
How Does In-Context Learning Help Prompt Tuning?

Simeng Sun1 Yang Liu2 Dan Iter2 Chenguang Zhu2 Mohit Iyyer1
University of Massachusetts Amherst1 Microsoft Research2

{simengsun, miyyer}@umass.edu
{yaliu10,iterdan,chezhu}@microsoft.com

Abstract

Fine-tuning large language models is becom-
ing ever more impractical due to their rapidly-
growing scale. This motivates the use of
parameter-efficient adaptation methods such
as prompt tuning (PT), which adds a small
number of tunable embeddings to an otherwise
frozen model, and in-context learning (ICL),
in which demonstrations of the task are pro-
vided to the model in natural language with-
out any additional training. Recently, Singhal
et al. (2022) propose “instruction prompt tun-
ing” (IPT), which combines PT with ICL by
concatenating a natural language demonstra-
tion with learned prompt embeddings. While
all of these methods have proven effective on
different tasks, how they interact with each
other remains unexplored. In this paper, we
empirically study when and how in-context ex-
amples improve prompt tuning by measuring
the effectiveness of ICL, PT, and IPT on five
text generation tasks with multiple base lan-
guage models. We observe that (1) IPT does
not always outperform PT, and in fact requires
the in-context demonstration to be semantically
similar to the test input to yield improvements;
(2) PT is unstable and exhibits high variance,
but combining PT and ICL (into IPT) consis-
tently reduces variance across all five tasks; and
(3) prompts learned for a specific source task
via PT exhibit positive transfer when paired
with in-context examples of a different target
task. Our results offer actionable insights on
choosing a suitable parameter-efficient adapta-
tion method for a given task.

1 Introduction

As large language models (LLMs) continue to grow
in scale (Brown et al., 2020; Chowdhery et al.,
2022), it is quickly becoming infeasible to fine-tune
all of their parameters to solve a new task. As such,
developing methods that efficiently adapt LLMs to
downstream tasks is critical. In this paper, we study
the relationship between three such methods:

Input: How many artists...
Output: select count(*) ...

Input: How many doctors...
Output: select count(*) ...

Soft Prompts In-context Demonstration Train Example

Frozen Pre-trained LM

... ...

select count(*)
Gradient

Flow

Figure 1: An illustration of instruction prompt tuning
(IPT). Soft tunable prompt embeddings are prepended
to a retrieved in-context demonstration, which is fol-
lowed by the training example. In this paper, we study
the mutual effect of the soft prompts and the discrete
demonstrations in instruction prompt tuning.

• In-context learning (ICL): The simplest
method is to leverage in-context learning, in
which LLMs are prompted with instructions
or demonstrations to solve a new task without
any additional training (Brown et al., 2020).
ICL can be further improved by dynamically
retrieving demonstrations that are similar to
a particular test input, rather than choosing
demonstrations at random (Liu et al., 2022b).
However, it still struggles on complex and out-
of-domain downstream tasks (An et al., 2022;
Liu et al., 2022a).

• Prompt tuning (PT): The limitations of ICL
beg the question of whether a small amount of
training can help. In prompt tuning, the vast
majority of the LLM is kept frozen while a
small number of new tunable embeddings are
concatenated to every test input (Lester et al.,
2021). While PT generally outperforms ICL,
it is unstable and difficult to optimize (Ding

et al., 2022).

• Instruction prompt tuning (IPT): More re-
cently, Singhal et al. (2022) combine ICL and
PT into instruction prompt tuning, which con-
catenates retrieved in-context demonstrations
with tunable prompt embeddings, and they
show its effectiveness at adapting LLMs to
the medical domain.

Little is known about the conditions in which
any of these methods outperforms the other; more
generally, the mutual effect of in-context learn-
ing and prompt tuning remains understudied. We
shed light on these questions by comparing ICL,
PT, and IPT across five text generation tasks us-
ing three base LMs of comparable size (BLOOM
1.1B, OPT 1.3B, and GPT2 XL 1.5B). We focus
mainly on out-of-distribution tasks that challenge
the limits of parameter-efficient adaptation meth-
ods, including ToTTo (Parikh et al., 2020) and
DART (Nan et al., 2021) for data-to-text gener-
ation, Logic2Text (Chen et al., 2020) for logic-to-
text generation, and Spider (Yu et al., 2018) and
MTOP (Li et al., 2021) for semantic parsing.

We summarize our findings as follows:

• Both PT and IPT consistently outperform ICL
across all five tasks. This result demonstrates
the value of training at least a small set of
parameters for out-of-domain tasks.

• That said, there is no clear winner between PT
and IPT, as performance is highly dependent
on the task and experimental configuration
(e.g., number of tunable embeddings).

• IPT outperforms PT on examples for which
the in-context demonstration is highly simi-
lar to the test input. The most striking case
of this is ToTTo, where IPT is significantly
better than PT; we attribute this result to over-
lapping train/test tables in the dataset as well
as formulaic output.

• PT exhibits high variance, especially when
there are more tunable parameters. IPT re-
duces variance, and its performance is less
dependent on the number of prompt embed-
dings than PT.

• While prompt embeddings learned via PT can-
not be directly transferred to unseen tasks,
we discover that they are transferable to new

tasks given in-context demonstrations, and
that combining source task prompts with tar-
get task demonstrations outperforms ICL in
this transfer setting.

2 Background

Parameter-efficient fine-tuning methods (Houlsby
et al., 2019; Karimi Mahabadi et al., 2021; Ben Za-
ken et al., 2022) specialize LLMs to a target task
while keeping most of their parameters frozen
and adjusting just a small number of task-specific
parameters. Since full-model fine-tuning is pro-
hibitively expensive on consumer-grade hardware
for most LLMs, such methods increase the accessi-
bility of LLM research and deployment. Here, we
give a more formal specification of the parameter-
efficient tuning methods that we experiment with
in this paper.

In-context learning: Brown et al. (2020) show
that their 175B-parameter GPT-3 model is capa-
ble of solving unseen tasks by leveraging informa-
tion from in-context instructions (zero-shot) and/or
demonstrations (few-shot). Inserting k in-context
input-output pairs [Xicl; Yicl] before the test input
significantly improves the performance of solving
a target task:

InputICL = concat
(
[Xicl; Yicl]

k
1; Xtest

)
Recent studies propose approaches that discover
better in-context demonstrations by retrieving ex-
amples semantically similar to each test input (Liu
et al., 2022b), as well as eliciting chain-of-thought
reasoning (Wei et al., 2022) and breaking tasks into
sub-problems with least-to-most prompting (Zhou
et al., 2022).

Prompt tuning: In-context learning struggles on
out-of-domain tasks, which motivates alternate ap-
proaches that tune a small fraction of the LLM’s
parameters (Ding et al., 2022). In this paper, we fo-
cus on prompt tuning (Lester et al., 2021; Liu et al.,
2021), which prepends soft tunable prompt embed-
dings to the input tokens Xtest. Since it only modi-
fies the input to the LLM, it is easy to implement
and, unlike adapter-based approaches (Bapna and
Firat, 2019), does not change the internal model
structure. Formally, let E = {e1, . . . , ek} be a se-
quence of new tunable prompt embeddings, while
X = {x1, . . . ,xm} and Y = {y1, . . . ,yn} de-
note the token embeddings of the input and output
of an example, respectively. Then, the input to

#Train #Test Avg. len
XPT

Avg. len
XIPT

ToTTo 120,761 7,700 95 202
DART 62,659 5,097 41 106
Spider 7,000 1,034 109 244
MTOP 15,667 2,235 680 1,390
Logic2Text 8,566 1,095 56 136

Table 1: Dataset statistics. We provide the average
length of each example for both prompt tuning and in-
struction prompt tuning. IPT has a longer input length
on average because one retrieved demonstration is in-
cluded with the soft prompt and the test input.1

prompt tuning at inference time can be expressed
as

InputPT = concat
(
E; Xtest

)
.

Since prompt tuning requires training the tunable
embeddings E, we require access to a training set
Xtrain for the target task, unlike with in-context
learning. While training E, we feed Xtrain to the
LLM as input, and the loss is computed over corre-
sponding output tokens Ytrain that follows Xtrain.

Instruction Prompt Tuning. More recently,
Singhal et al. (2022) proposes instruction prompt
tuning, which concatenates the soft prompts with
hard in-context demonstrations. Using the notation
from above, the input of IPT is:

InputIPT = concat
(
E; [Xicl; Yicl]

k
1; Xtest

)
.

Note that in our experiments, the prompt embed-
dings E are trained specifically for a single down-
stream task, whereas Singhal et al. (2022) share
them across multiple tasks in the medical domain.
Also, this kind of hybrid of soft and hard prompt
tokens has been previously employed by Gu et al.
(2022) and Han et al. (2021). Instruction prompt
tuning resembles MetaICL (Min et al., 2022b) and
in-context tuning (Chen et al., 2022) in that in-
context demonstrations are part of the input during
training; however, IPT tunes just the prompt em-
beddings rather than the full model.

3 Experimental setup

How can a soft prompt benefit from the added infor-
mation provided by a retrieved in-context demon-
stration? To answer this question, we run experi-
ments comparing the performance of ICL, PT, and

1Due to the longer input length, we notice IPT takes
longer to train than PT.

IPT across a variety of different tasks, configura-
tions, and base language models. While past re-
search into prompt tuning has mostly focused on
natural language understanding tasks (Lester et al.,
2021; Vu et al., 2022b), we focus on language gen-
eration tasks in this paper, with a specific focus on
tasks where either the input or output is (relatively)
out-of-domain for the pretrained LLM.

Datasets: We explore three kinds of tasks: data-
to-text generation, logic-to-text generation, and se-
mantic parsing. In data-to-text generation, the in-
put is of structured data, either expressed as sets
of triplets as in DART (Nan et al., 2021) or as
linearized table strings as in ToTTo (Parikh et al.,
2020). The output of both tasks are short sentences
describing the data or table, which is evaluated
with BLEU (Papineni et al., 2002). For seman-
tic parsing, in which a natural language utterance
is mapped to a logical form, we evaluate on Spi-
der (Yu et al., 2018) and MTOP (Li et al., 2021)
and report exact match accuracy. Finally, in the
Logic2Text logic-to-text task (Chen et al., 2020),
we use the metric BLEC to be consistent with other
works (Xie et al., 2022).2 More details about each
dataset are presented in Table 1.

Models: We experiment with the BLOOM-
1.1B3, OPT-1.3b4, and GPT-2-XL-1.5B5 models
on all our tasks. For our fine-grained analysis, we
focus on the BLOOM checkpoint, which has 24
Transformer layers, an embedding dimensionality
of 1536, and 16 attention heads, and is trained on
multilingual text as well as programming language
corpora.6 For stabler and faster prompt tuning con-
vergence, we employ the reparameterization trick
introduced by Li and Liang (2021) by adding two
feed-forward layers atop the initial prompt embed-
dings; the transformed prompt embeddings are then
fed as input to the model.7 For both PT and IPT,

2For Spider, MTOP, and Logic2Text, we include
knowledge information, such as linearized table schema,
before the textual input. We use the processed data
in https://github.com/HKUNLP/UnifiedSKG. For ToTTo, we
use the processed data provided by Liu et al. (2022b).

3https://huggingface.co/bigscience/
bloom-1b1

4https://huggingface.co/facebook/
opt-1.3b

5https://huggingface.co/gpt2-xl
6https://huggingface.co/spaces/

bigscience/BigScienceCorpus
7Unlike Liu et al. (2022c), we modify only the input

layer of the language model instead of every layer. A similar
approach is also used by An et al. (2022).

https://github.com/HKUNLP/UnifiedSKG
https://huggingface.co/bigscience/bloom-1b1
https://huggingface.co/bigscience/bloom-1b1
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/gpt2-xl
https://huggingface.co/spaces/bigscience/BigScienceCorpus
https://huggingface.co/spaces/bigscience/BigScienceCorpus

ToTTo
(BLEU)

Dart
(BLEU)

Spider
(Exact Match)

Mtop
(Exact Match)

Logic2text
(BLEC)

BLOOM-1.1B
random one-shot ICL 5.8 8.3 0.4 0.0 37.6
retrieved one-shot ICL 35.1 23.9 3.9 18.5 70.1
retrieve three-shot ICL 41.3 29.7 5.0 12.7 71.0

BLOOM-1.1B
Prompt Tuning 36.3±0.3 41.2±0.9 35.5±1.6 25.2±16.4 87.6±1.5

Instruction Prompt Tuning 47.1±0.2 41.4±0.1 33.2±1.1 62.6±0.7 86.4±1.1

OPT-1.3B
Prompt Tuning 38.5±1.0 44.5±0.2 14.4±2.3 6.4±6.5 80.6±3.7

Instruction Prompt Tuning 46.3±0.9 42.9±0.4 14.2±2.1 10.4±6.5 84.6±1.0

GPT-2-XL-1.5B
Prompt Tuning 37.3±0.2 43.5±0.2 27.0±2.1 41.4±5.6 87.2±1.6

Instruction Prompt Tuning 48.0±0.0 42.1±0.2 23.0±0.1 19.8±14.9 85.8±1.5

Table 2: Providing a retrieved in-context demonstration significantly outperforms a random in-context training
demonstration, although both PT and IPT generally outperform ICL. Here, we only report the performance of
PT and IPT with 25 tunable prompt embeddings. Tuning the number of prompt embeddings further improves
performance for both methods, as shown in Figure 3.

Most Similar Least Similar
Similarity(retrieved, test)

30

32

34

36

38

40

42

44

B
LE

U

DART

PT
IPT

0

0.5k

1k

1.5k

2k

2.5k

3k

3.5k

C
ou

nt

Most Similar Least Similar
Similarity(retrieved, test)

20

30

40

50

60

70

80

A
cc

ur
ac

y

MTOP

PT
IPT

0

0.5k

1k

1.5k

2k

C
ou

nt

Most Similar Least Similar
Similarity(retrieved, test)

10

20

30

40

50

B
LE

U
ToTTo

PT
IPT

0

0.5k

1k

1.5k

2k

2.5k

3k

3.5k

C
ou

nt
Figure 2: IPT performs better than PT on examples for which the input of retrieved in-context demonstration is very
similar to the test input. However, IPT degrades quickly as the retrieved demonstration becomes less similar, and for
both DART and MTOP it underperforms PT on out-of-distribution test inputs. Over 85% of test inputs in ToTTo
have highly-similar training examples, which is an explanation for IPT’s significantly higher performance on ToTTo.

we randomly initialize all prompt embeddings, use
a batch size of 8, and evaluate the best checkpoint
selected by dev loss after training for 5 epochs
with the AdamW optimizer (Loshchilov and Hut-
ter, 2019). The learning rate and weight decay for
each task are provided in Appendix A. For each
configuration, we report the averaged performance
over three runs.

In-context demonstration retrieval. Follow-
ing Liu et al. (2022b), we use dense retrieval to
select good in-context examples for instruction
prompt tuning. We encode the input of each ex-

ample with a large language model8 and extract
the last token representation as the dense repre-
sentation for the encoded sequence. We then
use FAISS (Johnson et al., 2019)9 to retrieve the
nearest-neighbor training example as an in-context
demonstration.10

8We use GPT-neo-1.3b https://huggingface.
co/EleutherAI/gpt-neo-1.3B in our experiment.

9 https://github.com/facebookresearch/
faiss

10To avoid the order of in-context examples (Liu et al.,
2022b) complicating the experiments, we only provide one
in-context demonstration per example. More details about
retrieving examples for DART are included in Appendix B.

https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

1 3 5 10 25 50 100 150
prompt tokens

20

30

40

50
B

LE
U

DART

PT
IPT
ICL

1 3 5 10 25 50 100 150
prompt tokens

25

30

35

40

45

B
LE

U

ToTTo

PT
IPT
ICL

1 3 5 10 25 50 100 150
prompt tokens

10

20

30

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

Spider

PT
IPT
ICL

1 3 5 10 25 50 100 150
prompt tokens

0

20

40

60

A
cc

ur
ac

y

MTOP

PT
IPT
ICL

1 3 5 10 25 50 100 150
prompt tokens

70

75

80

85

90

B
LE

C

Logic2Text

PT
IPT
ICL

Figure 3: Comparing the performance of prompt tuning, instruction prompt tuning, and in-context learning, where
the latter two methods are provided with one retrieved in-context demonstration, on five language generation tasks
varying the number of soft prompt tokens. The best PT and IPT configurations always outperform ICL. PT exhibits
increasing variance as the number of tunable parameters increases, whereas IPT is relatively more stable. IPT is less
sensitive overall to the number of prompt tokens, which makes it preferable in situations where hyperparameter
tuning is computationally expensive.

4 Analysis

Table 2 shows that both PT and IPT (with 25 soft
prompt tokens each) significantly outperform ICL
with randomly retrieved in-context demonstration
on all five tasks, which supports conclusions drawn
from prior studies on prompt tuning. The perfor-
mance of ICL can be further improved by having
“good” retrieved in-context demonstrations, how-
ever it still lags behind PT and IPT on most tasks.
On the other hand, there is no such clear trend in
the relative performance of PT and IPT, other than
on the ToTTo dataset, where IPT is a clear winner.
We discover that the in-context demonstration in-
cluded in IPT is helpful when the test input and the
demonstration are semantically similar; if they are
too different, then the demonstration can actually
hurt. We also find that IPT consistently reduces
variance across all tasks, indicating that the addi-
tional in-context example improves the stability of
prompt tuning. Finally, we experiment with the
transferability of soft prompts trained on a source
task and then used for a different target task. We
observe improvements over ICL when concatenat-
ing an in-context demonstration of the target task
with a soft prompt trained on a different source
task.

In-context learning underperforms prompt
tuning: In line with experiments from prior
work (Liu et al., 2022a), we observe that ICL per-
forms consistently worse than PT and IPT, even
when using retrieved demonstrations instead of ran-
dom demonstrations. This result shows the value
of training a small number of new parameters to
specialize a language model to the target task, espe-
cially for out-of-distribution generation. The lone
exception is ToTTo, for which ICL is competitive

with PT; we discuss reasons for this and the im-
provements from IPT later in this section.

No clear winner between PT and IPT: Despite
receiving additional signal from the retrieved in-
context demonstration, IPT does not consistently
outperform PT. Our results in Table 2, also visu-
alized for the BLOOM-1.1B model in Figure 3,
show that IPT is in fact worse on several task and
model configurations. The relative performance of
these two methods highly depends on the task and
the number of tunable parameters. For instance,
IPT performs better than PT with OPT-1.3B on
Logic2Text (84.6 vs. 80.6), whereas it is worse
than PT if use GPT-2-XL as the base model (85.8
vs. 87.2).

IPT helps when the in-context demonstration
is similar to the test input: Clearly in-context
demonstrations can work synergistically with soft
prompts in some cases (e.g., on ToTTo), so under
what conditions does this happen? To understand
the effect of in-context demonstrations in IPT, we
divide each test set into multiple bins based on the
semantic similarity between the input of in-context
example and the input of test example, and we eval-
uate model performance on each bin. More specif-
ically, we encode the input of each example with
large pre-trained LM by extracting the last token
representation, and measure the similarity in latent
space, which is also used for ICL demonstration re-
trieval as described in section 3. As shown for three
different datasets in Figure 2, the performance11

of both PT and IPT decreases as the similarity of
11In Figure 2, we select two task and model configurations

on which IPT and PT achieve almost identical average per-
formance (DART with 25 prompt tokens, and MTOP with
100 prompt tokens) while having the same number of tunable
parameters.

Input Output

Retrieved

<page_title>List of Governors of South Carolina
<section_title>Governors under the Constitution of 1868
<table><cell>80 <col_header># <col_header>74 <col_header>75
<col_header>76 <col_header>77 <col_header>78 <col_header>79
<cell>Johnson Hagood <col_header>Governor
<row_header>80 </row_header><cell>November 30, 1880
<col_header>Took Office <row_header>80 </row_header>
<cell>December 1, 1882 <col_header>Left Office <row_header>80 </row_header>

Johnson Hagood was
the 80th Governor of
South Carolina from 1880 to 1882.

Test

<page_title>List of Governors of South Carolina
<section_title>Governors under the Constitution of 1868
<table><cell>76 <col_header># <col_header>74
<col_header>75 <cell>Daniel Henry Chamberlain
<col_header>Governor <row_header>76 </row_header>
<cell>December 1, 1874 <col_header>Took Office
<row_header>76 </row_header>

Daniel Henry Chamberlain was
the 76th Governor of
South Carolina from 1874.

Table 3: An example from ToTTo dev set and its corresponding top retrieved in-context example. IPT and in-context
learning have a significant advantage over PT due to the presence of the in-context demonstration, which has high
word overlap and follows the same template as the test output.

the retrieved in-context example input to the test
input decreases. IPT outperforms PT when it is
possible to retrieve highly-similar in-context ex-
amples (left-most bin of each plot). However, the
performance of IPT degrades considerably as the
in-context example becomes less similar, and PT
outperforms IPT on both DART and MTOP on the
most out-of-distribution examples (right-most bin).
These results suggest that low-quality in-context
examples can confuse the base LM, which moti-
vates future work on dynamic methods that choose
whether or not to include an in-context example
based on thresholded similarity to the test input.

Overlap in ToTTo inflates IPT performance:
IPT significantly outperforms PT on ToTTo (e.g.,
48.0 vs. 37.3 with GPT-2-XL) as shown in both
Table 2 and Figure 3. We attribute this gap to sub-
stantial overlap between training and testing tables,
along with very formulaic outputs. Table 3 contains
an example where the train and test input belong
to the same parent page, and the output format is
identical; all that is needed is to copy the training
output and edit the named entities and numerics
according to the table. This gives IPT a big advan-
tage: as shown in the right-most plot of Figure 2,
IPT outperforms PT when the in-context demon-
stration is very similar to the evaluated input, which
constitutes over 85% of total evaluation examples
in ToTTo. On the other hand, when the in-context
examples become less similar to the test input, PT
and IPT achieve similar performance. As the large
improvement on ToTTo comes mostly from these
“easy” examples, we encourage future research in
this domain to also evaluate on “harder” subsets

ToTTo
DART

Spider
MTOP

Logic2Text

Target Task

ToTTo

DART

Spider

MTOP

Logic2Text
So

ur
ce

 T
as

k

36.0 12.0 0.0 0.0 32.2

2.7 40.6 0.0 0.0 45.4

1.5 3.4 35.6 0.0 29.2

1.1 2.4 0.0 12.9 31.1

13.2 14.4 0.0 0.0 85.8

W/o in-context example

ToTTo
DART

Spider
MTOP

Logic2Text

Target Task

38.9 20.0 2.6 6.8 70.6

41.7 35.9 1.8 16.8 62.6

37.9 27.2 18.3 22.3 73.2

20.6 15.1 1.5 31.9 63.9

42.1 29.2 1.3 11.0 79.1

W/ in-context example

Figure 4: Cross-task evaluation of prompt tuning with
(right) and without (left) a target in-context example..
Numbers better than the corresponding ICL baseline
for the target task are bolded. Pairing source task em-
beddings with target task in-context demonstrations in-
creases task transfer.

where there is no table overlap, and also consider
other more complex datasets, such as Spider and
DART.

IPT is more stable than PT with more soft
prompt tokens: The number of soft prompt to-
kens in PT is an important hyperparameters: while
more prompt tokens may endow the model with
increased capacity to adapt to downstream tasks,
it also becomes harder to optimize. As shown in
Figure 3, average PT performance first increases
and then decreases as the number of prompt tokens
increases from 1 to 150. However, the variance of
PT consistently increases as the number of prompt
tokens increases12. On the other hand, the discrete

12The high variance of PT is also observed in prior
works (Min et al., 2022a; Vu et al., 2022b,a)

in-context example in IPT improves the method’s
stability with more prompt tokens, and IPT also
reaches its best performance with more soft prompt
tokens than PT. We conjecture that additional pa-
rameters (i.e., soft prompt tokens) are necessary to
learn how to integrate the dynamically-retrieved in-
context demonstrations. Overall, IPT’s improved
stability is a clear positive especially when apply-
ing parameter-efficient tuning methods to large
LMs, where hyperparameter selection can be com-
putationally infeasible.

Prompt embeddings are transferable to new
tasks provided with in-context demonstrations
Adaptation methods that require training, such as
PT or IPT, still require a large amount of labeled
data for the target task, which is not available
in low-resource settings. Thus, we measure how
much soft prompts learned for a source task can
help improve performance on a different target
task for which it may not be possible to learn a
powerful soft prompt. We simulate this setting by
conducting cross-task evaluations13 across our five
tasks, measuring whether soft prompts learned by
PT can transfer to other tasks when paired with
an in-context demonstration from the target task.
Figure 4 shows that embeddings learned via PT
alone are generally not transferable to new tasks, as
evidenced by the low off-diagonal numbers in the
left heatmap (bolded values represent better per-
formance than ICL). However, pairing the prompt
embeddings learned on a source task with a target
task in-context demonstration often performs better
than just the latter (right heatmap). For instance,
while vanilla ICL on ToTTo achieves 35.1 BLEU,
pairing the in-context demonstration with a soft
prompt learned on DART boosts performance to
41.7. These results show that although the learned
prompt embeddings are task-specific, they encode
information applicable to other tasks and help take
better advantage of in-context demonstrations.

5 Conclusion

In this paper, we empirically analyze the effect of
in-context demonstrations on prompt tuning for five
language generation tasks. Our experiments reveal
that while instruction prompt tuning and prompt
tuning perform competitively with each other, IPT
is more stable, yielding lower variance when vary-
ing hyperparameters. IPT also significantly im-

13We present another analysis on the input format transfer-
ability in Appendix C.

proves over PT when the in-context demonstration
closely resembles the test input, which is frequently
the case in the ToTTo dataset. Finally, soft prompts
learned for a source task can exhibit positive trans-
fer to new target tasks when paired with in-context
demonstrations.

Limitation

While we have examined the interplay of prompt
tuning and in-context learning on more general
datasets than previous work, our experiments were
limited to only 1B parameter language models. Fu-
ture research on larger models is necessary to see if
our findings scale with parameter count. Although
we haven shown instruction prompt tuning is more
stable than prompt tuning, its training is also slower
than vanilla prompt tuning.

References
Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen,

Qiang Fu, Weizhu Chen, Nanning Zheng, and Jian-
Guang Lou. 2022. Input-tuning: Adapting unfamiliar
inputs to frozen pretrained models.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538–
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis,
and He He. 2022. Meta-learning via language model
in-context tuning. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 719–730,

https://doi.org/10.48550/ARXIV.2203.03131
https://doi.org/10.48550/ARXIV.2203.03131
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.18653/v1/2022.acl-long.53

Dublin, Ireland. Association for Computational Lin-
guistics.

Zhiyu Chen, Wenhu Chen, Hanwen Zha, Xiyou Zhou,
Yunkai Zhang, Sairam Sundaresan, and William Yang
Wang. 2020. Logic2Text: High-fidelity natural lan-
guage generation from logical forms. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2096–2111, Online. Association
for Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2022. PPT: Pre-trained prompt tuning for few-shot
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8410–8423, Dublin,
Ireland. Association for Computational Linguistics.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. Ptr: Prompt tuning with rules
for text classification.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565–576, Online. Association
for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,

pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950–2962, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Haokun Liu, Derek Tam, Muqeeth Mohammed, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022a. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. In Ad-
vances in Neural Information Processing Systems.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022b. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022c. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022a. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316–5330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022b. MetaICL: Learning to learn
in context. In Proceedings of the 2022 Conference of

https://doi.org/10.18653/v1/2020.findings-emnlp.190
https://doi.org/10.18653/v1/2020.findings-emnlp.190
https://doi.org/10.48550/ARXIV.2203.06904
https://doi.org/10.48550/ARXIV.2203.06904
https://doi.org/10.48550/ARXIV.2203.06904
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.48550/ARXIV.2105.11259
https://doi.org/10.48550/ARXIV.2105.11259
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=rBCvMG-JsPd
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.48550/ARXIV.2103.10385
https://doi.org/10.48550/ARXIV.2103.10385
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2791–2809, Seattle, United States.
Association for Computational Linguistics.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi-
angru Tang, Aadit Vyas, Neha Verma, Pranav Kr-
ishna, Yangxiaokang Liu, Nadia Irwanto, Jessica
Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma,
Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan,
Xi Victoria Lin, Caiming Xiong, Richard Socher,
and Nazneen Fatema Rajani. 2021. DART: Open-
domain structured data record to text generation. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 432–447, Online. Association for Computa-
tional Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186, Online. As-
sociation for Computational Linguistics.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
Perry Payne, Martin Seneviratne, Paul Gamble, Chris
Kelly, Nathaneal Scharli, Aakanksha Chowdhery,
Philip Mansfield, Blaise Aguera y Arcas, Dale Web-
ster, Greg S. Corrado, Yossi Matias, Katherine Chou,
Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Ra-
jkomar, Joelle Barral, Christopher Semturs, Alan
Karthikesalingam, and Vivek Natarajan. 2022. Large
language models encode clinical knowledge.

Tu Vu, Aditya Barua, Brian Lester, Daniel Cer, Mo-
hit Iyyer, and Noah Constant. 2022a. Overcoming
catastrophic forgetting in zero-shot cross-lingual gen-
eration. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9279–9300, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022b. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5039–5059, Dublin, Ireland. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. UnifiedSKG:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 602–631,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2022. Least-to-most prompting enables complex rea-
soning in large language models.

A Model Hyperparameters

For both prompt tuning and instruction prompt tun-
ing, we set batch size 8 and grid search learning
rate over {5e−5, 5e−4, 1e−3} and weight decay
over {0.0, 0.01, 0.1}. The adopted hyperparame-
ters for each task and each approach is presented
in Table 5.

The input format of IPT for each task is pre-
sented in Table 4.

B Retrieve in-context demonstration for
DART

As DART contains examples sharing the same in-
put, i.e., the same input corresponds to different
outputs, examples having the same input will be se-
lected as the in-context demonstration of each other.
However, our earlier experiments indicated that
prepending these examples leads to convergence
to higher losses, and worse performance overall
on evaluation set. Therefore, for this dataset, we
exclude same-input examples and select the top

https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.48550/ARXIV.2212.13138
https://doi.org/10.48550/ARXIV.2212.13138
https://aclanthology.org/2022.emnlp-main.630
https://aclanthology.org/2022.emnlp-main.630
https://aclanthology.org/2022.emnlp-main.630
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.48550/ARXIV.2205.10625
https://doi.org/10.48550/ARXIV.2205.10625

Task Input format

ToTTo Table:[linearized table]Sentence:[output]\n\nTable:[linearized table]Sentence:
DART Table:[linearized table]Text:[output]\n\nTable:[linearized table]Text:
Spider Input:[table schema]\t[input string]Output:[SQL]\n\nInput:[table schema]\t[input string]Output:
MTOP Input:[API calls]\t[input string]Output:[output]\n\nInput:[API calls]\t[input string]Output:
Logic2Text Input:[table schema]\t[input string]Output:[output]\n\nInput:[table schema]\t[input string]Output:

Table 4: The input format of each task for instruction prompt tuning and in-context learning. Soft prompts for IPT
is ommited in the table.

PT IPT
Task lr decay lr decay

BLOOM

ToTTo 5e-5 0.0 5e-5 0.01
Dart 5e-5 0.0 5e-5 0.0

Spider 5e-5 0.1 5e-5 0.1
MTOP 5e-4 0.0 5e-4 0.01

Logic2Text 5e-4 0.01 5e-4 0.0

OPT

ToTTo 5e-5 0.0 5e-5 0.0
Dart 5e-5 0.0 5e-5 0.0

Spider 5e-4 0.0 5e-4 0.0
MTOP 5e-4 0.01 5e-5 0.0

Logic2Text 5e-4 0.0 5e-4 0.0

GPT2

ToTTo 5e-5 0.0 5e-5 0.0
Dart 5e-5 0.0 5e-5 0.0

Spider 5e-5 0.0 5e-5 0.0
MTOP 5e-4 0.01 5e-4 0.01

Logic2Text 5e-4 0.0 5e-4 0.0

Table 5: Hyperparameters of PT and IPT for each task.

PT IPT w/o ICL PT w/ ICL IPT

ToTTo 36.0 16.7 38.9 47.1
DART 40.6 4.4 35.9 41.3
Spider 35.6 24.9 18.3 33.6
MTOP 12.9 0.0 31.9 60.5
Logic2Text 85.8 72.9 79.1 85.8

Table 6: Instruction prompt tuning performs worse when
the in-context demonstration is removed (second col-
umn), whereas regular PT embeddings adapt better to
input with in-context demonstration (third column). Per-
formance better than retrieved one-shot ICL is under-
lined.

semantically-similar examples from the rest as in-
context demonstration.

C Cross Input Transferability

We explore how well the embeddings learned via
PT and IPT can adapt to the input setting of each
other. Table 6 shows that the performance of IPT
drops significantly when the in-context demonstra-
tions are removed, indicating the critical role of
these demonstrations in IPT. Appending regular PT
embeddings with in-context demonstration leads
to on average smaller degradation in performance,

and outperforms one-shot ICL consistently across
all tasks. On two datasets (ToTTo and MTOP),
having in-context demonstrations exceeds the per-
formance of regular prompt tuning, suggesting
that retrieved demonstrations can provide neces-
sary signals that are not well-encoded into the soft
prompts.

