host network and physical network should
be converged in the future. And we envision this converged

network will be an important step towards the dis-aggregated
cloud. We look forward to operating this converged network
in similar ways as we manage physical network today.

Switch buffer is increasingly important and needs more
innovations. The conventional wisdom [26] suggests that low
latency datacenter congestion control [26, 71, 82, 112] can
alleviate the need of large switch buffers as they can preserve
short queues. However, we find a strong correlation between
switch buffers and RDMA performance problems in produc-
tion. Clusters with smaller switch buffers tend to have more
performance problems. And many performance problems can
be mitigated by just tuning switch buffer parameters without
touching DCQCN. This is why we always tune switch buffers
before touching DCQCN (§8.2). The importance of switch
buffer lies in the prevalence of bursty traffic and short-lived
congestion events in datacenters [108]. Conventional conges-
tion control solutions are ill-suited for such scenarios given
their reactive nature. Instead, switch buffer plays as the first
resort to absorb bursts and provide fast responses.

With the increase in datacenter link speed, we believe that
switch buffer is increasingly important, thus deserving more
efforts and innovations. First, the buffer size per port per Gbps
on pizza box switches keeps decreasing in recent years [31].
Some switch ASICs even split the packet memory into multi-
ple partitions, thus reducing effective buffer resource. We en-
courage more efforts to put into the development ASICs with
deeper packet buffers and more unified architectures. Second,
today’s commodity switch ASICs only provide buffer manage-
ment mechanisms [40] designed decades ago, thus limiting
the scope of solutions to handle congestion. Following the
trend of programmable data plane [32], we envision that future
switch ASICs would provide more programmability on buffer
models and interfaces, thus enabling the implementation of
more effective buffer management solutions [22].

Cloud needs unified behavior models and interfaces for
network devices. The diversity in software and hardware
brings significant challenges to network operation at cloud
scale. Different NICs from the same vendor can even have
different behaviors that cause interoperability problems, not
to mention devices from different vendors. In spite of all the
efforts we put into the unified switch software (§6) and NIC
congestion control (§7.2), we still experienced problems due
to diversity, e.g., unexpected interactions between PFC and
MACsec (§8.3). We envision that more unified models and
interfaces will emerge to simplify operations and accelerate
innovations in the cloud. Some key areas include chassis
switches, smart network appliances, and RDMA NICs. We
notice that there have been some efforts on standardizing
congestion control for different data paths [85] and APIs for
heterogeneous smart appliances [16].

Testing new network devices is crucial and challenging.
From the day one of this project, we have been making large
investments in building various testing tools and running rig-

12

orous tests in both testbeds and test clusters. Despite the
significant number of problems discovered during tests, we
still found some problems during deployments (§8.3), mostly
due to micro-behaviors and corner cases that were overlooked.
Some burning questions are given as follows:

• How to precisely capture micro-behaviors of RDMA NIC
implementations in various scenarios?

• Despite many endeavors to measure switches’ micro-
behaviors (§6.3), we still rely on domain knowledge to
design test cases. How to systematically test the correct-
ness and performance of a switch?

These questions motivate us to rethink challenges and re-
quirements of testing emerging network devices with more
and more features. First, many features lack clear specifica-
tions, which is a prerequisite for systematic testing. Many
seemingly simple features are actually entangled with com-
plex interactions between software and hardware. We believe
that unified behavior models and interfaces discussed above
can help with this. Second, the test system should be able
to interact with network devices at high speed, and precisely
capture micro-behaviors. We believe programmable hardware
can help on this [33, 37]. We note that there have been some
recent progresses on testing RDMA NICs [69, 70] and pro-
grammable switches [37, 110].

10 Related Work

This paper focuses on RDMA for cloud storage. The literature
of RDMA and storage systems is vast. Here we only discuss
some closely related ideas.

Deployment experience of RDMA and storage networks:
Before this project, we had deployed RDMA to support some
Bing workloads and encountered many problems, such as
PFC storms, PFC deadlocks, and slow receivers [50]. We
learnt several lessons from this deployment. Gao et al. [46]
summarized the experience of deploying intra-cluster RDMA
to support storage backend traffic in Alibaba. Miao et al. [80]
presented two generations of storage network stacks to carry
Alibaba’s storage frontend traffic: LUNA and SOLAR. LUNA
is a high performance user-space TCP stack while SOLAR
is a storage-oriented UDP stack implemented in proprietary
DPU. Scalable Reliable Datagram (SRD) [96] is a cloud-
optimized transport protocol implemented in AWS custom
Nitro networking card, and used by HPC, ML, and storage
applications [7]. In contrast, we use commodity hardware to
enable intra-region RDMA to support both storage frontend
and backend traffic.

Congestion control in datacenters: There is a large body
of work on datacenter congestion control, including ECN-
based [26, 27, 99, 112], delay-based [71, 72, 76, 82], INT-
based [23, 75, 101], credit-based [34, 38, 45, 52, 55, 84, 86, 88]
and packet scheduling [28, 30, 36, 49, 54]. Our work focuses

on regional networks which have large RTT variations. We
notice that some efforts [95, 107] target at similar scenarios.

Improve RDMA in datacenters: In addition to congestion
control, there are many efforts to improve RDMA’s reliability,
security and performance in datacenters, such as deadlock mit-
igation [56,92,103], support of multi-path [77], resilience over
lossy networks [78,83,102], security mechanisms [94,98,104],
virtualization [53, 67, 89, 100], testing [69, 70], and perfor-
mance isolation in multi-tenant environments [109]. Our work
focuses on first party traffic in the trusted environment. Given
the limited retransmission performance of our NICs, we en-
able RDMA over lossless networks (§2.4). We leverage stor-
age stack and MACsec to encrypt data (§3.2) and use PFC
watchdog to mitigate PFC storms and deadlocks (§3.1).

Accelerate storage systems using RDMA and other tech-
niques: Many proposals [41,62–66,74,93,106,111] leverage
RDMA to accelerate storage systems or networked systems in
general. Similar to some solutions [13,47,74,90], our RDMA
protocols (§4) provide socket-like interfaces to keep compati-
bility with legacy storage stack. In addition to RDMA, some
recent proposals improve storage systems using new kernel
designs [58, 59, 73] and SmartNIC [68, 81].

11 Conclusions and Future Work

In this paper, we summarize our experience in deploying intra-
region RDMA to support storage workloads in Azure. The
high complexity and heterogeneity of our infrastructure brings
a series of new challenges. We have made several changes to
our network infrastructure to address these challenges. Today,
around 70% of traffic in Azure is RDMA and intra-region
RDMA is supported in all Azure public regions. RDMA helps
us achieve significant disk I/O performance improvements
and CPU core savings.

In the future, we plan to further improve our storage sys-
tems through innovations on system architecture, hardware
acceleration, and congestion control. We also plan to bring
RDMA to more scenarios.

References

[1] Amazon ebs volume types. https://aws.amazon.c
om/ebs/volume-types/.

[2] Amazon web services region. https://aws.amazon
.com/about-aws/global-infrastructure/regi
ons_az/.

[3] Arista 7500r switch architecture (‘a day in the life of a
packet’). https://www.arista.com/assets/data
/pdf/Whitepapers/Arista7500RSwitchArchitec
tureWP.pdf.

13

https://aws.amazon.com/ebs/volume-types/
https://aws.amazon.com/ebs/volume-types/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://www.arista.com/assets/data/pdf/Whitepapers/Arista7500RSwitchArchitectureWP.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista7500RSwitchArchitectureWP.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista7500RSwitchArchitectureWP.pdf

[4] Azure managed disk types. https://docs.microso
ft.com/en-us/azure/virtual-machines/disk
s-types.

[5] Azure region. https://docs.microsoft.com/e
n-us/azure/availability-zones/az-overview.

[6] Cisco silicon one product family. https://www.cisc
o.com/c/dam/en/us/solutions/collateral/sil
icon-one/white-paper-sp-product-family.pd
f.

[7] A decade of ever-increasing provisioned iops for ama-
zon ebs. https://aws.amazon.com/blogs/aws/a
-decade-of-ever-increasing-provisioned-i
ops-for-amazon-ebs/.

[8] Google cloud region. https://cloud.google.com
/compute/docs/regions-zones.

[9] Keysight network test solutions. https://www.keys
ight.com/us/en/solutions/network-test.ht
ml.

[10] Packet testing framework (ptf). https://github.c
om/p4lang/ptf.

[11] Pfc watchdog in sonic. https://github.com/son
ic-net/SONiC/wiki/PFC-Watchdog-Design.

[12] Priority flow control: Build reliable layer 2 infrastruc-
ture. https://e2e.ti.com/cfs-file/__key/co
mmunityserver-discussions-components-fil
es/908/802.1q-Flow-Control-white_5F00_pa
per_5F00_c11_2D00_542809.pdf.

[13] rsocket(7) - linux man page. https://linux.die.
net/man/7/rsocket.

[14] Smb direct. https://learn.microsoft.com/en
-us/windows-server/storage/file-server/sm
b-direct.

[15] Software for open networking in the cloud (sonic).
https://sonic-net.github.io/SONiC/.

[16] Sonic-dash - disaggregated api for sonic hosts. https:
//github.com/sonic-net/DASH.

[17] Sonic fast reboot. https://github.com/sonic-n
et/SONiC/blob/master/doc/fast-reboot/fast
reboot.pdf.

[18] sonic-mgmt: Management and automation code used
for sonic testbed deployment, tests and reporting. ht
tps://github.com/sonic-net/sonic-mgmt.

[19] Sonic warm reboot. https://github.com/sonic-n
et/SONiC/blob/master/doc/warm-reboot/SONi
C_Warmboot.md.

[20] Switch abstraction interface (sai). https://github
.com/opencomputeproject/SAI.

[21] Ieee standard for local and metropolitan area networks-
media access control (mac) security. IEEE Std
802.1AE-2018 (Revision of IEEE Std 802.1AE-2006),
2018.

[22] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi,
Stefan Schmid, and Laurent Vanbever. Abm: active
buffer management in datacenters. In SIGCOMM
2022.

[23] Vamsi Addanki, Oliver Michel, and Stefan Schmid.
Powertcp: Pushing the performance limits of datacen-
ter networks. In NSDI 2022.

[24] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, and Amin Vahdat. Understand-
ing host interconnect congestion. In HotNets 2022.

[25] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In SIGCOMM 2008.

[26] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (dctcp). In SIGCOMM 2010.

[27] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Balaji Prabhakar, Amin Vahdat, and Masato Yasuda.
Less is more: trading a little bandwidth for ultra-low
latency in the data center. In NSDI 2012.

[28] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal datacen-
ter transport. In SIGCOMM 2013.

[29] InfiniBand Trade Association. Supplement to infini-
band architecture specification volume 1 release 1.2. 1
annex a17: Rocev2, 2014.

[30] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In NSDI 2015.

[31] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and
Yongqiang Xiong. One more config is enough: Sav-
ing (dc) tcp for high-speed extremely shallow-buffered
datacenters. In INFOCOM 2020.

[32] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David

14

https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://aws.amazon.com/blogs/aws/a-decade-of-ever-increasing-provisioned-iops-for-amazon-ebs/
https://aws.amazon.com/blogs/aws/a-decade-of-ever-increasing-provisioned-iops-for-amazon-ebs/
https://aws.amazon.com/blogs/aws/a-decade-of-ever-increasing-provisioned-iops-for-amazon-ebs/
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones
https://www.keysight.com/us/en/solutions/network-test.html
https://www.keysight.com/us/en/solutions/network-test.html
https://www.keysight.com/us/en/solutions/network-test.html
https://github.com/p4lang/ptf
https://github.com/p4lang/ptf
https://github.com/sonic-net/SONiC/wiki/PFC-Watchdog-Design
https://github.com/sonic-net/SONiC/wiki/PFC-Watchdog-Design
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://linux.die.net/man/7/rsocket
https://linux.die.net/man/7/rsocket
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://sonic-net.github.io/SONiC/
https://github.com/sonic-net/DASH
https://github.com/sonic-net/DASH
https://github.com/sonic-net/SONiC/blob/master/doc/fast-reboot/fastreboot.pdf
https://github.com/sonic-net/SONiC/blob/master/doc/fast-reboot/fastreboot.pdf
https://github.com/sonic-net/SONiC/blob/master/doc/fast-reboot/fastreboot.pdf
https://github.com/sonic-net/sonic-mgmt
https://github.com/sonic-net/sonic-mgmt
https://github.com/sonic-net/SONiC/blob/master/doc/warm-reboot/SONiC_Warmboot.md
https://github.com/sonic-net/SONiC/blob/master/doc/warm-reboot/SONiC_Warmboot.md
https://github.com/sonic-net/SONiC/blob/master/doc/warm-reboot/SONiC_Warmboot.md
https://github.com/opencomputeproject/SAI
https://github.com/opencomputeproject/SAI

Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communica-
tion Review, 2014.

[33] Pietro Bressana, Noa Zilberman, and Robert Soulé.
Finding hard-to-find data plane bugs with a pta. In
CoNEXT 2020.

[34] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit Agar-
wal. dcpim: Near-optimal proactive datacenter trans-
port. In SIGCOMM 2022.

[35] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,
Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci,
Jaidev Haridas, Chakravarthy Uddaraju, Hemal Kha-
tri, Andrew Edwards, Vaman Bedekar, Shane Mainali,
Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq,
Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram
Sankaran, Kavitha Manivannan, and Leonidas Rigas.
Windows azure storage: A highly available cloud stor-
age service with strong consistency. In SOSP 2011.

[36] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh.
Scheduling mix-flows in commodity datacenters with
karuna. In SIGCOMM 2016.

[37] Yanqing Chen, Bingchuan Tian, Chen Tian, Li Dai,
Yu Zhou, Mengjing Ma, Ming Tang, Hao Zheng,
Zhewen Yang, Guihai Chen, Dennis Cai, and Ennan
Zhai. Norma: Towards practical network load testing.
In NSDI 2023.

[38] Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for data-
centers. In SIGCOMM 2017.

[39] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In SIGCOMM 2018.

[40] Abhijit K. Choudhury and Ellen L. Hahne. Dynamic
queue length thresholds for shared-memory packet
switches. IEEE/ACM Transactions on Networking,
1998.

[41] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote memory.
In NSDI 2014.

[42] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chatur-
mohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham

Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw,
Gabriel Silva, Madhan Sivakumar, Nisheeth Srivas-
tava, Anshuman Verma, Qasim Zuhair, Deepak Bansal,
Doug Burger, Kushagra Vaid, David A. Maltz, and Al-
bert Greenberg. Azure accelerated networking: Smart-
NICs in the public cloud. In NSDI 2018.

[43] Sally Floyd and Van Jacobson. Random early detec-
tion gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1993.

[44] Philip Werner Frey and Gustavo Alonso. Minimizing
the hidden cost of rdma. In ICDCS 2009.

[45] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. phost:
Distributed near-optimal datacenter transport over com-
modity network fabric. In CoNEXT 2015.

[46] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan
Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu,
Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong
Wang, Dennis Cai, and Jiesheng Wu. When cloud
storage meets RDMA. In NSDI 2021.

[47] Dror Goldenberg, Michael Kagan, Ran Ravid, and
Michael S Tsirkin. Zero copy sockets direct proto-
col over infiniband-preliminary implementation and
performance analysis. In HOTI 2005.

[48] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: a scalable and flexible data center network. In
SIGCOMM 2009.

[49] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert NM Watson, Andrew W Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you can
jump them! In NSDI 2015.

[50] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
Rdma over commodity ethernet at scale. In SIGCOMM
2016.

[51] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center net-
work latency measurement and analysis. In SIGCOMM
2015.

[52] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks

15

and stacks for low latency and high performance. In
SIGCOMM 2017.

[53] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. Masq: Rdma
for virtual private cloud. In SIGCOMM 2020.

[54] Chi-Yao Hong, Matthew Caesar, and P Godfrey. Fin-
ishing flows quickly with preemptive scheduling. In
SIGCOMM 2012.

[55] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. Ae-
olus: A building block for proactive transport in data-
centers. In SIGCOMM 2020.

[56] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical pfc deadlock prevention in data center networks.
In CoNEXT 2017.

[57] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and
Sergey Yekhanin. Erasure coding in windows azure
storage. In ATC 2012.

[58] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. Tcp ≈ rdma: Cpu-efficient remote storage access
with i10. In NSDI 2020.

[59] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and
Rachit Agarwal. Rearchitecting linux storage stack for
µs latency and high throughput. In OSDI 2021.

[60] IEEE. 802.11 qbb. priority based flow control. 2008.

[61] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed dnn training in heterogeneous
gpu/cpu clusters. In OSDI 2020.

[62] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In NSDI 2019.

[63] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance rdma systems.
In ATC 2016.

[64] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In OSDI 2016.

[65] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using rdma efficiently for key-value services. In
SIGCOMM 2014.

[66] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,

and Srinivasan Seshan. Hyperloop: group-based nic-
offloading to accelerate replicated transactions in multi-
tenant storage systems. In SIGCOMM 2018.

[67] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. Freeflow:
Software-based virtual rdma networking for container-
ized clouds. In NSDI 2019.

[68] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
Peter, and Emmett Witchel. Linefs: Efficient smart-
nic offload of a distributed file system with pipeline
parallelism. In SOSP 2021.

[69] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Pad-
hye, and Alvin R Lebeck Danyang Zhuo. Understand-
ing rdma microarchitecture resources for performance
isolation. In NSDI 2023.

[70] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in rdma subsystems.
In NSDI 2022.

[71] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the
datacenter. In SIGCOMM 2020.

[72] Changhyun Lee, Chunjong Park, Keon Jang, Sue
Moon, and Dongsu Han. Accurate latency-based con-
gestion feedback for datacenters. In ATC 2015.

[73] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W. Lee, and Jinkyu Jeong. Asynchronous I/O stack:
A low-latency kernel I/O stack for Ultra-Low latency
SSDs. In ATC 2019.

[74] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: Datacenter sockets can be fast and
compatible. In SIGCOMM 2019.

[75] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. Hpcc: High precision congestion control. In
SIGCOMM 2019.

[76] Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh,
Balaji Prabhakar, Mendel Rosenblum, and Anirudh
Sivaraman. Breaking the transience-equilibrium nexus:
A new approach to datacenter packet transport. In
NSDI 2021.

16

[77] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang
Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen,
and Thomas Moscibroda. Multi-path transport for
rdma in datacenters. In NSDI 2018.

[78] Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong
Xiao, Bojie Li, Jiansong Zhang, Yongqiang Xiong,
Peng Cheng, and Enhong Chen. Memory efficient loss
recovery for hardware-based transport in datacenter. In
APNet 2017.

[79] Matt Mathis, John Heffner, and Rajiv Raghunarayan.
Tcp extended statistics mib (rfc 4898). Technical re-
port, 2007.

[80] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao,
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From luna to solar: The evo-
lutions of the compute-to-storage networks in alibaba
cloud. In SIGCOMM 2022.

[81] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krish-
namurthy. Gimbal: enabling multi-tenant storage dis-
aggregation on smartnic jbofs. In SIGCOMM 2021.

[82] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the
datacenter. In SIGCOMM 2015.

[83] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei-
tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. Revisiting network support for
rdma. In SIGCOMM 2018.

[84] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
SIGCOMM 2018.

[85] Akshay Narayan, Frank Cangialosi, Deepti Raghavan,
Prateesh Goyal, Srinivas Narayana, Radhika Mittal,
Mohammad Alizadeh, and Hari Balakrishnan. Restruc-
turing endpoint congestion control. In SIGCOMM
2018.

[86] Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu,
Adrian Popa, Cristi Baciu, Mark Silberstein, Georgios
Nikolaidis, Mark Handley, and Costin Raiciu. An edge-
queued datagram service for all datacenter traffic. In
NSDI 2022.

[87] Madhav Himanshubhai Pandya, Aaron William Ogus,
Zhong Deng, and Weixiang Sun. Transport protocol
and interface for efficient data transfer over rdma fabric,
August 2 2022. US Patent 11,403,253.

[88] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Deverat Shah, and Hans Fugal. Fastpass: A centralized
"zero-queue" datacenter network. In SIGCOMM 2014.

[89] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R
Gross. A hybrid i/o virtualization framework for rdma-
capable network interfaces. ACM SIGPLAN Notices,
2015.

[90] Jim Pinkerton. Sockets direct protocol v1. 0 rdma
consortium. 2003.

[91] Leon Poutievski, Omid Mashayekhi, Joon Ong, Ar-
jun Singh, Mukarram Tariq, Rui Wang, Jianan Zhang,
Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu,
Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ry-
ohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shi-
dong Zhang, Junlan Zhou, and Amin Vahdat. Jupiter
evolving: Transforming google’s datacenter network
via optical circuit switches and software-defined net-
working. In SIGCOMM 2022.

[92] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle flow control: avoiding deadlock in lossless
networks. In SIGCOMM 2019.

[93] Waleed Reda, Marco Canini, Dejan Kostic, and Simon
Peter. Rdma is turing complete, we just did not know
it yet! In NSDI 2022.

[94] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. Redmark: Bypassing rdma
security mechanisms. In USENIX Security 2021.

[95] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa Ammar, Ellen Zegura, Keon
Jang, Mohammad Alizadeh, Abdul Kabbani, and Amin
Vahdat. Annulus: A dual congestion control loop for
datacenter and wan traffic aggregates. In SIGCOMM
2020.

[96] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A cloud-optimized transport protocol for elastic
and scalable hpc. IEEE Micro, 2020.

[97] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
Netbouncer: Active device and link failure localization
in data center networks. In NSDI 2019.

17

[98] Konstantin Taranov, Benjamin Rothenberger, Adrian
Perrig, and Torsten Hoefler. srdma: efficient nic-based
authentication and encryption for remote direct mem-
ory access. In ATC 2020.

[99] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar.
Deadline-aware datacenter tcp (d2tcp). In SIGCOMM
2012.

[100] Dongyang Wang, Binzhang Fu, Gang Lu, Kun Tan, and
Bei Hua. vsocket: virtual socket interface for rdma in
public clouds. In VEE 2019.

[101] Weitao Wang, Masoud Moshref, Yuliang Li, Gautam
Kumar, TS Eugene Ng, Neal Cardwell, and Nandita
Dukkipati. Poseidon: Efficient, robust, and practical
datacenter cc via deployable int. In NSDI 2023.

[102] Zilong Wang, Layong Luo, Qingsong Ning, Chao-
liang Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao
Feng, Ke Cheng, Xiongfei Geng, Tianhao Wang, We-
icheng Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng
Zhang, Bin Xu, Ruiqing Feng, Tao Ding, Kai Chen,
and Chuanxiong Guo. Srnic: A scalable architecture
for rdma nics. In NSDI 2023.

[103] Xinyu Crystal Wu and TS Eugene Ng. Detecting and
resolving pfc deadlocks with itsy entirely in the data
plane. In INFOCOM 2022.

[104] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang
Yang, Hongyi Liu, and Ang Chen. Bedrock: Pro-
grammable network support for secure rdma systems.
In USENIX Security 2022.

[105] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh,
Tameesh Suri, Manu Awasthi, Zvika Guz, Anahita
Shayesteh, and Vijay Balakrishnan. Performance anal-
ysis of nvme ssds and their implication on real world
databases. In SYSTOR 2015.

[106] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A distributed file system for non-volatile main
memory and rdma-capable networks. In FAST 2019.

[107] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu
Han, Yibo Zhu, and Lei Cui. Congestion control for
cross-datacenter networks. In ICNP 2019.

[108] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In IMC 2017.

[109] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software multi-tenancy in hard-
ware kernel-bypass networks. In NSDI 2022.

[110] Naiqian Zheng, Mengqi Liu, Ennan Zhai,
Hongqiang Harry Liu, Yifan Li, Kaicheng Yang,
Xuanzhe Liu, and Xin Jin. Meissa: scalable network
testing for programmable data planes. In SIGCOMM
2022.

[111] Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu,
and Jiwu Shu. Octopus+: An rdma-enabled distributed
persistent memory file system. ACM Transactions on
Storage, 2021.

[112] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma de-
ployments. In SIGCOMM 2015.

[113] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra
Padhye. Ecn or delay: Lessons learnt from analysis of
dcqcn and timely. In CoNEXT 2016.

[114] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-
level telemetry in large datacenter networks. In SIG-
COMM 2015.

18

A SONiC buffer analysis

"BUFFER_POOL " : {
" i n g r e s s _ p o o l " : {

" s i z e " : "18000000" ,
" t y p e " : " i n g r e s s " ,
" mode " : " dynamic " ,
" x o f f " : "6000000"

} ,
" e g r e s s _ l o s s y _ p o o l " : {

" s i z e " : "14000000" ,
" t y p e " : " e g r e s s " ,
" mode " : " dynamic "

} ,
" e g r e s s _ l o s s l e s s _ p o o l " : {

" s i z e " : "24000000" ,
" t y p e " : " e g r e s s " ,
" mode " : " s t a t i c "

}
}

"BUFFER_PROFILE " : {
" i n g r e s s _ l o s s l e s s _ p r o f i l e " : {

" poo l " : " [BUFFER_POOL | i n g r e s s _ p o o l] " ,
" s i z e " : " 1 2 4 8 " ,
" dynamic_ th " : " −3" ,
" x o f f " : "96928" ,
" xon " " 1 2 4 8 " ,
" x o n _ o f f s e t " "2496"

} ,
" i n g r e s s _ l o s s y _ p r o f i l e " : {

" poo l " : " [BUFFER_POOL | i n g r e s s _ p o o l] " ,
" s i z e " : " 0 " ,
" s t a t i c _ t h " : " 2 4 0 0 0 0 0 0 "

} ,
" e g r e s s _ l o s s l e s s _ p r o f i l e " : {

" poo l " : " [BUFFER_POOL | e g r e s s _ l o s s l e s s _ p o o l] " ,
" s i z e " : " 0 " ,
" s t a t i c _ t h " : "24000000"

} ,
" e g r e s s _ l o s s y _ p r o f i l e " : {

" poo l " : " [BUFFER_POOL | e g r e s s _ l o s s y _ p o o l] " ,
" s i z e " : " 1 6 6 4 " ,
" dynamic_ th " : " −1"

}
}

Listing 1: SONiC Buffer Configuration Example

Listing 1 gives a buffer configuration example of a SONiC
pizza box switch with 24 MB packet buffer. ingress_pool
has 18 MB (size) shared buffer for all the ingress queues, and
6 MB (xoff) PFC headroom buffer exclusively for ingress
lossless queues in the paused state. egress_lossy_pool and
egress_lossless_pool have 14 MB and 24 MB shared
buffer, respectively. It is worthwhile to notice that the sum of
pool sizes can be larger than the physical buffer limit, as they
are only virtual counters for admission control purposes.

Lossless packets are mapped to both ingress lossless queues
(ingress_lossless_profile) and egress lossless queues
(egress_lossless_profile). We use Dynamic Thresh-
old (DT) algorithm [40] to manage the buffer occupancy
of the ingress lossless queue in the 18 MB shared buffer
space of ingress_pool. DT algorithm is controlled by a
parameter called α, which is 1/8 (2dynamic_th) in Listing 1.
Once the ingress lossless queue hits the dynamic threshold
(α× remaining buffer), it will enter the paused state (send
PFC pause frames) and start to use PFC headroom. All
the ingress lossless queues in the paused state share a 6
MB PFC headroom pool (xoff of ingress_pool). Each
ingress lossless queue can use up to 96928 bytes buffer
(xoff of ingress_lossless_profile) in the PFC head-
room pool. We bypass the egress admission control for loss-
less traffic by setting the static threshold of the egress loss-
less queue (static_th of egress_lossless_profile) to
24 MB, which equals to the switch buffer size.

Figure 12: Goodput of two flows with different RTTs.

In contrast, we only want to apply egress admission
control for lossy traffic. To bypass ingress admission con-
trol for lossy traffic, we configure a sky-high static thresh-
old 24 MB (static_th of ingress_lossy_profile) for
each ingress lossy queue. Since lossy traffic can only
use 18 MB shared buffer space of ingress_pool, the
size of egress_lossy_pool should be no larger than 18
MB (size of ingress_pool). In Listing 1, the size of
egress_lossy_pool is 14 MB. This guarantees that ingress
lossless queues can exclusively use 4 MB shared buffer
(size of ingress_pool - size of egress_lossy_pool) in
ingress_pool before entering the paused state. We use DT
algorithm to manage the egress lossy queue length and set
α to 1/2 (2dynamic_th). Once the egress lossy queue hits the
dynamic threshold, its arriving packets will be dropped.

B DCQCN experiment results

We conduct an experiment in our lab testbed to demonstrate
the RTT fairness of DCQCN. Our lab testbed uses a four-
tier Clos topology like Figure 2. We use 80 km cables to
interconnect T2 switches to a RH switch to emulate a region.

In this experiment, we use two hosts A and B as senders and
a host C as the receiver. Each host is equipped with a Gen1 40
Gbps NIC. Host A and C are located within the same rack with
∼2 µs base RTT. In contrast, B is in another datacenter. The
base RTT across the RH switch is ∼1.77 ms. On each sender,
we use ndperf to create a QP with the receiver and keep
posting 64 KB Write messages. Each QP can keep up to 160
in-flight Write messages, resulting in around 10 MB in-flight
data, which is enough to saturate the large inter-datacenter
pipe (40 Gbps × 1.77 ms = 8.85 MB). We set RED/ECN
marking parameters Kmin, Kmax and Pmax to 1 MB, 2 MB and
5%, respectively.

As shown in Figure 12, two DCQCN flows achieve similar
goodput regardless of their RTTs. A flow can achieve around
17 Gbps goodput, which is close to half of the line rate. We
also keep polling queue watermark counters at the congested
switch and find queue watermarks oscillate around 1.36 MB,

19

which is smaller than Kmax. This experiment demonstrates
that DCQCN does not suffer from RTT unfairness.

20

	Introduction
	Background
	Network Architecture of an Azure Region
	High Level Architecture of Azure Storage
	Motivation for Intra-Region RDMA
	Challenges

	Overview
	PFC Storm Mitigation Using Watchdogs
	Security

	Storage Protocols over RDMA
	sU-RDMA
	sK-RDMA

	RDMA Estats
	Switch Management
	Overcoming Heterogeneity with SONiC
	Buffer Model and Configuration Practices of SONiC on Pizza Box Switches
	Testing RDMA Features with SONiC

	Congestion Control
	Scaling PFC over Long Links
	DCQCN Interoperability Challenges
	Tuning DCQCN

	Experience
	Deployment and Servicing
	Performance
	Problems Discovered and Fixed

	Lessons and Open Problems
	Related Work
	Conclusions and Future Work
	SONiC buffer analysis
	DCQCN experiment results

