
An Empirical Study on Quality Issues of Deep
Learning Platform

Yanjie Gao1, Xiaoxiang Shi1, Haoxiang Lin1†, Hongyu Zhang2, Hao Wu3, Rui Li3, Mao Yang1
1Microsoft Research, Beijing, China 2Chongqing University, Chongqing, China 3Microsoft, Beijing, China

Email: {yanjga, v-xiaoxshi, haoxlin, wuh, ruli1, maoyang}@microsoft.com, hyzhang@cqu.edu.cn

Abstract—In recent years, deep learning (DL) has been
increasingly adopted in many application areas. To help deep
learning developers better train and test their models, enterprises
have built dedicated, multi-tenant platforms equipped with a
mass of computing devices like GPUs. The service quality of
these platforms plays a critical role in system efficiency and user
experience. Nevertheless, there indeed exist diverse types of quality
issues that not only waste computing resources significantly but
also slow down development productivity severely. In this paper,
we present a comprehensive empirical study on quality issues of
Platform-X in Microsoft. Platform-X is an internal production
deep learning platform that serves hundreds of developers and
researchers. We have manually examined 360 real issues and
investigated their common symptoms, root causes, and mitigation
actions. Our major findings include: (1) 28.33% of the quality
issues are caused by hardware (the GPU, network, and compute
node) faults; (2) 28.33% of them result from system-side faults
(e.g., system defects and service outages); (3) User-side faults (e.g.,
user bugs and policy violation) account for more than two-fifths
(43.34%) of all the common causes; (4) More than three-fifths of
all the quality issues can be mitigated by simply resubmitting jobs
(34.72%) and improving user code (24.72%). Our study results
provide valuable guidance on promoting the service quality of deep
learning platforms from both the development and maintenance
aspects. The results further motivate possible research directions
and tooling support.

Index Terms—deep learning, deep learning platform, quality
issue, empirical study

I. INTRODUCTION

In recent years, deep learning (DL) has been increasingly
adopted in many application areas, such as natural language pro-
cessing [1], [2], gaming with reinforcement learning [3], com-
puter programming [4], and satellite imagery [5]. IT enterprises
have built dedicated, multi-tenant platforms (e.g., Microsoft
Azure Machine Learning [6], Amazon SageMaker [7], and
Google Cloud AI [8]) for providing convenient deep learning
training and inference services to developers. These DL plat-
forms are equipped with a large number of computing devices
(e.g., CPUs, GPUs, or TPUs) and are internally interconnected
with a high-speed network (e.g., via InfiniBand [9]), supporting
a variety of DL frameworks and libraries such as PyTorch [10],
TensorFlow [11], and Hugging Face [12].

Inside Microsoft, hundreds of developers and researchers use
Platform-X, an internal production DL platform, to train and
test their models every day for various tasks like advertisement
and machine translation. Platform-X is built with widely used

†Corresponding author.

open-source software (e.g., Kubernetes [13]) and commodity
computing hardware (e.g., GPUs) and is similar in architecture
to the above-mentioned public DL platforms. For Platform-
X, one of its core tasks is to guarantee the service quality of
each user according to her service level agreement (SLA) when
facing unexpected hardware and software faults. Although many
quality assurance measures are intensively taken, in reality, a
number of DL jobs still suffer from severe problems named
quality issues, such that they cannot be submitted, run very
slowly, hang, or even fail accidentally. These quality issues
adversely affect not only user experience but also business
productivity. When encountering a quality issue, the user reports
it via an issue management system and expects site reliability
engineers (SREs) to diagnose and resolve it as soon as possible,
which also brings a heavy operational and maintenance burden
to the platform support team. Therefore, understanding the
quality issues raised in Platform-X, including their symptoms,
root causes, and mitigation actions, becomes particularly
important to help the platform support team maximize efficiency
and help the platform engineering team improve system design
and implementation.

There has been much previous work on the quality issues
of conventional software systems [14]–[22]. For example,
Zhou et al. [19] studied 210 randomly selected quality issues
from an internal big data analytics platform of Microsoft.
Recently, we have seen some deep-learning-related empirical
studies [23]–[31] focusing on the failures and bugs of DL
frameworks, compilers, programs, and jobs. For instance, Zhang
et al. [27] researched 4,960 internal DL job failures collected
from Microsoft within a three-week period. However, there is
still a lack of specialized studies on the characteristics of DL
platforms’ quality issues.

In this paper, we present a comprehensive empirical study
on quality issues of deep learning platform. We selected 360
quality issues randomly from the issue management system of
Platform-X, which were reported by developers and researchers
from November 2021 to February 2022. For each quality issue,
we collected its related information, including, for example,
the issue description, discussions, root cause, mitigation action,
final fix solution, and so on. If possible, we also collected
relevant information about the impacted job. More details
are presented in Section IV-A. The purpose of the study
is to provide a systematic and generalized understanding
of DL platforms’ quality issues. Platform-X has a similar
system architecture, software stack, deep learning toolchain,



job management, and quality issue handling to those of other
companies in the industry. As a result, the findings of this
study are not specific to Microsoft and could be applied to the
deep learning platforms of other companies. Specifically, our
study aims to address the following three research questions
(RQs):

RQ1: What are the common symptoms of the quality issues in
a deep learning platform?

RQ2: What are the common root causes of these quality issues?
RQ3: What are the common mitigation actions adopted by the

platform support team?

We obtain many findings, and some of the major ones
include:

1) Hardware faults account for nearly one-third (28.33%)
of all common causes and result from GPUs, networks,
and compute nodes.

2) Platform-side faults also account for nearly one-third
(28.33%) of all common causes, among which System
Defect, Resource Overload, and Platform Maintenance
are the top three out of six categories.

3) User-side faults are more than two-fifths (43.34%) of
all common causes, among which Buggy Code, Policy
Violation, and Improper Permission are the top three out
of five categories.

4) There are ten categories of mitigation actions. More than
three-fifths of the total quality issues can be mitigated by
Job Resubmission (34.72%) and User Code Improvement
(24.72%).

Our findings would better guide the design and management of
deep learning platforms to reduce quality issues and enhance
reliability. They would also assist both platform development
engineers and site reliability engineers in improving their daily
development and operational activities. Based on the study
results, we point out possible new directions for future research.

To summarize, this paper makes the following contributions:

1) We perform the first comprehensive study on quality
issues of a production deep learning platform. We
examine 360 quality issues and manually analyze their
symptoms, root causes, and mitigation actions.

2) We point out the implications of our findings and
suggest possible improvements for the development and
operations of deep learning platforms.

The rest of the paper is organized as follows. In Section II,
we give an overview of the deep learning platform Platform-
X and the job life cycle. Section III introduces how quality
issues are handled in Platform-X. Section IV presents the study
methodology. In Section V, Section VI, and Section VII, we
describe the common symptoms, root causes, and mitigation
actions of the quality issues, respectively. Section VIII discusses
the generality of our study and future research directions. We
survey related work in Section IX and conclude this paper in
Section X.

Fig. 1. Overview of Platform-X.

II. BACKGROUND

A. Deep Learning

Deep learning (DL) has rapidly emerged as one of the most
successful machine learning techniques. A DL model (aka deep
neural network) is a layered data representation [32], being
learned from massive input data. To write programs, developers
make use of DL frameworks such as ONNX [33], PyTorch [10],
and TensorFlow [11], as well as the Python programming
language. These frameworks formalize a DL model as a tensor-
oriented computation graph (i.e., a directed acyclic graph). A
tensor is a multi-dimensional array. Each node on such a graph
denotes a mathematical operation called an operator, which
manipulates one or more tensors. Example operators include
matrix product, rectified linear unit, 2D convolution, and linear
transformation. A graph edge delivers an output tensor of the
source node A to the destination node B as input and specifies
that B can begin execution only when A has finished.

B. Microsoft Platform-X

Platform-X is the internal production DL platform of
Microsoft, serving hundreds of developers and researchers.
Every day, users submit and execute thousands of DL jobs on
Platform-X for their routine work, such as machine translation,
gaming, object detection, and advertisement.

Microsoft builds Platform-X with comparable computing
hardware and widely used open-source software. For example,
Platform-X is deployed on multiple physical GPU clusters and
employs Kubernetes [13] for task planning, container orches-
tration, and heterogeneous hardware management. Platform-X
also adopts a standard DL programming paradigm: it prepares
diverse standard DL Docker [34] images composed of Python,
the NVIDIA CUDA/cuDNN/cuBLAS runtime, DL frameworks
such as PyTorch [10] and TensorFlow [11], and other popular
libraries like Fairseq [35] to establish a hermetic job execution
environment.

Figure 1 illustrates the workflow of Platform-X briefly. The
system architecture and job management of Platform-X are
very similar to those in public DL platforms such as Microsoft
Azure Machine Learning [6], Amazon SageMaker [7], and
Google Cloud AI [8]. Users first operate the web portal or

2



TABLE I
TELEMETRY DATA FOR QUALITY ISSUE DIAGNOSIS.

Dimension Category Examples

Job Metadata
Time job submission time, job/process start and end times, job queuing period, job/process execution period
Resource specification/number of GPU, CPU, and input/output storage
Software GPU driver, OS, NVIDIA runtime, Python, framework, libraries, and their versions

Performance

Computing average and peak utilization of GPU/CPU

Metrics

Memory total/available sizes and average/peak utilization of the main and GPU memory
Disk total size, available size, read/write bytes
Network sent/received bytes of InfiniBand and Ethernet
Node healthy or faulty state

Runtime Logs
User user-specified logs in the source code, containing execution progress, input data size, epoch number, batch

size, accuracy, loss, model type, etc.

System logs of runtimes, system components, and hardware drivers, such as “NCCL INFO NET/IB: Using
[0]mlx x:xx”

Failure exception and error messages, such as “uncorrectable NVLink error detected”

command line tool to upload all the materials, including the
input data, Python programs, shell scripts, and possibly model
checkpoints, to the distributed storage (e.g., Azure Blobs1).
Next, users specify the resource quota (e.g., the GPU model
and number), Docker image, startup shell script, main Python
file, input/output paths, and other configurations for their jobs.
Users can also specify custom Docker images preinstalled with
all the dependent libraries. Once a submitted job is chosen to
run, the scheduler of Platform-X allocates all the requested
resources at once using the gang scheduling [36] algorithm and
instantiates containers on one or more GPU compute nodes. A
compute node in Platform-X is a physical server or a virtual
machine equipped with GPUs, CPUs, main memory, disks, and
network interface cards. Afterward, the DL training code of
such a job iteratively updates the learnable parameters (i.e.,
weights and biases) until the model learning performance (e.g.,
predictive accuracy) achieves our expectation. Finally, when
the model training finishes, the job saves the final model files
and evaluation results to the distributed storage.

III. QUALITY ISSUE HANDLING IN PLATFORM-X

Platform-X adopts a standard and well-defined process for
handling quality issues. Firstly, users log in to the issue
management system of Platform-X from a web portal and
create an issue item. They follow one of the provided templates
to describe the issue in detail, including, for example, the title,
issue description, proposed severity level, job URL, failure
messages, and custom Docker image tag. More supplementary
information, such as runtime logs and performance metrics, is
encouraged to be submitted as attachments.

The issue management system then delivers the new quality
issue to an appropriate site reliability engineer (SRE)2 for
investigation based on the issue type and historical statistics.
The SRE invokes an integrated tool to automatically discover
previous duplicate, similar, or related quality issues. If none
is found, the SRE will follow a formal troubleshooting guide

1https://azure.microsoft.com/en-us/products/storage/blobs
2https://en.wikipedia.org/wiki/Site reliability engineering

to investigate the issue step by step in a top-down process.
Essentially, the SRE starts from a failure or abnormal site of the
impacted job process(es) by reviewing the error messages or
exceptional performance metrics. After analyzing the programs
and runtime logs, she tries to reason a critical path of the
problem. Guided by the troubleshooting decision rules, the
SRE dives into the bottleneck or failed stages in the critical
path to identify the root cause.

Platform-X has recorded various kinds of telemetry data for
the above issue diagnosis. These data contain job metadata,
performance metrics, and runtime logs, most of which are
listed in Table I. Job metadata include the time statistics
(e.g., job/process start and end times), allocated resources (e.g.,
the GPU specification and number), and dependent software.
Performance metrics include the usage of various resources
(e.g., the average utilization of GPU/CPU) and the node state
(i.e., healthy or faulty). Runtime logs include regular and failure
messages printed by user code, runtimes, system components,
and hardware drivers.

Next, the SRE adjusts the severity level and proposes a
mitigation action by the service level agreement (SLA) to
keep the user’s work going. The mitigation comes from the
referred actions for previous duplicate/similar/related quality
issues, instructions in the troubleshooting guide, and her domain
knowledge. The SRE regularly contacts the user via Microsoft
Teams3 or telephone to discuss the details, seek clarification,
and report progress. Each interaction with the user is noted
down carefully in the issue record.

In the end, the SRE investigates the final fix solution if
the quality issue is caused by hardware or platform-side
faults (Section VI-A and Section VI-B). Sometimes, the issue
is beyond the responsibility of Platform-X (e.g., caused by
a completely damaged compute node or an outage of the
distributed storage), so she transfers its ownership to the
corresponding team. After closing the quality issue, the SRE
also updates the troubleshooting guide to facilitate the future
handling of similar ones.

3https://www.microsoft.com/en-us/microsoft-teams/group-chat-software

3



IV. EMPIRICAL STUDY METHODOLOGY

A. Study Subjects

We consider the real quality issues of Platform-X as our study
subjects. They were submitted by developers and researchers
during a four-month period from November 2021 to February
2022. There existed duplicate quality issues because multiple
users were simultaneously affected by a single incident (e.g.,
cluster unavailability); thus, we performed issue deduplication.
In the end, we selected 360 quality issues randomly out of the
complete set.

For each quality issue, we collected all its related information
for later investigation, including, for example, the username,
group, cluster, job URL, issue title, description, attachments,
timestamps of issue status update, severity level, discussion
details, mitigation action, root cause, related issues, and final
fix solution. If the job URL existed, we further tried to pull
the job metadata (e.g., the GPU number and final job status),
execution logs, and various runtime metrics (e.g., the GPU
utilization and network sent/received bytes).

B. Data Labeling

For each of the 360 quality issues, we carefully examined
its related information (in particular, the issue description and
discussions) and manually labeled the symptom, root cause,
and mitigation action to answer the three research questions.
To reduce the inevitable subjectivity, two authors read all the
issue-related information independently for the data labeling.
We first extracted key sentences and phrases for the above three
dimensions, and then we refined them into the classification
schema by the existing ones of related studies (such as those
by Zhou et al. [19] and Zhang et al. [27]) and our domain
knowledge. When unsure of certain details, we contacted the
issue submitter and corresponding SRE directly for help.

C. Threats to Validity

Threats to Internal Validity. Although there are some
reference materials (such as the issue description and user-SRE
discussions) for facilitating the investigation of the symptoms,
root causes, and mitigation actions, subjectivity is inevitable
due to a mass of manual effort and the inherent complexity
of deep learning quality issues. To reduce such a threat, two
of the authors independently analyzed and labeled each of
the 360 quality issues. We also strived to reach a group
consensus before making decisions in case of disagreement.
When meeting a complicated issue, we contacted the submitter
and corresponding SRE directly to seek help.

Threats to External Validity. We perform our empirical study
on quality issues collected from Platform-X. Therefore, certain
findings may be restricted to Microsoft and may no longer hold
in the deep learning platforms of other companies, although
Platform-X is similar to them in the system architecture,
software stack, deep learning toolchain, job management, and
quality issue handling. To reduce this threat, we try not to
draw particular conclusions that only apply to Platform-X and
Microsoft in this paper. We will discuss the generality of our
findings in Section VIII-A.

TABLE II
CLASSIFICATION OF COMMON SYMPTOMS.

Category No. Ratio
Job Crash 198 55.00%
Job Submission Failure 51 14.17%
Abnormal Job Behavior 46 12.78%
Job Hang 27 7.50%
Cluster Unavailability 21 5.83%
Job Slowdown 11 3.05%
Data Loss 6 1.67%
Total 360 100.00%

V. WHAT ARE THE COMMON SYMPTOMS?
In this section, we study the common symptoms of the

quality issues. A symptom is the subjective evidence of a
quality issue observed by users, which can be discovered in
the issue title and description. Table II presents the symptom
classification, including seven categories in total.

Since users care more about their DL jobs, the overwhelming
majority of the symptoms (five categories; 333; 92.50%) are
related to specific jobs. The largest category is Job Crash (198;
55.00%), more than half the total. For example, a 32-GPU
distributed training job ran for a long time, suddenly printed
an error message complaining that the NVIDIA Collective
Communications Library (NCCL) [37] timed out, and then
crashed. The remaining four job-related categories, ordered in
number, are Job Submission Failure (51; 14.17%), Abnormal
Job Behavior (46; 12.78%), Job Hang (27; 7.50%), and Job
Slowdown (11; 3.05%). Abnormal Job Behavior means that a
DL job seems to be executing fine, but it exhibits some unusual
behaviors. For instance, a user noticed that only one of the
four allocated GPUs worked as expected, yet the others had
remained idle since the job started.

Two categories of the symptoms are not directly related to
a specific DL job. One is Cluster Unavailability (21; 5.83%),
which means that the GPU cluster cannot provide continuous
service for job submission and execution anymore (e.g., due
to an outage or cluster maintenance). For example, a user
found that some GPUs of a cluster were unavailable from
Platform-X’s web portal, and any job submission by him and
other colleagues to such a cluster continued to fail. The other
is Data Loss (6; 1.67%), indicating that users lost their data
suddenly and inexplicably. For instance, an input data folder on
the distributed storage disappeared without warning. Another
example is that a user could not query the telemetry data of
his historical DL jobs.

Finding 1: Almost all the common symptoms (92.50%)
are directly related to specific deep learning jobs, among
which the largest category is Job Crash (55.00%), more
than half the total.
Implication: Failed DL jobs waste lots of computing
resources and time. Therefore, users and the platform
should work together to reduce and tolerate job failures,
such as improving the user code and implementing a more
effective model checkpointing technique.

4



Fig. 2. Severity of quality issues.

TABLE III
OVERALL CLASSIFICATION OF COMMON ROOT CAUSES.

Dimension No. Ratio
Hardware Fault 102 28.33%
Platform-side Fault 102 28.33%
User-side Fault 156 43.34%
Total 360 100.00%

Furthermore, we classify the severity of the quality issues.
As mentioned in Section III, the user needs to claim a severity
level based on the business impact when submitting a quality
issue to the Platform-X support team. The issue management
system and SREs refer to the user-proposed severity to prioritize
the issue handling (e.g., determining the required time of a
mitigation action). Note that the SRE may adjust the severity
level according to the previous/similar quality issues and her
domain knowledge to reflect a more precise situation. Platform-
X adopts three severity levels: High, Normal, and Low. Figure 2
shows the severity distribution among all the 360 quality issues.
We observe that the vast majority (329; 91.39%) of the quality
issues have the Normal level. Only 19 (5.27%) quality issues are
High-level, which require that the support team starts dealing
with them in a very short period, updates the progress with the
users timely and regularly, and applies successful mitigation
actions within an allotted time. The remaining 12 (3.33%)
issues are at the Low level.

VI. WHAT ARE THE COMMON ROOT CAUSES?

In this section, we present the classification of the common
root causes of the 360 quality issues. Table IV, Table V, and
Table VI summarize twenty-two categories in total. We also
group them into three major dimensions: Hardware, Platform-
side, and User-side. Table III shows an overall distribution
across these dimensions.

A. Hardware Faults

Platform-X is built with heterogeneous commodity hardware
such as NVIDIA GPUs and InfiniBand networking, which may
encounter a relatively high probability of hardware malfunction.
Table III demonstrates that the hardware fault is a major type of
root cause, resulting in nearly one-third (102; 28.33%) of all the
quality issues. There are eleven categories of hardware faults

TABLE IV
CLASSIFICATION OF HARDWARE FAULTS.

Group Category No. Ratio

GPU

GPU Memory Fault 9 2.50%
GPU Unavailability 5 1.39%
NVLink Error 4 1.11%
Broken GPU Driver 2 0.55%
Subtotal 20 5.55%

Network

InfiniBand Port Down 6 1.67%
InfiniBand Slowdown 5 1.39%
InfiniBand Other Faults 6 1.67%
Ethernet Fault 8 2.22%
Subtotal 25 6.95%

Node

Node Outage 50 13.89%
Node Damage 5 1.39%
Node Preemption 2 0.55%
Subtotal 57 15.83%

Subtotal 102 28.33%

in total, and we further divide them into three groups: GPU,
Network, and Node. The detailed classification and distribution
of the hardware faults are illustrated in Table IV.

GPUs are the primary computing devices for deep learning
jobs. The long and heavy workload could lead to various GPU
faults [38]–[41]. The first category is GPU Memory Fault,
meaning that 9 (2.50%) quality issues are caused by faulty
GPU memory. Typical cases include uncorrectable ECC (error
correction code) errors, GPU MMU (memory management
unit) errors, illegal memory accesses, and memory leaks. For
example, a long-running distributed training job with 56 GPUs
suddenly threw a CUDA runtime error and failed. After using
the NVIDIA Data Center GPU Manager (DCGM) [42] for
further diagnosis, the SRE finally identified that the root cause
of such a job failure was one GPU raising an ECC error.
Sometimes, a DL job cannot find or register the allocated GPUs
because a GPU Unavailability fault is raised. This category
has 5 (1.39%) quality issues. The third category is NVLink
Error, which consists of 4 (1.11%) quality issues. The NVIDIA
NVLink is “a direct GPU-to-GPU interconnect that scales
multi-GPU input/output (IO)” [43] within a compute node
for distributed DL training. Figure 3 shows the failure logs
of an example NVLink error. In the fourth and last category,
two (0.55%) quality issues root in Broken GPU Driver, which
usually needs node restart or driver reinstallation because the
NVIDIA GPU driver is not working appropriately.

Distributed deep learning training across multiple compute
nodes is pretty common in Platform-X. These nodes are
internally interconnected with a high-speed network (e.g.,
via InfiniBand [9]). We observe that 25 (6.95%) quality
issues are caused by four categories of network faults, among
which three categories are InfiniBand-related. InfiniBand is “a
computer networking communications standard used in high-
performance computing that features very high throughput
and very low latency” [9] and is widely used in a variety of

5



1 ...
2 terminate called after throwing an instance of

'c10::Error'↪→

3 what(): CUDA error: uncorrectable NVLink error
detected during the execution↪→

4 Exception raised from create_event_internal at
../c10/cuda/CUDACachingAllocator.cpp:687 (most
recent call first)

↪→

↪→

5 ...
6 c10:cuda:CUDACachingAllocator::raw_delete(void *)

... in /opt/.../torch/lib/libc10_cuda.so)↪→

Fig. 3. Failure logs of an NVLink Error example. The job crashed when
calling the CUDACachineAllocator::raw delete() function.

cloud-based platforms. InfiniBand Port Down is the largest
category, containing 6 (1.67%) cases. It means that there is
no physical connection between two InfiniBand Host Channel
Adapters of a cable, and thus runtime errors of the NVIDIA
Collective Communications Library (NCCL) [37] are triggered.
The second category is InfiniBand Slowdown (5; 1.39%), which
means that the InfiniBand adapter is extremely slow, sometimes
an order of magnitude slower than normal. As a result, the DL
jobs also slow down or even get stuck. There are 6 (1.67%)
other InfiniBand faults, including adapter initialization failures,
broken driver, write transaction faults, and memory registration
failures. The fourth root cause category, Ethernet Fault, is
tied for the largest one. Ethernet is also intensively used in
Platform-X for connecting the distributed storage and internal
services and for facilitating users to debug their failed jobs via
the secure shell protocol (SSH). This category has 8 (2.22%)
cases, including, for example, transient Ethernet failures, name
resolution errors, and connection reset by peer.

A compute node (or node for short) in Platform-X is a
distinct schedulable unit for computation with GPUs, CPUs,
main memory, disks, and network interface cards. It can be a
physical server or a virtual machine (VM). Since Platform-X
uses commodity hardware, node faults are unavoidable and lead
to 57 (15.83%) quality issues, more than the sum of the other
two groups. 50 (13.89%) of them are Node Outages, such as
OS kernel panic and ephemeral disk errors, causing the DL
jobs to fail or hang. To be noted, ephemeral disks are created
and attached to a compute node as temporary storage (e.g., a
job pulling and storing its remote input data for later fast data
access). This category is the largest in the node group, far more
than the other two. The Node Damage category consists of 5
(1.39%) cases. The Platform-X support team will immediately
de-commit (i.e., recall) a completely damaged node from its
belonging cluster and hand it over to a dedicated hardware
support team for further repairs. The third and last category is
Node Preemption, which has only 2 (0.55%) cases. The users
applied for spot nodes [44] (i.e., currently unused nodes at
significant cost savings); however, they were unconscious that
Platform-X terminated their jobs and reclaimed the spot nodes
for others who paid regular fees.

TABLE V
CLASSIFICATION OF PLATFORM-SIDE FAULTS.

Category No. Ratio
System Defect 37 10.28%
Resource Overload 21 5.83%
Platform Maintenance 14 3.89%
Transient Service Outage 11 3.05%
Resource Contention 10 2.78%
Regression 9 2.50%
Subtotal 102 28.33%

Finding 2: Hardware faults account for nearly one-third
(28.33%) of all the common causes and result from the
GPU, network, and compute node.
Implication: Hardware faults are inevitable in deep
learning platforms. Proactive hardware testing (e.g., fault
injection [45] and stress testing [46]) and fault prediction
(e.g., using machine learning prediction models [40], [41])
techniques need to be developed and applied.

B. Platform-side Faults

In this section, we describe the study on platform-side faults,
which consist of 102 (28.33%) cases and are further classified
into six categories. Table V shows the detailed classification
and distribution.

System Defect is the largest category and results in 37
(10.28%) quality issues. Typical defects include:

1) Code bugs. For example, Platform-X forgot to package
a dependent library into an official Docker image. As
another example, some DL jobs could not access the
distributed storage due to a bug in the storage service
code.

2) Service misconfiguration. For instance, a DL job failed
because of a misconfigured domain name system (DNS)
service.

3) Wrong access control. As mentioned, an input data folder
on the distributed storage disappeared without warning.
The root cause is that the access control of such a folder
was mistakenly set by Platform-X, and thus another
colleague in the same team deleted it accidentally.

For certain system resources, Platform-X does not have
explicit quota control on users and DL jobs. Therefore, if users
are unaware of such a system design limitation and employ a
resource excessively, Resource Overload faults are triggered.
There are 21 (5.83%) cases in this category. For instance, a
user tried to load all the input data into the main memory for
optimal performance. Nevertheless, the data was overlarge, and
the main memory soon ran out. As another example, it is a
common practice for users to store their temporary data (such as
model checkpoints, evaluation results, software cache, or even
input data) on the local disks of compute nodes. Sometimes,
users forget to clean out old files, and the disk space is quickly
used up.

6



Since multiple DL jobs may compete for the same resources
on a compute node, they could interfere with each other and
trigger Resource Contention faults. This category includes
10 (2.78%) cases. For instance, a DL job experienced an
unexpected slowdown. The SRE discovered that such a job
received far less CPU time than usual because another job
created too many CPU tasks at the same time. Resource
Contention is similar to the above Resource Overload, and
both can be alleviated by adopting a more proper system
design (e.g., applying resource isolation and quota control).

Platform-X performs regular Platform Maintenance on GPU
clusters for hardware replacement, node reimaging, software
upgrade, and other tasks, which leads to 14 (3.89%) quality
issues. If users do not carry on proactive job migration, existing
running DL jobs will be terminated automatically by Platform-
X. Occasionally, some users are unaware of the maintenance
notification, and thus they fail to submit jobs persistently.

The fifth category is Transient Service Outage, which
accounts for 3.05% (11) of all the root causes. For example, a
user was not able to connect to the allocated compute nodes
because the SSH service was temporarily unavailable. These
service outages were transient and could be automatically
recovered after a while. However, we do not have further
details to reason more fundamental causes.

Regression in the tools, runtimes, and services of Platform-X
causes 9 (2.50%) quality issues. For example, an updated job
submission tool changed certain environment variables and
thus broke backward compatibility. The regression comes from
the roll-out policy adopted by Platform-X. At present, new
features and updates are incrementally rolled out, and Platform-
X enlarges the deployment scope gradually. Therefore, both
old and new versions have to be maintained, which requires
users to pay attention. Once regression happens, the user could
roll the software or service back to an older version for issue
mitigation.

Finding 3: Platform-side faults also account for nearly
one-third (28.33%) of all the common causes, among
which System Defect, Resource Overload, and Platform
Maintenance are the top three out of six categories.
Implication: Platforms should improve the system de-
sign and implementation to deliver a better deep learn-
ing service. Various testing techniques (such as for-
mal/stress/regression testing) would help expose the
platform-side faults as early as possible.

C. User-side Faults

Although it is usually thought that users should not report
any problems of their own making, we are surprised to notice
that 156 (43.34%) quality issues are actually caused by user-
side faults. We further classify them into five categories and
show the details in Table VI.

The first and largest category is Buggy Code, which involves
54 (15.00%) cases and is nearly half of the total user-side faults.
These code bugs exist in deep learning programs, Shell scripts,
configuration files, and custom Dockerfiles, many of which

TABLE VI
CLASSIFICATION OF USER-SIDE FAULTS.

Category No. Ratio
Buggy Code 54 15.00%
Policy Violation 42 11.66%
Improper Permission 35 9.72%
Software Incompatibility 14 3.89%
Misoperation 11 3.05%
Subtotal 156 43.34%

1 ...
2 files = [f for f in listdir(logdir) if

isfile(join(logdir, f))]↪→

3 FileNotFoundError: [Errno 2] No such file or
directory: '˜/tensorboard/xxx'↪→

4 ...

Fig. 4. Failure logs of a Buggy Code example. The job forgot to adapt the
code and still used a nonexistent local folder for TensorBoard visualization.

1 ...
2 raise HTTPError(http_error_msg, response=self)
3 requests.exceptions.HTTPError: 502 Server Error:

Bad Gateway for url:
https://huggingface.co/xxx.model

↪→

↪→

4 ...

Fig. 5. Failure logs of another Buggy Code example. The job was unable to
download a required model from Hugging Face and forgot to handle such a
service-unavailability failure.

have been mentioned in the empirical study by Zhang et al. [27].
For example, a number of bugs came from “the discrepancies
between local and platform execution environments.” [27]
Figure 4 shows that a DL job accessed a nonexistent local
folder for TensorBoard [47] visualization. It seems that the
user forgot to adapt the code and use a path on Platform-X.
Due to the complexity of Platform-X’s execution environment,
users should adopt more defensive programming to handle
various potential faults that may not be exposed on their local
development machines. For instance, we noticed that a job
crashed because of exceptional data in an unexpected format.
Better practices include cleansing the dataset proactively before
job submission and sampling data for local testing. Some
jobs rely on external services but neglect to deal with service
unavailability appropriately; for example, they failed to pull
external Docker images, models, or datasets. Hugging Face [12]
provides tools for users to build state-of-the-art AI applications
from “the reference open source in machine learning,” whose
pre-trained models and datasets are stored in its own repository.
Figure 5 demonstrates a bad-gateway failure in which a DL job
could not download a required Hugging Face model. In order
to reduce the probability of external services being unavailable,
users are encouraged to switch to equivalent internal services
instead (e.g., uploading the Hugging Face model to the internal
distributed storage in advance).

We further found some performance bugs not mentioned by
Zhang et al. [27] since they studied only deep learning program

7



failures. For instance, a job read a lot of small data files from
the distributed storage, slowing down the training process
seriously. As another example, a multi-GPU training job ran
very slowly because of the potential contention between threads.
We also noticed some software hang bugs [48], [49] that kept
the jobs going nowhere; for example, one job misconfigured
InfiniBand in the source code and hung on the NVIDIA NCCL
communication.

Platform-X enforces many policy rules to guarantee that
users employ precious platform resources more properly and
efficiently. Although Platform-X has provided documentation
and training courses for policy explanation, some users are still
unaware of those rules, which triggers Policy Violation faults
and leads to 42 (11.66%) quality issues. This category is the
second largest and accounts for about a quarter of all the user-
side faults. As an example, Platform-X automatically killed user
jobs whose GPUs had been idle for a prescribed period of time
to reduce resource waste and maximize platform utilization.
We also noticed that some users submitted interactive deep
learning programs (e.g., Jupyter [50] notebooks) to Platform-X
for development and testing purposes. Because of the non-
deterministic interaction, it was impossible to know when and
how long the GPUs would be used in advance. Finally, Platform-
X killed these interactive jobs for being idle too long. Other
violated policy rules include, for example, the data on Platform-
X’s temporary storage expiring after a few days (so users need
to move them to persistent storage as soon as possible) and a
DL job not initiating too many connections to certain internal
services. Violation of the latter triggers service throttling and
leads to job slowdown or even service termination.

Users and their DL jobs need appropriate permissions
to access the resources of Platform-X; otherwise, Improper
Permission faults are raised, resulting in 35 (9.72%) quality
issues. For instance, a user could not submit any job to a certain
GPU cluster. In fact, his request for cluster access was still
being processed, and thus the user had no access permission
at that moment. Another example is that a DL job failed to
pull a Docker image from the hub due to missing a correct
credential.

The fourth category is Software Incompatibility, consisting
of 14 (3.89%) cases. With the increasing adoption of deep
learning in many application areas, DL-related software, such
as NVIDIA runtimes, frameworks, libraries, and optimization
toolkits, has been rapidly evolving recently. However, since
they are independently developed by different communities,
incompatibility may happen between mismatched components.
For example, a job got stuck because the standard DL Docker
image used a lower version of the NVIDIA CUDA runtime
than that for local development. Commonly, DL jobs install
dependent libraries during the initialization stage. If users
forget to specify library versions explicitly, they may get
the latest software not yet tested by themselves, which could
trigger software incompatibility. For instance, a job installed
a newer incompatible version of Microsoft DeepSpeed [51]
(an optimization toolkit) and then experienced an apparent
slowdown due to the degraded network throughput of the

TABLE VII
CLASSIFICATION OF COMMON MITIGATION ACTIONS.

Category No. Ratio
Job Resubmission 125 34.72%
User Code Improvement 89 24.72%
Operation Correction 26 7.22%
System Reconfiguration 23 6.39%
Software Rollback 22 6.11%
Automatic Healing 22 6.11%
System Hotfix 19 5.28%
Node De-commission 5 1.39%
Job Killing 4 1.11%
Quota Increase 3 0.84%
Others∗ 22 6.11%
Total 360 100.00%
∗ “Others” means that the quality issues lack explicit details on
how they were mitigated.

compute nodes. To reduce software incompatibility, users need
a deeper understanding of various DL software components
and use custom Docker images with all dependent libraries
pre-installed.

Misoperations of users cause 11 (3.05%) quality issues
because they may not be familiar with the operation process.
For instance, a user applied a wrong filter when querying
information on the web portal and thus received unexpected
results. Another example is that a user deleted his workspace
inadvertently by mistake. A workspace provides “a centralized
place to work with all the artifacts you create.” [52] Therefore,
the user lost the history of all his training jobs without even
knowing that.

Finding 4: User-side faults account for more than two-
fifths (43.34%) of all the common causes, among which
Buggy Code, Policy Violation, and Improper Permission
are the top three out of five categories.
Implication: Users should improve deep learning code,
refer to documentation, and participate in training to
reduce the faults made by themselves. Static analysis tools
could be developed to detect user-side faults automatically
as early as possible.

VII. FROM QUALITY ISSUES TO MITIGATION ACTIONS

Site reliability engineers (SREs) have a responsibility to
apply mitigation actions quickly when new quality issues are
reported. The purpose of a mitigation action is to renew the
impacted job back to work or recover the services of Platform-
X in the shortest possible time; otherwise, business is adversely
affected, and precious resources are significantly wasted. The
mitigation is usually a workaround instead of a final fix solution
because the latter requires a long time of thorough investigation,
error-free implementation, and extensive testing and thus may
not be affordable.

In this section, we study the common mitigation actions
adopted by SREs and classify them into ten categories.
Table VII shows the classification details. Note that 22 (6.11%)

8



quality issues lack explicit details on how they were mitigated;
therefore, we mark their mitigation actions as Others.

Job Resubmission is the largest category, containing 125
(34.72%) cases. As we have seen in Section VI, many job
failures and slowdowns are caused by various hardware and
platform-side faults, most of which actually affect only one or
a few compute nodes. Once SREs identify a faulty node, or
Platform-X detects one automatically, it is de-committed from
the belonging cluster for offline repair. Therefore, resubmitting
the impacted job without modifying any configurations and
parameters will most likely avoid the faulty nodes and can
finish the job successfully.

User Code Improvement is the second largest category and
applies to 89 (24.72%) quality issues. Many are caused by
user-side faults, which should not be reported to the platform
support team indeed. However, in order not to hinder our
business, SREs are active in helping users refine their code,
access permission, and submission parameters. For example, an
SRE instructed the user to increase the NCCL timeout value in
the source code for an InfiniBand-related issue. For part of the
issues caused by Resource Overload and Resource Contention,
code improvement is also an effective mitigation method.

26 (7.22%) quality issues due to Misoperation, Policy
Violation, and Improper Permission can be mitigated by
Operation Correction. For example, as we mentioned, a user
applied the wrong query filter. The SRE instructed the user
on how to query information properly on the web portal and
suggested a correct filter.

The System Reconfiguration category includes 23 (6.39%)
quality issues, which are mainly caused by Resource Overload,
Policy Violation, and Improper Permission. SREs need to
reconfigure the access permission, policy rules, or service
parameters. For instance, an issue reported that the storage ran
out. To mitigate it, the SRE and cluster administrator increased
the total storage volume and performed data cleaning.

22 (6.11%) quality issues caused by Software Incompatibility,
Regression, and System Defect (one case) are mitigated by
Software Rollback to the last version that worked. For the
system tools, components, and services, Platform-X preserves
several latest working versions.

Some service outages and hardware faults are transient or
can be automatically recovered by Platform-X. Therefore, 22
(6.11%) quality issues are mitigated by Automatic Healing,
meaning that the users do not need to perform specific actions.

Many system defects may show a potential broad influence
and do not have simple mitigation actions. Therefore, the
support teams of Platform-X and other system services work
together to deliver System Hotfixes as quickly as possible. For
instance, an OS upgrade caused a storage service not to work
properly because of a minor incompatibility issue. The support
team fixed the incompatibility soon and then applied a system
hotfix. This category has 19 (5.28%) cases in total. Note that
hotfixes need further verification and stress testing before they
become official system patches.

The remaining three smaller categories are:

1) Node De-commission (5; 1.39%), which eliminates a
faulty compute node immediately from the cluster and
applies to Node Damage faults only.

2) Job Killing (4; 1.11%), which mitigates zombie jobs that
use up all the resources and stop further job submission.

3) Quota Increase (3; 0.84%), which requires that users
increase the quota of certain resources (e.g., the main
memory) to resolve Resource Overload and Resource
Contention faults.

Finding 5: There are ten categories of mitigation actions.
More than three-fifths of the total quality issues are
mitigated by Job Resubmission (34.72%) and User Code
Improvement (24.72%).
Implication: Auto-recommendation tools based on histori-
cal statistics could be developed to automate and accelerate
the mitigation process.

VIII. DISCUSSION

A. Generality of Our Study

Our study is exclusively conducted in Microsoft; however,
we believe that the selected deep learning quality issues are
common, and the study results can be generalized to other
DL platforms, such as Microsoft Azure Machine Learning [6],
Amazon SageMaker [7], and Google Cloud AI [8]. The key
reason is the twofold similarity between Platform-X and others:

1) Platform-X is built with the widely adopted hardware,
system architecture, and software stack [26], [53], [54],
analogical to those of other platforms. In addition,
Platform-X employs a similar mechanism of job man-
agement (e.g., submission and execution).

2) The DL jobs running on Platform-X adopt a standard
programming paradigm. For example, they are pro-
grammed with the Python language, popular frameworks
(e.g., ONNX [33], PyTorch [10], and TensorFlow [11])
and libraries (e.g., Fairseq [35] and Microsoft Deep-
Speed [51]), and stochastic algorithms. These jobs also
target common tasks such as image recognition, natural
language processing, and gaming.

Researchers have also observed similar quality issues and
root causes. Prior work [38], [39], [55] found that “GPUs are
among the top-3 most failed hardware and GPU memory is
more sensitive to uncorrectable errors than main memory,” [41]
which is consistent with our finding. The chronicles [56]
of the OPT (Open Pre-trained Transformers) development
described how Meta (formerly Facebook) researchers fought
against various quality issues. Many came from hardware faults
(e.g., InfiniBand issues and GPU ECC errors), resulting in
“∼2 machines going down every day.” [56] There was once
a severe platform-side fault: “the cloud provider’s support
team accidentally deleted our entire cluster on December 21,
2021.” [56] For user-side faults, existing DL-related empirical
studies [23], [27], [31] have mentioned some code bugs that
lead to job crashes and slowdowns.

9



B. Future Research Directions
Based on our study, we propose the following future research

directions:
Tool Support.

Hardware Fault Prediction. Nearly one-third (102; 28.33%)
of the quality issues are caused by the faults of GPUs, network-
ing, and compute nodes. We could train a machine learning
model to predict which hardware device would malfunction
and when it happens. For example, Liu et al. [41] used machine
learning techniques (e.g., LSTM [57], 1D-CNN [58], and
ensemble learning [59]) to predict GPU errors based on various
GPU and machine parameters, such as temperature, machine
uptime, and GPU utilization/type/position.

Hang Analyzer. Although job hangs only account for 7.50%
(27) of the quality issues, it is rather challenging for SREs
to diagnose and resolve them. Unlike prior software hangs
(i.e., unresponsiveness or freeze) [48], [49], job hangs deeply
involve the underlying NVIDIA runtimes (i.e., NCCL) and
hardware (e.g., the GPU and InfiniBand). For instance, there
exists a potential deadlock in NCCL when the number of
communication nodes increases. We could develop static and
dynamic hang analyzers to reduce this type of issue proactively
before job submission.

Crash Tolerance. 198 (55.00%) quality issues are job crashes;
thus, the latest training progress (i.e., model weights and biases)
is permanently lost. A common yet simple method against a
crash is to save model checkpoints regularly. However, the built-
in model checkpointing of DL frameworks is preliminary and
inefficient. We could employ frequency adaptivity [60], [61],
incremental checkpointing [62], asynchrony [61], [63], and
high-performance serialization [64], [65] to implement more
effective model checkpointing. Moreover, elastic training [66]–
[68] is also a useful technique that enables dynamic job scaling
to prevent various crashes.

Code Advisor. We have seen that many quality issues
result from user code bugs, improper permission, and policy
violations in our study. Therefore, we could develop static-
analysis-based code advisors which detect various issues
proactively in users’ programs, Shell scripts, Dockerfiles, and
configuration/credential files. Also, these code advisors may
provide advanced fix suggestions or automated program repair
features.
Platform Improvement.

Fault-aware Job Scheduling. After examining all the issue
records and discussing with some SREs, we observe that some
particular compute nodes have a higher probability of outages
under heavy load. Currently, deep learning platforms allocate
nodes to a job mainly based on the required resources. Such
platforms could learn from the historical failure data of compute
nodes and incorporate fault awareness into their job schedulers.
A possible future work is to enable platforms to estimate job
workloads and schedule long-running jobs to more stable nodes
instead of the fault-prone ones. In this way, potential job issues
could be reduced.

Platform Testing. More than half of the quality issues are
due to hardware and platform-side faults. Since the computing

devices (e.g., GPUs and TPUs), high-speed networks (e.g.,
InfiniBand), and software (e.g., Kubernetes and NVIDIA
runtimes) for deep learning are evolving fast, platforms need
more advanced and comprehensive testing methods. For ex-
ample, Microsoft SuperBench [46] uses representative training
workloads to validate AI infrastructure and has detected many
new hardware/platform issues. We could also employ stress
testing [69], fault injection [45], [70], and model checking [71]
to test DL platforms more thoroughly and effectively.

IX. RELATED WORK

Over the years, many researchers have conducted empirical
studies [19]–[22] to understand the characteristics of the
big data analytics platform and data-parallel programming
paradigm. For example, Zhou et al. [19] studied 210 randomly
selected quality issues from an internal production big data
platform of Microsoft. Kavulya et al. [20] analyzed 10-month
MapReduce logs from Yahoo’s M45 supercomputing cluster
and characterized “resource utilization patterns, job patterns,
and sources of failures.” Xiao et al. [21] studied the production
data-parallel programs of Microsoft and presented “interesting
findings on commutativity, non-determinism, and correctness.”
Li et al. [22] provided a comprehensive study on two hundred
failed big data jobs, which investigated major failure types,
root causes, fixes, and debugging practices.

There is also a line of research [38], [39], [55], [72] studying
the various faults arising in high-performance computing (HPC)
clusters. For example, Tiwari et al. [38] analyzed general
GPU errors on the Titan supercomputer and presented the
implications for future HPC design and operation. Nie et al. [39]
extended the above work to study GPU soft-errors “that can be
corrected by the ECC mechanism but do not result in execution
loss.” Di Martino et al. [72] presented an analysis of system
failures from Blue Waters, another supercomputer. Gupta et
al. [55] studied the spatial characteristics of system failures.
These researches discovered that GPU errors were among the
top hardware faults, which is consistent with our finding.

Recently, we have seen some empirical studies on deep
learning [23]–[31]. However, most focus on the failures and
bugs of DL frameworks, compilers, programs, and jobs. For
example, Zhang et al. [27] studied 4,960 internal DL job failures
collected from Microsoft within three weeks and classified them
into twenty categories. In this paper, we have seen that the
quality issues caused by user-side faults are more than two-
fifths of the total; therefore, the work by Zhang et al. could
help users improve their deep learning programs significantly.
Cao et al. [31] researched 238 performance bugs in TensorFlow
and Keras programs, which were collected from 225 Stack
Overflow posts. Shen et al. [29] conducted a systematic study
of 603 bugs in three popular DL compilers and developed a
practical fuzzer to expose more bugs in Apache TVM [73]. Jeon
et al. [26] analyzed low GPU utilization of large-scale, multi-
tenant GPU clusters for DL training. Taking the perspective of
platforms, the authors pointed out that the root causes came
from gang scheduling [36], resource locality, and job failures.
They also suggested how to improve the future generation

10



of cluster schedulers. This research considered more about
the GPU utilization of clusters. Instead, our work focuses on
quality issues and provides valuable guidelines for the future
development of deep learning platforms.

X. CONCLUSION

This paper has presented a comprehensive empirical study
on quality issues of Platform-X, an internal production deep
learning platform of Microsoft. We randomly selected 360
real issues and manually analyzed their common symptoms,
root causes, and mitigation actions. Based on our findings, we
suggested possible research topics to reduce quality issues,
enhance platform reliability, and improve operational activities.
We believe that this work provides valuable guidelines for the
future development of deep learning platforms.

REFERENCES

[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 1877–1901.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, A. D. Michaël Mathieu,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al.,
“Grandmaster level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, 2019.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” CoRR, vol. abs/2107.03374, 2021.

[5] E. Rolf, J. Proctor, T. Carleton, I. Bolliger, V. Shankar, M. Ishihara,
B. Recht, and S. Hsiang, “A generalizable and accessible approach to
machine learning with global satellite imagery,” Nature Communications,
vol. 12, 2021.

[6] “Microsoft azure machine learning,” https://azure.microsoft.com/en-us/
services/machine-learning-service, 2022.

[7] “Amazon sagemaker,” https://aws.amazon.com/sagemaker, 2022.
[8] “Google cloud ai,” https://cloud.google.com/products/ai, 2022.
[9] Wikipedia, “InfiniBand — Wikipedia, the free encyclopedia,” http://en.

wikipedia.org/w/index.php?title=InfiniBand&oldid=1104722169, 2022.
[10] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, vol. 32. Curran Associates, Inc., 2019, pp.
8024–8035.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-
scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, Nov. 2016, pp. 265–283.

[12] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, and J. Brew, “Huggingface’s
transformers: State-of-the-art natural language processing,” CoRR, vol.
abs/1910.03771, 2019.

[13] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Commun. ACM, vol. 59, no. 5, p. 50–57, apr
2016.

[14] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo,
and S. Godfrey, “Defect categorization: Making use of a decade of
widely varying historical data,” in Proceedings of the Second ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’08. New York, NY, USA: Association for
Computing Machinery, 2008, p. 149–157.

[15] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have things
changed now? an empirical study of bug characteristics in modern open
source software,” in Proceedings of the 1st Workshop on Architectural
and System Support for Improving Software Dependability, ser. ASID
’06. New York, NY, USA: Association for Computing Machinery, 2006,
p. 25–33.

[16] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, ser. SOSP ’01. New
York, NY, USA: Association for Computing Machinery, 2001, p. 73–88.

[17] N. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in
a complex software system,” IEEE Transactions on Software Engineering,
vol. 26, no. 8, pp. 797–814, 2000.

[18] C. Andersson and P. Runeson, “A replicated quantitative analysis of
fault distributions in complex software systems,” IEEE Transactions on
Software Engineering, vol. 33, no. 5, pp. 273–286, 2007.

[19] H. Zhou, J.-G. Lou, H. Zhang, H. Lin, H. Lin, and T. Qin, “An empirical
study on quality issues of production big data platform,” in Proceedings
of the 37th International Conference on Software Engineering - Volume
2, ser. ICSE ’15. IEEE Press, 2015, p. 17–26.

[20] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of
traces from a production mapreduce cluster,” in 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, 2010,
pp. 94–103.

[21] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin, W. Chen,
and L. Zhou, “Nondeterminism in mapreduce considered harmful? an
empirical study on non-commutative aggregators in mapreduce programs,”
in Companion Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE Companion 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 44–53.

[22] S. Li, H. Zhou, H. Lin, T. Xiao, H. Lin, W. Lin, and T. Xie, “A
characteristic study on failures of production distributed data-parallel
programs,” in Proceedings of the 2013 International Conference on
Software Engineering, ser. ICSE ’13. IEEE Press, 2013, p. 963–972.

[23] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2018. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 129–140.

[24] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2019. New York, NY, USA: Association for Computing Machinery,
2019, p. 510–520.

[25] T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim, “An empirical study of
common challenges in developing deep learning applications,” in 2019
IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), 2019, pp. 104–115.

[26] M. Jeon, S. Venkataraman, A. Phanishayee, u. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant gpu clusters for dnn training
workloads,” in Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, ser. USENIX ATC ’19. USA: USENIX
Association, 2019, pp. 947–960.

[27] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An empirical
study on program failures of deep learning jobs,” in Proceedings of the
42nd International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
1159–1170.

[28] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “An empirical
study on bugs inside tensorflow,” in Database Systems for Advanced
Applications: 25th International Conference, DASFAA 2020, Jeju, South
Korea, September 24–27, 2020, Proceedings, Part I. Berlin, Heidelberg:
Springer-Verlag, 2020, p. 604–620.

[29] Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen, “A
comprehensive study of deep learning compiler bugs,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,

11



ser. ESEC/FSE 2021. New York, NY, USA: Association for Computing
Machinery, 2021, p. 968–980.

[30] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization and
prediction of deep learning workloads in large-scale gpu datacenters,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New York,
NY, USA: Association for Computing Machinery, 2021.

[31] J. Cao, B. Chen, C. Sun, L. Hu, and X. Peng, “Characterizing performance
bugs in deep learning systems,” CoRR, vol. abs/2112.01771, 2021.

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[33] ONNX, “Open neural network exchange,” https://onnx.ai/, 2017.
[34] D. Merkel, “Docker: Lightweight linux containers for consistent devel-

opment and deployment,” Linux J., vol. 2014, no. 239, mar 2014.
[35] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,

and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”
in Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

[36] J. Ousterhout, “Scheduling techniques for concurrent systems,” in Pro-
ceedings of the 3rd International Conference on Distributed Computing
Systems, 1982, pp. 22–30.

[37] NVIDIA, “Nvidia collective communications library (nccl),” https://
developer.nvidia.com/nccl, 2022.

[38] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding gpu errors on large-scale hpc systems and
the implications for system design and operation,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 331–342.

[39] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-scale
study of soft-errors on gpus in the field,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016,
pp. 519–530.

[40] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and D. Tiwari,
“Machine learning models for gpu error prediction in a large scale hpc
system,” in 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2018, pp. 95–106.

[41] H. Liu, Z. Li, C. Tan, R. Yang, G. Cao, Z. Liu, and C. Guo, “Prediction of
GPU failures under deep learning workloads,” CoRR, vol. abs/2201.11853,
2022.

[42] NVIDIA, “Nvidia data center gpu manager (dcgm),” https://developer.
nvidia.com/dcgm, 2022.

[43] ——, “Nvlink & nvswitch: Fastest hpc data center platform,” https:
//www.nvidia.com/en-us/data-center/nvlink, 2022.

[44] M. Azure, “Azure spot virtual machines,” https://azure.microsoft.com/
en-us/products/virtual-machines/spot/, 2022.

[45] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler, “Nvbitfi:
Dynamic fault injection for gpus,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2021, pp. 284–291.

[46] Microsoft, “Superbench: a validation and profiling tool for ai infrastruc-
ture,” https://github.com/microsoft/superbenchmark, 2021.

[47] “Tensorboard: Tensorflow’s visualization toolkit,” https://www.tensorflow.
org/tensorboard, 2022.

[48] X. Wang, Z. Guo, X. Liu, Z. Xu, H. Lin, X. Wang, and Z. Zhang,
“Hang analysis: Fighting responsiveness bugs,” in Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2008,
ser. Eurosys ’08. New York, NY, USA: Association for Computing
Machinery, 2008, p. 177–190.

[49] J. He, T. Dai, X. Gu, and G. Jin, “Hangfix: Automatically fixing software
hang bugs for production cloud systems,” in Proceedings of the 11th
ACM Symposium on Cloud Computing, ser. SoCC ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 344–357.

[50] Jupyter, “Project jupyter,” https://jupyter.org, 2022.
[51] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System

optimizations enable training deep learning models with over 100 billion
parameters,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ser. KDD ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
3505–3506.

[52] Microsoft, “What is an azure machine learning workspace?” https://learn.
microsoft.com/en-us/azure/machine-learning/concept-workspace, 2022.

[53] S. Boag, P. Dube, B. Herta, W. Hummer, V. Ishakian, K. JAYARAM,
M. Kalantar, V. Muthusamy, P. NAG-PURKAR, and F. Rosenberg,

“Scalable multi-framework multi-tenant lifecycle management of deep
learning training jobs,” in Workshop on ML Systems, NIPS, 2017.

[54] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning,” in Proceedings
of the 13th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI ’18. USA: USENIX Association, 2018, p.
595–610.

[55] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell, “Understanding
and exploiting spatial properties of system failures on extreme-scale hpc
systems,” in 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2015, pp. 37–44.

[56] Meta, “Metaseq: A codebase for working with open pre-trained
transformers.” https://github.com/facebookresearch/metaseq/blob/main/
projects/OPT/chronicles/README.md, 2022.

[57] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[58] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.
Inman, “1d convolutional neural networks and applications: A survey,”
Mechanical systems and signal processing, vol. 151, p. 107398, 2021.

[59] C. Zhang and Y. Ma, Ensemble Machine Learning: Methods and
Applications. Springer Publishing Company, Incorporated, 2012.

[60] Z. Lan and Y. Li, “Adaptive fault management of parallel applications
for high-performance computing,” IEEE Trans. Comput., vol. 57, no. 12,
p. 1647–1660, dec 2008.

[61] J. Mohan, A. Phanishayee, and V. Chidambaram, “CheckFreq: Frequent,
Fine-Grained DNN checkpointing,” in 19th USENIX Conference on File
and Storage Technologies (FAST 21). USENIX Association, Feb. 2021,
pp. 203–216.

[62] A. Eisenman, K. K. Matam, S. Ingram, D. Mudigere, R. Krishnamoor-
thi, M. Annavaram, K. Nair, and M. Smelyanskiy, “Check-n-run: A
checkpointing system for training recommendation models,” CoRR, vol.
abs/2010.08679, 2020.

[63] B. Nicolae, J. Li, J. M. Wozniak, G. Bosilca, M. Dorier, and F. Cappello,
“Deepfreeze: Towards scalable asynchronous checkpointing of deep
learning models,” in 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID), 2020, pp. 172–
181.

[64] K. Varda et al., “Cap’n proto serialization/rpc system - core tools and
c++ library,” https://github.com/capnproto/capnproto, 2013.

[65] D. Raghavan, P. Levis, M. Zaharia, and I. Zhang, “Breakfast of champions:
Towards zero-copy serialization with nic scatter-gather,” in Proceedings
of the Workshop on Hot Topics in Operating Systems, ser. HotOS ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
199–205.

[66] PyTorch, “Torch distributed elastic,” https://pytorch.org/docs/1.12/
distributed.elastic.html, 2022.

[67] Y. Wu, K. Ma, X. Yan, Z. Liu, and J. Cheng, “Elastic deep learning in
multi-tenant GPU cluster,” CoRR, vol. abs/1909.11985, 2019.

[68] D. Shukla, M. Sivathanu, S. Viswanatha, B. Gulavani, R. Nehme,
A. Agrawal, C. Chen, N. Kwatra, R. Ramjee, P. Sharma, A. Katiyar,
V. Modi, V. Sharma, A. Singh, S. Singhal, K. Welankar, L. Xun,
R. Anupindi, K. Elangovan, H. Rahman, Z. Lin, R. Seetharaman, C. Xu,
E. Ailijiang, S. Krishnappa, and M. Russinovich, “Singularity: Planet-
scale, preemptive and elastic scheduling of ai workloads,” 2022.

[69] I. Vanninen, “Limits of the cloud: Stress testing in azure – part 1,” https:
//zure.com/blog/limits-of-the-cloud-stress-testing-in-azure-part-1/, 2021.

[70] M. Linkhorst, “chaoskube: periodically killing random pods in your
kubernetes cluster,” https://github.com/linki/chaoskube, 2022.

[71] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou, “Modist: Transparent model checking of
unmodified distributed systems,” in Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, ser. NSDI
’09. USA: USENIX Association, 2009, p. 213–228.

[72] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2014,
pp. 610–621.

[73] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: An
automated End-to-End optimizing compiler for deep learning,” in 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). Carlsbad, CA: USENIX Association, Oct. 2018, pp. 578–594.

12


