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Abstract

Traveling Salesman Problem (TSP), as a classic routing op-
timization problem originally arising in the domain of trans-
portation and logistics, has become a critical task in broader
domains, such as manufacturing and biology. Recently, Deep
Reinforcement Learning (DRL) has been increasingly em-
ployed to solve TSP due to its high inference efficiency. Nev-
ertheless, most of existing end-to-end DRL algorithms only
perform well on small TSP instances and can hardly generalize
to large scale because of the drastically soaring memory con-
sumption and computation time along with the enlarging prob-
lem scale. In this paper, we propose a novel end-to-end DRL
approach, referred to as Pointerformer, based on multi-pointer
Transformer. Particularly, Pointerformer adopts both reversible
residual network in the encoder and multi-pointer network in
the decoder to effectively contain memory consumption of
the encoder-decoder architecture. To further improve the per-
formance of TSP solutions, Pointerformer employs a feature
augmentation method to explore the symmetries of TSP at
both training and inference stages as well as an enhanced
context embedding approach to include more comprehensive
context information in the query. Extensive experiments on
a randomly generated benchmark and a public benchmark
have shown that, while achieving comparative results on most
small-scale TSP instances as state-of-the-art DRL approaches
do, Pointerformer can also well generalize to large-scale TSPs.

Introduction
The Traveling Salesman Problem (TSP) is a well-known com-
binatorial optimization problem. It can be stated as follows:
given a set of cities/nodes, a salesman departing from one city
needs to traverse all other cities exactly once and finally re-
turns to the start city. The objective of TSP is to find the short-
est route for the salesman. In addition to its well-recognized
theoretical importance as a classic combinatorial optimiza-
tion problem, TSP also has a wide range of real-world ap-
plications, such as drilling of printed circuit boards (Alkaya
and Duman 2013), X-Ray crystallography (Bland and Shall-
cross 1989), warehouse order picking (Madani, Batta, and
Karwan 2020), transport routes optimization (Hacizade and
Kaya 2018), and many others (Matai, Singh, and Lal 2010).
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Due to both of its theoretical and practical importance,
TSP has attracted a great number of research efforts in the
past decades that attempted to address it using either exact
or heuristic algorithms. In fact, the NP-hardness nature of
TSP makes it computationally intractable to leverage exact
algorithms to find the optimal solutions over a large-scale
TSP, since the corresponding computation complexity in-
creases exponentially with respect to the number of nodes.
Hence, facing most real-world TSP applications, heuristic al-
gorithms are usually adopted to obtain near-optimal solutions.
However, to ensure achieving high-quality solutions, a few
heuristic algorithms are designed to further rely on fine-tuned
search strategies, which may significantly increase the time
complexity for solving large-scale TSP.

Recently, there have been a soaring number of studies try-
ing to solve TSP using Deep Learning (DL) algorithms with
either Supervised Learning (SL) or Reinforcement Learning
(RL) (Vinyals, Fortunato, and Jaitly 2015; Nowak et al. 2017;
Kool, van Hoof, and Welling 2018; Kwon et al. 2020; Zheng
et al. 2021; Fu, Qiu, and Zha 2021; Jiang et al. 2022; Kwon
et al. 2021; Ma et al. 2021; Kim, Park et al. 2021). Depending
on the specific ways to construct solutions, DL algorithms
can be roughly divided into two main categories: search-
based DL (d O Costa et al. 2020; Fu, Qiu, and Zha 2021; Ma
et al. 2021) and end-to-end DL (Kool, van Hoof, and Welling
2018; Kwon et al. 2020, 2021; Jiang et al. 2022; Kim, Park
et al. 2021). By incorporating heuristic search operators with
learning-based policy, search-based DL can solve larger-scale
TSP instances. However, they usually suffer from two major
limitations. The first one lies in the inference efficiency is-
sue, meaning that the search component usually takes a long
time to terminate to obtain high quality solutions. Moreover,
the obtained solution performance is very sensitive to the
selection of search operators which is highly dependent on
sophisticated domain knowledge. In contrast, end-to-end DL
algorithms are very efficient in generating solutions and bear
much lower dependencies on domain knowledge. Therefore,
end-to-end DL algorithms are more suitable for many emerg-
ing TSP application scenarios, such as on-call routing (Ghiani
et al. 2003) and ride hailing service (Xu et al. 2018), that
require to generate solutions in almost real-time.

Compared with supervised learning relying on the optimal
solution as the learning labels, which is usually unknown
when facing the large-scale TSP, RL yields the advantage



since it can be applied to attain near-optimal solutions with-
out requiring the existence of ground truth. Therefore, most
recent studies tend to apply the Deep Reinforcement Learning
(DRL) approach to solve the large-scale TSP. Nevertheless,
most of existing end-to-end DRL algorithms only perform
well on small TSP instances (no more than 100 nodes) and
are hard to scale to larger instances. This is mainly due to the
drastically soaring memory consumption and computation
time along with the increasing nodes.

In this paper, we propose a novel scalable DRL method
based on multi-pointer Transformer, denoted as Pointer-
former, aiming to solve TSP in an end-to-end manner.
While following the classical encoder-decoder architec-
ture (Vaswani et al. 2017), this new approach adopts re-
versible residual network (Gomez et al. 2017; Kitaev, Kaiser,
and Levskaya 2019) instead of the standard residual network
in the encoder to significantly reduce memory consumption.
Furthermore, instead of employing the memory-consuming
self-attention module as in (Kool, van Hoof, and Welling
2018; Kwon et al. 2020), we propose a multi-pointer net-
work in the decoder to sequentially generate the next node
according to a given query. Besides addressing the issues of
memory consumption, Pointerformer contains delicate de-
sign to further improve the model effectiveness. Particularly,
to improve the effectiveness of obtained solutions, Pointer-
former employs a feature augmentation method to explore the
symmetries of TSP at both training and inference stages as
well as an enhanced context embedding approach to include
more comprehensive context information in the query.

To demonstrate the effectiveness of Pointerformer, we con-
ducted extensive experiments on two datasets, including ran-
domly generated instances and widely used public bench-
marks. Experimental results have shown that Pointerformer
not only achieves comparative results on small-scale TSP in-
stances as State-Of-The-Art (SOTA) DRL approaches do, but
also can generalize to large-scale TSPs. More importantly,
while being trained on randomly generated instances, our
approach can achieve much better performance on instances
with different distributions, indicating a better generalization.

Our main contributions can be summarized as follows.
• We propose an effective end-to-end DRL algorithm without
relying on any hand-crafted heuristic operators, which is the
first end-to-end DRL approach that can scale to TSP instances
with up to 500 nodes to the best of our knowledge.
• Our algorithm applies an auto-regressive decoder with a
proposed multi-pointer network to generate solutions sequen-
tially without relying on any search components. Compared
with existing search-based DRL algorithms, we can achieve
comparable solutions while the inference time is reduced by
almost an order of magnitude.
• Besides scalability, extensive experiments also show that
our approach can generalize well to instances that have varied
distributions without re-training.

Related Work
Here we highlight a few of the best traditional algorithms for
solving TSP, and then focus on presenting the DL algorithms
that are more related to our work.

Traditional TSP algorithms. TSP is one of the most typ-
ical combinatorial optimization problems, and numerous al-
gorithms have been proposed for solving TSP over the past
decades. Traditional TSP algorithms can be classified into
three categories, i.e., exact algorithms, approximate algo-
rithms and heuristic algorithms. Concorde (Applegate et al.
2007) is one of the fastest exact solvers. It models TSP as
a mixed-integer programming problem, and then adopts a
branch and cut algorithm (Padberg and Rinaldi 1991) to
search the solution. Christofides et al., (Christofides 1976)
proposed an approximation algorithm, and the approximation
ratio of 1.5 is achieved by constructing the minimum span-
ning tree and the minimum perfect matching of the graph.
LKH-3 (Helsgaun 2017) is one of the SOTA heuristics, which
uses the k-opt operators to search in the solution space, with
the guidance of an α−measure based on a variant of mini-
mum spanning tree. Among these traditional algorithms, the
heuristics are the most widely used algorithms in practice,
yet they are still time-consuming and difficult to be extended
to other problems.

Besides of these traditional algorithms, there are also
works that attempt to utilize the power of machine learning
and reinforcement learning techniques. Earlier machine learn-
ing approaches include the Hopfield neural network (Hopfield
and Tank 1985) and self-organising feature maps (Angeniol,
Vaubois, and Le Texier 1988). There are several works like
Ant-Q (Gambardella and Dorigo 1995) and Q-ACS (Sun, Tat-
sumi, and Zhao 2001) that combined reinforcement learning
with ant colony algorithm, and Liu and Zeng (Liu and Zeng
2009) used reinforcement learning to improve the mutation
of a successful genetic algorithm called EAX-GA (Nagata
2006). It is worth mentioning that a recent work, called VSR-
LKH (Zheng et al. 2021), defined a novel Q-value based on
reinforcement learning to replace the α−value used by the
LKH algorithm, and achieved a better performance on TSP.

DL-based TSP algorithms. DL-based TSP algorithms
are mainly proposed in recent years, according to the way
the solution is generated, they can be classified into two
categories: end-to-end methods and search-based methods.

End-to-end methods create a solution from the scratch
(Bello et al. 2016; Dai et al. 2017; Kim, Park et al. 2021;
Kool, van Hoof, and Welling 2018; Kwon et al. 2020; Nazari
et al. 2018; Vinyals, Fortunato, and Jaitly 2015). Vinyals et
al., (Vinyals, Fortunato, and Jaitly 2015) proposed a Pointer
NetWork to solve TSP with supervised learning. Bello et
al., (Bello et al. 2016) then used RL to train a PtrNet model
to minimize the length of solutions. This method achieves
better performance and has stronger generalization and scal-
ability. To deal with both static and dynamic information,
Nazari (Nazari et al. 2018) improved PtrNet, which is more
effective than many traditional methods. Dai et al., (Dai
et al. 2017) proposed Structure2Vec which encodes partial
solutions and predicts the next node. The Q-learning method
is used to train the whole policy model. Attention Model
in (Kool, van Hoof, and Welling 2018) adopts the Trans-
former (Vaswani et al. 2017) architecture and the model is
trained through the REINFORCE algorithm with a greedy
roll-out baseline. It shows the efficiency of Transformer in
solving TSP. Then Kwon et al., proposed POMO (Kwon et al.



2020) using REINFORCE algorithm with a shared baseline.
It leverages the existence of multiple optimal solutions of a
combinatorial optimization problem. Currently, end-to-end
methods perform well on TSP instances with nodes less than
100, but due to the complexity of the model and the low sam-
pling efficiency of reinforcement learning, it is hard to extend
them to a larger scale.

Search-based methods start from a feasible solution and
learn how to constantly improve the solution (Chen and Tian
2019; d O Costa et al. 2020; Fu, Qiu, and Zha 2021; Joshi,
Laurent, and Bresson 2019; Kool et al. 2022). The improve-
ment is often achieved by integrating with heuristic operators.
For instance, Chen et al., proposed NeuRewriter (Chen and
Tian 2019), which rewrites local components through region-
pick and rule-pick. They trained the model with Advantage
Actor-Critic, and the reduced cost per iteration is used as
its reward. Two approaches (Joshi, Laurent, and Bresson
2019; Kool et al. 2022) used supervised learning to generate
the heat maps of the given graphs, and then employed dy-
namic programming and beam search to find near-optimal
solutions respectively. There is another method using Monte
Carlo tree search (MCTS) to improve the solution such as
Att-GCRN+MCTS (Fu, Qiu, and Zha 2021). They first train
a model to generate heat maps for guiding MCTS on small-
scale instances by SL, based on which heat maps of larger
TSP instances were then constructed by graph sampling,
graph converting and heat maps merging. Finally, MCTS
is used to search for solutions based on these heat maps.
However, performance of such approaches highly depends
on the number of iterations or search, which is usually time-
consuming and hinders their applications in time sensitive
tasks.

Problem Formulation
While there are many varieties of TSP problems, we focus on
the classic two-dimensional Euclidean TSP in this paper. Let
G(V,E) denote an undirected full connection graph, where
V = {vi | 1 ≤ i ≤ N} represents all N cities/nodes and
E = {eij | 1 ≤ i, j ≤ N} is the set of all edges. Let
cost(i, j) be the cost of moving from vi to vj , which equates
the Euclidean distance between vi and vj . We further assume
depot ∈ V denoting the depot city, from which the salesman
starts the trip and will go back in the end. A route is defined
as a sequence of cities. A route is feasible if and only if it
starts from and ends at depot while traverses all other cities
exactly once. Given a route τ , its total cost, denoted by L(τ),
can be calculated by Eq. (1), where τ[i] denotes the i-th node
on τ and N = |τ | is the length of τ .

L(τ) = cost(τ[N ], τ[1]) +

N−1∑
i=1

cost(τ[i], τ[i+1]) (1)

A solution τ of TSP can be generated sequentially by
selecting the next node from all nodes that are to be visited
until returning to the depot . This can be seen as a Markov
decision process. The decision of each step can be modeled by
a deep neural network parameterized by θ: πθ(τ[i] | s, τ [: i)),
where s denotes a TSP instance and τ [: i) is the partial route
on τ before the i-th step. The reward of each step is defined as

the negative cost of the newly added edge. For each problem
instance s, our goal is to maximize the expected cumulative
reward defined as follows:

J(θ | s) = Eτ∼pθ(τ |s)R(τ) (2)

where R(τ) = −L(τ) and pθ(τ | s) = ΠN
i=1πθ(τ[i] | s, τ [:

i)).
According to the policy gradient theorem (Sutton et al.

2000), we can calculate the derivative of the objective func-
tion to update the model using many existing policy gradient
algorithms.

∇θJ(θ | s) = Epθ(τ |s) [∇θ log pθ(τ | s)R(τ)] (3)

The Pointerformer Approach
The proposed Pointerformer is an end-to-end DRL algorithm
based on multi-pointer transformer which combines a trans-
former encoder and an auto-regressive decoder. The general
framework of Pointerformer is illustrated in Figure 1.

In principle, Pointerformer applies multiple attention lay-
ers that consist of multi-head self-attention and feed-forward
layers to encode the input nodes for obtaining an embedding
of each node. Then, a multi-pointer network with a single
head attention is employed to decode sequentially accord-
ing to a query composed of an enhanced context embedding.
Here, the enhanced context embedding contains not only
information about the instance itself and nodes that are to
be visited, but also information about nodes that have been
visited. The solution is generated by choosing a node at each
step according to the probability distribution given by the
decoder, where all the visited nodes are masked so that their
probability is 0. Finally, the proposed Pointerformer is trained
with a modified REINFORCE algorithm, which is based on a
shared baseline for policy gradients while unifying the mean
and variance of a batch of instances. In the following subsec-
tions, we describe the key components of Pointerformer.

Reversible Residual Network Based Encoder
The encoder is an important ingredient for the Pointerformer
architecture. As we mentioned before, the resource consumed
by the original Transformer (Vaswani et al. 2017) increases
dramatically as the length of the input sequence increases,
which equates the number of nodes in TSP. Therefore, we
adopt a Transformer without positional encoding but includ-
ing a reversible residual network, in order to scale to large
TSP instances. To our knowledge, the reversible residual net-
work has not been introduced into the DRL approaches of
combinatorial optimization problems before.

In the classic two-dimensional Euclidean TSP setting, each
node is solely denoted by its coordinates (x, y). To obtain
a robust embedding for each node, we propose a feature
augmentation mechanism such that each node is denoted
by (x, y, η), where η = atanh yx . Furthermore, inspired by
the data augmentation in POMO (Kwon et al. 2020) that
generates 8 equivalent instances of each instance by flipping
and rotating its underlying graph, we finally use them on the
defined feature to obtain 24 features for each node. These
features will be the input of the initial embedding layer.



Figure 1: The overall architecture of Pointerformer. First, multiple attention layers are applied to encode the nodes of the input
TSP instance. Next, a multi-pointer network is used to sequentially decode the solution by a query composed of an enhanced
embedding.

After the initial embedding layer, nodes will go through
the encoder with multiple residual layers, each of which
is constituted by a multi-head self-attention (MHA) sub-
layer and a feed-forward (FF) sub-layer. Here, we employ
the reversible residual network (Gomez et al. 2017; Kitaev,
Kaiser, and Levskaya 2019) to save memory consumption.
Different from residual networks where activation values of
all residual layers need to be stored in order to calculate the
derivations during back-propagation, in reversible residual
networks, MHA and FF maintain a pair of input and output
embedding features (X1, X2) and (Y1, Y2) so that derivations
can be calculated directly. Below we illustrate the details in
Eq. (4) and (5):

Y1 = X1 + MHA(X2),

Y2 = X2 + FF(Y1).
(4)

Obviously, the input embedding features (X1, X2) can be
calculated from the output embeddings (Y1, Y2) easily during
back-propagation:

X2 = Y2 − FF(Y1),

X1 = Y1 −MHA(X2).
(5)

Note that the deeper of the residual network, the more
memory the reversible residual network can save. In our
work, we apply MHA and FF of six layers, we can observe
dramatic reduction of memory consumption without affecting
the performance.

Multi-pointer Network Based Decoder
The decoder is an auto-regressive process that is to sequen-
tially generate a feasible route for each TSP instance. A
context embedding is used to represent the current state, and
is used as a query to interact with embeddings of nodes that
are to be selected. The context embedding is updated con-
stantly as more nodes are selected until a feasible route is
obtained. The auto-regressive decoder is generally very fast

but memory-consuming, mainly due to the attention module
used in the query. To alleviate this, we improve our decoder
by integrating the following distinguishing features.

Enhanced Context Embedding. Recall that a route τ of
TSP is composed of a sequence of nodes on it. We propose an
effective and enhanced context embedding that contains the
following information hτ[1] , hτ[t] , hg, and hτ , where t = |τ |
is used to denote the length of τ :
• hτ[1] , embedding of the first node on τ : A static information
that is the embedding of depot ;
• hτ[t] , embedding of the last node on τ : A dynamic infor-
mation that is updated according to the current route;
• hg, graph embedding: To encode the whole TSP instance,
which is the summation of embeddings of all nodes in the
instance: hg =

∑N
i=1 h

enc
i , where henci is the embedding of

the i-th node obtained by the encoder;
• hτ , embedding of τ : To encode the current partial route,
which is the summation of embeddings of all nodes on τ
hτ =

∑t−1
i=1 h

enc
τ[i]

.
The enhanced context embedding is used as a query qt,

which is computed by qt = 1
N (hg + hτ ) + hτ[t−1]

+ hτ[1] .
Since the graph embedding is able to reflect different graph
structures while information about depot and the last visited
node is crucial for selecting future nodes, we include such
information to guide the decoder similar as in the previous
DRL algorithms (Kool, van Hoof, and Welling 2018; Kwon
et al. 2020). Additionally, we also utilize hτ in our decoder
which is ignored in previous solutions. The motivation is
that even with the same first and last nodes, two routes may
cause different distributions over nodes that are to be visited.
As shown in our experiments, such information is crucial,
particularly for instances from practical applications. Notice
that we normalize the graph embedding and the current partial
route embedding by dividing the total number of nodes N .

A Multi-pointer Network. At each step, the above en-
hanced context embedding is used to interact with all nodes



that are to be visited to output a probability distribution over
them. We devise a multi-pointer network to better utilize the
context embedding. More specifically, we linearly project the
queries qt and keys kj (embedding of the j-th node given by
the encoder) to dk dimensions by using H different linear
projections for each of them. For each projection, we are able
to obtain an interaction between the query and node j via
a dot operator and normalization by

√
dk. The final interac-

tion is simply evaluated by an average operator over all H

interactions, namely, PN = 1
H

∑H
h=0

(qtW
q
h)
T (kjW

k
h )√

dk
.

We further minus PN by the cost between the last node
i of the partial route and node j to obtain the interaction
score between i and j: scoreij = PN − cost(i, j). By doing
so, we encourage the approach to start from a good policy
that is always selecting the nearest node as the next one to
visit. Comparing to starting from a random policy, this will
accelerate our training procedure considerably.

Similar to (Bello et al. 2016), the probability is obtained
by Eq. (6), where we clip the score with tanh and mask
all visited nodes. Here, C is a coefficient that controls the
range of values. The larger the value of C is, the smaller of
the entropy, hence it can be seen as a parameter to control
the trade-off between exploitation and exploration during
training. We will show via ablation studies that the value of
C has a significant impact on performance.

uij =

{
C · tanh (scoreij) node j is to be visited
−∞ otherwise

(6)

Finally, we are able to compute the output probability
vector p using a softmax function.

A Modified REINFORCE Algorithm

We train our Pointerformer model by using the REINFORCE
algorithm (Williams 1992), whose baseline applies diverse
greedy roll-outs of all instances for policy gradient. Inspired
by POMO (Kwon et al. 2020), our decoder also starts from
N different nodes for each TSP instance with N nodes. By
taking each node as the depot, for each TSP instance i, we can
sample N feasible routes τi =

{
τ1i , τ

2
i , . . . , τ

N
i

}
by Monte

Carlo sampling method. Therefore, given a batch containing
B TSP instances, we can obtain B × N routes, which can
be used to train our policy according to Eq. (3). However,
directly applying REINFORCE will cause the algorithm hard
to converge because of high variance of costs among different
instances. In order to alleviate such a problem, we further
use a variance-consistent normalization mechanism before
training, which can increase the speed of convergence while
also stabilizes the training. More details can be found in
Eq. (7), where µ(τi) and σ(τi) are the mean and variance
of the N trajectories of instance i, respectively. One can

easily observe that
R(τji )−µ(τi)

σ(τi)
is an unbiased estimation of

the TSP objective function, which eliminates the effect of
different rewards among different instances.

∇θJ(θ) ≈
1

B ×N

B∑
i=1

N∑
j=1

(
R
(
τ ji
)
− µ(τi)

σ(τi)

)
∇θ log pθ

(
τ ji | s

)
,

µ(τi) =
1

N

N∑
j=1

R
(
τ ji

)
,

σ(τi) =
1

N

N∑
j=1

(
R
(
τ ji

)
− µ(τi)

)2
.

(7)

Experiments
To evaluate the efficiency of Pointerformer, we compare its
performance with SOTA DRL approaches. We train and test
Pointerformer on randomly generated instances, and verify
its generalization on a public benchmark.

Benchmark Instances
• TSP random: Uniformly sample a certain number of
nodes from the unit square of [0, 1]2. It includes five sets
of TSP instances with N = 20, 50, 100, 200, 500. Same as
in Att-GCRN+MCTS (Fu, Qiu, and Zha 2021), for TSP in-
stances with N ≤ 100, we sample 10,000 instances for each
set, while for larger instances with N ≥ 200, the set size
is 128. The same benchmark is also widely adopted to tes-
tify existing DRL approaches except that they only consider
instances with N ≤ 100;
• TSPLIB: A well-known TSP library (Reinelt 1991) that
contains 100 instances with various node distributions. These
instances come from practical applications with size rang-
ing from 14 to 85,900. In our experiment, we consider all
instances with no more than 1,002 nodes.

Baselines
The following SOTA DL algorithms are considered as our
baselines.

End-to-end DL algorithms:
• AM (Kool, van Hoof, and Welling 2018): A model based
on attention layer is trained using the REINFORCE algorithm
with a deterministic greedy roll-out baseline. AM can achieve
good performance on small-scale TSP instances;
• POMO (Kwon et al. 2020): To reduce the variance of ad-
vantage estimation, POMO improves the algorithm in AM
such that it generates N trajectories for each instance with
N nodes and uses data augmentation to improve the quality
of solutions during validation;
• AM+LCP (Kim, Park et al. 2021): It proposes a training
paradigm for solving TSP called termed learning collabora-
tive policy. It distinguishes policy seeder and policy reviser,
which focus on exploration and exploitation, respectively.

Search-based DL algorithms:
• DRL+2opt (d O Costa et al. 2020): DRL+2opt guides the
search of 2-opt operator through DRL. The combination of re-
inforcement learning and heuristic search operator constantly
improve solutions to achieve good results.
• Att-GCN+MCTS (Fu, Qiu, and Zha 2021): It trains a model
to generate heat maps for guiding MCTS on small-scale



instances by supervised learning, based on which heat maps
of larger instances are then constructed by graph sampling,
graph converting and heat maps merging. Finally, MCTS is
used to search for solutions based on the heat maps.

Hyper-Parameters
In our experiments, we only use instances from TSP random
to train various models corresponding to instances with dif-
ferent nodes. During each training epoch, 100,000 instances
are randomly sampled. To train models for instances of size
N ≤ 200, we use a single GPU V100 (16G) with batch size
B = 64, while for other cases the models are trained on four
GPUs V100 (32G) with batch size B = 32. Adam is used as
the optimizer for all models with a learning rate η = 10−4

and a weight decay ω = 10−6. We use 6 layers in the encoder
(nt = 6) and let dk = 128 and H = 8 of multi-pointer in the
decoder. The number of heads is 8 in the MHA layer. When
evaluating on TSP random, the batch size B is 128 for in-
stances with N ≤ 200, while B = 64 for other cases. Our
algorithm is implemented based on PyTorch (Paszke et al.
2019), the trained models and the related data are publicly
available. 1

Experimental Results
To show the effectiveness of Pointerformer, we first train
models with different number of nodes, denoted by ModelN
with N = 20, 50, 100, 200, and 500, respectively. For train-
ing ModelN , random instances of size N are sampled from
TSP random using parameters as stated in the above section.

We have conducted the experiment on TSP random and
a further study of generalization on TSPLIB, in all of which
we observe advantages of Pointerformer over others. For the
group of TSP random benchmark, the results are shown in
Table 1, from which we can see that Pointerformer has the
best trade-off between efficiency and optimality compared to
others. Pointerformer can achieve results of relatively small
gaps to the optimal solutions that are achieved by the exact
algorithm Concorde, denoted by OPT. More importantly, one
easily observes that Pointerformer can scale to TSP instances
with up to 500 nodes while other DRL algorithms except Att-
GCN+MCTS quickly run out of memory for TSP instances
with N > 100 (indicated by - in Table 1). In Fig. 2, we also
compare memory consumption of our model with the SOTA
DRL approach POMO trained on instances of different size.
One easily observes that along with the enlarging problem
size, the memory consumption of POMO increases sharply,
while our model increases gradually. Note that since the
architecture of POMO is most similar with ours, it is more
fair to use POMO for comparison of memory consumption
when comparing to other DRL models. Comparing to search-
based approach, the solutions obtained by Pointerformer may
be slightly worse than Att-GCN+MCTS on TSP instances
with 500 nodes. However, we can accelerate the computing
time by up to 6 times (5.9m to 59.35s). In particular, we can
attain better results on TSP instances with 200 nodes in less
time. We should mention that results of Att-GCN+MCTS

1https://github.com/Learning4Optimization-
HUST/Pointerformer

are taken directly from (Fu, Qiu, and Zha 2021), where the
search component is implemented in C++ and runs in a CPU
with 8 cores in parallel.

To the best of our knowledge, Pointerformer is the first
end-to-end DRL algorithm that can scale to TSP instances
with more than 100 nodes while still achieve comparable
results as search-based DRL approaches, but in shorter time.

Figure 2: Comparison of memory consumption between
Pointerformer and POMO. Along with the enlarging problem
size, the memory consumption of POMO increases sharply,
while our model increases gradually.

In order to evaluate the generalization of the proposed
Pointerformer, we apply Model100 directly to the TSPLIB
instances, similar for the baseline algorithms AM, POMO,
and DRL+2opt. Note that we do not compare with Att-
GCN+MCTS and AM+LCP here, since we have not fig-
ured out how to extend Att-GCN+MCTS to non-random set-
ting, while the implementation of AM+LCP is not publicly
available. To further verify the importance of scalability, we
also apply Model200 to these instances, which are unavail-
able for the baselines due to lack of scalability. We see that
Model200 has better generalization comparing to Model100,
particularly for large-scale instances. Table 2 summarizes the
results of Pointerformer in comparison with the three base-
lines on instances from TSPLIB, where we classify instances
in TSPLIB into three groups according to their sizes, i.e.,
TSPLIB1∼100, TSPLIB101∼500, and TSPLIB501∼1002.
From the results, we can see that POMO performs the best
on instances with no more than 100 nodes and the second
best on instances between 101 to 500 nodes. While Pointer-
former (Model100) performs the best on instances between
101 to 500 nodes and the second best on the other two groups.
One notices that most instances of second group are around
100 nodes, so Pointerformer (Model100) has the best perfor-
mance and POMO has the second best performance for them.
Pointerformer (Model200) and Pointerformer (Model100)
perform the best and the second best on instances with more
than 500 nodes, indicating that our model generalizes best to
large-scale instances.

Ablation Studies
In this section, we present some ablation studies that explain
some important choices of our approach.

To assess the influence of some key components to
the performance of Pointerformer, we carry out an addi-



Table 1: Comparison results on instances from TSP random.

Method TSP random20 TSP random50 TSP random100 TSP random200 TSP random500
Len Gap Time Len Gap Time Len Gap Time Len Gap Time Len Gap Time

(%) (%) (%) (%) (%)
OPT 3.83 5.69 7.76 10.72 16.55
AM 3.83 0.06 5.22s 5.72 0.49 12.76m 7.94 23.20 32.72m - - - - - -

POMO 3.83 0.00 36.86s 5.69 0.02 1.15m 7.77 0.16 2.17m - - - - - -
AM+LCP 3.84 0.00 30.00m 5.70 0.02 6.89h 7.81 0.54 11.94h - - - - - -
DRL+2opt 3.83 0.00 3.33h 5.70 0.12 4.62m 7.82 0.78 6.57h - - - - - -

Att-GCN+MCTS 3.83 0.00 1.6m 5.69 0.01 7.90m 7.76 0.04 15m 10.81 0.88 2.5m 16.97 2.54 5.9m
Pointerformer 3.83 0.00 5.82s 5.69 0.02 11.63s 7.77 0.16 52.34s 10.79 0.68 5.54s 17.14 3.56 59.35s

TSP20, TSP50 and TSP100: 10,000 instances; TSP200 and TSP500: 128 instances.

Table 2: Comparison results on practical instances from TSPLIB.

Method TSPLIB1∼100 TSPLIB101∼500 TSP501∼1002
Len Gap Time Len Gap Time Len Gap Time

(%) (%) (%)
OPT 19454.17 40842.43 62427.71
AM 22283.67 15.36 0.23s 72137.93 78.18 0.86s 140664.29 139.02 5.79s

POMO 19628.67 1.20 1.41s 43652.77 6.99 1.55s 82162.29 26.93 3.49s
DRL+2opt 19916.50 2.43 15.20m 46651.40 13.85 27.92m 82797.71 42.57 1.24h

Pointerformer (Model100) 19728.50 1.33 0.20s 42963.20 5.43 0.46s 75081.43 18.65 5.14s
Pointerformer (Model200) 20135.00 2.91 0.20s 43810.67 8.37 0.46s 73915.57 18.20 5.14s

tional ablation study to compare Pointerformer and its four
variants on instances from TSP random with 200 nodes
(TSP random200). The results are summarized in Table 3.
The first variant only uses the coordinates of each node as
inputs without any feature augmentation (denoted by w.o. fea-
ture augmentation in the table). The second variant removes
the embedding of the current partial route from the context
embedding (denoted by w.o. enhanced context embedding).

Table 3: Ablations of three key elements of Pointerformer on
TSP random200.

Algorithm Len Gap
Pointerformer 10.793 0.68%

w.o. feature augmentation 10.813 0.87%
w.o. enhanced context embedding 11.013 2.73%

w.o. multi-pointer network 10.797 0.72%

And the third variant does not use the multi-pointer net-
works, denoted by w.o. multi-pointer network. From Table 3,
it is clear that Pointerformer achieves the best performance
comparing to all the variants, which indicates all components
play positive roles to our algorithm. Furthermore, we apply
these models directly test the instances from TSPLIB and
provide their comparisons in Figure 3. Pointerformer with all
components outperforms the three variants, indicating that
these components are also important for the generalization
of Pointerformer.

Conclusion
In this paper, we propose an end-to-end DRL approach
called Pointerformer to solve the traveling salesman problems
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w.o. multi-pointer
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Figure 3: Ablations of three key elements of Pointerformer
on TSP random200.

(TSPs). By integrating feature augmentation, reversible resid-
ual network, and enhanced context embedding with the well-
known Transformer architecture, Pointerformer can achieve
comparable results as SOTA algorithms do but using less
resources (time or memory). While being memory-efficient,
Pointerformer can be scaled to handle TSP instances with 500
nodes, that existing end-to-end DRL approaches could not
solve. More importantly, we show via extensive experiments
on well-known TSP instances with different distributions that
our approach has better generalization. For future work, we
will explore how to extend our approach to address the more
complicated problem of vehicle routing and other combinato-
rial optimization problems.
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