Doing More with Less:
Orchestrating Serverless Applications without an Orchestrator

David H. Liu
Princeton University

Amit Levy
Princeton University

Abstract

Standalone orchestrators simplify the development of server-
less applications by providing higher-level programming inter-
faces, coordinating function interactions and ensuring exactly-
once execution. However, they limit application flexibility and
are expensive to use. We show that these specialized orches-
tration services are unnecessary. Instead, application-level
orchestration, deployed as a library, can support the same
programming interfaces, complex interactions and execution
guarantees, utilizing only basic serverless components that
are already universally supported and billed at a fine-grained
per-use basis. Furthermore, application-level orchestration af-
fords applications more flexibility and reduces costs for both
providers and users.

To demonstrate this, we present Unum, an application-level
serverless orchestration system. Unum introduces an inter-
mediate representation that partitions higher-level application
definitions at compile-time and provides orchestration as a
runtime library that executes in-situ with user-defined FaaS
functions. On unmodified serverless infrastructures, Unum
functions coordinate and ensure correctness in a decentralized
manner by leveraging strongly consistent data stores.

Compared with AWS Step Functions, a state-of-the-art stan-
dalone orchestrator, our evaluation shows that Unum performs
well, costs significantly less and grants applications greater
flexibility to employ application-specific patterns and opti-
mizations. For a representative set of applications, Unum runs
as much as 2x faster and costs 9x cheaper.

1 Introduction

Serverless computing offers a simple but powerful abstraction
with two essential components: a stateless compute engine
(Functions as a Service, or FaaS) and a scalable, multi-tenant
data store [27]. Developers build applications using stateless,
event-driven “functions” which persist states in shared data
stores. This abstraction allows users to leverage scalable data
center resources with fine-grained per-invocation billing and
frees them from server administration.

Sebastian Burckhardt
Microsoft Research

Shadi Noghabi
Microsoft Research

While serverless platforms originally targeted simple appli-
cations with one or a few functions, this paradigm has increas-
ingly proven useful for more complex applications composed
of many functions with rich and often stateful interaction
patterns [19,20,25,26,40]. Unfortunately, building such ap-
plications using the basic FaaS is challenging. Event-driven
execution makes depending on the results of multiple previous
functions and therefore fan-in patterns difficult. At-least-once
execution guarantee that is typical for FaaS functions compli-
cates end-to-end application correctness as non-deterministic
functions may pass inconsistent results downstream. Finally,
the lack of higher-level programming interfaces for expressing
inter-function patterns hinders application development.

Standalone orchestrators are recently introduced into the
serverless infrastructure to support such complex applications
(§2.1). Cloud providers commonly offer serverless orchestra-
tors as a service [3,6,22,23], though users may build custom
orchestrators and deploy them in separate VMs or containers
alongside their functions [19, 20, 38]. These orchestration ser-
vices provide higher-level programming interfaces, support
complex interactions and ensure exactly-once execution.

Though often internally distributed, standalone orchestra-
tors operate as logically centralized controllers. Developers
provide a description of an execution graph—nodes in the
graph represent FaaS functions and edges represent invoca-
tions of a function with the output of one or more functions—
and the orchestrator drives the execution of this graph by
invoking functions, receiving function results and storing ap-
plication states (e.g., outstanding invocations and function
results) centrally.

Centralization simplifies supporting stateful interactions—
e.g., an orchestrator can run fan-in patterns by simply waiting
for all branches to complete before invoking an aggregation
function. Similarly, an orchestrator can ensure that applica-
tions appear to execute exactly-once by choosing a single
result from multiple executions for each function invocation.

However, standalone orchestrators have important draw-
backs for both serverless providers and serverless users. As an
additional service that is critical to application performance

and correctness, a standalone orchestrator is expensive to host
and use. User-deployed orchestrators risk under-utilization
and do not benefit from serverless’ per-use billing. Provider-
hosted orchestrators are multi-tenant and can thus multiplex
over many users to improve resource utilization and amortize
the cost. However, they still incur the costs of hardware re-
sources and on-call engineering teams. These costs may be
affordable for large platforms but can be a significant burden
for smaller providers.

Furthermore, standalone orchestrators preclude users from
making application-specific trade-offs and optimizations.
While the interface and implementation of an orchestrator
might efficiently support the needs of many applications, it
cannot meet all applications’ needs, resulting in a compromise
familiar from operating systems [9, 13], networks [17,39], and
storage systems [21,28].

For example, applications that need orchestration patterns
not supported by the provider-hosted orchestrator have to
either compromise performance by using less-efficient pat-
terns or first repeat the hard work of building, deploying and
managing their own custom orchestrator. A video processing
application that encodes video chunks and aggregates results
of adjacent branches in parallel has to compromise perfor-
mance if the orchestrator only supports aggregating results of
all branches.

Similarly, applications that consist entirely of deterministic
functions, such as an image resize application for creating
thumbnails or an IoT data processing pipeline for aggregat-
ing sensor readings, can tolerate duplicate executions without
weakening correctness. However, with a standalone orches-
trator that always persists states to ensure exactly-once exe-
cution, this application would incur the overheads of strong
guarantees regardless.

In this paper, we show that additional standalone orchestra-
tors for serverless applications are unnecessary. Furthermore,
we argue that application-level orchestration is better for both
serverless providers and developers. It is better for developers
as it affords applications more flexibility to implement custom
patterns as needed and apply application-specific optimiza-
tions. It is better for providers as it obviates the need to host
an additional complex service and frees up resources such that
providers can focus on fewer, core services in their serverless
infrastructure. Moreover, application-level orchestration built
on top of existing storage and FaaS services in the serverless
infrastructure can benefit automatically from improvements
to cost and performance to these services.

To support these arguments, we present Unum, an
application-level serverless orchestration system. Unum pro-
vides orchestration as a library that runs in-situ with user-
defined FaaS functions, rather than as a standalone ser-
vice. The library relies on a minimal set of existing server-
less APIs—function invocation and a few basic data store
operations—that are common across cloud platforms. Unum
introduces an intermediate representation (IR) language to

express execution graphs using only node-local information
and supports front-end compilers that transform higher-level
application definitions into the IR.

A key challenge in Unum is to support complex stateful
orchestration patterns and strong execution guarantees in a de-
centralized manner. Our insight is that, scalable and strongly
consistent data stores, already an essential building block of
serverless applications, address the hardest challenge of or-
chestration: coordination. Using such data stores, we show
that an application-level library running in-situ with user func-
tions can orchestrate complex execution graphs efficiently
with strong execution guarantees.

At a high level, Unum relies on the FaaS scheduler to run
each function invocation at least once and consistent data
store operations to coordinate interactions and de-duplicate
extra executions of the same invocation. Unum uses check-
points to commit to exactly one result for a function invo-
cation and ensures workflow correctness despite duplicate
executions of non-deterministic functions. Unum fan-ins use
objects in a consistent data store as coordination points for ag-
gregating branches. Both require generating globally unique
names for nodes and edges in the execution graph locally
(using only information available at each node) as well as
cleaning up intermediate data store objects in a timely man-
ner.

Our implementation of Unum (§4) includes a compiler for
AWS Step Functions’ description language, enabling Unum
to run arbitrary Step Function workflows. We show that Step
Function workflows compiled to Unum execute with the same
execution guarantees as running natively using the Step Func-
tions orchestrator.

Moreover, while performance and cost are difficult to
compare objectively with existing black-box production
orchestrators—both are influenced by deployment and pricing
decisions that may not reflect the underlying efficiency or cost
of the system—Unum performs well in practice (§5). We find
that a representative set of applications run faster and cost
significantly less with Unum than Step Functions (Table 2).
We also demonstrate that Unum’s IR allows applications to
run faster by using application-specific optimizations and
supporting a richer set of interaction patterns.

2 Background & Motivation

The basic serverless abstraction is simple and quite powerful.
Developers build “functions”, typically written in a high-level
language and packaged as OS containers or virtual machines,
which run short computations in response to a platform event.
Events include storage events (e.g., the creation of an object)
or HTTP requests. The platform can scale resources for each
function to respond to instantaneous bursts in events and
developers are absolved from capacity planning and resource
management tasks.

This simple abstraction can be used to compose many sim-
ple applications with one or a few functions. For example,
developers can chain functions for data pipelines using trig-
gers. In trigger-based composition [10] each function in a
chain invokes the next asynchronously or writes to a data
store configured to invoke the next function in response to
storage events. Alternatively, developers might use a “driver-
function” [40] to drive more intricate control-flow logic. A
driver function acts as a centralized controller that invokes
other functions, waits for their outputs, and invokes subse-
quent functions with their outputs.

Such ad-hoc approaches work “out-of-the-box”, that is,
they require no additional platform provided infrastructure.
However neither is well suited to complex applications with
10s or 100s of functions [20, 35]. Trigger-based composition
can only support chaining of individual functions or fan-out
from one function to multiple, but cannot, for example, fan-in
from multiple functions to one. Moreover, trigger-based com-
position scatters control-flow logic across each function or
in configured storage events, making development unwieldy
when application complexity grows.

On the other hand, driver functions concentrate control flow
in a single function and support arbitrary composition. How-
ever, most serverless platforms impose modest runtime limits
on individual functions, and thus driver functions restrict the
total runtime of applications. Furthermore, driver functions
suffer “double billing” since they are billed for the entire call-
graph execution despite spending most time idly waiting for
callees to return.

Finally, both ad-hoc approaches require developers to han-
dle function crashes, retries and duplicate invocations grace-
fully [1,7,8,14]. Application typically want to ensure “exactly
once” semantics [10, 11,24,25,40] for an entire call-graph,
but failures and multiple invocations of individual functions
can subvert this goal without careful consideration.

2.1 Standalone Orchestrators

A common solution to address the needs of complex server-
less applications is to introduce a workflow orchestrator that
provides a high-level programming interface with support for
a rich set of patterns (e.g., branching, chaining, fan-out and
fan-in) [3,6, 19,20,22,23,38]. Many cloud providers offer
serverless orchestrators as a service [3,6,22,23] or users can
build custom orchestrators [19, 20, 38] and deploy them in
VMs alongside their functions.

Similar to driver functions, orchestrators operate as logi-
cally centralized controllers. They drive a workflow by in-
voking its functions and hosting application states such as
function outputs and outstanding invocations.

However, different from driver-functions, orchestrators are
standalone services. Orchestrators are not limited by function
timeouts and can be arbitrarily long-running [4]. Moreover,
as standalone services, orchestrators are often internally dis-

tributed and employ techniques such as replication and shard-
ing to provide strong execution guarantees, fault-tolerance
and scalability. For example, orchestrators can ensure that
workflows appear to execute exactly-once by choosing one
result for each function invocation, even if FaaS engines only
guarantee at-least once execution. Orchestrators can also per-
sist or replicate states during execution so that in face of
orchestrator failures, applications do not lose executions or
retry from the beginning.

While orchestrators are able to address the needs of com-
plex serverless applications, introducing a new standalone
service has significant drawbacks. Building performant, scal-
able and fault-tolerant multi-tenant systems is hard and or-
chestrators introduce yet-another potential performance and
scalability bottleneck. Indeed, we find that, in practice, produc-
tion systems limit end-to-end performance for highly-parallel
applications (§ 5).

Moreover, hosting such services is expensive. Deploying a
custom orchestrator per user risks under-utilization as it can-
not multiplex over many users and users pay even when the
orchestrator is not actively in use, breaking the fine-grained
billing benefit of serverless. Provider-hosted orchestrators are
multi-tenant and can amortize this cost. But they still incur
engineering expenses as they require teams on-call. Indeed,
we find that provider-hosted orchestrators cost developers
significantly and dominate the total cost of running applica-
tions(§ 5).

Lastly, provider-hosted orchestrators preclude users from
making application-specific optimizations. Each provider typ-
ically offers just a single orchestrator service option. While
the interface and implementation of the orchestrator might
efficiently support many applications, it cannot meet all ap-
plications’ needs, resulting in a compromise familiar from
operating systems [9, 13], networks [17,39], and storage sys-
tems [21,28]. Indeed, we find that provider-hosted orchestra-
tors force applications to compromise performance by using
less-efficient patterns (§ 5).

3 Design

Unum is an application-level orchestration system that sup-
ports complex serverless applications without a standalone
orchestrator. It does so by decentralizing orchestration logic
in a library that runs in-situ with user-defined FaaS functions
and leverages a scalable consistent data store for coordination
and execution correctness. By removing standalone orches-
trators, Unum improves application flexibility and reduces
costs. Importantly, Unum does this while retaining the ex-
pressiveness and execution guarantees (§3.3) of standalone
orchestrators.

User function Unum IR

RO = o =

High-Level Workflow Definition Unum Compiler

Unum Ingress and Egress

:] Serverless function

Unum IR

()
A

Unum Functions

(a) Serverless workflows form directed graphs. Unum partitions the graph into an intermediate representation
where each function is embedded with an Unum configuration that encodes how to transition to its immediate
downstream nodes. Developers package user function, Unum config and Unum’s runtime library (a pair of ingress
and egress components) together to create “unumized” functions.

R

—> 7,
1Ll sy
s 10007y,
s 077,,,

i rrssss s gy

Application Definition Standalone Orchestrator

(b) A typical standalone orchestrator operates as a logically central-
ized controller that drives the execution of applications by invoking
functions, receiving function results and storing application states

Serverless
s ° Functions

—>(A)- ()
p a N ¢

—>{)~ }-»-»
A 3 — 4 P
NP
A

A 7
/ Serverless S
Data Store

(c) At runtime, Unum orchestration logic is decentralized and runs
in-situ with the user functions on an unmodified serverless platform.
For coordination and checkpointing, Unum relies exclusively on a
standard data store of choice, such as DynamoDB or Cosmos DB.

Figure 1: Unum’s Decentralized Orchestration. Unum partitions orchestration logic at compile time and a Unum runtime runs
in-situ with user functions to perform only the orchestration logic local to its node.

3.1 Architecture

Figure la depicts how developers run serverless workflows
using Unum. Developers write individual functions and de-
scribe the workflow using a high-level workflow language,
such as Step Functions’ expression language. An Unum front-
end compiler uses these to extract portable Unum IR for each
node in the graph and “attaches” it to the function (e.g. by
placing a file containing the IR alongside the function code).
A platform-specific Unum linker “links” each function with a
platform-specific Unum runtime library. | Developers deploy
each linked function along with its IR to the FaaS platform.
Each Unum workflow begins with an “entry” function. In-
voking this function (e.g. using an HTTP or storage trigger)
starts a workflow. Moreover, admission control rules for the
workflow, such as access control and rate limiting, are imple-
mented by setting appropriate rules on this entry function. For
example, a workflow can be invoked by a particular principal

I'Since functions are typically written in dynamic languages, the Unum li-
brary source code is placed alongside the function and dynamically imported,
rather than statically linking an object file

if the entry function is exposed to that principal.

The runtime library is composed of an ingress and egress
component that run before and after the user-defined function
and unwrap and wrap the results of the function in Unum
execution state, respectively (Figure 2). The ingress compo-
nent coalesces input data from each incoming edge (e.g. in
a fan-in), resolves input data if passed by name rather than
by value, and passes the input value to the function. The
egress component uses the function’s result to invoke the next
function(s), enforces execution semantics using checkpoints,
performs coordination with sibling branches in fan-in, and
deletes intermediate states no longer needed for the workflow,
executing the workflow in-situ with the functions, in lieu of a
centralized orchestrator (Figure 1c).

3.2 Unum Intermediate Representation

Similar to many standalone orchestrators, Unum applica-
tions are modeled as directed execution graphs where nodes
represent user-defined FaaS functions and edges represent
function invocations (incoming edges) with the output of one

Queue a single invocation

Invoke (Fn .
(Fn) of a function.

Queue one function invoca-
Map (Fn) tion for each element in the

current function’s result.
Queue a fan-in to a function
using the provided coordi-
nation set object and size.
Pops the top frame
of the execution state

FanIn(Set, Size, Fn)

Fop stack (passed via Unum
requests).
Increments the current ex-
Next ecution state frame’s itera-

tion counter.

Creates a coordination set
object in the data store with
the provided name.

CreateSet (Name)

Table 1: Unum intermediate representation instructions.

or more other functions (outgoing edges).

An Unum graph may include fan-outs, where a node’s out-
putis used to invoke several functions or split up and “mapped”
multiple times on the same function. Each such branch may
be taken conditionally, based on the output value or dynamic
states of the graph. Execution graphs may also contain fan-
ins, where the outputs of multiple nodes are used to invoke a
single aggregate function. Cycles are also supported and each
iteration through a cycle is a different invocation of the target
function.

The Unum intermediate representation (IR) is designed to
encode directed execution graphs in a way that both allows
decentralization of orchestration and is low-level enough to
support application-specific patterns.

Each function’s IR includes the function’s name and a
sequence of instructions (Table). Instructions direct the
runtime to invoke functions and operate on Unum metadata
passed between functions (Figure 2).

The egress component, which receives the function’s user-
code output, executes the IR and uses it to determine which
next steps to take. An invocation can be protected by a
conditional—a boolean expression that operates on the in-
vocation request and the current function’s output. Unum’s
IR provides three kinds of invocations:

 Invoke simply invokes the named function using the
current functions output.

* Map treats the current function’s output as iterable data
(e.g. alist) and invokes the named function once for each
item in the output.

e Fanln invokes the named function using the current
function’s output along with the outputs of all other func-

struct InvocationRequest {
data: Vec<DatastoreObjectName>,
workflowId: String,
fanOut: Stack<FanOut>,

}

struct RequestData ({
reference: DatastoreObjectName,
value: Option<Value>

}

struct FanOut {
index: usize,
size: usize,
iteration: usize,

}

Figure 2: An Unum request wraps function outputs with meta-
data that allows function invocations to be named uniquely
and assists in coordinating fan-ins. Unum IR instructions can
reference and modify this metadata.

tions fanning into the same node. Fan-in requires coor-
dination among multiple functions and is described in
detail in §3.4.

When multiple invocations occur, either using multiple
instructions or a single Map invocation, each of the invoca-
tions adds a fan-out frame to the invocation request’s fan-out
stack. This allows different invocations of the same function
to be differentiated for naming (§3.6) and to coordinate fan-in
(83.4).

The IR also includes instructions for manipulating the
Unum request data and an instruction that creates a new co-
ordination set, typically for use in later nodes to coordinate
fan-in (§3.4) or garbage collection (§3.5).

This IR is sufficient to represent basic patterns, as well as
more complex fan-in patterns (described in §3.4).

Chain & Fan-out. Unum encodes passing the output of
a function to one (chain) or multiple (fan-out) subsequent
functions, simply, with one or more calls to the Invoke in-
structions.

Map. Applications may perform the same operation on
each component of a function’s output. For example, an ap-
plication may unpack an archive of high-resolution images in
one function and perform compression on each of the images.
Unum'’s Map instruction invokes the same Fn for each element
of a function’s output.

Branching. Applications may need to invoke different
functions based on runtime conditions (e.g., the output of
a function). For instance, an application may first validate that
a user-uploaded photo is a valid JPEG. If it is, it invokes, e.g.,
one of the patterns above, otherwise it notifies the user of the
error. Unum’s invocation instructions are optionally protected
by a conditional expression that has access to the function
output and execution metadata (Figure 2).

3.3 Execution Guarantees Using Checkpoints

FaaS functions only provide weak execution guarantees. Func-
tions can fail mid-execution and be retried. Even in the ab-
sence of failures, one function invocation may result in more
than one execution because most FaaS engines only ensure
at-least-once execution. This is problematic for applications
whose functions are non-deterministic because a single work-
flow invocation can produce multiple diverging outputs.

An important benefit of orchestrators is strong execution se-
mantics such that applications appear to execute exactly-once
even if individual functions in the application run multiple
times. Because standalone orchestrators are logically cen-
tralized, guaranteeing exactly-once is conceptually straight-
forward: the orchestrator can choose a single result from
executions of the same invocation and use it as input for all
downstream functions. At the end of the workflow, the result
is consistent with an execution of the workflow where each
function invocation executed exactly-once.

A key challenge for Unum is to provide the same semantics
without centralizing orchestration. Moreover, because failures
and, thus, retries are the exception, not the rule, Unum should
provide these semantics without expensive coordination—
function instances should be able to proceed without blocking
in the common, fault-free case.

Unum leverages two key insights to achieve these seman-
tics. First, it is correct for different executions of the same
function invocation to return different results as long as Unum
ensures downstream functions are always invoked with ex-
actly one of those results. Second, a workflow’s output is
correct even if a function is invoked more than once, as long
as the invocations uses the same input, since additional, but
identical, invocations are indistinguishable from additional
executions.

The Unum library employs an atomic
create_if_not_exists operation in the serverless
data store to checkpoint exactly one execution of each func-
tion invocation. The egress component of the Unum library
attempts to write the result of the function to a checkpoint
object in the data store. If such a checkpoint already exists,
a concurrent or previous execution of the invocation must
have already completed and the operation will fail. To invoke
downstream functions, the egress component always uses the
value stored in the checkpoint, rather than the result of the
recently completed function. Essentially, Unum “commits”
to result of the first successful executions of invocations.

Data stores need to be strongly consistent to support
create_if not_exists. Itis important that a later attempt
to create an existing checkpoint fails and the slower execution
can read the existing checkpoint.

As a further optimization, the ingress component in the
Unum library checks for the checkpoint object before execut-
ing the user-defined function. If the object exists, it bypasses
the user-defined function and passes the checkpoint value

def ingress(self, function):

result = datastore_get (self.checkpoint_name):
if result:

self._egress(result)
else:

self.egress (function.handle())

def egress(self, result):

if not datastore_atomic_add(self.checkpoint_name, result):
result = datastore_get (self.checkpoint_name)
self._egress(result)

def _egress(self, result)
for f in next_functions:
faas.async_invoke (f, result)

Figure 3: Pseudo-code showing Unum’s checkpointing mech-
anism. As different executions of a function may return dif-
ferent results, Unum’s egress component checkpoints the first
successful execution using an atomic add data store opera-
tion. All subsequent executions will uses this committed value
rather than the result their own execution returned.

directly to the egress component to invoke downstream func-
tions. This is not necessary for correctness but helps reduce
computation that we know will go unused.

Note that the exactly-once guarantee does not automat-
ically extend to applications with external side effects, i.e.
functions that directly call external services. In such cases,
retries can lead to unexpected results if the effects are not
idempotent. This issue is well known, and independent of the
orchestrator architecture (centralized vs. decentralized). Thus,
we consider the question of how to control such side effects
to be orthogonal and beyond the scope of this paper. However,
Unum does not preclude applications from using libraries,
such as Beldi [40], that can solve this problem.

3.3.1 Fault Tolerance

Another source of multiple executions is retrying failed func-
tions. Retries in Unum rely on FaaS engines’ error handling
support. All popular FaaS engines provide error handling so
that applications do not just crash silently without a way to
react to failures. Common mechanisms include “automatic
retry” that re-executes the same function [7, 14,32, 34] or
failure redirection that triggers a pre-configured error-handler
function [29, 33]. Unum can work with either mechanism.
The Unum error handler is part of Unum’s standard library
and is triggered in a separate FaaS function after an appli-
cation function crashes. The error handler simply retries the
crashed function by invoking it again. As part of the orches-
tration library, the error handler is assumed to be bug-free and
relies on the FaaS scheduler to execute at least once.
Unum’s checkpointing mechanism ensures that while faults
may occur at any point during the execution of a function’s

user code or the Unum library, and while downstream func-
tions may be invoked multiple times by different executions
of the same invocation, a single value is always used to invoke
downstream functions.

If there is a fault after the user code completes but before
creating the checkpoint, user code result is ignored (indeed,
never seen) by other executions and another execution’s value
will be used to invoke downstream functions. If the “winning”
function crashes after creating a checkpoint, and before in-
voking some or all downstream functions, other executions
will use the checkpoint value to invoke downstream functions.
Finally, even if multiple executions invoke some or all down-
stream functions, execution guarantees are still satisfied as
these invocations will have identical inputs.

3.4 Fan-in Patterns

In fan-in patterns, the results of multiple nodes are used to
invoke a single head node. Such patterns are a particular chal-
lenge for decentralized orchestration because invoking the
target function cannot happen until all branches complete,
but there is no standalone orchestrator to wait for this con-
dition. Designating one of the tail nodes as the coordinator
would address this directly. However, there is no guarantee
that branches for a fan-in complete soon after each other, in-
curring a potentially large resource cost to do virtually no
work, and risk exceeding platform-enforced function time-
outs. Moreover, functions typically cannot communicate with
each other directly, so it is not obvious how other branches
would notify this coordinator of their completion.

Unum, instead, leverages the same insight as checkpoints—
the data store provides strong consistency that can serve as a
coordination point. Rather than designating a single branch
function as the coordinator, all branches are empowered to
invoke the fan-in function once all other branches have com-
pleted. To determine this condition, branches in a fan-in add
the name of their checkpoint object to a shared “Set” in the
data store. Any branch that reads the set with size equal to the
total number of branches invokes the target function using all
the branches’ checkpoints as input.

Importantly, functions do not wait for any other to complete.
As long as all functions complete eventually (in other words,
they run at-least once), some function will read a full set and
invoke the fan-in target function. More than one function may
observe this condition, resulting in multiple invocations, but
these invocations will be identical and are handled as spurious
executions of the same invocation (§3.3).

In order to perform this coordination, branches must know
the branching factor—the size of the set. The FanIn instruc-
tion includes this size, which is either specified explicitly, or
using a variable from the invocation request, commonly the
fan-out size.

Similar to checkpoints, the set data structure for coordina-
tion requires the data store to be strongly consistent. Updates

to a set must be immediately visible to other branches oth-
erwise the downstream fan-in function may ever be invoked.
Moreover, the data store must support data structures that can
implement a “set” abstraction.

Fan-in supports enable more patterns that commonly arise
in applications:

Aggregation. After processing data with many parallel
branches, applications commonly want to aggregate results.
For example, to build an index of a large corpus, the applica-
tion might process chunks in parallel and then aggregate the
results. Aggregation is a common pattern to join back multi-
ple parallel functions, by invoking a single “sink” function
with the outputs from a vector of functions.

Fold. fold sequentially applies the same function on the
outputs of a vector of source functions, while aggregating with
the intermediate results of running the function so far. For
example, a video encoding application might encode chunks
in parallel and then concatenate the results in order: concate-
nating chunk 1 and 2, then concatenating chunk 3 to chunk
[1-2], and so on. fold is an advanced pattern that is not sup-
ported by all existing systems (e.g., AWS Step Functions do
not support fold) but is expressible in Unum.

3.5 Garbage Collection

Both checkpointing and fan-in require storing intermediate
data (e.g., checkpoints and coordination sets) in the data store.
These intermediate data is only temporally useful and grows
with each invocation. This poses a garbage collection chal-
lenge. Deleting them too early can compromise execution
guarantees while deleting too late incurs storage costs.

Checkpoint Collection. A checkpointing node does not
know when its checkpoint is no longer necessary. If it deletes
its checkpoint immediately after invoking subsequent func-
tions, it may crash and the FaaS platform may re-execute
it, yielding a potentially inconsistent result. However, down-
stream nodes know that once they have committed to a value
by checkpointing, previous checkpoints are no longer neces-
sary to ensure their own correctness. Once a node has commit-
ted to some particular output, future invocations, even with
different inputs will produce the same output, as the node will
always use the checkpointed value.

Note that a duplicate execution that checkpoints after the
previous checkpoint is garbage collected has the same se-
mantics as a separate invocation. It may result in multiple
outputs from the workflow, though each output is still consis-
tent with an execution of the workflow where each function
was invoked exactly-once. Any GC policy, no matter how
conservative, might lead to multiple executions if the FaaS
platform could execute duplicates of a function invocation
after an arbitrarily long time in the future.

Therefore, Unum collects checkpoints by relaxing the con-
straint that nodes always output the same value. Instead, they
must only output the same value until all subsequent nodes

have committed to their own outputs. This means that, in non-
fan-out cases, once a node checkpoints its result, it can delete
the previous node’s checkpoint.

Fan-outs are more complicated because deleting the check-
point must wait until all branches have committed to an output.
Unum repurposes the same set-based technique from fan-in
to collect checkpoints in fan-out cases as well. The originat-
ing node of a fan-out creates a set for branches to coordinate
when to delete its checkpoint. Branches add themselves to the
set after checkpointing their own value. Any node that reads a
full set deletes the parent’s checkpoint as well as the set. This
guarantees that the parent’s checkpoint is deleted and ensures
that all branches have first checkpointed.

Note that it is possible for one of the branches to re-execute
after the set has been deleted. This is safe because it is the
origin of the fan-out that creates the set, so a branch’s attempt
to add itself to a, now, non-existent set will simply fail.

Fan-in Set collection. Deleting sets used for fan-in works
much like removing checkpoints—the target node of a fan-in
deletes the set once it has generated a checkpoint. However,
who creates the set?

If each branch in the fan-in creates the set if it doesn’t
already exist, a spurious execution of one of the branches
after the fan-in target removes the original set will create
a new one that is never deleted (because it never fills, and
thus the target function is never invoked again). To avoid this,
Unum places the responsibility to create the set on the node
that originates the fan-out at the same level as the target node.

3.6 Naming

Much of Unum’s functionality relies on unique naming. A
workflow invocation must be named to differentiate it from
other concurrent invocations of the workflow; functions must
be named to invoke them; different invocations of functions
must have different names to uniquely name invocation check-
points and coordination sets for fan-in.

Each workflow invocation has a unique name that is passed
through the execution graph. The name is either generated
in the ingress to the first function using, e.g., a UUID library
or, when available, is taken from the FaaS platform’s invo-
cation identifier for the first function. This enables functions
to have different names when invoked as part of a specific
workflow invocations. The function’s name is either user-
defined or determined by the FaaS platform (e.g. the ARN on
AWS Lambda) and determined at “compile-time” (i.e. when
generating Unum IR).

However, this is not sufficient as functions may be invoked
multiple times in the same workflow due to map patterns—
which invoke the same function multiple times over an iter-
able output—and cycles. Moreover, invocation names must
be determined using local information only. Once running,
each function only has access to it’s own code (including the
IR) and metadata passed in its input. Nonetheless a partic-

ular invocation must be able to determine its own name for
checkpointing as well as, if it is part of a fan-in, the name of
downstream invocations to coordinate with other branches.

As a result, Unum names function invocations using a
combination of the global function name, a vector of branch
indexes and iteration numbers (taken from the Unum request
fan-out stack) leading to the invocation, and the workflow in-
vocation name. Function names are global and the remaining
items are propagated by Unum in invocation arguments.

During a fan-out pattern (multiple scalar invocations or a
map invocation), a branch index is added to a list in the next
functions’ input. If the next function is an ancestor of the
current function (a cycle), an iteration field in the input is in-
cremented. Note that a single iteration field is sufficient even
if there are nested cycles since it is only important that dif-
ferent invocations of the same function have different names,
not that the iteration field is sequential. Thus, a monotonically
increasing iteration field is sufficient.

We note that the format of this name is not significant
and, importantly, it need not be interpretable. It must only
be deterministic and unique for its inputs. For example, a
reasonable implementation could serialize the inputs and take
a cryptographic hash over the result, guaranteeing uniqueness
(with very very high probably) while preventing names from
growing too large to use as object names.

4 Implementation

We implement a prototype Unum runtime that supports AWS
and Google Cloud. We also implement a front-end compiler
that transforms AWS Step Function definitions to Unum IR.
Currently our runtime only supports Python functions and
is itself written in 1,119 lines of code. The Step Functions
compiler is 549 lines-of-code.

Implementing the runtime primarily requires specializing
high-level functionality the IR depends on for a particular
FaaS platform and data store. The FaaS platform must support
asynchronous invocation and the data store must be strongly
consistent with support for atomic creation and set operations.

Importantly, we choose data stores and primitives that only
incur per-use costs and scale on-demand. For example, we
use DynamoDB in on-demand capacity mode, rather than
provisioned capacity mode, and avoid long-running services
such as a hosted Redis or cache. As a result, Unum incurs
fine-grained costs only when performing orchestration (e.g.,
per-millisecond Lambda runtime costs to execute the Unum
library, per-write DynamoDB costs to create checkpoints).

4.1 AWS Lambda & DynamoDB

Asynchronous invocation in Lambda is natively supported.
In particular, the Lambda Invoke API is asynchronous when
passed InvocationType=Event. In the event of a crash, we
use Lambda’s Failure Destination [29] to redirect the fault to

an error handler function which runs just the Unum runtime.
The error handler checks if the failed function should be re-
tried (e.g., based on the Step Function definition [15]) and if
so, retries the function by explicitly invoking it again.

DynamoDB organizes data into tables, with each item in a
table named by a key. Within tables, items are unstructured
by default. Our implementation of Unum uses a single ta-
ble for each workflow. Each item in the table corresponds
to a checkpoint, or a coordination set for fan-in or garbage
collection.

DynamoDB supports atomic item creation by passing the
conditional flag attribute_not_exists to the put_item
API call. We use this for creating both checkpoint blobs and
coordination sets. DynamoDB supports set addition natively
using the Map field type. In particular, we use update expres-
sions to atomically set a named map element to true. As an
optimization, we use the ALL_NEW flag when adding to a set to
atomically get the new value after a set in a single operation.

4.2 Google Cloud Functions & Firestore

Google Cloud Functions (GCF) do not have an asynchronous
invocation API. Instead, we allocate function-specific pub-sub
queues and subscribe each function to its respective queue.
Unum then asynchronously invoke a function by publishing
the input data as an event to the function’s queue.

GCF supports automatic retry for asynchronous func-
tions [34]. In the event of a crash, the Unum runtime in the
retry execution checks if the failed function should be retried
and if so, retries the function by explicitly invoking it again.

Firestore organizes data into logical collections (which
are created and deleted implicitly) containing unstructured
items, named by a unique key. Similar to DynamoDB, we
use a separate collection for each workflow. Atomic item
creation is supported using a special create API call, which
only succeeds if the key does not already exist. Firestore
supports an Array field type which can act as a set by using
the ArrayUnion and update operation, which atomically sets
the field to the union of its existing elements and the provided
elements. The update operation always returns the new value
data.

5 Evaluation

Unum argues for eschewing standalone orchestrators and, in-
stead, building application-level orchestration on unmodified
serverless infrastructure using FaaS schedulers and consistent
data stores. In this section, we evaluate how well application-
level orchestration performs, reduces costs, and improves ap-
plication flexibility. In particular, we focus our performance
evaluation on whether decentralization comes at a reasonable
overhead compared with standalone orchestrators.
Specifically, we answer the following questions:

1. What overhead does Unum incur in end-to-end latency
and what are the sources of Unum’s overheads?

2. How much does it cost to run applications with Unum
and what are the sources of costs compared with Step
Functions?

3. How well does Unum support applications that Step
Functions cannot support well?

Though we evaluate the applications running on both AWS
and Google Cloud, we focus our discussion on our AWS
implementation with Lambda and DynamoDB, because it
runs on the same serverless infrastructure as Step Functions.

5.1 Experimental setup

We run all experiments on AWS with Lambda and Dy-
namoDB, and on Google Cloud with Cloud Functions and
Firestore. All services are in the same region (us-west-1 on
AWS and us-central-1 on Google Cloud). All functions
are configured with 128MB of memory except for ExCamera
where we use 3GB of memory to replicate the setup in the
original paper [19,20]. DynamoDB uses the on-demand pro-
visioning option that charges per-read and per-write [12]. To
avoid performance artifacts related to cold-starts, we ensure
functions are warm by running each experiment several times
before taking measurements.

All but one application were originally written as Step
Function state machines. For Step Function experiments, we
ran them directly with the “Standard” configuration [37],
which provides similarly strong execution guarantees as
Unum [16]. For Unum experiments, we first compiled the
Step Functions definitions to Unum IR, linked the functions
with the Unum runtime library and finally executed them as
lambdas or Google Cloud functions. The notable exception is
our Unum and Step Functions implementations of ExCamera,
which differ due to a limitation in the Amazon State Lan-
guage. As a result, the more efficient Unum implementation
is written directly in Unum IR instead of compiled from the
Step Functions definition (§ 5.4).

5.2 Performance

Unum’s performance overhead results from the Unum run-
time logic run in each function as well as API calls to data
stores and FaaS engines. We characterize these overheads by
measuring the latency to execute various patterns consists
of noop functions as well as end-to-end performance of real
applications. Overall we find that Unum performs comparably
or significantly better than Step Functions in most cases ow-
ing to higher parallelism and a more expressive orchestration
language, with modest slow downs in the remaining cases due
to implementation deficiencies.

Putltem 2 Lambda Invoke

B Getltem

Step Functions N
—— Unum Total

Latency (ms)

0 50 100 150 200 250
Data Size (KB)

Figure 4: An orchestrator incurs a latency on each transi-
tion between functions. Unum’s overhead is due to storage
operations to ensure exactly-one-result semantics, Lambda
invocation API overhead to enqueue the next function to run,
and additional Unum runtime code in the function instance
itself for the orchestration logic.

5.2.1 Chaining

For the simple chaining pattern, the Unum runtime performs
a storage read to check whether a checkpoint already exists,
a storage write to checkpoint the function’s result, and an
asynchronous function invocation to initiate the next function
in the chain.

Figure 4 shows time to perform each of these operations
for different result sizes. As expected, storage operations are
slower when checkpointed results are larger, but the total
overhead from the Unum runtime operations is consistently
lower than an equivalent Step Function transition.

The Unum implementation of the IoT pipeline application
benefits from this difference, with the Unum version running
1.9x faster than the Step Functions version (Table 2).

5.2.2 Fan-out and fan-in

Fan-out requires the same number of storage operations as
chaining and similar orchestration logic, but the Unum run-
time performs an additional asynchronous invocation at the
source function for each branch. For fan-in patterns, each
source branch performs an additional storage read to deter-
mine if it is the final branch to execute, and only the final
branch performs the asynchronous invocation of the target
function.

Figure 5 shows the latency of a fan-out followed by a fan-
in at varying branching degrees for both Unum and Step
Functions. At low branching degree, Unum incurs a modest
overhead (up to 200ms) relative to Step Functions. We believe
this is mostly due to our implementation initiating each branch
invocation sequentially. However, at higher branching degrees
(as low as 20 branches), Step Functions limits the number of
outstanding fan-out branches [30] while Unum is limited only

10° &
—— Unum 50p

g Unum 99p _ A&
= —~M- Step Functions 50p ‘,5" i
g -k~ Step Functions 99p ,zﬁ’

@ 1044 ‘,’ =
H 4

38

©

c

@

2

5 1034

[

w

2 4 8 16 32 64 128 256 512
Parallel Branches

Figure 5: End-to-end latency of a fan-out and fan-in pattern
with increasing branching degree. Unum is slower at lower
branching degrees but significantly outperform Step Func-
tions at moderate and high branching degree.

by Lambda’s scalability, resulting in over 4x lower latency
with 512 branches.

These differences manifest in real workloads as well. Word-
count is highly parallel (with 262 parallel mappers and 250
reducers) and performs over 2x faster on Unum than on Step
Functions (Table 2).

Although it may not be the case that standalone orchestra-
tors fundamentally have to impose limits on the number of
outstanding function invocations, this example shows that it
is at least not trivial to ameliorate the constraint. On the other
hand, as a library, Unum is free from the need to design and
implement yet-another service that supports parallel applica-
tions well, but can instead provide as much parallelism as
FaaS schedulers and data stores permit. FaaS schedulers and
data stores already support highly-parallel applications well,
and Unum’s performance will improve automatically when
these underlying services further improve.

5.3 Cost

One of the main attractions of building applications on server-
less platforms is fine-grained and often lower cost. In partic-
ular, because resources are easy to reclaim, applications are
charged only for resources used to respond to actual events.
Thus, the cost of orchestration matters as well as performance.

The source of costs for Unum and Step Functions is quite
different. Step Functions imposes a cost to developers for
each workflow transition [5], such as each branch in a fan-
out. This abstracts the underlying, likely shared, costs to run
the Step Functions servers, persist states and checkpoint data.
Conversely, Unum incurs costs directly from those services.
In particular, compute resources for executing orchestration
logic is charged per-millisecond such as Lambda runtime
cost [2] and storage for persisting states is charged per read
and write such as DynamoDB reads and writes [12].

On AWS, Unum is much cheaper than Step Functions—
AWS’s native orchestrator. For a basic transition in a chaining

Latency (seconds) Costs ($ per 1 mil. executions)
App Unum-aws | Unum-gcloud | Step Functions | Unum-aws | Unum-gcloud | Step Functions
IoT Pipeline 0.12 0.81 0.23 $12.38 $6.3 $112.02
Text Processing 0.52 3.56 0.55 $60.42 $31.7 $225.29
Wordcount 408.88 484.12 898.56 | $13,433.67 $11,727.3 $18,141.19
ExCamera 84.52 122.63 98.42 | $62,684.29 $51,617.2 $114,633.13

Table 2: Application latency and costs comparison between Unum and Step Functions. Running applications on Unum is 1.35x
to 9x cheaper than on Step Functions. Furthermore, Unum is faster than Step Functions especially for workflows with high

degrees of parallelism.

Unum

1001

80

User Code Duration
Unum Runtime Duration
Lambda Invocation
Unum Checkpoint
Unum GC

Unum Fan-in

°
o

601

401

20

ExCamera

loT Pipeline Text Processing Wordcount
Step Functions

1001

Percentage of Total Cost

801

User Code Duration
Lambda Invocation
State Transition

60

401

201

ol
loT Pipeline Text Processing Wordcount ExCamera

Figure 6: Step Functions state transitions dominate the total
costs for all applications (99.5% in IoT Pipeline, 99.4% in
Text Processing, 80.0% in Wordcount, 72.2% in ExCamera).
While Unum runtime cost is also the majority, it accounts for
a smaller portion of the overall costs (95.7% in IoT Pipeline,
97.8% in Text Processing, 72.5% in Wordcount and 61.0% in
ExCamera).

pattern, Step Functions charges $27.9 per 1 million such tran-
sitions. On the other hand, Unum costs, for 1 million transi-
tions, (1) $0.42 for ~200ms extra Lambda runtime to execute
orchestration library code, (2) $2.79 for 1 DynamoDB write
to checkpoint, (3) $0.279 for 1 DynamoDB read to check
checkpoint existence, and (4) $2.79 for 1 DynamoDB write
to garbage collect the checkpoint. In total, a basic transition
in Unum is about 4.4x cheaper than the provider-hosted or-
chestrator on the same platform ($27.9 vs $6.279).

Table 2 shows the cost to run each of the applications we
implemented in the us-west-1 region. Unum is consistently,
and up to 9x, cheaper than Step Functions for the applications
we tested.

Figure 6 shows the cost to run each application using Unum

broken down to each component: data store costs for writing
and reading checkpoints, data store costs for writing coordina-

tion sets, data store costs for deleting checkpoints and writing
coordination sets for garbage collection, Lambda invocation,
and Lambda CPU-time for both the Unum runtime and user
function. Storage costs, using DynamoDB, are the largest
portion of overall cost and costs for writing to DynamoDB is
the majority”. This includes writing checkpoints, writing to
coordination set (either for fan-in for garbage collection) and
deleting checkpoints for garbage collection.

Of course, developer-facing pricing is only a proxy for
actual costs of hardware and human resources. However, it
is clear that, in practice, Unum’s costs are reasonable and, in
fact, often lower than Step Functions. This suggests that at
least applications that currently run on Step Functions could
afford to run using Unum instead.

Furthermore, services that Unum builds on—FaaS sched-
ulers and data stores—are core multi-tenant services that
likely multiplex over a larger audience of applications than
orchestrators for greater economies of scales. These services
typically have enjoyed long periods of improvement already
to make them efficient. Unum’s design obviates the need to
host yet-another service which frees up resources such that
providers can focus on fewer core services in their serverless
infrastructure.

Moreover, Unum automatically benefits from improve-
ments to the underlying infrastructure and pricing schemes.
For example, Azure’s Cosmos DB provides similar perfor-
mance and consistency guarantees to DynamoDB but charges
5x less to perform a write operation (the dominant cost of
Unum’s data store operations).

5.4 Case Study: ExCamera

ExCamera [20] is a video-processing application designed
to take advantage of high burst-scalability on Lambda using
custom orchestration. We compare our Unum implementation
with three others: (1) the original hand-optimized ExCam-
era using the mu framework, (2) an implementation using a
generalized orchestrator (gg) by the same authors, and (3) an
optimized Step Functions implementation we wrote.

Both gg and mu employ standalone orchestrators to proxy
inter-function communications, store application states and

2Writes in DynamoDB cost about an order-of-magnitude more than reads

invoke lambdas. However, mu uses a fleet of long-running
identical lambdas where all application code is co-located
and raw video chunks are pre-loaded, whereas gg lambdas are
event-driven, task-specific and cannot leverage pre-loading.
The application logic, though, is identical for gg ExCamera
and mu ExCamera. Unum’s ExCamera replicates the appli-
cation logic from gg and mu. However, the Step Functions
ExCamera implementation must serialize the encode and re-
encode stages because Step Function’s Map pattern requires
all concurrent branches to complete before any fan-in starts
(Figure 7).

5.4.1 Performance

Using the same experimental setup as the prior work (i.e.,
encoding the first 888 chunks of the sintel-4k [31] video
using 16 chunks per batch and Lambdas configured with 3GB
of memory), Unum is 7.1% faster than gg [19] and 10.5%
slower than the original, hand-optimized ExCamera (Table 3).
The original authors attributes the slower performance of gg
ExCamera to the lack of pre-loading which is likely also the
reason for Unum’s slower performance.

But different from gg, Unum executes orchestration in a
decentralized manner while gg has a standalone coordinator
on EC2. The reduced number of network communications
likely explains why Unum is slightly faster.

Comparing with Step Functions, Unum’s design allows
the flexibility to implement ExCamera’s original application
pattern where tasks start as soon as their input data becomes
available, whereas the Step Functions implementation had to
use the less-efficient Map pattern without the flexibility to
add new orchestration patterns easily. As a result, the Unum
ExCamera enables more parallelism between branches and is
16.7% faster than Step Functions.

54.2 Cost

Unlike Unum, neither gg nor mu aimed to reduce the cost of
running serverless applications and neither discussed costs
in detail. Nevertheless, there are several important factors in
comparing Unum with gg and mu in relation to costs.

First, similar to Step Functions, gg and mu both rely on
standalone orchestrators. Thus, the fundamental costs differ-
ence is also similar, namely Unum’s use of storage vs gg’s and
mu’s use of VMs. mu’s orchestrator consists of a coordinator
server as well as a rendezvous server [20], while gg’s only
has a coordinator server [19]. In the mu authors’ experiments,
they used a 64-core VM (m4.16xlarge) as the rendezvous
server. Neither mu nor gg specified the instance type of its co-
ordinator server. However, the cost of the rendezvous server,
at the time of writing, is $3.20 per hour, or approximately
$2352 per month.

Furthermore, standalone orchestrators must separately con-
sider fault-tolerance in case of orchestrator failures. Most

fraws > s
s T —— AW
awﬁ - sl 7%
4.raw—>|)—H\ draw— >

[j vpxenc xcdec [:] xcenc Step Functions

Figure 7: Unum ExCamera replicates the application logic
from gg and mu where the re-encode stage (xcenc) of a branch
can start immediately when the previous branch completes
decoding (xcdec) and my own branch completes the initial en-
coding (vpxenc). Step Functions provides a Map pattern [30]
for parallel workloads. However, branches in Map must be
identical and Map does not support data dependencies be-
tween branches. As a result, to ensure previous branches’
xcdec have completed, all branches must first finish and fan-
in to Step Functions before starting the xcenc step, essentially
serializing the stage.

ExCamera Implementation | Latency (seconds)
Original 76

Unum-aws 84

gg 90

Step Functions 98

Table 3: ExCamera performance. Unum is 7.1% faster than
gg [19] and 10.5% slower than the hand-optimized implemen-
tation.

commonly, fault-tolerance is achieved by running multiple
coordinating instances (replicas) of the service. As a result,
production deployments of mu and gg would likely cost more.

Lastly, deploying an orchestrator per application or per
user limits the ability to amortize costs through multi-tenancy.
A provider-hosted orchestrator, such as Step Functions, can
achieve larger economies of scale by serving many users
concurrently with a single deployment.

6 Related Work

Serverless Workflows. Many systems have recognized the
need to augment serverless computing with support for com-
posing functions to build larger and more complex applica-
tions. AWS Step Functions [3] defines serverless workflows as
state machines using a JSON schema. Google Workflows [23]
uses a YAML-based interface to list steps in a workflow se-
quentially and allows jumps among steps. Azure Durable
Functions [6] uses a “workflow-as-code” approach, similar
to driver functions, where the workflow logic is written in a
programming language (e.g., C#, Python).

In all of these systems, orchestration is performed by a

standalone orchestrator. The nature and location of this
component varies: in AWS Step Functions [3] and Google
Workflows [23], it is provided by a cloud service that is sepa-
rately hosted and billed. In Azure Durable Functions [6], it
is an extension of the serverless runtime, and uses the same
billing. In contrast to all of these, Unum proposes a novel
decentralized orchestration strategy and runs entirely on
unmodified serverless infrastructure without adding any new
services or new components.

Kappa [41] addresses the lack of coordination between
function and function timeout limits when executing large
applications. Similar to Durable Functions, it also exposes a
high-level programming language interface. Cloudburst [36]
uses a specialized key-value store to enable low-latency exe-
cution of serverless functions. Users can express workflows
as static DAGs and an executor program runs the DAG by
passing data and coordinate via the key-value store. ExCam-
era [20] proposes the mu framework which uses a long-
running coordinator to command a fleet of lambdas, each
of which executes a state machines where user functions are
the states. gg [19] proposes a thunk abstraction where each
thunk executes as a deterministic lambda and expresses data
dependencies between thunks as DAGs. gg uses a standalone
coordinator to receive thunk updates and lazily launch thunks
when their inputs become available.

Similarly, the above systems rely on a standalone orches-
trator program. As the orchestrator program is not itself ex-
ecuting in a hosted environment, progress is not guaranteed
when its host crashes. Also, progress is not checkpointed
(except in Kappa), so workflows must restart from the be-
ginning in that situation. In contrast, Unum relies only on a
basic, highly available serverless platform. Thus, it guaran-
tees progress under all faults, including the orchestrator. And
Unum checkpoints each function result to minimize redundant
computations when handling faults.

Beldi [40] and Boki [25] are two recent systems that pro-
vide exactly-once execution and transactions to stateful server-
less applications. Both extend transactional features to spe-
cific application side effects supported by the system (e.g.,
DynamoDB writes). Developers use Beldi or Boki’s library
in user code when writing to a supported data store (e.g.,
DynamoDB) such that writes are executed only once. In com-
parison, Unum does not change how developers write user
code and does not extend exactly-once guarantee to side ef-
fects in user code. Instead, Unum treats user code as a black
box and ensures exactly-once semantics on a workflow-level.
However, Unum users who want to ensure exactly-once when
writing to DynamoDB can additionally use Beldi or Boki in
their user code.

Programming Interface. Most serverless workflow systems
require developers to write workflows with specialized inter-
faces. Some uses a declarative approach that defines work-
flows using JSON or YAML schemas (e.g., AWS Step Func-
tions [3], Google Workflows [23]). Others allow expressing

workflow as code (e.g., Durable Functions [6], Kappa [41],
Fn Flow [18]).

Unum does not propose a new frontend for defining work-
flow. Instead, Unum aims to support any existing frontend
that explicitly or implicitly expresses a directed graph where
nodes are functions and edges are transitions between func-
tions. Developers using Unum can choose the frontend that
they prefer.

7 Discussion & Limitations

Unsupported applications. Unum supports a superset of ap-
plications that can be expressed using Step Functions, but
there are applications that do not fit Unum’s constraints. In
particular, Unum only supports statically defined control struc-
tures. For example, Durable Functions expresses workflows
dynamically as code and allows the developer to use arbitrary
logic to determine what the next workflow step should be at
runtime. This is not currently possible with Unum.

Measurement error. Due to the opaque design, implemen-
tation and pricing of production workflow systems, such as
Step Functions, comparisons in our evaluations are limited
in their explanatory power. In particular, we use the current
price of Lambda, DynamoDB, and Step Functions as a proxy
for the cost of providing these services. Of course, prices
may be either lower or higher for a particular service than the
underlying cost.

Code Complexity. While Unum affords users more flex-
ibility, application-level orchestration increases code com-
plexity for developers. Coordination and exactly-once execu-
tion require careful design and implementation to function
correctly in a decentralized manner. Introducing application-
specific optimization also needs additional developer efforts
than using off-the-shelf patterns from provider-hosted orches-
trators.

8 Conclusion

We designed and implemented Unum, an application-level,
decentralized orchestration system that runs as a library on un-
modified serverless infrastructure without requiring additional
services. Our results show that basic serverless components—
function schedulers and consistent data stores—are sufficient
abstractions for building complex and fault-tolerant server-
less applications. Moreover, Unum affords applications more
flexibility, reduces costs and performs well compared with
standalone orchestrators with similar execution guarantees.

Acknowledgments We thank the anonymous reviewers and
our shepherd, Douglas Terry, for their insightful comments.
We thank Landon Cox for his support and feedback during
the early stage of this project. This work was funded in part
by NSF Grant 2028869.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Asynchronous invocation, AWS Lambda Developer
Guide. https://docs.aws.amazon.com/lambda/
latest/dg/invocation-async.html.

AWS Lambda Pricing. https://aws.amazon.com/
lambda/pricing/.

AWS Step Functions. https://aws.amazon.com/

step-functions/.

AWS Step Functions Quotas. https://
docs.aws.amazon.com/step-functions/latest/
dg/limits-overview.html.

AWS Step Functions Pricing. https://aws.amazon.

com/step-functions/pricing/.

Azure Durable Functions. https://docs.microsoft.

com/en-us/azure/azure-functions/durable/
durable-functions-overview?tabs=csharp.

Azure Functions error handling and retries, Azure
Functions Developers Guide.
microsoft.com/en-us/azure/azure-functions/
functions-bindings-error-pages?tabs=csharp.

Azure Functions reliable event processing, Azure
Functions Developers Guide.
microsoft.com/en-us/azure/azure-functions/
functions-reliable-event-processing#how-

azure-functions-consumes-event-hubs-events.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility safety and performance in the spin operating
system. SIGOPS Oper. Syst. Rev., 29(5):267-283, dec
1995.

Sebastian Burckhardt, Badrish Chandramouli, Chris
Gillum, David Justo, Konstantinos Kallas, Connor
McMabhon, Christopher S. Meiklejohn, and Xiangfeng
Zhu. Netherite: Efficient execution of serverless work-
flows. Proc. VLDB Endow., 15(8):1591-1604, apr 2022.

Sebastian Burckhardt, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, and Christopher S.
Meiklejohn. Durable functions: Semantics for stateful
serverless. Proc. ACM Program. Lang., 5(OOPSLA),
oct 2021.

DynamoDB Pricing for On-Demand Capacity.
https://aws.amazon.com/dynamodb/pricing/
on-demand/.

D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exok-
ernel: An operating system architecture for application-
level resource management. SIGOPS Oper. Syst. Rev.,
29(5):251-266, dec 1995.

https://docs.

https://docs.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

Error handling and automatic retries in AWS Lambda.
https://docs.aws.amazon.com/lambda/latest/
dg/invocation-retries.html.

Error handling in Step Functions, AWS Step
Functions Developer Guide. https://
docs.aws.amazon.com/step-functions/latest/
dg/concepts-error-handling.html.

Execution guarantees, Standard vs. Express Workflows,
AWS Step Functions Developer Guide. https://
docs.aws.amazon.com/step-functions/latest/
dg/express-at-least-once-execution.html.

Nick Feamster, Jennifer Rexford, and Ellen Zegura.
The road to sdn: An intellectual history of pro-
grammable networks. SIGCOMM Comput. Commun.
Rev., 44(2):87-98, apr 2014.

Fn Flow. https://fnproject.io/.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 475-488, Renton, WA,
July 2019. USENIX Association.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 363—376, Boston,
MA, March 2017. USENIX Association.

Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno,
Arvind Krishnamurthy, and Henry M. Levy. Comet:
An active distributed key-value store. In Proceedings
of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI’ 10, page 323-336,
USA, 2010. USENIX Association.

Google Cloud Composer (GCC). https://cloud.

google.com/composer.

Google Workflows.
workflows.

https://cloud.google.com/

Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Ar-
jun Guha. Formal foundations of serverless computing.
Proc. ACM Program. Lang., 3(OOPSLA), oct 2019.

Zhipeng Jia and Emmett Witchel. Boki: Stateful server-
less computing with shared logs. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems

https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html
https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html
https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html
https://aws.amazon.com/step-functions/pricing/
https://aws.amazon.com/step-functions/pricing/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing#how-azure-functions-consumes-event-hubs-events
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing#how-azure-functions-consumes-event-hubs-events
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing#how-azure-functions-consumes-event-hubs-events
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing#how-azure-functions-consumes-event-hubs-events
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html
https://docs.aws.amazon.com/step-functions/latest/dg/express-at-least-once-execution.html
https://docs.aws.amazon.com/step-functions/latest/dg/express-at-least-once-execution.html
https://docs.aws.amazon.com/step-functions/latest/dg/express-at-least-once-execution.html
https://fnproject.io/
https://cloud.google.com/composer
https://cloud.google.com/composer
https://cloud.google.com/workflows
https://cloud.google.com/workflows

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Principles, SOSP 21, page 691-707, New York, NY,
USA, 2021. Association for Computing Machinery.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99 In Proceedings of the 2017 Sym-
posium on Cloud Computing, SoOCC 17, page 445451,
New York, NY, USA, 2017. Association for Computing
Machinery.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion
Stoica, and David A. Patterson. Cloud programming
simplified: A berkeley view on serverless computing.
Technical Report UCB/EECS-2019-3, EECS Depart-
ment, University of California, Berkeley, Feb 2019.

Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter: Bare-
Metal extensions for Multi-Tenant Low-Latency storage.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 627—643,
Carlsbad, CA, October 2018. USENIX Association.

Introducing AWS Lambda Destinations.
https://aws.amazon.com/blogs/compute/
introducing-aws-lambda-destinations/.

Map State, AWS Step Functions Developer Guide.
https://docs.aws.amazon.com/step-functions/
latest/dg/amazon-states—-language-map-state.
html.

MPI Sintel Flow Dataset. https://paperswithcode.
com/dataset/mpi-sintel.

OpenFaaS Retries for functions. https://docs.
openfaas.com/openfaas-pro/retries/.

OpenWhisk Actions, Error Handling. https://
github.com/ibm-cloud-docs/openwhisk/blob/
master/error-handling.md.

Retrying Event-Driven Functions, Google Cloud Func-
tions. https://cloud.google.com/functions/
docs/bestpractices/retries.

Arnav Sankaran, Pubali Datta, and Adam Bates. Work-
flow integration alleviates identity and access manage-
ment in serverless computing. In Annual Computer
Security Applications Conference, ACSAC 20, page
496-509, New York, NY, USA, 2020. Association for
Computing Machinery.

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Joseph E. Gonzalez, Joseph M.

Hellerstein, and Alexey Tumanov. Cloudburst: State-
ful functions-as-a-service. Proc. VLDB Endow.,
13(12):2438-2452, July 2020.

[37] Standard vs. Express Workflows, AWS Step
Functions Developer Guide. https://
docs.aws.amazon.com/step-functions/latest/
dg/concepts-standard-vs-express.html.

[38] Temporal Platform. https://docs.temporal.io/.

[39] David Tennenhouse. Active networks. In USENIX 2nd
Symposium on OS Design and Implementation (OSDI
96), Seattle, WA, October 1996. USENIX Association.

[40] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. Fault-tolerant and trans-
actional stateful serverless workflows. In /4th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 1187-1204. USENIX As-
sociation, November 2020.

[41] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott
Shenker. Kappa: A programming framework for server-
less computing. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, SoCC ’20, page 328-343,
New York, NY, USA, 2020. Association for Computing
Machinery.

https://aws.amazon.com/blogs/compute/introducing-aws-lambda-destinations/
https://aws.amazon.com/blogs/compute/introducing-aws-lambda-destinations/
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://paperswithcode.com/dataset/mpi-sintel
https://paperswithcode.com/dataset/mpi-sintel
https://docs.openfaas.com/openfaas-pro/retries/
https://docs.openfaas.com/openfaas-pro/retries/
https://github.com/ibm-cloud-docs/openwhisk/blob/master/error-handling.md
https://github.com/ibm-cloud-docs/openwhisk/blob/master/error-handling.md
https://github.com/ibm-cloud-docs/openwhisk/blob/master/error-handling.md
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.temporal.io/

	Introduction
	Background & Motivation
	Standalone Orchestrators

	Design
	Architecture
	Unum Intermediate Representation
	Execution Guarantees Using Checkpoints
	Fault Tolerance

	Fan-in Patterns
	Garbage Collection
	Naming

	Implementation
	AWS Lambda & DynamoDB
	Google Cloud Functions & Firestore

	Evaluation
	Experimental setup
	Performance
	Chaining
	Fan-out and fan-in

	Cost
	Case Study: ExCamera
	Performance
	Cost

	Related Work
	Discussion & Limitations
	Conclusion

