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Imaging and seismic modelling
inside volcanoes using machine
learning

Gareth Shane O’'Brien'™, Christopher J. Bean?, Hugo Meiland? & Philipp Witte*

Despite advances in seismology and computing, the ability to image subsurface volcanic environments
is poor, limiting our understanding of the overall workings of volcanic systems. This is related to
substantive structural heterogeneities which strongly scatters seismic waves obscuring the ballistic
arrivals normally used in seismology for wave velocity determination. Here we address this constraint
by, using a deep learning approach, a Fourier neural operator (FNO), to model and invert seismic
signals in volcanic settings. The FNO is trained using 40,000+ simulations of elastic wave propagation
through complex volcano models, and includes the full scattered wavefield. Once trained, the forward
network is used to predict elastic wave propagation and is shown to accurately reproduce the seismic
wavefield. The FNO is also trained to predict heterogeneous velocity models given a limited set of
input seismograms. It is shown to capture details of the complex velocity structure that lie far outside
the ability of current methods available in volcano imagery.

Volcanoes are some of the most enigmatic objects in Earth science. They emit a diverse variety of seismic signals
with high rates. These volcanic seismic signals have long been items of study as they carry information about
the physical processes inside volcanoes and can exhibit different characteristics to seismograms generated from
tectonic earthquakes!—>. The different signals observed include long-period events, very long-period signals and
tremor and have been linked with a range of different physical source mechanisms*~. The event locations and
source mechanism are key constraints on the possible physical processes that can explain these signals and hence
are critical pieces of information in determining the hazard potential of volcanoes. A vast number of studies have
been undertaken to determine the location and source mechanisms of volcano seismic signals which are then
related to the underlying source processes'®'*. However, the outstanding barrier faced in determining robust
answers from these studies is the requirement for a detailed subsurface velocity model, so that the distorting
effect of highly heterogeneous volcano structure can be removed from the field recorded seismograms. Numeri-
cal simulations using representative volcano velocity models have demonstrated a very strong influence of wave
propagation path effects on the inversion results for both the source location and source mechanism'®. Also,
short duration source wavelets can exhibit large train long-duration waveforms at distal seismic stations as a
result of wave propagation through layered strata rather than source related components'®. Shallow magma has
even been drilled by accident in a geothermal field, due to the failures of geophysical imagery in these complex
environments'”. Improved seismic imagery is required to determine the geometry of sill intrusions and the
boundaries of possible magma chambers. High resolution seismic velocity imaging is arguable one of the most
challenging problem to solve in volcano seismology. Velocity models derived from passive earthquake tomog-
raphy are low frequency and also smooth out structures along ray paths. Hence they do not contain the desired
geological structure that would account for the strong wave scattering path effects observed in volcanic seismic
signals'®, as scattering relates to the spatial gradient of the velocity field. There are very few successfully resolved
high resolution seismic models available in volcanic environments unlike in exploration reflection seismic experi-
ments in sedimentary basins Although there has been some success at imaging exceptionally reflective individual
discrete structures'®". Generally on volcanoes, strong incoherent wave scattering masks coherent reflections with
resultant imaging problems limiting access to high resolution structural and velocity information even though
the information about the path effects, and hence velocity structure is inherently encoded into the recorded
seismograms. The central problem is that the dominant recorded wavefield is not sufficiently correlatable to
allow the reconstruction of the underlying structure nor its velocity field. Here, we present a new paradigm in
attacking the velocity inversion problem in volcanic environments. We take a deep learning approach using a
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form of neural networks both to model and to invert complex volcano seismic signals. An alternative to the tra-
ditional geophysical inversion techniques is to consider the data inversion task as an optimisation problem and
deploy recent advances in machine learning. The central idea is to use the entire scattered wavefield to address
the imaging problem—not merely events that are coherently reflected off spatially correlatable geological struc-
tures. The accuracy of these machine learning techniques, specifically deep neural networks, has dramatically
increased across nearly every field of research®. Recent advances in machine learning can be attributed to the
increase in computer power and the adoption of deep-learning methods?'. In geophysics, machine learning has
been long established?**, however, a suite of recent applications has appeared in the literature. These include
seismic processing, automatic fault detection, noise suppression, micro-seismic detection, as well as diffraction
identification**-?. Here we deploy a special type of neural network called a Fourier Neural Operator (FNO) which
has been proposed to predict the results from a partial differential equation (operator) given an input model and
initial conditions®. In our case the network predicts the Green’s functions for a specific equation and hence the
reverse network is capable of generating the inverse Green’s functions which is the kernel for velocity inversion.
This study assesses the problem from a theoretical viewpoint focusing on the question: can neural networks
accurately model and invert seismic wavefields in a complex volcanic environment?

Methods

Fourier neural networks. A partial differential equation (PDE) can be viewed as a differential operator L
mapping a function g to the function f; i.e. Lg=f. This is the forward problem where the operator L in this case is
the elastic wave equation. The inverse case is where the inverse operator L™! maps the function f'to the function
g We can automatically link the operator equation with the equation Gm =d where the elastodynamic Green’s
functions G for a given Earth model m produce the seismic data d and the inverse relation G™'.d=m generates
an Earth model m given the data and the inverse Green’s functions, G™*. In our specific case, the application of
L determines G for a specific model m. Neural networks are a mapping from an input vector space to an output
vector space or an input image vector to an output image vector which is an equivalent representation of the
differential operator above and, in theory, can learn to predict the operator or inverse operator given appropriate
input training data. The FNO network was the first network to model turbulent flows and was used to predict
results from the Navier-Stokes equation, Burger’s equation and Darcy’s equations?. Recently, it has been used
to predict two phase flow in the subsurface given a subsurface model and initial conditions®. The FNO has
some distinct advantages over other networks such as convolution neural networks (CNN) that make it readily
adaptable to learning differential operators. The method is resolution and mesh invariant hence it can take a low
resolution input training dataset and predict higher resolution outputs on arbitrary meshes. The convolution
in the CNN is replaced by a multiplication in the Fourier domain and this has some advantages. The first is the
compute complexity of a convolution versus the fast Fourier transform, making the FNO more computation-
ally efficient. PDEs are continuous and the global nature of the Fourier space is more suited to capturing this
continuity versus the local convolution kernels in a CNN. Additionally, higher frequencies can be truncated
without significantly impacting the solution, which is in essence a compression routine, increasing the compute
efficiency. In practical terms for this work, large volumes of synthetic seismic data are generated using a partial
differential solver given an input model. This can be considered as the ‘observed’ data. The FNO is trained using
this dataset for both the forward and inverse problem. When subsequently applying the trained FNO for the
forward problem, the network takes the models as input and predicts the expected elastic wavefields and syn-
thetic seismograms. When applying the FNO for the inversion network, the input is the ‘observed’ seismograms
from a previously unseen simulation in a specific earth model of interest (equivalent to observed data), and the
prediction is that specific velocity model. The FNO prediction output is orders of magnitude faster than running
a PDE solver, but the generation of the training data and the FNO training itself does incur a significant upfront
computational cost, dependent on the problem.

Synthetic data generation (‘the observations’). By definition there is no physical dataset which can
be used to train the FNO system to invert seismograms for a known subsurface velocity model. Supervised
FNO training requires solutions to the wave-equation as inputs. Therefore we need to generate training datasets
using known input velocity models, source locations and source mechanisms and use a forward wave equation
solver to output training sets comprising seismic wavefields and synthetic seismograms. Given the heterogene-
ous nature of volcanic materials we need to choose a solver that can propagate seismic elastic waves in materials
with broadband heterogeneity with strong velocity gradients. Here we chose a 2D elastic lattice method* as a full
wavefield simulator. We generate two different training datasets and one independent test dataset. It is stressed
that the test data are never used in the training of the networks. The generation of synthetic datasets requires
several choices to be made which constrain the solution as without such constraints, the parameter space is too
large for practical implementation. The assumptions made in the generation of the datasets are detailed below.

2D models.  Although there is a recent example in acoustic wave applications®, we are not aware of previous
work which attempts to use the FNO to learn the elastic wave equation Green’s function and its inverse, for a
complex model. In order to explore the feasibility of this approach in complex media, we focused on 2D exam-
ples which reduce the computational demand and allows us to constrain the approximate cost and challenges
associated with producing reasonable results. Future moves to 3D will increase the computational cost in gener-
ating the synthetic datasets and in training the FNO along with the need to use a larger neural network.

Source. 'The source locations were chosen at random anywhere inside the 2D model but the depth was con-
strained to be less than 6 km. The source mechanism was the moment tensor (m,,, m,,, m,,) where component
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values were randomly chosen between 0 and 1 for the diagonal components and 0 and 0.5 for m,,. The source
wavelet for all simulations was a Ricker 4 Hz wavelet. This was chosen as it overlaps with the long period volcanic
signals typically observed in such settings. The higher the frequency, the higher the spatial resolution required
and hence the computational cost grows for both the simulations and the FNO training.

Training velocity models. As Neural Networks are poor at extrapolation, for any real world application the
choice of training set is a key consideration. The dominant characteristics of the expected physical structure
must be included, in a general framework, in the training set. Here we utilise two different velocity model popu-
lations, with different statistical distributions to generate synthetics for FNO network training. Due to their for-
mation history the mechanical complexity of volcano edifices means that a deterministic calculation of their fine
scale structure is out of reach, and a statistical approach is more appropriate. Here the topography was fixed for
all model populations as a Gaussian hill, as topography is one of the only parameters that can be accurately meas-
ured in real environments. The first velocity model population, denoted as population L, has a p-wave velocity
gradient randomly chosen within the bounds of a minimum velocity of 1500 m/s and a maximum of 3500 m/s.
Four layers, tracking the topography, were superimposed on top of this gradient, where the thickness of the
layers were randomly chosen and velocities randomly perturbed from the gradient value. The s-wave velocity
was set to two thirds the p-wave value. In the second model population, the same velocity gradient was used but
the velocity field was randomly perturbed with a normal distribution and smoothed to yield a tomography-like
velocity. This population is denoted as population T. Both populations L and T are each composed of 20,000
individual velocity models used to generate the synthetic seismograms for training the FNO networks and a
further 500 velocity models for testing the networks. The test models in the populations are not used in training.
Two sample models, drawn from the populations L and T, are shown in Fig. 1. By restricting the study to these
two populations, we expect the network to be only able to learn how to generate wavefields from models drawn
from these distributions or return velocity models within these distributions. In a real world scenario, the solu-
tion to the problem of constraining an input velocity distribution could be to take known geological constraints
on the possible structures inside a particular volcano and build a large distribution of representative geological
velocity models with the appropriate topography. This is the approach that will be taken for a full 3D inversion
of real data in future studies.

Validation velocity models. Another population of models was created to validate the approach but was never
used to train any network. This population, denoted population V, is similar to population T but without the
smoothening and with a higher magnitude velocity perturbation.

, (©) (D)
(A) P-Wave Velocity (m/s) 0 °
2500
2000
1500 2000 - 2000 A
1000
500
9600 ' y y y :
0 4000 8000 12000 16000 20000 M ¢ 4000 4000 1
Length (m) E E
< <
-+ -+
(o (o
[} [
o o
(B) P-Wave Velocity (m/s) 2500 6000 ~ 6000 1
2000
1500
8000 - 8000 -
1000
500
9600 - ; ; . . :
0 4000 8000 12000 16000 20000 ML o 10000 — 10000 —
Length (m) 0 1000 2000 3000 0 1000 2000 3000
Velocity (m/s) Velocity (m/s)

Figure 1. (A) A single p-wave velocity model drawn from population L which consists of 20,000 velocity
models. The numerically simulated seismic wavefield using an elastic lattice wave propagation method is shown
overlain on the models with the source location (shown by the *). (B) A single p-wave velocity model drawn
from the population T which consists of 20,000 velocity models. The numerically simulated seismic wavefield

is shown overlain on the models. (C) The velocity profile through the model shown in (A) from two different
locations in this model. (D) The velocity profile through the model shown in (B) from two different locations in
this model. The triangles in (A) and (B) show the location of the synthetic seismic stations at which time varying
synthetic seismic data are ‘captured’ during the simulation run.
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Simulation parameters. The model size was 20 km in length and 10 km deep with a spatial sampling of 10 m. The
output temporal resolution of the synthetic seismograms was 1 ms. Output seismograms are 5 s long. Absorbing
boundaries were imposed on the side and bottom to avoid unrealistic reflections. Each individual simulation
for one model outputs the entire wavefield, both the x- and z-components of the displacement every 0.1 s along
with synthetic seismograms. Figure 1, panels (A) and (B) shows one snapshot of the wavefield overlain on the
velocity model. The location of the stations are shown in Fig. 1 as triangles on the surface of the model volcano.
These locations were randomly selected sensors from the full synthetic sensor network of 40 sensors disturbed
evenly across the full model. We randomly selected 10 sensors from 40 as having a dense full azimuthal coverage
is rarely the case in physical world volcano settings. Adding more sensors, adds more information and increases
the training computational requirements but the additional information can help increase the accuracy of the
network. Figure 2 shows the synthetic seismograms from all 40 sensors for both models simulated using the
elastic wave equation solver.

Training. Each sample from model populations L and T with a random source location and a random source
mechanism is used as inputs to the 2D elastic wave simulator and the resultant synthetic seismograms and wave-
fields are outputted and saved. Therefore, the training datasets consist of the velocity models from the popula-
tions L and T, the source locations and the synthetic wavefields and seismograms. The training datasets comprise
a total of 40,000 numerical seismic wavefield forward propagator simulations (20 k for each model population)
and the model populations L and T. These training datasets are used to teach the several different FNO networks
presented in the results. We will denote the training datasets using the same terminology as the L and T model
populations. In order to train the FNO to act as a fast forward wavefield propagator (i.e. to output wavefields
and seismograms), it was trained using the source locations, the source mechanisms and the velocity models as
inputs. To train the FNO to act as an inverse modelling tool (i.e. to output a velocity model) the training datasets
have the inputs and outputs switched and the networked mirrored. The results for four networks are presented
in this work. The first two are the forward modelling networks for both training datasets L and T. The second
pair are for the inversion networks for both the training datasets L and T. The networks are four layers deep and
built using PyTorch** (version 1.9.0). For both inverse and forward networks, as discussed above, the training
data consists of 20,000 samples with a batch size of 20 run over 200 epochs. A variable learning rate was imposed
with a 50% reduction after 25 epochs. The input data were normalised with a Gaussian normalisation function
and the optimiser was the AdamW algorithm though the choice did not have a significant impact on the results.
These parameters were found by trial and error on initial tests balancing the amount of data required to provide
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Figure 2. 40 synthetic seismic sensors are distributed across the surface of all models. The seismogram
amplitudes are normalised. This example shows synthetic vertical seismic traces for the sample from population
L in panel (A) and population T in panel (B). See also Fig. 1. A random selection of 10 sensors is used in FNO
training.
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reasonable results against the computational time. Figure 3 shows the normalised training error for training the
layered inversion network. This is typical of all the training runs. The test data which consists of 500 samples,
was not used in the training.

The main parameters controlling the training were the size of the training samples, the complexity in the
velocity models and the number of epochs. Initially, tests on a homogenous model distribution (not shown here)
required at least 5000 training samples before a reasonable training error was attained after 100 epochs. For the
more complex velocity model populations T and L, the number of samples needed to be increased towards 20,000.
A test with 40,000 sample simulations for population L did not significantly improve the results over the 20,000
samples and started to show the typical signs of overfitting in Neural Networks. The accuracy of the results on
the test data is discussed in the “Results” section.

Results

Forward modelling results. Before we consider the application of the FNO to the classical geophysical
inversion problem of resolving an accurate velocity model given seismic data, we will demonstrate the ability of
the FNO to simulate wavefields and seismograms, i.e. the forward problem. The inputs are the velocity models,
the source location and the source mechanism. The outputs are the seismic wavefields and/or the seismograms.
The seismograms are a spatial subset of the total wavefields, captured at the model top surface. The output wave-
field for two different time periods produced by using the elastic equation solver is shown in the top panels in
Fig. 4. The model used in this case is a single example from test data from population L and when input into the
appropriate FNO network predicts the output wavefield, middle panels. The comparison between the two show
that the FNO system does an excellent job at replicating the main features of the wavefield. This is confirmed by
the bottom panel plots where the difference between the snapshots is presented. The accuracy is not at the level
one would expect when comparing two different explicit solvers to the elastic wave equation, but the dominant
high amplitude phases in the wavefield are captured with the correct amplitudes. The FNO prediction equally
resolves the main p-wave and s-wave phases as seen in the 3 s snapshots. The results for network trained using
the training dataset T are similar. As the full wavefield can never be physically recorded in practice, a more useful
approach would be to focus on the seismograms from known locations. This has the added benefit of decreasing
the computational cost as the input data volumes are smaller, as are the output layers in the network.

Figure 5 shows the results, where instead of using the entire wavefields to train the network, we only use the
surface seismogram data, in this case all 40 sensors. The top panel in Fig. 5 shows the simulated outputs from
the direct solver and the middle panel shows the prediction from the FNO trained with population L; the bot-
tom panel shows the difference between the top two panels. Again the FNO demonstrates an excellent ability to
capture the main features of the wavefield when employed as a forward propagator. This is despite the limited
coverage of merely surface seismic records as input data for training. This bodes well for real world applica-
tions, where usually only surface seismograms are available. The difference between the two do show some edge
artefacts in the neural network output along with small scale misfits in the small amplitude scattering events.
Several reversible normalisation methods, including time and log normalisation, were tested to determine if
these smaller amplitude effects could be better predicted but with limited additional success. The amount of
training samples does play an important role here but as discussed in the training section, the training and test
error plateaus out after 20,000 training samples. Obviously the more complex the velocity model the larger the
scattering which will diminish the ability of the FNO to predict all of the details in the seismograms. However,
for the low frequency components of volcanic signals, the wavelengths can be on the order of 100’s of metres
hence these smallest scale heterogeneities will ‘smooth out. This is important to consider when interpreting the
inversion results in the next section as the main amplitude phases which are accurately predicted can contain
enough information to reproduce the velocity model.
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Figure 3. Training error for one of the network learning runs. Here the training data were generated using
20,000 simulations and 500 simulations used for the test data.
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Figure 4. The top panel shows the results from a numerical simulation directly solving the elastic wave
equation with a sample from the population L which was not used during the training. The left-hand side is for
a snapshot after 1 s and the right-hand panel is after 3 s. The middle panel shows the prediction from the FNO
network. The bottom panels show the difference.

Inversion results (velocity model recovery from seismic data). For the velocity inversion problem,
the training was performed in exactly the same way as described for the forward problem and in the training
section, except for two changes. The first difference was to reverse the inputs and outputs and adjust the layers
to match the input sizes, i.e. mirror the network. The second difference was that when training the inversion
FNO network the inputs were 10 randomly located seismograms, from the 40 described above, for both the
x-component and z-component of seismic displacement. In all cases, white noise amplitudes of 15% were added
to the input seismic traces. Inputs also included the known velocity model for each seismogram set and the
source location. Following training, during the application of the inversion FNO the input is the set of 10 two-
component seismograms (i.e. two individual shot gathers) from a previously unseen model. The FNO output is
the predicted velocity model and the source location. In Fig. 6, examples of an input model from populations L
and T are shown to illustrate the results. These are representative of all results, and all results shown use samples
from the different populations that were not used in training the networks. The left-hand panels show the true
models with the seismic source location highlighted by the asterisks. The output results from the FNO networks
is shown in the middle panels, i.e. the network velocity model and source location prediction. The right-hand
panels show a profile through the models comparing the true model with the predicted FNO result. It is clear
from Fig. 6 that the FNO method is capable of accurately predicting a velocity model where the input is unseen
surface seismograms generated in the unseen model (taken from populations L or T).

In order to quantify the results, the normalised RMS misfit between the true model inputs and the FNO gen-
erated outputs are shown for 20 different inversions using unseen samples from both populations L and T. The
source location misfit is the difference between the (x, z) locations for true value and output value. The velocity
normalised RMS is the sum over all velocity differences between the true and predicted model for every grid
point in the model. The RMS values are shown in Fig. 7 for both populations L and T. The error in the velocity
model is relatively small, and as illustrated in the velocity field comparisons and profiles in Fig. 6, the velocity
model prediction is very good and is also relatively robust to the addition of noise in the training dataset up to
the maximum value of 15%. The source location is also very good but more sensitive to the addition of noise.
Several different normalisation strategies were explored to understand and improve the source error. The results
pointing to higher accuracy for the velocity model and increased error for the location appear robust. In practise,
this is less of a concern as traditional methods to determine the source location are well known and accurate even
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Figure 5. The top panel (A) shows the results from a numerical simulation directly solving the elastic wave
equation with a previously unseen sample model from population L. Panel (B) shows the seismogram prediction
results from the FNO network (previously trained with surface seismic data only) when presented with the same
layered model as in panel (A). Panel (C) show the difference between the simulation traces and the predicted
FNO network outputs. Again the overall match is very good with all main arrivals captured. There are some
discrepancies associated with small amplitude scattering. Some edge artefacts from the training set-up can

also be observed. The bottom panel (D) shows three simulated traces compared against the FNO predictions,
demonstrating a very good match in the main.

in the presence of a long wavelength velocity structure. As discussed in the previous section, the FNO network
was used to predict the output from the elastic wave equation, in essence learning how to reproduce the Green’s
function for such systems. The inverse network can therefore be considered to have encoded the inverse Green’s
function for the wave equation and therefore allows for the prediction of an accurate velocity model following
the analogous equation G™'.d=m.

The examples above show the results where input seismic data presented to the FNO were calculated in
previously unseen velocity models with the same statistical properties as the velocity models used to generate
the FNOs training seismic data. The input was a single shot gather with a random source location, in each case.
We now show a final example where we use seismograms generated using a simulation in velocity models from
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Figure 6. Left panels, the true unseen models velocity models (top panel from population L, bottom from
population T) used to generate the input seismograms for the FNO network. Middle panels, the velocity model
predictions (outputs from the FNO). Right panel, profiles through the true and predicted models. The seismic
source location is highlighted by the asterisks. In the FNO output, the source location is also predicted by the
network. Both velocity models here are each recovered from input data associated with only one randomly
located shot into 10 randomly located surface receivers, each.
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seismic traces during training. The velocity models are well resolved by the FNO inversions as are the source
locations. All 20 inversions are for different previously unseen models with the same statistical properties as the
training velocity model sets.
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population V as the input data to a FNO network that was trained using seismic data from velocity models drawn
from population T. The prediction is from a single set of seismograms from a single source and one velocity model
sample from population V, i.e. a shot gather. The top panel in Fig. 8 shows that this does not accurately reproduce
the known velocity model. This is not a surprise as Neural Networks can struggle to generalisation across dif-
ferent training populations. However Fig. 8 does show that some features are recovered so we opt to stack the
predictions from multiple shot gathers (random source locations, and their seismograms), in the same velocity
model. This is shown in the middle and bottom panels in Fig. 8 where we stack velocity model predictions from
20 and 100 shot gathers respectively. The convergence to the true model is clearly demonstrated showing that
even with a velocity model population that differs in statistical detail from the training populations, an accurate
velocity model can be recovered through predicted velocity model stacking. Despite this success, it should be
stressed that the appropriate choice of statistical parameters of the model populations using in FNO training will
play a dominate role in the ability of networks to converge to a solution. It still is an open question as to how to
determine the statistical properties of the training dataset to maximise the ability of the network to converge to
a general solution or even if this will be possible given the extreme heterogeneity in velocity structure in volcanic
environments in real world scenarios. We propose that a priori information such as topography, the population
of rock physical properties, borehole petrophysical log information etc. could effectively be used to geologically
constrain the ‘bandwidth’ of training velocity model populations, for a given volcanic environment. Overall,
the results for both the inversion and forward problem highlight the applicability of the FNO network to solve
a highly non-linear inversion problem in elastically heterogeneous environments, and to replicate the seismic
wavefield for rapid forward calculations.

Discussion

The FNO can take unseen synthetic data and discover the seismic velocity model and seismic source that would
generate this dataset, if using a traditional PDE seismic wavefield forward solver. It can also be used to simulate
synthetic data given an input model that is accurate when compared with a traditional PDE solver, except for the
low amplitude scattering. The objective is not to replace traditional solvers as they are required for the genera-
tion of the training data. As seismic imaging on volcanoes is still a huge challenge we suggest that the inverse
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Figure 8. Top panels show from left to right, the true velocity model taken from population V, the FNO
inversion result using synthetic seismograms from one shot gather (one source and associated seismograms),
and a comparison of the velocity profiles. The FNO network was trained using seismic data simulated in velocity
models drawn from population T. The middle panels replicates the top panels except the FNO result is the sum
of 20 different inversions for different sources in different locations, using the same model, i.e. stacking velocity
models FNO predicted from 20 shot gathers with randomly located sources. The bottom panels show results
after stacking 100 predicted velocity models. The right hand panels clearly show the convergence to an accurate
velocity model after stacking multiple velocity model predictions derived from different shot gather FNO inputs,
with the true model shown by the solid line and the prediction by the dashed line.
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problem is of more interest, as this may allow access to the true velocity structure when the input to the Neural
Network is real data. A challenge with using real data as inputs into these networks may centre on sufficient
environmental noise samples in network training, but fortunately this can be captured statistically*>. A more
challenging question is how to build a population of numerical training models that sufficiently represent the
physical world? The requirement is that such a numerically trained FNO will return an accurate representation
of real world velocity structure, when presented with appropriate real field seismic data. Here, in this work, we
demonstrate that if that training model population building challenge can be overcome, then the FNO has a high
probably of accurately inverting for real world velocity structure. The details of how this might be achieved will
be the focus of future work, but it will likely require the building of hybrid statistical-deterministic models, based
on high spatial resolution mapping. The computational scaling to 3D remains a significant challenge, not in the
prediction, but in the generation of a significant number of input datasets. Whilst this will require large resources,
the resolution invariance of the FNO means lower resolution training data can be used and still provide higher
resolution predictions. This theoretical study has demonstrated the viability of deploying machine learning tools
as a fresh approach to the arduous task of deriving high fidelity velocity models in volcanic environments. If such
models can be obtained they will, for example, increase our understanding of how seismic sources relate to the
specifics of how magma is emplaced. It would also allow local volcano observatory based real time tracking of
magma migration through repeated imagery with ease, as the forward FNO is fast and computationally efficient.
Such a routine capability could radically impact risk mitigation on volcanoes.

Data availability

All the data used were generated by the computer codes discussed in the text. The datasets generated and/or
analysed during the current study are not publicly available due to the size of the datasets but can be recomputed
following the method outlined in the manuscript.

Received: 10 November 2022; Accepted: 6 January 2023
Published online: 12 January 2023

References
1. McNutt, S. R. Volcanic seismology. Annu. Rev. Earth Planet. Sci. 32, 461-491 (2005).
2. Wassermann, J. in IASPEI New Manual of Seismological Observatory Practice (NMSOP) Vol. 1 (ed. Bormann, P.) (GeoForschung-
sZentrum Potsdam, 2002).
3. Chouet, B. A. in Volcanic Seismology (eds Gasparini, P.,, Scarpa, R. & Aki, K.) 133-156 (Springer, 1992).
. Chouet, B. & Julian, B. R. Dynamic of an expanding fluid-filled crack. J. Geophys. Res. 90, 11187-11198 (1985).
5. Neuberg, J., Luckett, R., Baptie, V. & Olsen, K. Models of tremor and low-frequency earthquake swarms on Montserrat. J. Volcanol.
Geotherm. Res. 101, 83-104 (2000).
6. Jousset, P,, Neuberg, J. & Sturton, S. Modelling the time-dependent frequency content of low-frequency volcanic earthquakes. J.
Volcanol. Geotherm. Res. 128, 201-223 (2003).
7. Chouet, B. A. Long-period volcano seismicity: Its source and use in eruption forecasting. Nature 380, 309-316 (1996).
8. Bean, C. et al. Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes. Nat. Geosci. 7, 71-75.
https://doi.org/10.1038/nge02027 (2014).
9. Harrington, R. M. & Brodsky, E. E. Volcanic hybrid earthquakes that are brittle-failure events. Geophys. Res. Lett. 34, 1L06308 (2007).
10. Matsubara, W. et al. Distribution and characteristics in waveforms and spectrum of seismic events associated with the 2000 erup-
tion of Mt. Usu. Earth Planet. Sci. Lett. 136, 141-158 (2004).
11. Lokmer, I, Saccorotti, G., Di Lieto, B. & Bean, C. J. Temporal evolution of long-period seismicity at Etna Volcano, Italy, and its
relationships with the 2004, 2005 eruption. Earth Planet. Sci. Lett. 266, 141-158 (2008).
12. De Barros, L. et al. Source Mechanism of Long Period events recorded by a high density seismic network during the 2008 eruption
on Mt Etna. J. Geophys. Res. 116, B01304 (2011).
13. Nakano, M., Kumagai, H. & Chouet, B. A. Source mechanism of long-period events at Kusatsu-Shirane Volcano, Japan, inferred
from waveform inversion of the effective excitation functions. J. Volcanol. Geotherm. Res. 122, 149-164 (2003).
14. O’Brien, G. S. et al. Time reverse location of seismic long-period events recorded on Mt Etna. Geophys. J. Int. 184, 452-462 (2011).
15. Bean, C. J., Lokmer, I. & O’Brien, G. S. Influence of near-surface volcanic structure on long-period seismic signals and on moment
tensor inversions: Simulated examples from Mount Etna. J. Geophys. Res. 113, B08308 (2008).
16. De Barros, L. et al. Source geometry from exceptionally high resolution longperiod event observations at Mt. Etna during the 2008
eruption. Geophys. J. Int. 36, 1L24305 (2009).
17. Elders, W. A., Fridleifsson, G. O. & Pélsson, B. Iceland Deep Drilling Project: The first well, IDDP-1, drilled into magma. Geother-
mics https://doi.org/10.1016/j.geothermics.2013.08.012 (2014).
18. Koulakov, I. & Shapiro, N. Seismic tomography of volcanoes. In Encyclopedia of Earthquake Engineering (eds Beer, M. et al.)
(Springer, Berlin, 2021). https://doi.org/10.1007/978-3-642-36197-5_51-1.
19. Kim, D. et al. Magma “bright spots” mapped beneath Krafla, Iceland, using RVSP imaging of reflected waves from microearth-
quakes. J. Volcanol. Geotherm. Res. https://doi.org/10.1016/j.jvolgeores.2018.04.022 (2020).
20. Shalev-Shwartz, S. & Ben-David, S. Understanding Machine Learning: From Theory to Algorithms (Cambridge University Press,
2014).
21. Naeini, E. Z. & Prindle, K. Machine learning and learning from machines. Lead. Edge https://doi.org/10.1190/t1e37120886.1 (2018).
22. Roth, G. & Tarantola, A. Neural networks and inversion of seismic data. J. Geophys. Res. 99(B4), 6753-6768. https://doi.org/10.
1029/93JB01563 (1994).
23. Langer, H., Nunnari, G. & Occhipinti, L. Estimation of seismic waveform governing parameters with neural networks. J. Geophys.
Res. 101, 20109-20118 (1996).
24. Langer, H., Falsaperla, S. & Hammer, C. Advantages and pitfalls of pattern recognition, selected cases in geophysics. In Volume 3,
Computational Geophysics 350 (Elsevier, 2020).
25. Jia, Y. & Ma, . What can machine learning do for seismic data processing? An interpolation application. Geophysics 82(3), V163—
V177. https://doi.org/10.1190/GEO2016-0300.1 (2017).
26. Guitton, A., Wang, H. & Trainor-Guitton, W. Statistical imaging of faults in 3D seismic volumes using a machine learning approach.
In 87th SEG Meeting. Houston, Texas, USA, Expanded Abstracts 2045-2049 (2017).
27. Turquais, P, Asgedom, E. G. & Sollner, W. Coherent noise suppression by learning and analysing the morphology of the data.
Geophysics https://doi.org/10.1190/GEO2017-0092.1 (2017).

'S

Scientific Reports |

(2023) 13:630 | https://doi.org/10.1038/s41598-023-27738-6 nature portfolio


https://doi.org/10.1038/ngeo2027
https://doi.org/10.1016/j.geothermics.2013.08.012
https://doi.org/10.1007/978-3-642-36197-5_51-1
https://doi.org/10.1016/j.jvolgeores.2018.04.022
https://doi.org/10.1190/tle37120886.1
https://doi.org/10.1029/93JB01563
https://doi.org/10.1029/93JB01563
https://doi.org/10.1190/GEO2016-0300.1
https://doi.org/10.1190/GEO2017-0092.1

www.nature.com/scientificreports/

28. Chen, Y. Automatic micro-seismic even picking via unsupervised machine learning. Geophys. J. Int. 212, 88-102 (2018).

29. Lowney, B, Lokmer, I., O’Brien, G. S., Bean, C. J. & Igoe, M. Multi-domain diffraction identification using deep learning. In 81st
EAGE Conference and Exhibition (2019).

30. Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A. & Anandkumar, A. Fourier neural operator for
parametric partial differential equations. arXiv https://doi.org/10.48550/arXiv.2010.08895 (2021).

31. Zhang, K. et al. Fourier neural operator for solving subsurface oil/water two-phase flow partial differential equation. SPE J. https://
doi.org/10.2118/209223-PA (2022).

32. O’Brien, G. S. & Bean, C. J. A 3D discrete numerical elastic lattice method for seismic wave propagation in heterogeneous media
with topography. Geophys. Res. Lett. 31, L14608 (2004).

33. Yang, Y. et al. Seismic wave propagation and inversion with neural operators. Seism. Rec. 1(3), 126-134. https://doi.org/10.1785/
0320210026 (2021).

34. Paszke, A., Gross, S., Massa, E, Lerer, A., Bradbury, J., Chanan, G. et al. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 8024-8035 (Curran Associates, Inc., 2019). Available from:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

35. Nooshiri, N. et al. A multibranch, multitarget neural network for rapid point-source inversion in a microseismic environment:
Examples from the Hengill Geothermal Field, Iceland. Geophys. J. Int. 229(2), 999-1016. https://doi.org/10.1093/gji/ggab511
(2022).

Author contributions
All authors contributed equally to the work focusing on different aspects. G.S.0.B. contributed on all aspects,
C.J.B. on the geophysics, PW. on the FNO and H.M. on the computational components.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to G.S.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Scientific Reports |

(2023) 13:630 | https://doi.org/10.1038/s41598-023-27738-6 nature portfolio


https://doi.org/10.48550/arXiv.2010.08895
https://doi.org/10.2118/209223-PA
https://doi.org/10.2118/209223-PA
https://doi.org/10.1785/0320210026
https://doi.org/10.1785/0320210026
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1093/gji/ggab511
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Imaging and seismic modelling inside volcanoes using machine learning
	Methods
	Fourier neural networks. 
	Synthetic data generation (‘the observations’). 
	2D models. 
	Source. 
	Training velocity models. 
	Validation velocity models. 
	Simulation parameters. 

	Training. 

	Results
	Forward modelling results. 
	Inversion results (velocity model recovery from seismic data). 

	Discussion
	References


