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Abstract

Conventional reinforcement learning (RL) needs an environ-
ment to collect fresh data, which is impractical when on-
line interactions are costly. Offline RL provides an alternative
solution by directly learning from the previously collected
dataset. However, it will yield unsatisfactory performance if
the quality of the offline datasets is poor. In this paper, we
consider an offline-to-online setting where the agent is first
learned from the offline dataset and then trained online, and
propose a framework called Adaptive Policy Learning for ef-
fectively taking advantage of offline and online data. Specif-
ically, we explicitly consider the difference between the on-
line and offline data and apply an adaptive update scheme
accordingly, that is, a pessimistic update strategy for the of-
fline dataset and an optimistic/greedy update scheme for the
online dataset. Such a simple and effective method provides
a way to mix the offline and online RL and achieve the best
of both worlds. We further provide two detailed algorithms
for implementing the framework through embedding value or
policy-based RL algorithms into it. Finally, we conduct ex-
tensive experiments on popular continuous control tasks, and
results show that our algorithm can learn the expert policy
with high sample efficiency even when the quality of offline
dataset is poor, e.g., random dataset.

Introduction
Conventional online reinforcement learning (RL) meth-
ods (Haarnoja et al. 2018; Fujimoto, van Hoof, and Meger
2018) usually learn from experiences generated by online
interactions with the environment. They are impractical in
some real-world applications, e.g., dialog (Jaques et al.
2019) and education (Mandel et al. 2014), where interac-
tions are costly. Furthermore, many offline data have al-
ready been generated by one or more policies, but online
RL agents usually cannot utilize them directly (Fujimoto,
Meger, and Precup 2019). In contrast, supervised learn-
ing achieves remarkable successes across a range of do-
mains (Kotsiantis et al. 2007; Brown et al. 2020) by di-
rectly leveraging existing large-scale datasets, such as Ima-
geNet (Deng et al. 2009). To apply such data-driven learning
paradigm with RL objectives, many offline RL methods have
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been proposed and aroused much attention recently (Levine
et al. 2020). They try to learn policies from static datasets
which are pre-collected by arbitrary policies.

Existing offline RL studies mainly focus on remedying the
issue of distribution mismatch or out-of-distribution (OOD)
actions by employing a pessimistic update scheme (Kumar
et al. 2019, 2020) or in combination with imitation learn-
ing (Fujimoto, Meger, and Precup 2019). However, when the
dataset is fixed and sub-optimal, it is nearly impossible for
offline RL to learn the optimal policy (Kidambi et al. 2020).
Even worse, when a large portion of actions or states is not
covered within the training set distribution, offline RL meth-
ods usually fail to learn good policies (Kumar et al. 2020;
Fu et al. 2020; Levine et al. 2020). Moreover, policy eval-
uation under the offline RL setting is also challenging. Al-
though some methods, such as off-policy evaluation algo-
rithms (Dann et al. 2014), are proposed for this problem,
they are still not ideal for the practical purpose.

Some recent works address the above issues by employ-
ing an offline-to-online setting. Such methods (Lee et al.
2021; Nair et al. 2020) focus on pre-training a policy using
the offline dataset and fine-tuning the policy through fur-
ther online interactions. Even though their methods allevi-
ate the above problems, they have not considered the differ-
ent advantages of offline and online data and utilised both
well. Specifically, offline data can prevent agents from pre-
maturely converging to sub-optimal policies thanks to the
potential data diversity, while online data can stabilize train-
ing and accelerate convergence (Nair et al. 2020; Sutton and
Barto 2011). They can contribute to better policy learning in
different ways. But prior methods only stress one of them.
For instance, Nair et al. (2020) employs a pessimistic strat-
egy to update the policy, which may be problematic for im-
proving policy performance during the online phase. Un-
like Nair et al. (2020), Lee et al. (2021) only selects near-
on-policy data from the offline dataset during online phase
to alleviate the distribution shift in transition from offline
to online. Such a strategy ignores a large part of the offline
dataset, whose potential data diversity is important for learn-
ing better policies.

To tackle the above problems, in this paper, we propose
that the advantage of online and offline data should be em-
phasized in an adaptive way. First, considering their differ-
ent characteristics, separate updating strategies should be



employed for online and offline data, respectively. To do
so, we present a novel framework called Adaptive Policy
Learning (APL) that takes advantages of them effectively.
The core idea is simple: when learning from online data, the
agent is updated in an optimistic way, and when learning
from the offline dataset, the agent is optimized by a pes-
simistic strategy. The intuition behind this is that near-on-
policy data can be collected via online interactions, so an op-
timistic strategy is used here for better policy improvement,
and potentially useful offline datasets can be collected by ar-
bitrary policies, so a pessimistic strategy is used to exploit all
these data. In addition, to distinguish between offline and on-
line data in a simple way, we design a two-level replay buffer
for APL framework. We further provide a value-based and
policy-based implementations for APL framework through
embedding state-of-the-art (SOTA) online and offline RL
methods into the framework. Experimental results demon-
strate that our algorithm can learn expert policies in most
tasks with a high sample efficiency regardless of the quality
of offline datasets. More specifically, our algorithm performs
better by using only 20% online interactions compared with
the previous offline-to-online method (Nair et al. 2020).

Our contributions can be summarized as below:
• We propose a simple framework called Adaptive Policy

Learning (APL) that considers different advantages of of-
fline and online data for policy learning, and can effec-
tively make use of them.

• We further provide a value-based and a policy-based al-
gorithms to implement APL framework, showing APL is
compatible with various RL methods.

• We test our algorithm on the popular continuous control
tasks MuJoCo (Todorov, Erez, and Tassa 2012) and com-
pare it with some strong baselines. The results clearly
show that the APL framework is effective under the
offline-to-online setting.

Related Work
Online RL In general, online RL algorithms can be divided
into two categories, i.e., on-policy and off-policy algorithms.
On-policy methods (Schulman et al. 2015, 2017) update the
policy using data collected by its current behavior policy.
As ignoring the logged data collected by its history behavior
policies, they usually have a lower sample efficiency than the
off-policy RL. On the other hand, off-policy methods (Fuji-
moto, van Hoof, and Meger 2018; Chen et al. 2021a) en-
able the policy to learn from experience collected by history
behavior policies. However, they cannot learn from history
trajectories collected by other agents’ behavior policies (Fu-
jimoto, Meger, and Precup 2019; Kumar et al. 2020). Con-
sequently, the need for huge online interaction makes on-
line RL impractical for some real-world applications, such
as dialog agents (Jaques et al. 2019) or the education sys-
tem (Mandel et al. 2014).

Offline RL Offline RL algorithms assume the online en-
vironment is unavailable and learn policies only from the
pre-collected dataset. As the value estimation error cannot
be corrected using online interactions, these methods uti-
lize a pessimistic updating strategy to relieve the distribu-

tion mismatch problem (Fujimoto, Meger, and Precup 2019;
Kumar et al. 2019). Model-free offline RL methods gener-
ally employ value or policy penalties to constrain the up-
dated policy close to the data collecting policy (Wu, Tucker,
and Nachum 2019; Kumar et al. 2020; Fujimoto, Meger, and
Precup 2019; He and Hou 2020; Ghosh et al. 2022). Model-
based methods use predictive models to estimate uncertain-
ties of states and then update the policy in a pessimistic
way based on them (Kidambi et al. 2020; Yu et al. 2020;
Chen et al. 2021b). Those offline RL methods cannot guar-
antee a good performance, especially when the data quality
is poor (Kumar et al. 2020). Besides, policy evaluation when
the online environment is unavailable is also challenging.
Even though off-policy evaluation (OPE) methods (Dann
et al. 2014) present alternative solutions, they are still far
from perfect.

The above issues in online and offline RL motivate us to
investigate the offline-to-online setting.

Offline-to-online RL Some works focus on the mixed
setting where the agent is first learned from the offline
dataset and then trained online. Nair et al. (2020) propose
an advantage-weighted actor-critic (AWAC) method that re-
stricts the policy to select actions close to those in the of-
fline data by an implicit constraint. Kostrikov, Nair, and
Levine (2022) present IQL, implementing a weighted be-
havioral cloning step for better online policy improvement,
which can also be used in offline-to-online setting. When
online interactions are available, such conservative designs
may adversely affect the performance. OFF2ON (Lee et al.
2021) employs a balanced replay scheme to address the dis-
tribution shift issue. It uses offline data by only selecting
near-on-policy samples. Unlike these works, our method ad-
dresses all online and offline data, and explicitly considers
the difference between them by adaptively applying opti-
mistic and pessimistic updating schemes for online and of-
fline data, respectively. Besides, our framework is more flex-
ible because it can be easily applied to policy or value-based
methods. Moreover, our algorithm is much more robust to
different hyper-parameters (see the experiment section). Par-
ticularly, without careful tuning, our algorithm can achieve
better or comparable performance than prior methods, while
OFF2ON uses a specialized network architecture, and the
hyper-parameters are fine-tuned. Matsushima et al. (2021)
focus on optimizing deployment efficiency, i.e., the num-
ber of distinct data-collection policies used during learning,
by employing a behavior-regularized policy updating strat-
egy. However, they ignore existing offline dataset, and dose
not focus on improving sample efficiency, while both are ad-
dressed in our paper. Some works (Zhu et al. 2019; Vecerik
et al. 2017; Rajeswaran et al. 2018; Kim et al. 2013) can
also learn from online interactions and offline data. How-
ever, they need expert demonstrations instead of any dataset,
limiting their applicability.

Preliminaries
In RL, interactions between the agent and environment are
usually modelled using Markov decision process (MDP)
(S,A, pM, r, γ), with state space S (state s ∈ S), action
space A (action a ∈ A). At each discrete time step, the



agent takes an action a based on the current state s, and
the state changes into s′ according to the transition dynam-
ics pM (a′ | s,a), and the agent receives a reward r ∈ R.
The agent’s objective is to maximize the return, which is de-
fined as Rt =

∑∞
n=0 γ

nrt+n, where t is the time step, and
γ ∈ [0, 1) is the discounted factor. The mapping from s to
a is denoted by the stochastic policy π : a ∼ π(·|s). Policy
can be stochastic or deterministic, and we use the stochastic
from in this paper for generality. Each policy π have a cor-
responding action-value function Qπ(s,a) = Eπ [Rt | s,a],
which is the expected return following the policy after tak-
ing action a in state s. The action-value function of policy π
can be updated by the Bellman operator T π:

T πQ(s,a) = Es′ [r + γQ (s′, π (s′))] (1)

Q-learning (Sutton and Barto 2011) directly learns the op-
timal action-value function Q∗(s,a) = maxπ Q

π(s,a),
and such Q-function can be modelled using neural net-
works (Mnih et al. 2015).

In principle, off-policy methods, such as Q-learning, can
utilize experiences collected by any policy, and thus they
usually maintain a replay buffer B to store and repeatedly
learn from experiences collected by behavior policies (Agar-
wal, Schuurmans, and Norouzi 2020). Such capability also
enables off-policy methods in the offline setting by storing
offline data into the buffer B and not updating the buffer
during learning since no further interactions are available
here (Levine et al. 2020). However, this simple adjusting
generally results in poor performance due to bootstrapping
errors from OOD actions, especially when the dataset is
not diverse (Kumar et al. 2020; Agarwal, Schuurmans, and
Norouzi 2020; Fujimoto, Meger, and Precup 2019), and this
is also the problem tackled in most offline RL works.

This paper focuses on the offline-to-online setting, where
the agent learns from both the offline and online datasets.
We use off-policy methods in the online part because they
can utilize data more effectively and generally have higher
sample efficiency than on-policy ones. Thus, if no additional
marks, online RL methods refer to off-policy algorithms in
the rest of this paper.

Methodology
In this section, we first give an illustrative example to ex-
plain our motivation. Then, we introduce the proposed APL
framework, trying to couple online and offline RL in an
adaptive way. Finally, we present detailed algorithms for im-
plementing APL framework.

An illustrative example We test the SOTA offline and
online RL methods under the offline-to-online setting, i.e.,
Conservative Q-learning (CQL) (Kumar et al. 2020) and
Randomized Ensembled Double Q-learning (REDQ) (Chen
et al. 2021a), respectively. Specifically, we first pre-train the
agent with the offline dataset for 100K steps. Then, the
agent is fine-tuned online by alternately conducting the in-
teraction and updating process. The agent interacts with the
environment for 1K steps, and is updated for 10K steps.
The total online interactions steps is around 100K.

The offline-to-online setting described above should be a
favourable one for policy learning because both diverse of-

Figure 1: Learning curves for the online agent initialized
with the D4RL (Fu et al. 2020) dataset hopper-medium-
replay-v0. Scores are averaged over five random seeds and
the shaded areas represent the standard deviation. The nor-
malized score of 100 is the average returns of a domain-
specific expert while normalized score of 0 corresponds to
the average returns of an agent taking uniformly random ac-
tions across the action space.

fline data and online interactions are available. Therefore,
we expect the following results: the initial offline training
with the fixed dataset will provide relatively good but not
expert performance for the agent, and then the agent can
be further improved by the online process since online in-
teraction data can be obtained. At last, we may acquire a
well-performed policy, with the normalized score close to or
better than 100 (i.e., the performance of an expert).

Nonetheless, the experiment results in Figure 1 do not
show what we expected. Specifically, starting points of the
two curves show that the offline algorithm CQL and online
algorithm REDQ can obtain normalized scores greater than
0 (i.e., the performance of a random policy). This indicates
that by learning from the offline dataset, the agent can ob-
tain a relatively good starting point as expected. And these
starting scores (below 30) are also far from the expert score,
which leave a large room for further promotion in the online
phase. However, both algorithms have trouble in the online
process. REDQ suffers from severe instability, and in the
end, the policy almost degenerates into a random one. Al-
though the CQL agent can keep stable during learning, its
improvement is very limited, which indicate it is ineffective
for leveraging online interaction.

These results indicate that a pure online RL algorithm
may be problematic for handling offline and online data in
a single training process. Furthermore, the pure offline RL
algorithm cannot effectively use valuable online interaction
data due to its conservative updating strategy.

Adaptive Policy Learning Framework
We present the Adaptive Policy Learning (APL) framework
in this subsection, trying to tackle the above problem by
adaptively leveraging online and offline data. The underly-
ing idea is simple and can be described as follows. When



online interactions are available, we try to obtain near-on-
policy data from them, and choose an optimistic updating
strategy since these data reflect the true situation of the cur-
rent policy. By contrast, when data are sampled from the
offline dataset, we use a more pessimistic updating strategy.
In this way, we can make full use of both online and offline
data and explicitly consider their differences by separately
applying suitable updating schemes. It is worth stressing that
being optimistic here means we rely on an online RL up-
date strategy which is optimistic compared with offline RL
methods, while being pessimistic means an offline RL up-
date strategy.

Then, we give a general formalization for the above idea.
Since this idea can be applied to both value-based and
policy-based methods, we use C to represent a policy or
state-action value function, and define a unified updating
rule as follows:

Ck+1 ← F
(
A(Ck) +W(s,a)B(Ck)

)
, (2)

where k is the times of iterative updates. For the right-hand
side, the first term A(C) stands for the optimistic updat-
ing strategy. It is the common learning target used in on-
line RL, such as the Bellman error for value-based methods.
The second term B(Q) stands for the pessimistic updating
strategy. It is a penalty term to make the learned agent take
actions close to the dataset or take conservative actions. Be-
sides, to express the idea of adaptive learning, we apply a
weight function W(s,a) to the penalty term B(Q). Specif-
ically, when we use near-on-policy data, W(s,a) will be a
small value, and the updating relies more on A(C), lead-
ing to a relatively optimistic updating strategy. On the con-
trary, when we use the offline data,W(s,a) will be a large
value, and the updating strategy is relatively pessimistic. In
addition, we use F to denote the general updating operator,
such as argmin or argmax. Using this general operator, the
updating rule for both value and policy-based methods can
be unified in Eq. 2. Note that we only introduce the gen-
eral framework here, and detailed algorithms are presented
in next sections.

Online-Offline Replay Buffer We now introduce a sim-
ple but effective online-offline replay buffer (OORB) to dis-
tinguish between near-on-policy and offline data. OORB
consists of two buffers. One is the online buffer that collects
the near-on-policy data generated via online interactions. To
ensure the data in the online buffer is near-on-policy, we set
this buffer to be small, and newly collected online data are
stored into it by following the first-in-first-out rule. The other
is the offline buffer containing previously collected offline
dataset which can come from arbitrary policies, and all data
generated via interactions in the online phase.

Data are sampled from OORB following a Bernoulli dis-
tribution. With a probability p, data are sampled from the on-
line buffer, and with probability 1−p, they are sampled from
the offline buffer. The effect of p on the final performance is
tested via ablation studies in the experiment section.

Value-Based Implementation
We first present an action-value based implementation for
APL framework by incorporating CQL (Kumar et al. 2020)

Algorithm 1: Greedy Conservative Q-ensemble Learning

// Online interaction steps in each iteration Ton, updating
steps in each iteration Toff, initial offline training steps
Tinitial
// OORB threshold p, OORB starting sampling size Ts
Input: Total online interaction steps ST

Initialize online buffer Bon to empty, offline buffer Boff ←
offline dataset
Initialize policy π, Q-functions Qi, i ∈ N
Set the updating step counter t
Set the total online interaction step counter Son ← 0
Train the agent for Tinitial steps using the offline dataset
repeat
t← 0
Interact with the environment for Ton steps
Store collected experiences to both online buffer Bon
and offline buffer Boff
Son ← Son + Ton
for t < Toff do

Sample a random value ps ∼ U(0, 1)
if ps < p and Son > Ts then

Sample a batch of (s,a) from online buffer Bon
Set theW(s,a) to 0

else
Sample a batch of (s,a) from offline buffer Boff
Set theW(s,a) to 1

end if
Update the Q-functions Qi, i ∈ N by Eq. 6
Update the policy π by Eq. 7
t← t+ 1

end for
until Son > ST

as the value-based offline RL method and an ensemble on-
line RL algorithm REDQ (Chen et al. 2021a). We name the
implementation Greedy-Conservative Q-ensemble Learning
(GCQL).

Specifically, C in Eq. 2 is the state-action value Q here,
and we use the updating function in REDQ as the optimistic
strategy. Since REDQ is an ensemble method which uses a
set of Q-functions, we use i as the index of the Q-functions,
and the size of the set is N . Hence,

A(Qk
i ) = Es,a,s′∼OORB,a′∼πk(·|s′)

[(
Qk

i (s,a)− BπQ̂k(s′,a′)
)2

]
,

(3)
where k is the times of iterative updates same as Eq. 2, and
“∼ OORB” represents sampling data from OORB. Operator
BπQ̂k(s′,a′) is

r + γ min
i∈M

Q̂k
i (s

′,a′) , a′ ∼ πk (· | s′) . (4)

Here, πk is the current policy, and Q̂ denotes a target Q
function for stabilizing the learning process (Mnih et al.
2015). Following REDQ’s design, we randomly select two
Q-functions from a set of them for ensemble, withM repre-
senting the set of selected indexes.

Then, we adopt the conservative regularizer in CQL as the



second term in Eq. 2. For every Q-function in the set:

B(Qk
i ) = αEs∼OORB

[
log

∑
a′

exp(Qk
i (s,a

′))− Ea∼OORB[Q
k
i (s,a)]

]
,

(5)
where action a′ is sampled from the current policy, i.e., a′ ∼
πk(·|s). Hence, the overall updating function of Q is:

Qk+1
i = argmin

Qk
i

{
A(Qk

i ) +W(s,a)B(Qk
i )
}

(6)

Finally, the update function of policy is shown as follows:

πk+1 = argmax
πk

Ea∼πk(·|s)

[
Ei∈N

[
Qk

i (s,a)
]
− α log πk (a | s)

]
.

(7)

Policy-Based Implementation
Besides value-based methods, APL framework can also
be easily implemented with policy-based methods. Here
we take TD3BC (Fujimoto and Gu 2021) as an exam-
ple, and name our algorithm Greedy-Conservative TD3BC
(GCTD3BC). Specifically, TD3BC uses the policy update
step in TD3, and adds a behavior cloning (BC) term to regu-
larize the policy. Therefore, GCTD3BC takes the policy up-
date function in TD3 as the optimistic term, and takes the
BC regularizer as the pessimistic term. So, the policy update
rule in GCTD3BC is

πk+1 = argmax
πk

E(s,a)∼OORB
[
A(πk) +W(s,a)B(πk)

]
,

(8)
where A(πk) = λQk(s, π(s)) is the value function in TD3,
and B(πk) = −(πk(s) − a)2 is the BC regularizer. Hyper-
parameter λ is used to adjust two terms.

We now introduce howW(s,a) is set in both implemen-
tations. We use a very simple method: when data is sam-
pled from the online buffer, W(s,a) is set to 0, otherwise
1. This is why we use the term Greedy-Conservative to de-
scribe our algorithms. Specifically, we greedily exploit the
near-on-policy data with the online RL scheme without any
conservative regularizer. And we conservatively exploit the
offline data by employing the offline RL methods. Formally,
this strategy can be explained as below:

W(s,a)←
{
0 if (s,a) ∼ online buffer
1 otherwise

(9)

To be more clear, we summarize GCQL in Algorithm 1,
and explain the main steps as follows. Firstly, we learn from
the existing offline data for Tinitial steps to leverage them. To
make good use of the offline data, we usually set Tinitial to
a large value, e.g., 100K. Secondly, we begin the following
interleaving learning process. We conduct the online inter-
action for Ton steps and store newly collected experiences
to OORB, and then we update the agent for Toff steps. For
higher sample efficiency, we set the number of online inter-
action steps Ton to a small value, e.g., 1K, and the number
of updating steps Toff to a value larger than Ton, e.g., 10K.
If the batch of data for updating the policy and Q-functions
comes from the online buffer,W(s,a) is set to 0, otherwise
1.

Algorithm GCTD3BC is similar to Algorithm 1 except
that GCTD3BC uses the action-value objective in TD3 (Fu-
jimoto, van Hoof, and Meger 2018) and the policy updating
rule is defined in Eq. 8.

Experiments
In this section, we design experiments to verify the effec-
tiveness of our framework from three perspectives: (1) the
performance compared with competitive baselines; (2) abla-
tion studies to test the effect of key components used in our
methods; (3) the influence of different hyper-parameters.

Tasks All experiments were done on the continuous con-
trol task set MuJoCo (Todorov, Erez, and Tassa 2012), and
the offline dataset comes from the popular offline RL bench-
mark D4RL (Fu et al. 2020). Here, we test three tasks,
i.e., walker2d, hopper and halfcheetah, and each task takes
four different kinds of offline dataset, which are random-v0,
medium-v0, medium-replay-v0 and medium-expert-v0.

Settings We set Ton in Algorithm 1 to 1K. To better ex-
ploit the offline dataset, we set Tinitial and Toff to 100K and
10K, respectively. For OORB, we set p = 0.5 for GCQL
and p = 0.1 for GCTD3BC, and Ts to 10K for both of them.
The size of online and offline buffer is set to 20K and 3M ,
respectively. We input ST as 100K. The above configura-
tions keep the same across all tasks, datasets and methods.

Compared Methods We compare our algorithms, i.e.,
GCQL and GCTD3BC, with 8 competitive baselines, i.e.,
CQL, REDQ ON, REDQ, TD3 ON, TD3BC, AWAC (Nair
et al. 2020), OFF2ON (Lee et al. 2021) and IQL (Kostrikov,
Nair, and Levine 2022). REDQ ON denotes that we rerun
the officially released codes by the authors (Chen et al.
2021a) without changing hyper-parameters, and do not use
any offline data to pre-train for this online method. We use
the “ ON” to indicates the agent is trained purely online
without offline pre-training, and methods without “ ON” are
in the offline-to-online setting. Similarly, TD3 ON is a pure
online agent trained with TD3. For a fair comparison, we
also include a re-implemented version in GCQL, i.e. REDQ,
as a baseline, where the number of Q-functions is set to 5 for
computational efficiency (as in GCQL) and pre-training with
offline data is leveraged. The results of AWAC are directly
taken from their paper. For OFF2ON, since the authors did
not release the code for pre-training, we contact the authors
and use pre-trained agents provided by them, and then use
their codes for the rest of training. For other methods, re-
sults are obtained by rerunning their codes under the offline-
to-online setting. We use default hyper-parameters for all
methods without further tuning.

Overall Performance
We list scores in Table 1, and include all learning curves
in Appendix. First, it is clear that our methods GCQL
and GCTD3BC perform much better than baselines, well
demonstrating the effectiveness of them. Second, we notice
that our methods are more robust comparing with baselines.
Specifically, offline RL methods (i.e., CQL and TD3BC)
can obtain higher scores than pure online methods (i.e.,
REDQ ON and TD3 ON) when the dataset is not random,



Environment GCQL GCTD3BC CQL REDQ ON REDQ TD3 ON TD3BC AWAC OFF2ON IQL

walker2d-r 31±27 5±3 7±9 71±11 5±3 7±2 6±3 12 20±13 7±3
hopper-r 58±30 35±22 10±1 78±37 2±1 10±2 11±0 63 81±21 10±2
halfcheetah-r 90±10 69±8 46±4 59±2 32±1 39±1 35±3 53 85 ±3 28±7

walker2d-m 94±6 90±7 83±1 71±11 2±3 7±2 79±2 80 89±2 51±13
hopper-m 83±11 99±3 70±23 78±37 3±1 10±2 80±13 91 59 ±9 42±9
halfcheetah-m 66±3 62±2 25±8 59±2 46±1 39±1 43±1 41 58±2 40±0

walker2d-me 93±12 102±2 105±1 71±11 12±3 7±2 110±3 78 101±24 58±22
hopper-me 110±1 110±2 109±5 78±37 40±15 10±2 110±0 112 82 ±21 72±16
halfcheetah-me 102±1 103±2 92±2 59±2 9±3 39±1 98±2 41 100±1 38±17

walker2d-mr 97±16 90±9 57±5 71±11 13±2 7±2 60±5 - 71±32 30±13
hopper-mr 72±20 87±11 37±4 78±37 0±1 10±2 38±1 - 60±23 31±10
halfcheetah-mr 59±2 53±1 50±0 59±2 28±25 39±1 47±0 - 57±1 42±2

Total 955±139 905±71 691±63 624±200 192±59 224±20 717±33 - 863±152 449±114

Table 1: Averaged normalized score over last three evaluation iterations and 5 random seeds. ± captures the standard deviation
over seeds. The highest performing scores are in bold. The results of AWAC are taken from their paper (Nair et al. 2020).
REDQ ON and TD3 ON are pure online methods without any offline pre-training. We rerun them using implementations from
authors to ensure identical evaluation process. Suffix “-r” = random-v0 dataset, “-m” = medium-v0 dataset, “-me” = medium-
expert-v0, and “-mr” = medium-replay-v0. All learning curves are showed in Appendix.

Figure 2: Ablation studies on Halfcheetah. GCQL WG: GCQL without the greedy updating strategy. GCQL WGO: GCQL
without the greedy updating strategy and online buffer. Results on four tasks are averaged over three random seeds.

but they have poor performance when the dataset is ran-
dom. In contrast, offline-to-online methods (e.g., GCQL and
OFF2ON) can perform well regardless of random dataset
or not. Note that OFF2ON is fine-tuned. For instance, the
critic’s network architecture is different from that in the orig-
inal CQL paper. Our methods use default hyper-parameters
in the original paper without fine-tuning, and can perform
better than those fine-tuned methods. Third, it is surprising
that single-agent method GCTD3BC have higher scores and
faster learning speed than ensemble method GCQL on some
tasks, such as hopper-medium-v0. All results shows APL
can benefit more from the online and offline data and gain
high sample efficiency. Also, the general APL framework
can be successfully applied to the various RL methods.

Ablation Study on Key Components in APL
To investigate the effect of key components in our method,
we conduct the following ablation studies on GCQL. The
main differences between APL framework and prior offline
RL methods is the adaptive update schema and online buffer

in OORB. To this end, we design two variants of GCQL to
investigate such two components’ effect. GCQL WG: We
remove the adaptive update schema by fixingW to 1, result-
ing in the variant of GCQL without greedy updating strategy.
GCQL WGO: We further remove the online buffer, result-
ing in the variant of GCQL without greedy updating strategy
and online buffer.

Learning curves of all four kinds of offline datasets for
the task Halfcheetah are shown in Figure 2. It is easy to
deduce that when the dataset includes the expert data, all
variants perform well. The underlying reason is obvious as
offline RL methods can perform quite well when data qual-
ity is good. However, for other datasets with worse quality
(e.g., medium-replay, medium and random), online buffer
and greedy update schema play an important role in boosting
the performance and stabilizing the learning process. Results
show that for these worse datasets, both GCQL WG and
GCQL WGO have a clear performance drop compared with
GCQL. Specifically, it is observed that, for medium datasets,
both CQL and GCQL WGO suffer a serious stability issue,



Figure 3: Learning curves for agents with different initial offline training steps Tinitial and updating steps in each iteration Toff.
GCQL-i2e5 and GCQL-i5e4 mean that Tinitial is 2e5 and 5e4, respectively. And GCQL-o2e4 and GCQL-o5e3 mean Toff is set
to corresponding values. Results are averaged over three random seeds.

Figure 4: Learning curves for agents with different OORB threshold p. GCQL-X means that p is set to X. Results are averaged
over three random seeds.

which verifies that the online buffer indeed stabilizes the
learning process. Besides, GCQL WG performs better than
GCQL WGO, which indicates that the online buffer can not
only stabilize the learning process but also improve the per-
formance. Moreover, GCQL still outperforms GCQL WG
by a large margin on the sub-optimal dataset, which veri-
fies the efficiency of our greedy update scheme. In summary,
greedy update schema and online buffer are both crucial for
improving the sample efficiency in GCQL.

Analysis on Hyper-parameters
As we do not use careful fine-tuning techniques (e.g., grid
search) for hyper-parameters in our methods, one may won-
der how the hyper-parameters affect the performance. To
this end, we conduct experiments to investigate their in-
fluence on GCQL. Here, we use the most complicated one
among three tasks, i.e., walker2d, in this experiment, and we
analyze initial offline training steps Tinitial, updating steps in
each iteration Toff and OORB threshold p in the section.

Learning curves for analyzing Tinitial and Toff are shown
in Figure 3. We try a larger and smaller value than the de-
fault one to test its impacts. Specifically, Tinitial is tested
with 2e5 and 5e4, and Toff is tested with 2e4 and 5e3. We
can see that the performance of GCQL is insensitive to the
Tinitial and Toff, especially for datasets with not poor quality,
e.g., datasets except for the random one. Besides, Figure 4
shows curves for analyzing p, which have bigger impact on

the performance than Tinitial and Toff. p is tested with 0.3,
0.4, 0.5, 0.6 and 0.7, and results show that methods with
higher p perform better on the medium and medium-replay
datasets, while those with lower p perform better on the
other datasets. Particularly, only p = 0.5 can achieve a clear
performance improvement in both the medium and random
datasets. Overall, the default p = 0.5 is the most appropri-
ate setting, suggesting that taking the online and offline data
equally important may be the best option for GCQL in most
cases.

Conclusion and Future Work
In this paper, we propose an Adaptive Policy Learning
(APL) framework for offline-to-online reinforcement learn-
ing. In APL, the advantages of online and offline data are
considered in an adaptive way, so that they are well-utilized
for policy learning. Furthermore, a value-based and a policy-
based algorithm are provided for implementing APL frame-
work. Finally, we conduct comprehensive experiments and
results demonstrate that our methods can obtain best sam-
ple efficiency in the offline-to-online setting comparing with
several competitive baselines. In the future, we will continue
to further improve the robustness of APL. For example, we
will try to minimize the impact of offline dataset’s quality
on the performance. At last, we hope this work could bridge
the gap between offline and online RL.
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Learning Curves
For better comparison, we compare ensemble GCQL with ensemble methods, such as OFF2ON or REDQ ON and compare
GCTD3BC with single-agent methods, such as TD3BC and TD3 ON.

Learning curves for GCQL

Figure 5: Learning curves for GCQL. The shaded areas represent the standard deviation across different seeds. REDQ ON
means the agent is trained using REDQ purely online without the offline pre-training, while other baselines use the offline-to-
online setting.



Learning curves for GCTD3BC

Figure 6: Learning curves for GCTD3BC. The shaded areas represent the standard deviation across different seeds. TD3 ON
means the agent is trained using TD3 purely online without the offline pre-training, while other baselines use the offline-to-
online setting.


