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Abstract—Solving partial differential equations with deep
learning makes it possible to reduce simulation times by mul-
tiple orders of magnitude and unlock scientific methods that
typically rely on large numbers of sequential simulations, such
as optimization and uncertainty quantification. Two of the largest
challenges of adopting scientific Al for industrial problem settings
is that training datasets must be simulated in advance and
that neural networks for solving large-scale PDEs exceed the
memory capabilities of current GPUs. We introduce a distributed
programming API in the Julia language for simulating training
data in parallel on the cloud and without requiring users
to manage the underlying HPC infrastructure. In addition,
we show that model-parallel deep learning based on domain
decomposition allows us to scale neural networks for solving
PDEs to commercial-scale problem settings and achieve above
90% parallel efficiency. Combining our cloud API for training
data generation and model-parallel deep learning, we train large-
scale neural networks for solving the 3D Navier-Stokes equation
and simulating 3D CO, flow in porous media. For the CO-
example, we simulate a training dataset based on a commercial
carbon capture and storage (CCS) project and train a neural
network for CO- flow simulation on a 3D grid with over 2 million
cells that is 5 orders of magnitudes faster than a conventional
numerical simulator and 3,200 times cheaper.

Index Terms—Simulation, deep learning, parallel computing

I. MOTIVATION & OBJECTIVES

Solving partial differential equations (PDEs) with numerical
methods plays an important role in many industrial fields
such as aerodynamic shape design, exploration seismology,
finance, carbon capture and storage (CCS), or renewable
energies. Commercial and open-source simulation packages
are conventionally based on the finite difference (FD), finite
volume (FV), or finite element method (FEM), but recently
there has been a growing interest in solving PDEs with various
machine or deep learning (ML/DL) methods [1], [2[]. Deep
learning in the context of numerical simulations, which falls
under the umbrella of scientific AI/ML or SciML, promises
to reduce the simulation time of PDEs by several orders of
magnitude compared to traditional solvers [3] or simulate
phenomena for which the underlying PDE is unknown [4].
These factors make deep learning-based approaches attractive
for applications that require many sequential simulations such
as inverse problems and uncertainty quantification (UQ) [2].

For many commercial-scale applications, numerical simu-
lators must be able to solve time-dependent PDEs on large-
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scale meshes with millions of grid points and therefore most
simulation packages use techniques from high-performance
computing (HPC) to scale to large-scale problem sizes on HPC
clusters. Current state-of-the-art methods for solving PDEs
with deep learning however, have so far been limited to either
2D problem sizes or small-scale 3D problems, with typical
mesh sizes that lie below or around one million grid points
[5], [6]. The main reason for this limitation is the amount
of available GPU memory, as memory demand for training
neural networks scales with the size of the input and output
data. Solving PDEs with DL at large problem sizes beyond the
memory capacity of a single GPU requires model- rather than
data parallelism, the latter being currently the most widely
used form of parallelism in deep learning [7].

A second important challenge of training large-scale deep
surrogate models is the simulation of training data. In scenar-
ios where we are interested in training networks for solving
PDE:s that generalize to different boundary/initial conditions or
sets of PDE coefficients (e.g., material or control parameters),
scientific Al approaches are based on supervised learning
[2]]. Training data for supervised learning consists of pairs
of input data (boundary/initial conditions, PDE coefficients)
and output data (solutions of the PDE as a function of space
and time) and therefore requires running many conventional
numerical simulations prior to training. For large-scale indus-
trial applications as reservoir simulation, users must run 100s
to 1,000s of simulations for training data generation, each
of which potentially take multiple hours to run on a multi-
core machine [8]]. Simulating training data for scientific ML
applications therefore requires access to HPC infrastructure,
which is only available to a limited number of researchers
(typically at national and corporate labs). Cloud computing
offers an alternative to on-premise HPC clusters and is publicly
available, thereby providing an opportunity to democratize ac-
cess to HPC infrastructure. However, running HPC workloads
in the cloud involves significant administrative challenges, as
users are responsible for creating and managing virtual HPC
clusters themselves. This leads to a significant amount of
complexity that makes it difficult to scale deep-learning based
surrogate models for solving PDEs to industry-scale problem
sizes.

This work aims to address these two outlined challenges and



scale deep neural networks for solving PDEs to industry-scale
problem sizes. To achieve this, our main objectives are:

1) Develop a software package that simplifies running HPC
workloads in the cloud, with an emphasis on simulating
training data for scientific Al workloads.

2) Discuss why current approaches to parallelism in deep
learning are inadequate for scaling scientific Al models
to industrial-scale applications and show that model
parallelism based domain decomposition is a more
promising approach that achieves high levels of parallel
efficiency (above 90%).

3) Demonstrate that addressing the above challenges en-
ables us to apply scientific Al to a real-world reservoir
simulation problem and train the largest deep learning-
based numerical simulator to date.

II. RELATED WORK
A. Scientific Al for industry applications

Our work is motivated by recent advances in scientific
Al on solving PDEs with deep learning and in particular
on its application to industrial problems such as shape op-
timization [3], [9], weather and climate forecasting [10],
or computational chemistry [12]], [13]. We are particularly
interested in numerical reservoir simulations for simulating
subsurface CO, flow in the context of carbon capture and
storage (CCS). Simulating CO5 flow in porous media involves
solving coupled systems of non-linear equations with implicit
numerical solvers and thus holds a large potential for im-
proving simulation speeds with deep learning. Several deep
learning-based CO, flow simulators have been introduced in
recent years, most of which are 2D simulators [8], [14]-[18],
but including several 3D simulators as well [19], [20]. Even
though some of these DL-based simulators are advertised as
large scale or commercial scale [18], the problem sizes
considered are considerably smaller than typical problem sizes
encountered in production settings. The largest network from
predicts CO- flow on a 3D mesh with 133,000 cells
over 10 time steps, which is an order of magnitude smaller
than open-source CO5 benchmarks such as the Sleipner model
(2.1 million grid cells). For other applications, the largest Al
simulator trained on GPUs, to the best of our knowledge, is
the U-Net from for solving the 3D Poisson equation on
a 256° grid (16 million predicted variables).

B. Parallelism in deep learning

Current Al-based simulators are not able to scale to larger
problem sizes, because they are trained with data parallelism,
which is the most widely available form of parallelism and
supported by all major DL frameworks [22]-[24]. In data
parallelism (Fig. [T), samples from a batch of data are par-
titioned across multiple GPUs, but each GPU must be able to
fit at least one data sample (including its hidden states), as
well as network weights and gradients into memory [7]]. The
Zero Redundancy Optimizer (ZeRO) from DeepSpeed [25]
has enabled the training of large natural language processing
(NLP) models such as GPT3 by removing redundant

e m—

7

ZeRO

&

Data parallel Pipeline Domain decomp.

Fig. 1: Different strategies for parallelizing deep neural networks with
data or model parallelism.

copies of the network across GPUs that data parallelism in-
duces. ZeRO partitions network weights across GPUs but still
requires that each GPU stores the hidden states (activations) of
at least one data sample. Distributing network weights rather
than the hidden states of the data is advantageous for NLP
models based on the transformer architecture, whose memory
footprint is dominated by those weights, but is less effective for
architectures such as convolutional neural networks (CNNs)
that are common in scientific Al

Aside from data parallelism, the other most widely sup-
ported form of parallelism in deep learning is pipeline paral-
lelism, in which layers of the networks are partitioned across
multiple GPUs and data is processed sequentially by
each GPU. While pipeline parallelism distributes both network
weights and hidden states, it relies on large batch sizes to
achieve high concurrency [27], [28]. Domain decomposition
offers an approach to parallelism for neural networks that does
not rely on any particular batch size or network architecture
for concurrency. In domain decomposition, both the input
data (including hidden states), and network parameters are
distributed, which is why it is often referred to as tensor
parallelism. So far, tensor parallelism has been mainly applied
to transformer networks in the context of NLP with networks
such as Megatron [29] or the Turning Natural Language
Generation (NLG) model [30]]. The authors in are the first
to apply tensor parallelism to scientific Al by implementing
a model-parallel version of the Fourier Neural Operators
architecture [32]]. The implementation in is based on
DistDL, a package that provides tensor decomposition and
parallel communication primitives for Pytorch [33]. In sci-
entific Al, domain decomposition is also used to describe
multiple individual networks that are each trained to predict
a subset of the total output [34]], [35]. This form of domain
decomposition however requires constrained optimization to
enforce continuity along domain boundaries and may not lead
to consistent results.



C. HPC in the cloud

Existing frameworks for running HPC workloads in the
cloud can be grouped into traditional cluster managers and
cloud-native cluster managers. The former category includes
services such as Azure Cycle Cloud and AWS ParallelCluster,
which enable users to spin up HPC clusters that resemble
traditional on-premise systems with distributed network file
systems and HPC schedulers such as SLURM and PBS.
Cloud-native approaches include services such as Kubernetes
[36], AWS/Azure/GCP Batch [37], [38]], which are typically
based on containerization, object storage and first party job
schedulers managed by cloud platforms. Both approaches
involve high levels of complexity in selecting the appropriate
hardware configuration and target primarily HPC administra-
tors rather than end users. Similarly, even frameworks that are
more geared towards data scientists such as Hadoop [39] and
Spark [40]], require upfront configurations of clusters that users
can connect to.

Serverless function frameworks such as Azure Functions,
GPC Functions, or AWS Lambda offer the possibility to
run code in the cloud without requiring the user to manage
the underlying compute infrastructure [41]-[43]]. However,
serverless computing is not geared towards HPC, as it does
not allow users to specify hardware (e.g., CPU architectures
or GPUs) and has restrictions on maximum allowed run-
time (e.g., 15 minutes on AWS) and available memory (e.g.,
10 GB). Several projects have shown that it is possible to
run certain HPC workloads on top of serverless functions
frameworks by decomposing workloads into small portions
[44]]-[46], but they are custom solutions that do not translate
to arbitrary applications and do not enable users to run third-
party simulators on top of serverless functions.

Our goal is to enable users to execute long-running sim-
ulators on the cloud that are either manually implemented
or based on third party simulators such as the Open Porous
Media simulator [47]], without having to manually manage the
underlying HPC infrastructure. We achieve this goal through
a distributed programming package in the Julia programming
language that is built on top of Azure Batch. The user API
resembles other task-based distributed programming packages
such as Dask [48]] and Ray [49], but through its tight integra-
tion with Azure Batch, does not require users to mange the
underlying infrastructure.

IITI. KEY INSIGHTS & CONTRIBUTIONS

To scale scientific Al to industrial-scale problem sizes,
we must overcome two challenges. First, we must enable
users without access to traditional HPC clusters to generate
simulated training data. Second, we must enable scientific
Al training for neural network models and high-dimensional
scientific data sets with millions or billions of degrees-of-
freedom. To achieve the former, we demonstrate that batch
computing services such as Azure Batch satisfy the necessary
requirements for running large-scale HPC workloads in the
cloud and that they can be made accessible to scientists
through abstractions that expose these services as distributed

programming frameworks to the user. To solve the second
challenge, our main insight is that domain decomposition
achieves much better levels of concurrency and scaling than
alternate model parallel approaches, and even a relatively small
number of GPUs suffices for training industrial-scale simula-
tors. Our two main contributions that enable the scalability
of scientific Al to industry-scale problems are summarized as
follows:

o We introduce Redwood.jl, an open-source Julia package
for running scientific computing workloads in the cloud
without having to manage the underlying infrastructure.
Our package enables users to run both Julia and third
party simulators on the cloud for simulating data in the
context of scientific Al

o We show that pipeline parallelism is not well suited for
training an FNO-based Al simulator, but we can reach
above 90 percent parallel efficiency (on up to 8 Nvidia
A100 GPUs) with domain decomposition. We achieve
this by improving the parallel FNO implementation from
[31] by adding support for NCCL [50] and reducing
overall communication volume.

o Leveraging these contributions, we train the largest surro-
gate models for solving PDEs to date. In the first example,
we train an FNO for simulating turbulent flow around a
sphere on a spatial-temporal grid of 130 x 130 x 130
x 84 grid points (140 million solution points, in total)
using 3,200 simulated training samples. In our second
example, we train an FNO for simulating CO, flow on
the Sleipner geomodel, a real-world reservoir simulation
benchmark from the world’s first industrial CCS project.
We simulate 1,600 training examples and train an FNO to
predict CO- flow on the original simulation grid of 262
x 118 x 64 grid points for 86 time steps - a total of 170
million predicted variables and an order of magnitude
larger than the current largest Al simulator trained on
GPUs from [21]].

IV. ARCHITECTURE AND PERFORMANCE EVALUATION

Our architecture for scaling scientific Al to industry-scale
applications has two components: an API for parallel train-
ing data generation in the cloud and a model-parallel FNO
implementation based on DistDL (Fig. ). Our contribution
for the data generation component is Redwood, a distributed
programming framework in the Julia language that enables
users to run simulators written in Julia or binary code on the
Azure cloud. We choose the Julia programming language for
this component over Python, because Julia is designed from
the ground up for numerical computing with an emphasis on
high performance and multi-platform support via just-in-time
compilation [51]]. Our model-parallel FNO implementation is
written in Python and based on the implementation described
in [31]]. We further optimize the performance for scalability on
a single Nvidia DGX (up to eight A100s) by adding NCCL
support to DistDL and by reducing data communication in
the FNO implementation. The next two sections describe each
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Fig. 2: Architecture for training industry-scale Al-driven numerical
simulators. The data generation component is based on Redwood,
a Julia API for running existing numerical simulators on up to
thousands of virtual machines on Azure.

architecture component in more detail, starting with the Julia
framework for parallel training data generation on Azure.

A. Redwood architecture

Redwood is a distributed programming framework built on
top of Azure’s first-party batch computing service Azure Batch.
The idea of Redwood is to relieve users from managing HPC
infrastructure on the cloud, while at the same time preventing
users from having to interact with platform- or cloud-specific
user/REST APIs. Instead, users interact with Redwood’s dis-
tributed programming macros that closely resemble Julia’s
existing macros for cluster-based HPC. By cluster based, we
mean that conventionally, users first need to administer an
HPC cluster with cloud services such as Azure Cycle Cloud or
Kubernetes and then use an HPC scheduler such as SLURM
or PBS to request parallel resources on the cluster.

Julia’s native distributed programming framework is primar-
ily based on task parallelism using one-sided communication
statements. The main primitives that enable this style of com-
munication are remote functions calls and remote references.
To remotely execute a function on parallel workers, users
first tag their function with the @everywhere macro, which
makes the function known to the parallel workers and then
execute it via the @spawnat macro. This macro executes the
code on a specified remote worker and returns a reference
to its function output, which can be copied to the master by
calling the fetch function (Fig. 3a).

Redwood provides analogous macros and functions for
executing Julia code through Azure Batch. This means that
instead of running a parallel Julia session on top of a (user-
managed) HPC cluster, users execute remote functions calls
from their laptop or a single cloud node through Azure Batch.
The main difference to the conventional approach is that the
main Julia program is not connected to any of the worker
nodes directly and instead, remote function calls are scheduled
and executed via Azure Batch. Redwood provides macros

addprocs(manager: : ClusterManager) create_pool()

1d(name) @batchdef - _\
print("Hello, ", name)

"Goodbye"

@everywhere
print(“Hello, ",
"Goodbye"

h L
name)

ref = @spawnat :any hello_world("world") ref = @batchexec :any hello_world("world")

result = fetch(ref) result = fetch(ref)

HPC Scheduler Redwood Macros

Redwood Cloud Backend

Cloud Batch Service

Networkmg

NodesNMs

Fig. 3: Running a hello-world example with Julia’s conventional
distributed programming model on an HPC cluster and clusterless
HPC with Redwood.

for remotely executing functions on one or multiple workers,
for fetching remote references, as well as for broadcasting
variables. This makes it possible to convert a conventional
distributed Julia program to one that runs on top of Azure
Batch with minor changes to the code (Fig. Bb). The current
Redwood version supports Azure Batch only, but in principle,
adding additional backends (e.g., for AWS or GCP) is possible
as well.

Redwood’s core functionality is the execution of tagged
Julia functions as parallel Azure Batch jobs and/or tasks. The
@batchexec macro creates a closure around the executed
expression, serializes the function’s abstract syntax tree (AST),
and submits a batch job to Azure using the Azure Batch user
API (which the Redwood user never interacts with directly).
More specifically, calling a function with the @batchexec
macro involves the following steps: (1) parsing of function
input arguments, (2) splitting of expressions into parallel tasks
(for more than one task), (3) replacing of return statements
with the serialization of output arguments to object storage, (4)
serializing the ASTs of previously tagged expressions and of
the executed expression and uploading them to cloud storage,
(5) making API calls to create batch jobs/tasks, (6) returning
a control structure with a reference to the (future) function
output.

The remote Azure Batch workers each run a light-weight
Redwood runtime, which downloads and de-serializes the
uploaded ASTs and compiles and runs them on the local
architecture. By default, Redwood executes functions on the
smallest Azure virtual machines (VMs), but users can specify
any other VM types that are supported by Azure Batch, includ-
ing the HBv3 series with InfiniBand interconnect, 120 CPU
cores and 448 GB of memory that specifically targets HPC
workloads. Redwood’s default behavior is to execute remote
function calls as individual tasks that each run on a single node
and cannot communicate with each other. However, users can
also enable multi-node parallelism and execute function calls
that run across multiple VMs, e.g., by combining Redwood
with Julia’s MPI interface.



B. Redwood performance

We investigate how long it takes to submit a job with
an increasing number of tasks by executing a Julia function
n times in parallel (using the parallel mapping function).
Submitting tasks to Azure Batch involves Redwood’s code
generation, as well as the serialization and upload of code
and function arguments. As a baseline, we measure the task
submission time of an increasing number of invocations of the
hello-world example from Fig. 3] The results in Fig. fa] show
that for a small number of function invocations, task submis-
sions are dominated by the code generation and upload time,
which happens only once, regardless of many tasks we submit.
However, for more than 16 tasks, the task submission time
is dominated by the the time it takes to upload the function
argument, which is uploaded n times, as function arguments
can be unique to each function invocation. Eventually, the task
submission time scales linearly with the number of tasks.

Next, we test how long it takes to broadcast a 3D Julia array
to an increasing number of tasks (running on separate VMs).
Redwood’s broadcast macro uploads data once to the object
store and returns a reference to the data that can be passed
as a function argument in place of the original array. Each
task then calls the fetch function on the reference to copy
the data from blob storage to the worker. The time to submit
a job with a small number of tasks is now higher than for
the hello-world example, as it includes the time to broadcast
the array. However, once we reach a certain number of tasks,
the submission time is again dominated by the upload time
of the function arguments and thus eventually reaches linear
behavior. Broadcasting bigger arrays further increases the job
submission time for small number of tasks and shifts the point
at which linear behavior sets in to a larger number of tasks.

Our experiments show that, in the worst case, job sub-
mission time grows linearly with the number of tasks. One
question is whether it is worth to optimize the job submission
time, e.g., using recursion. Optimizing the task submission
time to reduce latency is important for serverless functions,
in which the actual function execution time is small (in the
range of milliseconds or seconds). However, with Redwood
we specifically target long-running HPC workloads that run
on the order of multiple minutes to hours, so we argue that job
submission times of e.g., 16 seconds for 1,024 tasks are accept-
able. To illustrate this, we compute the parallel weak scaling
efficiency for the data generation of our numerical examples.
To simulate the training data for our two AI simulators,
we solve 3,200 instances of the 3D Navier-Stokes equation
and 1,600 instances of the 3D two-phase flow equation. The
average task runtime for each scenario are 15 minutes and 6.8
hours respectively. Running these simulations with Redwood is
embarrassingly parallel with the only serial component being
the task submission. As the task submission time is small in
comparison to the overall runtime, both examples reach a high
parallel efficiency above 99 percent (Fig. [4b).
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Fig. 4: Time to submit an Azure Batch job with Redwood using an
increasing number of parallel tasks (left) and weak scaling efficiency
for simulating the two datasets from the examples section.

C. Neural network architecture

We choose Fourier Neural Operators (FNOs) as the base
architecture for our Al-driven simulator, as they have shown
strong performance on a variety of PDEs such as the Navier-
Stokes equations or multi-phase flow [8]], [32]. The parallel
FNO implementation based on domain decomposition is in-
troduced in [31]] and we refer to that paper for implementation
details. As we introduce a modification to the original imple-
mentation, we include the algorithm of the (updated) parallel
FNO implementation in this section. The implementation is
based on parallel primitives from the DistDL library [33].
For FNOs, we rely on the tensor-parallel broadcast and re-
partition primitives. The broadcast primitive is a partition-
aware generalization of the classical parallel communication
primitive and the re-partition primitive is a generalization
of the all-to-all communication pattern for arbitrarily high-
dimensional Cartesian data.

First, we establish the mathematical notation. Capital let-
ters represent multi-dimensional tensors and subscripts are
dimension labels. We use six-dimensional data tensors Xy, -¢
with dimensions batch size b, channel ¢, spatial dimensions
x,y,z and time t. Dimensions in Fourier space are labeled
ks, ky, k., ki. Caligraphic capital letters are linear operations
and subscripts indicate the dimensions along which they oper-
ate. Le., F, is a Fourier transform along the = dimension and
Sy¢ represents subsampling or truncation along dimensions
Y, 2z, and t. Operator B is the broadcasting operation, which
copies a tensor from the master worker to all other workers.
R,_,, is the re-partition operation whose subscripts represent
the distributed dimensions before and after partitioning. The
partitioned tensor dimension is underlined. For tensor mul-
tiplications, we use the Einstein summation notation from
PyTorch. Multiplications along dimensions that appear both
in the inputs and the output are element-wise multiplications
and otherwise multiplications are followed by a summation.
E.g., the operation Yyc zy2t = Xpe,myztWe,cowyzt performs
an element-wise multiplication along dimensions zyzt (which
appear in all three tensors) and a multiplication followed by a
sum along the input channel dimension ¢; (which only appears
on the right-hand side). Letters W, . .+ are network weights.

The model-parallel FNO implementation based on this



Algorithm 1 Architecture of Model-Parallel FNO.
# Encoder
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notation is shown in Algorithm [I] and closely follows the
architecture of the original FNO [32]. The network consists
of an encoder that increases the channel dimension of the
input through a one-by-one convolution. This is followed by a
number of FNO blocks, which are separately defined in Algo-
rithm 2] and a decoder that brings the channel dimension down
to the desired number of output channels. In the model-parallel
FNO version, the input tensor X is distributed across the first
spatial dimension x. As the convolutions in the encoder and
decoder do not sum along this dimension, we simply need
to broadcast the encoder/decoder weights during the forward
pass and perform the tensor multiplications independently on
each worker.

Algorithm 2 Architecture of Distributed FNO Block.
# Distributed FFT and freqg. truncation
Xbckmkikzkt — Sx"racR;caySyzt]:ytibcgyzt

# Spectral convolution
Xocokokykoke < Xocikokykoke Weicokoky kake

# Padding and inverse FFT
Xbcgyzt — F, ztSyztR:cray]::;r‘Sr;rXbcokmkikzkt

The FNO blocks perform spectral convolutions in the
Fourier domain and compute 4D Fourier transforms (FFT)
of the input along the spatial-temporal tensor dimensions
(zyzt). As in the original FNO, most frequencies are truncated
after the FFT to reduce the number of learnable weights.
In the model-parallel version (Algorithm [2)), the input tensor
is initially partitioned along the spatial z dimension, so we
cannot directly compute the 4D FFTs. We first compute
a 3D FFT along the non-partitioned dimensions and apply
frequency truncation along those dimensions to reduce the data
size (Fig. B). Next, we apply the re-partition operator, which
distributes data along the y dimension and we can compute
the final FFT along the = dimension. The tensor multiplication
with the weight tensor is an element-wise multiplication in the
spatial-temporal dimensions (k. ky,k.k;) and summation only
occurs along the (non-partitioned) channel dimension. Each
worker therefore maintains its own portion of weights and no
communication is required for the spectral convolution itself.
For the inverse FFT, we apply the same steps as before in

reverse order, using the adjoint (conjugate transpose) of the
linear operators.

The parallel FNO version in [31] uses a two-dimensional
partitioning scheme and performs frequency truncation after
the re-partitioning. This results in a total of four re-partition
operations per FNO block, during each of which we com-
municate the full tensor X. Algorithm [2] performs only two
re-partition operations per FNO block, during each of which
we only communicate a tensor whose size has been truncated
along three dimensions. In our examples, we truncated around
80 percent of the frequencies in each dimension, thereby
reducing the amount of communicated data by a factor of 160
per re-partition operation.

D. Network performance

The performance evaluation of our parallel FNO imple-
mentation is motivated by our goal to scale Al simulators
to industry-scale problem sizes. To advance the current state
of the art, we do not need to scale model-parallelism across
hundreds of GPUs on a large network, but rather reach high
parallel efficiency on a small number of GPUs on a single node
with high-bandwidth GPU interconnect. The current version of
DistDL uses an MPI communication backend, which includes
support for cuda-aware MPI. However, to achieve the best
possible performance, we implement a NCCL backend for
DistDL primitives. As NCCL is optimized for Nvidia’s GPU
topologies, this ensures that we can take optimal advantage of
Nvidia’s NVLink interconnect. All scaling tests are performed
on a single Azure ND96amsr VM with eight Nvidia A100
GPUs, each with 80 GB of RAM.

We select a problem setup that occupies about 80% of the
memory on a single GPU and we use randomly generated
input data of batch size one. We are interested in increasing the
spatial dimension of the overall problem by using additional
GPUs, while keeping the problem size per GPU fixed (i.e.,
weak scaling). We increase both the size of the input data and
the number of weights, so both the memory footprint, as well
as number of floating point operations (FLOPs) per GPU stays
constant. As we are using data with a batch size of one, we
cannot use data parallelism and ZeRO, both of which require
at least a batch size equal to the number of GPUs. This leaves
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Fig. 5: Distributed spectral convolution of the FNO block. We first
compute the FFT along the non-partitioned dimensions and truncate
the high frequency. Then, data is re-partitioned and we compute the
FFT along the final dimension. After multiplication with the learnable
weights, we repeat the operations in reverse order using the adjoint
of the operators.
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Fig. 6: Weak scaling of model-parallel FNOs with pipeline paral-
lelism (PP) and domain decomposition (DD), using data with batch
sizes (BS) of one and two. Both the memory footprint and number of
FLOPs per GPU are constant. Error bars indicate the 95% confidence
interval over 16 runs.

us with pipeline parallelism, which allows us to partition the
network and data across multiple GPUs, although it does not
provide any concurrency for a batch size of one.

Our weak scaling experiments (Fig. [6) confirm this, as we
reach 50% parallel efficiency on 2 GPUs for our pipeline
parallel FNO (PP) and 25% on 4 GPUs (i.e., no concurrency).
In contrast, the FNO based on domain decomposition (DD)
achieves above 90% parallel efficiency in the forward pass
and above 95% in forward- plus backward pass. On eight
GPUs (the maximum number of GPUs in a single virtual
machine), pipeline parallelism runs out of memory, even
though the problem size per GPU is fixed, which indicates
that PyTorch’s pipeline parallelism module suffers from a
memory overhead. When computing the backward pass as
well, pipeline parallelism runs out of memory for more than
2 GPUs. As pipeline parallelism relies on larger batch sizes
to achieve concurrency, we repeat the scaling experiments for
a batch size of two as well (by making the spatial dimension
smaller so that the memory footprint stays the same). On 2
GPUs, pipeline parallelism now achieves in fact some level
of concurrency (parallel efficiency larger than 50%), but on
4 GPUs the efficiency decreases again (likely because the
batch size is smaller than the number of GPUs). Domain
decomposition reaches high parallel efficiency in both cases,
thereby demonstrating the strengths of this approach, which
does not rely on a specific batch size to reach high levels of
concurrency.

While strong scaling is less relevant for training neural
networks, as memory usage usually dictates the number of
GPUs required, it is important for speeding up inference time.
We therefore investigate the strong scaling behavior of pipeline
parallelism and domain decomposition as well. We use the
same problem setup as in the previous experiment, but keep
the overall data dimensions fixed so that the problem size per
GPU shrinks. Once again, we reach high performance and
nearly linear scaling with domain decomposition and generally
poor performance with pipeline parallelism (Fig. [7).

V. APPLICATIONS

Using the two tools presented in this paper, we train two Al-
based numerical simulators for solving large-scale 3D PDEs

No. of GPUs No. of GPUs

Fig. 7: Strong scaling of model-parallel FNOs with pipeline paral-
lelism (PP) and domain decomposition (DD) using varying batch
sizes (BS). The memory footprint and number of FLOPs on each
GPU is reduced according to the total number of GPUs. Error bars
represent the 95% percent confidence interval over 16 runs.

with deep learning. We advance the current state of the art
in scientific Al by a factor of eight in terms of the number
of predicted variables, which correspond to the grid or mesh
size and number of predicted time steps. For both examples we
train 4D FNOs that predict spatial-temporal solutions of PDEs
with more than 140 million output variables per sample. Once
trained, these Al surrogate models are valuable in downstream
applications such as optimization or uncertainty quantification
(which are outside the scope of this paper).

A. Turbulent flow

In our first example, we train an FNO-based surrogate
model for simulating turbulent flow around a sphere by solving
the 3D Navier-Stokes equation. In our dataset, we vary the
location of the sphere in three-dimensional space, which leads
to different flow patterns, depending on the location and
distance of the sphere from the model edges (using Dirichlet
boundary conditions). We generate 3,200 data pairs consisting
of input and output data. Each input is a 3D binary map that
indicates the location of the sphere and each output is a 4D
tensor of the simulated vorticity of dimensions 130 x 130
x 130 x 64 (three spatial dimensions plus time). As FNOs
require that inputs and outputs have the same dimensions, the
input binary map is repeated along the time dimension.

We simulate the training data with WaterLily.jl, an open-
source Julia package for solving the 2D and 3D Navier-
Stokes equations with the geometric multigrid method [52].
We implement a Julia function that takes the location of the
sphere as input, solves the 3D Navier-Stokes equation with
WaterLily, and outputs the scalar vorticity as a function of
space and time (i.e. as a 4D tensor). Using Redwood, we create
a batch pool of 1,000 Azure VMs (E4s v3 with 4 vCPU cores)
and run 3,200 simulations to generate the training data. Fig. [Sa]
shows the time it takes to launch the 1,000 VMs. About half
of the VMs are available after 3.5 minutes and most remaining
VMs are available after 6 minutes. Note that Azure Batch starts
scheduling tasks as soon as the first VMs become available, so
users do not have to wait for all VMs to spin up first. Fig. [8b]
shows the runtime of each of the 3,200 tasks and the cost
of simulating each training sample. The average simulation
time is 15 minutes per sample and the cost for generating the
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Fig. 8: Startup time of VMs from the batch pool and (sorted) runtimes
of the 3,200 Julia tasks for simulating the training data. The average
task runtime is 15 minutes.

full dataset on Azure is $396 with on-demand VMs and $158
using spot VMs [53]]. Each task writes its simulated training
pair to Azure Blob storage using Zarr [54]], a Python package
for storing N-dimensional arrays on various storage backends,
including cloud object storage. Each training sample has a size
of 536 MB and the total data set is 1.6 TB (in uncompressed
form).

We train the FNO on a single Azure ND96amsr VM, the
same VM as used in the performance evaluation. We train for
50 epochs using a batch size of two, which is the maximum
possible batch size before running out of memory. We use
2,800 of the data samples for training and validation and
save 400 samples for testing. The training time per epoch
is around 30 minutes and total training time is close to 24
hours (on-demand price of $786 and spot price of $393) [53].
As the input for the FNO is partitioned along the first spatial
dimension, each GPU reads its corresponding chunk of the
data from blob storage during the first training epoch. The
full dataset (1.6 TB) approaches the limits of the VM’s CPU
memory (1.9 TB), so we cache the training data on a local
NVMe drive from which we re-read the data during subsequent
training epochs.

Network performance on the validation and test data is listed
in Table I Fig. 9] shows several 2D slices of the predicted
data at different time steps in comparison to the data simulated
with WaterLily. The sphere location shown in the example was
drawn from the test dataset and was not seen by the network
during training. The FNO is able to predict the vorticity in
.1 seconds on 8 A100s, whereas the numerical simulation
with WaterLily takes around 15 minutes on 4 CPU cores.
Taking into account the cost differences of the VMs, we arrive
at a cost of 6.25 cents per simulation with WaterLily on
the E4s VM and 0.09 cents per simulation using the FNO

TABLE I: Performance on Validation and Test Data (MSE: Mean
Squared Error, MAE: Mean Average Error).

MSE MAE R2
Navier-Stokes: Validation 0.0552 0.5851 0.9714
Navier-Stokes: Test 0.0507 0.5587  0.9734
COxflow: Validation 1.1104-10~%  0.0866  0.9453
COxzflow: Test 1.1603-10~%  0.0952  0.9487
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Fig. 9: 2D slices through the 3D vorticity at different time steps
as simulated with WaterLily and as predicted by the model-parallel
FNO. The simulation time with WaterLily is around 15 minutes (on
4 vCPUs) and 10 ms with the FNO (on 8 A100s).

on the ND96amsr VM. If we account for the cost of data
generation and training, the FNO amortizes that cost after
19,188 simulations and will save money for any additional
simulations. As downstream applications such as optimization
potentially require tens of thousands of (sequential) simula-
tions, this opens up both cost and time savings.

B. CO4 flow

In our second example, we train an FNO for simulating CO4
flow in an industry-scale carbon capture scenario. For simu-
lating the training data, we use the Sleipner 2019 benchmark
model [55]], a real-world geological model for 3D numerical
reservoir simulations. Sleipner is the world’s first commercial
CCS project and located off the coast of Norway in the North
Sea. The benchmark model simulates the CO5 plume behavior
as observed during the project, which used a single CO,
injection well [56]]. To train our FNO, we simulate training
data with the original Sleipner geomodel, but using multiple
concurrent COs injection wells that vary spatially. At test time,
we predict CO2 flow at new well locations for up to four wells.
Note that we do not subsample the original model and use
the full simulation grid of size 262 x 118 x 64 for training
and testing. Our FNO is trained to predict the CO9 saturation
history for 86 time steps, which results in a total of 170 million
output variables.

For training, we simulate 1,600 data samples with the Open
Porous Media (OPM) simulator [47]], an open-source reservoir
simulator written in C++ and based on the finite volume
method. We use the simulator configuration and parameters
from the Sleipner benchmark and only change the number
and location of injector wells. Even though OPM is not
written in Julia, we can still use Redwood for the training
data generation. We set up a docker image with OPM and
the Redwood runtime, which is automatically deployed to
the VMs by Azure Batch. Using Redwood, we write a Julia
function that runs the simulator on each worker, reads the
simulated output back into Julia, and stores it in blob storage
for training. As before, we use a batch pool with 1,000 Azure
VMs (E8s with 8 vCPUs). The VM startup times and runtime
of each task are shown in Fig. Compared to the Navier-
Stokes example, the simulation time per sample is much larger
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Fig. 10: VM startup times for the Sleipner data simulation and
(sorted) task runtimes. The average simulation time is 6.8 hours.

(6.8 hours on average) and the total cost for data generation
is $5,487 with on-demand VMs and $2,194 with spot VMs
(53]l

Each of the 1,600 training pairs consists of a 3D binary
map that indicates the locations of the injection wells (repeated
along the time dimensions) and the simulated CO5 saturation
history as a 4D tensor of space and time. As before, we train
on a single Azure node with 8 A100s for 50 epochs and
a batch size of two. The training time per epoch is around
20 minutes and the total training time is 17 hours ($557 on-
demand and $279 spot price) [53]. Fig. shows several 2D
slices (from the 4D volumes) at the final time step for four
different well scenarios as modeled with OPM (top row) and
the FNO (bottom row). Simulations with the trained FNO
take around .12 seconds (on the ND96amsr VM), whereas
the average simulation time with OPM on the E8s VM is
6.8 hours. Adjusting for the difference in VM prices, this
results in $3.4 per simulation with OPM and 0.11 cents per
simulation with the FNO (a factor of 3,200). Considering the
cost of training data generation and training itself, the FNO
breaks even after running 1,848 simulations and is 3,200 times
cheaper for any additional simulations. Considering the large
number of possibilities to place up to four wells in the model
(over 12 billion combinations), the FNO provides a fast and
low-cost surrogate model for optimizing well placement or
uncertainty quantification.

VI. DISCUSSION

Model parallelism is more tightly coupled than data paral-
lelism because we communicate data at each neural network
layer and not just to synchronize gradients at the end of
a forward-backward pass. The high parallel efficiency we
obtain on up to 8 GPUs relies on the high-bandwidth NVLink
interconnect between GPUs on a single node (up to 600 GB/s).
The combined memory of 8 A100s is sufficient to predict 84
times steps on a simulation grid with 2 million cells, which
is a total of 170 million output variables. If we use the same
configuration to solve a stationary PDE (or predict only one
time step at a time), we can process 5123 grid points in
3D or 12,0002 points in 2D. While these problem sizes are
sufficient for many commercial settings, there are cases that
require even larger meshes [57]], which in turn require scaling
model-parallel networks across nodes and likely leads to lower
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parallel efficiency. A limitation of the current implementation
is that we solely use model/domain parallelism and train with
a small batch size of two. Training with larger batch sizes
requires hybrid parallelism models, similar to the strategy
from the Turing NLG model, a transformer that combines
ZeRO data parallelism with tensor decomposition and pipeline
parallelism [30].

Both Redwood and DistDL (for implementing the model-
parallel FNO) raise the abstraction level for users, who do
not have to interact with cloud vendor-specific REST APIs or
message passing APIs. Nevertheless, implementing model par-
allelism with DistDL involves considerably more code changes
than implementing data or ZeRO parallelism in PyTorch (tens
of lines versus a few lines). To implement model/tensor
parallelism for the FNO, it is necessary to partition each
tensor of the network manually, including weights/biases,
input/output tensors and hidden states. There are many pos-
sibilities for choosing a tensor partitioning scheme and the
choice of partitioning significantly influences the amount of
data communication and performance. E.g., in the FNO im-
plementation, we distribute tensors along one of the spatial-
temporal dimensions, which only requires the communication
of hidden states during the 4D FFT and iFFT, but not during
the encoder and decoder. However, partitioning data tensors
along the channel dimension is also possible, in which case
the FFTs become embarrassingly parallel, but the encoder and
decoder require communication.

VII. CONCLUSION

Scientific Al has the potential to address challenging sci-
entific computing problems that rely on expensive numerical
simulations, but scaling to commercial problem sizes is the
main road block in adopting this technology for industry
applications. We introduce an API for simulating large-scale



training datasets in the cloud, which in combination with
model parallelism for deep learning, enables us to train
commercial-scale simulators for solving the Navier-Stokes and
two-phase flow equations. We show that using only commodity
cloud VMs and a small number of GPUs, we can train the
largest Al simulator to date on a real-world reservoir simula-
tion benchmark and unlock scientific Al for commercial-scale
settings.
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