The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Repair Is Nearly Generation: Multilingual Program Repair with LLMs

Harshit Joshi', José Cambronero Sanchez**, Sumit Gulwani’*,
Vu Le?*, Ivan Radi¢ek’”, Gust Verbruggen**
I Microsoft, India
2 Microsoft, USA
3 Microsoft, Croatia
4 Microsoft, Belgium
{t-hjoshi, jcambronero, sumitg, levu, ivradice, gverbruggen} @microsoft.com

Abstract

Most programmers make mistakes when writing code. Some
of these mistakes are small and require few edits to the original
program — a class of errors recently termed last mile mistakes.
These errors break the flow for experienced developers and can
stump novice programmers. Existing automated repair tech-
niques targeting this class of errors are language-specific and
do not easily carry over to new languages. Transferring sym-
bolic approaches requires substantial engineering and neural
approaches require data and retraining. We introduce RING, a
multilingual repair engine powered by a large language model
trained on code (LLMC) such as Codex. Such a multilingual
engine enables a flipped model for programming assistance,
one where the programmer writes code and the Al assistance
suggests fixes, compared to traditional code suggestion tech-
nology. Taking inspiration from the way programmers man-
ually fix bugs, we show that a prompt-based strategy that
conceptualizes repair as localization, transformation, and can-
didate ranking, can successfully repair programs in multiple
languages with minimal effort. We present the first results for
such a multilingual repair engine by evaluating on 6 different
languages and comparing performance to language-specific
repair engines. We show that RING can outperform language-
specific repair engines for three of these languages.

Introduction

The number of people writing code across different languages
has steadily grown (Bureau of Labor Statistics 2022) and
ranges from novices to experts. Regardless of their experi-
ence level, programmers can make mistakes when writing
code. Program errors can range from those that are easy
to spot and fix, to those that require substantial application
knowledge and may be very subtle logical bugs. Even simple
mistakes, such as syntax errors that require a relatively small
edit and may be apparent to a programming expert, can be
frustrating for novice programmers. Moreover they can slow
down the workflow of more experienced programmers (Wex-
elblat 1976; Murphy et al. 2008; Altadmri and Brown 2015;
Drosos, Guo, and Parnin 2017).

One way to help programmers who encounter these small
mistakes is by using automated program repair (APR). These

“Listed in alphabetical order
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5131

methods take a faulty program and a specification of cor-
rectness as input, and return as output a fixed version of the
program that conforms to the specification.

Recent work (Bavishi et al. 2022) has introduced the term
last-mile repairs to broadly describe the class of repairs where
the original program is a small edit distance away from the
correct program. In this definition, program correctness can
be checked without substantial additional context—a parser
and a type checker suffice. A quick search on most program-
ming help forums reveals a large number of questions for
such errors. For example, as of August 2022, there are over
15K posts on StackOverflow tagged with Python and Syntax-
Error.

Existing work has explored performing these kind of
repairs automatically. Symbolic systems, such as Grm-
tools (Diekmann and Tratt 2020), typically build on error-
recovery mechanisms in parsers to enumerate local edits that
can resolve errors raised during parsing. Symbolic systems
typically restrict the search space to avoid state explosions
and they cannot easily encode properties such as the likeli-
hood of particular repair candidates being correct or not.

More recently, neural approaches have been successfully
applied to repairing syntax and diagnostics errors. For exam-
ple, Dr. Repair (Yasunaga and Liang 2020), BIFI (Yasunaga
and Liang 2021), and TFix (Berabi et al. 2021) use trans-
former architectures to produce repairs for C compilation
errors, Python syntax errors, and JavaScript linter diagnos-
tics, respectively. Some systems, such as LaMirage (Bavishi
et al. 2022), have also combined symbolic and neural com-
ponents to successfully repair broken programs in low-code
languages such as Excel and Power Fx.

Unfortunately, all these systems share a key drawback: they
require substantial engineering (symbolic) or additional data
and training (neural) to adapt to new languages. In this pa-
per, we propose a single repair engine, that leverages a large
language model trained on code (LLMC) to perform multi-
lingual repair. We select Codex by OpenAl as the LLMC.

Our system, RING, shows that repair is nearly generation
and exploits Codex’s few-shot learning capabilities (Bareil3
et al. 2022; Drori et al. 2022) to perform multilingual program
repair. To do this effectively, we break down program repair
into the same three phases as symbolic automated program
repair systems: fault localization, code transformation, and
candidate ranking (Goues, Pradel, and Roychoudhury 2019;

Liu et al. 2021; Bavishi et al. 2022). We show how each stage
can be addressed with minimal effort by emulating what a
developer would do and using this intuition to design prompts
for an LLMC.

We evaluate RING on six languages: Excel, Power Fx,
Python, JavaScript, C and PowerShell. Our results show that
RING repairs significantly more programs than a language-
specific repair engine for three languages and shows com-
petitive results for another two languages. We evaluate the
effectiveness of our design choices for each of the three stages
of repair. Additionally, we identify possible directions for
improvement based on our results, such as language-specific
ranking and iterative querying with Codex.

Jointly, these results provide the first evidence that an
LLMC can enable multilingual repair with the same or better
performance than methods designed for a single language. In
contrast to other Al-assisted code editing features, such as
code completion, this advance opens up the possibility of a
flipped interaction model where the user writes code and the
Al assistant performs the fixing.

In summary, we make the following contributions:

* We present an LLMC-based approach to multilingual
repair that enables a flipped interaction model for Al-
assisted programming in which the user writes code and
the assistant suggests fixes for last-mile mistakes.

* We implement our approach in the RING system, which
employs compiler (or diagnostic) messages, smart few-
shot selection, and ranking of repair candidates to perform
repair across varying languages.

* We perform an extensive evaluation across six different
languages, showing that multilingual repair with LLMCs
is viable and can compete with or outperform language-
specific repair engines.

* We introduce PowerShell commands as a new application
for last-mile repair and collect a benchmark set of 200
PowerShell commands from StackOverflow, which we
also release for future research!.

Related Work

Automated Program Repair Finding and fixing bugs is
challenging and tedious, even for language experts (Zhong
and Su 2015). The software engineering community has built
Automated Program Repair (APR) tools (Arcuri 2008) to
reduce the time and costs associated with debugging. The
premise of APR has since grown into a substantial research
domain across different languages, classes of bugs, and use
cases (Gazzola, Micucci, and Mariani 2019).

Early approaches for APR were symbolic and attempted to
fix programs automatically by enumerating repair candidates
from templates (Debroy and Wong 2010), crafting heuris-
tics (Qi et al. 2014), and using program synthesis (Nguyen
et al. 2013). Although these systems can provide strong guar-
antees for the generated code, they are strongly tied to their
domain language. Moreover, symbolic systems are restrictive
in their scope, failing to repair programs that the correspond-
ing language compiler cannot process to at least some extent.

"https://github.com/microsoft/prose-benchmarks/

5132

On the other hand, building on the recent advances in natural
language processing, neural methods have shown promise in
learning program repairs. Researchers have studied automati-
cally correcting programs in different settings, including in-
troductory programming assignments (Pu et al. 2016; Parihar
et al. 2017; Ahmed et al. 2018). For example, DeepFix (Gupta
et al. 2017) and SampleFix (Hajipour, Bhattacharyya, and
Fritz 2020) use sequence-based deep learning models to fix
broken C code written by students. However, these neural
models are not as powerful as LLMCs like Codex.

SynFix (Ahmed, Ledesma, and Devanbu 2021), Dr. Re-
pair (Yasunaga and Liang 2020), and TFix (Berabi et al. 2021)
leverage compiler diagnostics for Java, C, and JavaScript, re-
spectively, but require a substantial amount of training and
data, failing to generalize across languages. Although (Bav-
ishi et al. 2022) tries to bridge the gap between neural and
symbolic approaches, their approach requires language spe-
cialization (symbolic parser) and large-scale data (neural lo-
calizer and ranker). In contrast, RING uses a powerful LLMC,
Codex, capable of generating multilingual code while guiding
repair through readily available prompt-design strategies.

Large Language Models The advent of Large Language
Models (LLM) trained on code and natural language shows
promise for code understanding and generation results. Au-
toregressive models (Shannon 1948; Radford et al. 2018),
such as Codex (Chen et al. 2021), are trained to predict the
next token, given the past token context, over enormous cor-
pora. However, training LLMs is technically challenging and
expensive. They require a large dataset for each fine-tuning
task and parallel training on multiple GPUs (Bommasani et al.
2021) to scale. An exciting aspect of LLMs is the zero-shot
and few-shot learning paradigm for adapting to tasks on-
the-fly (Brown et al. 2020; Chowdhury, Zhuang, and Wang
2022).

Prenner and Robbes (2021) evaluate Codex’s ability to
fix 80 bugs in Python and Java using such in-context learn-
ing abilities. They manually provide buggy lines for each
program and use fixed few shot examples in the prompt. In
contrast, our paper discusses various strategies to build the
prompt, and performs a more extensive study with larger
datasets over more languages.

Approach

Figure 1 shows the architecture of RING. We divide the task
of fixing bugs into three stages: fault localization, program
transformation and candidate ranking. Each stage is based
on the intuition for how developers might approach such a
stage manually. In the following subsections, we show how
to address each stage using an LLMC.

We illustrate our approach using a running example —
shown in Figure 2 — drawn from the BIFI (Yasunaga and
Liang 2021) dataset. The user has incorrectly used tuple no-
tation in the function signature (highlighted in pink). This
syntax for unpacking tuples in function signatures was sup-
ported in Python 2. In Python 3, it raises a syntax error? with
very little detail on the underlying issue. This example high-

*https://peps.python.org/pep-3113/

Buggy Javascript Code Generated Prompt

function Driver (opts) { ﬁ

Driver._super__ .constructor.apply(

this.messages = []; }

}

Error:

RING ### Fixed Javascript

(LLMC Repair) .
}

Error:

-

Example
Selection

Processed Compiler Error
Message: Unused variable.
Error in line: 1, span starts 47.

in line: 1,

(4 Fix ES Lint Errors in Javascript
Buggy Javascript

function(req, res, next) {

(1) Unused variable.
Error in line: 1, span starts 34.

function(req, res) {

Buggy Javascript
<Buggy Javascript Code>
Unused variable.
span starts 47
‘### Fixed Javascript

LLMC
(OpenAl Codex)

function Driver (epts) {
Driver._ super__.constructor.apply (

this.messages = [];
, (&

J Fixed Javascript Completion Pass@1

Error

Figure 1: RING, powered by a Large Language Model trained on Code (LLMC), performs multi-lingual program repair. RING
obtains fault localization information from error messages and leverages LLMC’s few shot capabilities for code transformation
through example selection, forming the prompt. Finally, a simple, yet effective, technique is used for ranking repair candidates.

1 def boundary_difference_power (graph,

(orig-image, sigma, spacing))

orig_image = scipy.asarray (orig_image)

def boundary_term_division (i) :

i=1. /(1 + 1)

i scipy.power (i, sigma)

i[1 <= 0] sys.float_info.min

return i

skeleton_difference (graph,
orig_image,
boundary_term_division)

[ENoN0 LI o NNV IR AUV)

—_

Figure 2: A real Python 3 syntax error from the BIFI dataset.
The highlighted code uses tuple parameter unpacking syntax,
which was valid in Python 2 but removed from Python 3. All
listings are simplified for presentation clarity and brevity.

lights that errors can also be introduced as languages evolve.
RING fixes this mistake without additional user intervention.

Fault Localization through Language Tooling

As a first step towards debugging, a programmer typically
locates the cause of the bug. For most modern languages,
locating syntactic mistakes and some semantic errors, such as
type errors, is aided by tools like the compiler, static analyz-
ers, or linters. Following this intuition, we include a prepro-
cessed error message produced by the compiler or other static
analyzers. We normalize this message to enforce consistency
across languages. Figure 3 shows this prompt variant for our
running example, where the highlighting corresponds to our
prepared syntax error message. For languages where the error
messaging may not be precise, particularly with regards to
the error location reported, we found that a simple abstrac-
tion that removes the reported error location but preserves
the error text worked well — we discuss how to create such
an abstracted message in our discussion section.

5133

1 ### Buggy Python

2 def boundary_difference_power (graph,
3 (orig_image, sigma, spacing)):

4

5 Error: (1) invalid syntax. Error in
6 line: 2 span starts 4 and ends 32.

Figure 3: To aid fault localization, we include a detailed
compiler error message with line/column span information.
We prepare uniform messages across languages by extracting
details from the corresponding language compiler/analyzer.

Code Transformation through Few-shot Learning

Once a developer has identified the location of a mistake, they
must now apply an appropriate transformation—a sequence
of edits—to the original source code at this location. Most de-
velopers accumulate experience in the type of transformations
needed to resolve particular errors over time. Additionally,
when novices encounter an unfamiliar mistake, they often
search for examples of similar buggy/correct pairs that can
inform their own transformation.

It has been shown that LLMs are capable of few-shot
learning—the ability to learn from a few examples of the
intended task—by adding related examples of the task to
the prompt (Brown et al. 2020; Poesia et al. 2022). Given
examples of transformations that repair programs, we exploit
this capability in RING to address the code transformation
stage. The main challenge is selecting relevant examples that
are related to the mistake made by the developer.

Following the intuition that programs with similar mistakes
have similar fixes, we select examples from a collection of
buggy-fixed pairs based on error message similarity. We call
this collection of buggy-fixed pairs the example bank.

To capture differences in language tooling, we implement
two methods for selecting programs from our example bank.
The key difference between these two methods is how they
compute a similarity metric over error diagnostics.

The first variant, error vector selection, assumes that fine-

grained error reporting is available. For example, the Excel
parser returns a detailed report with many different diagnos-
tic counters. We count the occurrence of each error category
reported by the tool and construct a vector out of these fre-
quencies — we refer to this as an error vector. We then select
programs from the example bank by minimizing the L2 dis-
tance between error vectors.

The second variant, message embedding selection, assumes
that high-level errors are accompanied by detailed descrip-
tions in natural language. For example, the Python parser
often returns the same error (like SyntaxError) for different
mistakes and instead exposes additional information through
the associated natural language error message. We use this
description by embedding the compiler messages with a pre-
trained CodeBert (Feng et al. 2020) model and comparing
embeddings based on cosine similarity.

Figure 4 shows a simplified few-shot prompt with an ex-
ample, chosen using message embedding, which exhibits the
same error (and required fix) as our buggy program. With
this prompt, RING’s top candidate is the right repair.

1 ### Buggy Python

2 def initial_solution(self, start,

© (maxshares, desiredweight) -

4 ..

5 Error: (1) invalid syntax. Error in line
3, span starts 35 and ends: 36.

6 ### Fixed Python

7 def initial_solution(self, start,

8 max_shares, desired weight):

9

Figure 4: Our smart selection of few-shots retrieves rele-
vant buggy-fix examples from an example bank. Shots are
retrieved based on a similarity metric over error diagnos-
tics. The shot selected (pink background) displays the same
invalid signature-level tuple parameter unpacking (dark red
background, bold) as our target program. The fixed portion of
the shot (green background, bold) removes the parentheses.

Candidate Ranking

LLMs achieve variation in their output by iteratively sam-
pling each token from promising candidates. The extent to
which less likely tokens can be selected is controlled by a
parameter called temperature. We can thus generate multiple
candidates by controlling the temperature during generation.

The final step in RING is to rank the candidates obtained
by querying Codex using the prompt described in the prior
two stages. We use a relatively simple (but effective) ranking
strategy to order the candidate programs: averaging the log-
probabilities of tokens selected during the decoding process
and sort the candidates in descending order of their averages.

During development, we found that generating various
candidates with higher temperatures — encouraging diverse
candidates — and ranking them yields better performance than
using lower temperatures such as zero.

5134

Language-Specific Datasets

We evaluate RING on six different languages, ranging from
low-code formula languages to popular scripting languages.
We describe the dataset, language-specific baseline(s) and
evaluation metric for each language.

Excel We use arecently released dataset of 200 Excel repair
tasks collected from Excel help forums (Bavishi et al. 2022).
Each task consists of an Excel formula with syntax errors,
some semantic errors (such as wrong function call arity)
and a ground truth repair. We also collect a set of 73 tasks
where the Excel formula contains at least one type error and
annotated each such formula with a ground truth repair. The
final collection consists of 273 Excel repair tasks.

A successful repair exactly matches the ground truth after
normalizing tokens like spaces, capitalizing all the identifiers
and cell references. We compare RING to the neurosymbolic
repair engine LaMirage (Bavishi et al. 2022).

Power Fx Like Excel, we use the recently released 200
Power Fx repair tasks accompanying LaMirage. These tasks
consist of syntactic and basic semantic errors, and are col-
lected from help forums and anonymized product telemetry.

We use the same evaluation criteria as in Excel and com-
pare to the neurosymbolic repair engine LaMirage.

Python We evaluate RING on a random sample of 200 syn-
tactically invalid Python code snippets from the dataset used
by the SOTA syntax repair tool for Python: BIFI (Yasunaga
and Liang 2021). These code snippets were collected from
GitHub repositories.

These snippets do not have a ground truth repair. Hence,
we employ the same evaluation metric described in the BIFI
paper. A repair is successful if the produced program is (1)
parsed successfully by the Python 3 parser and (2) has a
Levenshtein (Levenshtein et al. 1966) token edit distance
less than 5 from the buggy program. The python tokens are
generated by the Pygments® lexer.

We compare to BIFI, a transformer-based repair system
that iteratively trains a code breaker that learns to generate
realistic errors and a code fixer that repairs such errors.

JavaScript We evaluate RING on a random sample of 200
JavaScript (JS) code snippets drawn from the dataset re-
leased with TFix (Berabi et al. 2021). Each snippet has at
least one error or warning reported by the popular linter
ESLint (Témasdottir, Aniche, and Van Deursen 2018). In
addition to syntax errors, ESLint also reports stylistic issues.

The dataset released by TFix contains a ground truth repair
code snippet for each buggy snippet. Both buggy and ground
truth code snippets were mined by the TFix authors from
GitHub commits. The originally released dataset contains
only the part of each code snippet relevant to the error and
repair. However, these parts are an arbitrary window around
the original fault location. We found that providing these
arbitrary windows to Codex resulted in spurious edits, as the
snippets had syntax errors that were just an artifact of the
windowing. To mitigate this, we extracted the whole function
(or whole file, if not in a function) that encompassed the

*https://pygments.org/

originally buggy and the repaired code snippets. We refer to
these as extended code snippets.

We compare our performance to TFix, a fine-tuned T5 (Raf-
fel et al. 2020) model for JS repair. A repair is successful if it
matches the ground truth associated with the buggy program.
We run TFix on both the original window snippets and on
our extended code snippets.

C We evaluate RING on a random sample of 200 C code
snippets drawn from the dataset released with DeepFix
(Gupta et al. 2017). These programs correspond to real user
programs written by students in an introductory programming
class and raise at least one compilation error.

We compare to Dr. Repair, a neural repair system that uses
graph attention to combine information from the buggy code
snippet and the associated compiler message (Yasunaga and
Liang 2020). We use their success criterion: a repair must
not raise any error messages when compiled using gcc -w

-std=c99 -pedantic. Following BIFI, a repair must be
less than 5 token edits away from the original buggy program.

PowerShell We introduce the novel task of repairing syn-
tax errors in PowerShell commands. To create benchmarks,
we searched StackOverflow (StackOverflow) for the word
“error” in threads tagged with powershell. This resulted
in 14,954 threads. We extracted code blocks with least one
space from the question and the accepted answer. We keep
pairs from question and answer where the question code is
invalid and answer code is valid. We judged validity using
the PowerShell command Get-Command -syntax.

Finally, we manually annotated these candidate tasks from
the associated StackOverflow post, confirming each pair was
reflective of the original issue and did not have extra changes.
When there were changes, we manually simplified the pair
or corrected minor issues like new line characters. We kept a
final set of 200 task pairs.

There is no existing language-specific engine to compare
with, as we introduce this task. A repair is successful if it
exactly matches the associated answer code block.

Common Baseline We also use zero-shot Codex as a base-
line for all languages. We use the following prompt:

Fix bugs in the below code:
Buggy <language>:
<buggy program>

#4## Fixed <language>:

where <language> is replaced with the appropriate lan-
guage name for the benchmark task. For all the experiments,
we used ### as stop token and top_p= 1.0.

Results and Analysis

We first ask: (RQ1) how viable is RING’s Codex-powered
approach for repair across multiple languages? Next, we
investigate the extent to which Codex can address each of
our conceptual stages. For localization, (RQ2) to what extent
can RING perform error localization across languages? For
code transformation, (RQ3) to what extent does our smart
selection of few-shots improve performance? Finally, for
candidate ranking, (RQ4) to what extent can RING rely on
Codex’s token log probabilities to rank candidates?

5135

RQ1. Viability of Multilingual Repair

Table 1 shows the performance for RING, language-specific
repair engines, and a Codex-based zero-shot baseline, across
each of our languages. We present the best performing con-
figuration for each language using fop @k performance met-
rics (Inala et al. 2022; Poesia et al. 2022; Bavishi et al. 2022),
where we consider the top k£ candidates produced by a system
and count the task as solved if any candidate satisfies our
correctness criteria.

Smart selection is done via leave-one-out. For languages
with ground truth, all other tasks are the example bank for
drawing shots. Since the C and Python datasets do not have
ground truth pair, we sample an additional 400 programs
from their corresponding datasets. We run the best RING
configuration (without smart selection) on these 400 pro-
grams and pick those that do not raise any diagnostics error.
These buggy/correct pairs form the example bank in C and
Python.

RING outperforms the state-of-the-art repair engines in
top@1 for Excel, Python, and C. For Power Fx, we find
that RING’s top@3 rate is comparable to the top@1 rate for
LaMirage. Furthermore, there is a substantial improvement
in RING’s top@3 compared to top@]1.

In Javascript, we find that TFix applied to the original code
snippets obtains a top@1 rate of 0.59 (approximately 7 points
higher than that of RING). However, applying TFix to the
extended code snippets results in a much lower top@1 rate of
0.09. This performance degradation can be attributed to the
substantially longer sequences of the extended code snippets
compared to the original code snippets, an average of 208
and 74 TS5 tokens, respectively.

In PowerShell (PS), we observe that RING’s performance is
substantially lower compared to other languages. We hypoth-
esize that this may be a reflection of the (presumed) relative
scarcity of PS commands in Codex’s training data. Manual
inspection of failures also revealed that RING performs fewer
edits than required to match the ground truth.

Given this evidence, we conclude that RING’s Codex-
powered approach can perform multilingual repair. We can
contrast this to the substantial effort required to build a
language-specific repair engine. TFix, BIFI, and Dr. Repair
were trained on 108K, 3M and 1.5M JavaScript, Python,
and C code snippets, respectively. LaMirage trained error
localizers and rankers based on pointer networks, as well as
implemented multiple language-specific rules.

Programs that were not fixed by either RING or the
language-specific engines shared some properties. In par-
ticular, some of these could be addressed with a combina-
tion of iteratively querying Codex and explicit lightweight
constraints that enforce language-specific knowledge. For
example, we found a Python program that has two issues:
an invalid use of the reserved keyword async and a missing
parenthesis. For the keyword issue, we could query Codex
with the buggy program up to the invalid keyword usage,
validate that the following token predicted is not a reserved
keyword, and then query Codex again with the modified
buggy code fragment. This is similar to constrained decoding
used in Synchromesh (Poesia et al. 2022).

Language Approach Top@1 Top@3 Top@50° Metric Avg. Tokens
RING (Abstracted Message, Error Vector) 0.82 0.89 0.92

Excel LaMirage (Bavishi et al. 2022) 0.71 0.76 - Exact Match 26 £14
Codex (Chen et al. 2021) 0.60 0.77 0.88
RING (Compiler Message, Message Embedding) 0.71 0.85 0.87

Power Fx LaMirage (Bavishi et al. 2022) 0.85 0.88 - Exact Match 29 +£19
Codex (Chen et al. 2021) 0.47 0.68 0.84
RING (Compiler Message, Error Vector) 0.46 0.59 0.64

Javascript TF%X (ex.te.nded code snlppets). (Berabi et al. 2021) 0.09 - - Exact Match 163 +106
TFix (original dataset) (Berabi et al. 2021) 0.59 - -
Codex (Chen et al. 2021) 0.19 0.28 0.39
RING (Compiler Message, Message Embedding) 0.94 0.97 0.97 P P

Python BIFI (Yasunaga and Liang 2021) 092 095 0.9 Egit Distance = 5 104 %150
Codex (Chen et al. 2021) 0.87 0.94 0.98
RING (Compiler Message, Message Embedding) 0.63 0.69 0.70 p p

C Dr Repair (Yasunaga and Liang 2020) 0.55 - - Edit Distance < S 223 +72
Codex (Chen et al. 2021) 0.40 0.56 0.61

Powershell RING (Compiler Message, Message Embedding) 0.18 0.25 0.28 Exact Match 24 430
Codex (Chen et al. 2021) 0.10 0.15 0.18

Table 1: Comparison of RING with language-specific approaches and a zero-shot baseline that uses Codex. Bold denotes best
performance for each language. “For Powershell we compute Top@20, due to rate limiting restrictions. All RING experiments
are at 0.7 temperature. RING can outperform language-specific repair engines in Excel, Python, and C. In Javascript, RING is
capable of generating the right repair but ranking needs to improve. In Powershell, with no existing baseline, RING performs
substantially worse — likely reflective of the lack of Powershell code in Codex’s training data. We ran all Codex-related queries
on August 9" 2022 using Open AI’s public API for “davinci-code-002”, with the exception of Powershell experiments which we

ran on March 7 2023.

RQ2. Error Localization

Even if RING cannot fix a program at top@ 1, locating the
error can help users. We carry out the following experiment
for the four languages which have the ground truth. We con-
sider programs that are not repaired at top@ 1 by RING and
those that are not repaired at top@ 1 by the language-specific
baseline. For each such program, we take the top candidate
produced by each system and compare the edit locations to
the ground truth edit locations. If the candidate edit loca-
tions are all within a range of +k tokens of the ground truth
locations, we mark this as a correct localization.

Figure 5 summarizes our results. We observe that RING
correctly locates a larger fraction of required edits compared
to the language-specific baselines. This holds true across the
four languages with ground truth repairs. RING’s localization
success varies by language but can reach as high as over
a quarter of unrepaired programs (for Power Fx, given a
tolerance of one token). For such programs, where RING
can localize the error but does not perform the correct edit,
drawing shots from a larger example bank may help.

Next, we explored a key contributing factor to overall re-
pair success (and localization in particular): program length.
We found that for most languages, the buggy programs that
RING can repair tend to be shorter than the buggy programs
it fails to repair. Figure 6 shows the cumulative fraction of

5136

e
w
|

g t RING

d: f —— Excel

g | —— Power Fx

i 0.2 —e— JavaScript

= —e— PowerShell

Q

o)

= 0.1 4 Baselines

Q

2 < Excel

o) < Power Fx

© 0 * T T - JavaScript
0 +1 +2 +3 +4

Location Range (£k tokens)

Figure 5: We consider separately the programs not repaired
at top@1 by RING and language-specific baselines. We com-
pute an approximate error localization metric, which marks
as correctly localized any edit that is within & tokens of
the groundtruth edit location. When RING fails to repair a
program it correctly localizes a larger fraction of programs
compared to the language-specific baselines.

buggy programs by their length, grouped based on their out-
come (top@1). In both JavaScript and Python, the programs
successfully repaired by RING tend to be shorter than those
where it fails. Interestingly, this relationship does not seem

.1

g
& 0.8
2 0.6
2 Exact Matches@1
= 0.4
E True
6 0.2 1 —— False

0 5 T T T T T

0 100 200 300 400 500
Number of tokens
(a) Javascript
S '
£ 0.8
E 0.6 Passes Critic@1
% 0.4 7 —— True
5 0.2 1 —— False
© 04 T T T T T
0 500 1,000 1,500 2,000 2,500
Number of tokens
(b) Python

Figure 6: Cumulative fraction of programs by number of
tokens in the original buggy program, grouped by whether
RING can repair at top@1. Successful repairs tend to be
associated with shorter buggy programs.

to hold as strongly for Excel. We attribute this behaviour to
overall shorter programs lengths and the restrictive Excel
grammar.

RQ3. Code Transformation

Table 2 shows the top@1 rate with our smart selection of
few-shots for the prompt, compared to a strategy that uses
pre-defined fixed examples. The pre-defined strategy allows
us to curate high-quality repair examples for common er-
rors, but these may not be relevant for all programs. Prior
work (Prenner and Robbes 2021) explored the use of fixed
few-shot examples for APR with Codex.

Our results show that smart selection improves perfor-
mance in all languages. This performance improvement
comes from examples in the prompt that reflect similar er-
rors (and expected edits) to the target program. We use error
vector selection for Excel and JavaScript, which have better
and more granular error categorization, and message embed-
ding selection for other languages. We observe that Power
Fx shows the smallest performance improvement. Manual
inspection revealed that Power Fx compiler messages tend
to be imprecise, and using them to select examples can in-
troduce some noise into the prompt. An example that we
encountered were cases where the compiler suggested there
was an extraneous token in the input program that did not
actually appear in it.

RQ4. Candidate Ranking

RING ranks candidate repairs based on the average of per-
token log probabilities produced by Codex. The effective-
ness of this strategy for our use case depends on the extent

5137

g 20 True : g 60 True E
5§ 197 —False ! o} ——False |
D 10 | | D 40 - !
)) :
£ 5 / £ 20 : \
3 X) X
20 T — \\ M 0 T I
-04 -02 0 -0.06 -0.03 0
avg. log probs avg. log probs
(a) Excel (b) C
> 20 2 15+ |
‘é 15 True Z True |,
o) —— False 8 10 — False
: |
= 5 2 5 =
0 N E— 20 T I
-02 -01 O -0.3-0.2-0.1 0

avg. log probs avg. log probs

(c) Power Fx (d) Powershell

Figure 7: (Gaussian) Kernel density plots for average token
log probabilities across languages, based on their top@1
success status. Clearer separation of distributions tends to
be associated with better performance (e.g., Excel, C). In
Powershell, where RING struggles, the relationship between
distribution peaks is inverted relative to other languages.

Language Fixed Shots ~ Smart Shots Fractional Change
Excel 0.76 0.82 0.08
Power Fx 0.70 0.71 0.01
Javascript 0.43 0.46 0.07
Python 0.91 0.94 0.03
C 0.50 0.58 0.16
Powershell 0.15 0.18 0.20

Table 2: Top@1 for few-shots selected using our smart selec-
tion strategy, compared to pre-defined fixed examples. Smart
selection improves performance for all languages. For Power
Fx, we see the smallest improvement, which we attribute to
imprecise compiler diagnostics.

to which Codex is calibrated properly for program repair
(Bella et al. 2010; Nixon et al. 2019; Dormann 2020). Fig-
ure 7 compares average log probabilities in Excel, Power Fx,
PowerShell, and C. We show (Gaussian) kernel density plots
across languages based on the top@ 1 outcome. For languages
like Excel and C, where RING outperforms language-specific
repair engines, there is a clearer difference in distributions.
In Power Fx, where RING can repair programs but does not
outperform the language-specific engine, this distribution
difference is less clear. In PowerShell, where RING fails to
repair a substantial fraction of programs, the relationship
between the peaks of the distributions is inverted relative to
other languages.

Z 604 PowerShell -~ Excel | ! !l
5 JavaScript Python | || 1}
% 40 C Power Fx| ||/
£ 20 LA
™ 0 T I . e
0.15 0.1 -0.05 0

Token average log probability

Figure 8: Per-language (Gaussian) kernel density plots of
successful top@1 scores (average token log probabilities).
We find that less popular languages, like PowerShell, Excel,
and Power Fx, have lower average scores — likely reflective
of their relatively small fraction of Codex’s training data.

Additionally, we find that even for programs with a top@1
success outcome, there are differences in average token log
probability across languages, as shown in Figure 8. For
less popular languages (PowerShell or Excel), the distri-
bution peaks are further left than more popular languages
(JavaScript). This likely reflects the underlying language dis-
tribution in Codex’s training data.

Based on our observation of the gap between top@1 and
top @5, paired with these calibration insights, we believe that
a language-specific ranking model (Inala et al. 2022) may
provide a substantial payoff in multilingual repair.

Discussion

We now provide discussion on the design principles involved
in building a good example bank for few-shot selection and
the tasks required to adapt RING to a new language.

Designing the Example Bank

While curating the example bank, it is essential to have dif-
ferent types of errors to facilitate retrieval of similar mis-
takes/fixes for a new buggy program. There are several ways
to collect such examples, including scraping public forums,
using telemetry data, and bootstrapping examples through the
language knowledge of an expert. We have found that scrap-
ing public forums is a good way to start, paired with expert
curation of corner cases. Buggy-fixed pairs can be collected
incrementally, adding more diverse examples from different
sources later. Telemetry data also provides a natural source
for examples, but depending on the platform/organization
can require anonymization that might impact retrieval.

Our evaluation employs a strict leave-one-out strategy to
build an example bank from benchmark programs. In prac-
tice, this will be a very restrictive example bank that can
potentially limit the number of successful repairs.

While the example bank sizes used during our evaluation
do not present a performance concern, as example banks in
production grow, retrieval time may become more signifi-
cant. To address such challenges, RING could take advan-
tage of off-the-shelf fast indexing/retrieval systems, such as
FAISS (Johnson, Douze, and Jégou 2019) or ANNQOY (Spo-
tify 2022).

5138

Adapting RING for New Languages

We now detail the steps required to apply RING to a new
language. The first task is to build the associated example
bank, using the principles discussed above. Next, we need to
evaluate the language tooling available for error diagnostics.
In particular, there are two key decisions: determining what
kind of error-based few-shot selection to make and if the error
message needs to be abstracted prior to use for localization
with RING. We discuss each of these concerns in turn.

Choosing between Error Vector and Message Embedding
Different languages have different underlying language tools,
such as compilers and linters. If the underlying language
tools provide detailed error reports with granular error cat-
egories, counting the categories can help us extract precise
error information. We recommend using error vector selec-
tion for such languages. Unfortunately, not all languages
provide fine-grained error categories but instead expose ad-
ditional information through an associated natural language
error message. For such languages, which provide more in-
formation through natural language, we recommend using
message embedding selection.

Creating abstracted error message When incorporating
the error message in the localization portion of the prompt
and in message-embedding-based few shot selection, some
languages may benefit from abstracting the error message to
remove extra (and possibly imprecise) information. In our ex-
periments, we found that providing an error message without
exact location information can help in low-code languages
like Excel. If the language tool provides data structures with
error description, location, and error category, we only use
the description. Languages with natural language error mes-
sages typically follow a template that we can use to extract
the portions of the message we want to preserve to create the
abstracted message.

For example, in C, the error message for a missing semi-
colon (;) at the end of a statement is shown below:

In function ’'main’:
16:6: error: expected ’;’ before ’'printf’
printf (\"%d\",catalan(h));

We split the error message using regular expression
“\d+:\d+: error:”, which captures the text 16:6
error: and leaves us with the following abstracted error
message: expected ’;’ before 'printf’.

Conclusion

We present RING, a multilingual repair engine powered by
Codex. We show various prompt-based strategies designed
to convey developer-like information to address the three
stages of automate program repair: error localization, code
transformation, and candidate ranking. We evaluate RING on
six languages, including a benchmark for the novel task of
repairing Powershell programs. We show RING can perform
well in multiple languages, even outperforming language-
specific engines in some, with little engineering effort.

Acknowledgements

We thank Peter Lee for the CoPilot-flipped-model analogy.
We thank Julia Liuson for inspiring and facilitating use of
Codex-as-a-component in our neuro-symbolic workflows.
We also thank the authors of baseline systems used in our
research — their sharing of models and data made this work
possible. We would also like to thank Abishai Ebenezer for
helping us curate the PowerShell evaluation benchmarks.

References

Ahmed, T.; Ledesma, N. R.; and Devanbu, P. 2021. SYN-
FIX: Automatically Fixing Syntax Errors using Compiler
Diagnostics. arXiv preprint arXiv:2104.14671.

Ahmed, U. Z.; Kumar, P.; Karkare, A.; Kar, P.; and Gulwani,
S. 2018. Compilation error repair: for the student programs,
from the student programs. In Proceedings of the 40th In-
ternational Conference on Software Engineering: Software
Engineering Education and Training, 78-87.

Altadmri, A.; and Brown, N. C. 2015. 37 million compila-
tions: Investigating novice programming mistakes in large-
scale student data. In Proceedings of the 46th ACM technical
symposium on computer science education, 522-527.

Arcuri, A. 2008. On the automation of fixing software bugs.
In Companion of the 30th international conference on Soft-
ware engineering, 1003—1006.

BareiB, P.; Souza, B.; d’Amorim, M.; and Pradel, M. 2022.
Code Generation Tools (Almost) for Free? A Study of Few-
Shot, Pre-Trained Language Models on Code. arXiv preprint
arXiv:2206.01335.

Bavishi, R.; Joshi, H.; Cambronero, J.; Fariha, A.; Gulwani,
S.; Le, V.; Radicek, I.; and Tiwari, A. 2022. Neurosym-
bolic Repair for Low-Code Formula Languages. Proc. ACM
Program. Lang., 6(OOPSLA2).

Bella, A.; Ferri, C.; Hernandez-Orallo, J.; and Ramirez-
Quintana, M. J. 2010. Calibration of machine learning mod-
els. In Handbook of Research on Machine Learning Appli-
cations and Trends: Algorithms, Methods, and Techniques,
128-146. IGI Global.

Berabi, B.; He, J.; Raychev, V.; and Vechev, M. 2021. Tfix:
Learning to fix coding errors with a text-to-text transformer.
In International Conference on Machine Learning, 780-791.
PMLR.

Bommasani, R.; Hudson, D. A.; Adeli, E.; Altman, R.; Arora,
S.; von Arx, S.; Bernstein, M. S.; Bohg, J.; Bosselut, A.;
Brunskill, E.; et al. 2021. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners.

Advances in neural information processing systems, 33: 1877—
1901.

Bureau of Labor Statistics, U. 2022. Software develop-
ers, Quality Assurance Analysts, and testers : Occupational
outlook handbook. https://www.bls.gov/ooh/computer-and-
information-technology/software-developers.htm. Accessed:
2022-07-30.

5139

Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Ponde, H.; Kaplan,
J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; Ray,
A.; Puri, R.; Krueger, G.; Petrov, M.; Khlaaf, H.; Sastry, G.;
Mishkin, P.;; Chan, B.; Gray, S.; Ryder, N.; Pavlov, M.; Power,
A.; Kaiser, L.; Bavarian, M.; Winter, C.; Tillet, P.; Such, F. P.;
Cummings, D. W.; Plappert, M.; Chantzis, F.; Barnes, E.;
Herbert-Voss, A.; Guss, W. H.; Nichol, A.; Babuschkin, I.;
Balaji, S. A.; Jain, S.; Carr, A.; Leike, J.; Achiam, J.; Misra,
V.; Morikawa, E.; Radford, A.; Knight, M. M.; Brundage, M.;
Murati, M.; Mayer, K.; Welinder, P.; McGrew, B.; Amodei,
D.; McCandlish, S.; Sutskever, I.; and Zaremba, W. 2021.
Evaluating Large Language Models Trained on Code. ArXiv,
abs/2107.03374.

Chowdhury, J. R.; Zhuang, Y.; and Wang, S. 2022. Novelty
Controlled Paraphrase Generation with Retrieval Augmented
Conditional Prompt Tuning. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 36(10): 10535-10544.

Debroy, V.; and Wong, W. E. 2010. Using Mutation to Au-
tomatically Suggest Fixes for Faulty Programs. 2010 Third

International Conference on Software Testing, Verification
and Validation, 65-74.

Diekmann, L.; and Tratt, L. 2020. Don’t Panic! Better, Fewer,
Syntax Errors for LR Parsers. In 34th European Conference
on Object-Oriented Programming, ECOOP 2020, volume
166 of LIPIcs, 6:1-6:32.

Dormann, C. F. 2020. Calibration of probability predictions
from machine-learning and statistical models. Global ecology
and biogeography, 29(4): 760-765.

Drori, I.; Zhang, S.; Shuttleworth, R.; Tang, L.; Lu, A.; Ke,
E.; Liu, K.; Chen, L.; Tran, S.; Cheng, N.; et al. 2022. A
neural network solves, explains, and generates university
math problems by program synthesis and few-shot learning
at human level. Proceedings of the National Academy of
Sciences, 119(32): €2123433119.

Drosos, 1.; Guo, P. J.; and Parnin, C. 2017. HappyFace:
Identifying and predicting frustrating obstacles for learning
programming at scale. In 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 171—
179. IEEE.

Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.;
Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. 2020. Codebert:
A pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155.

Gazzola, L.; Micucci, D.; and Mariani, L. 2019. Automatic
Software Repair: A Survey. IEEE Transactions on Software
Engineering, 45: 34-67.

Goues, C. L.; Pradel, M.; and Roychoudhury, A. 2019. Auto-
mated program repair. Communications of the ACM, 62(12):
56-65.

Gupta, R.; Pal, S.; Kanade, A.; and Shevade, S. K. 2017.
DeepFix: Fixing Common C Language Errors by Deep Learn-
ing. In AAAL

Hajipour, H.; Bhattacharyya, A.; and Fritz, M. 2020. Sam-
pleFix: Learning to Correct Programs by Efficient Sampling
of Diverse Fixes. In NeurlPS 2020 Workshop on Computer-
Assisted Programming.

Inala, J. P.; Wang, C.; Yang, M.; Codas, A.; Encarnacién, M.;
Labhiri, S. K.; Musuvathi, M.; and Gao, J. 2022. Fault-Aware
Neural Code Rankers. arXiv preprint arXiv:2206.03865.

Johnson, J.; Douze, M.; and Jégou, H. 2019. Billion-scale
similarity search with gpus. IEEE Transactions on Big Data,
7(3): 535-547.

Levenshtein, V. L; et al. 1966. Binary codes capable of cor-

recting deletions, insertions, and reversals. In Soviet physics
doklady, volume 10, 707-710. Soviet Union.

Liu, K.; Li, L.; Koyuncu, A.; Kim, D.; Liu, Z.; Klein, J.; and
Bissyandé, T. F. 2021. A critical review on the evaluation of
automated program repair systems. Journal of Systems and
Software, 171: 110817.

Murphy, L.; Lewandowski, G.; McCauley, R.; Simon, B.;
Thomas, L.; and Zander, C. 2008. Debugging: the good,
the bad, and the quirky—a qualitative analysis of novices’
strategies. ACM SIGCSE Bulletin, 40(1): 163-167.

Nguyen, H. D. T.; Qi, D.; Roychoudhury, A.; and Chandra,
S. 2013. SemFix: Program repair via semantic analysis.
International Conference on Software Engineering, 772-781.

Nixon, J.; Dusenberry, M. W.; Zhang, L.; Jerfel, G.; and Tran,
D. 2019. Measuring Calibration in Deep Learning. In CVPR
Workshops, volume 2.

Parihar, S.; Dadachanji, Z.; Singh, P. K.; Das, R.; Karkare, A.;
and Bhattacharya, A. 2017. Automatic grading and feedback
using program repair for introductory programming courses.
In Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education, 92-97.

Poesia, G.; Polozov, A.; Le, V.; Tiwari, A.; Soares, G.; Meek,
C.; and Gulwani, S. 2022. Synchromesh: Reliable Code Gen-
eration from Pre-trained Language Models. In International
Conference on Learning Representations.

Prenner, J. A.; and Robbes, R. 2021. Automatic Program
Repair with OpenAI’s Codex: Evaluating QuixBugs. arXiv
preprint arXiv:2111.03922.

Pu, Y.; Narasimhan, K.; Solar-Lezama, A.; and Barzilay, R.
2016. sk_p: a neural program corrector for MOOCs. In
Companion Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Systems, Programming, Languages
and Applications: Software for Humanity, 39-40.

Qi, Y.; Mao, X.; Lei, Y.; Dai, Z.; and Wang, C. 2014. The
strength of random search on automated program repair. In
Proceedings of the 36th International Conference on Software
Engineering, 254-265.

Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, 1.;
et al. 2018. Improving language understanding by generative
pre-training. https://paperswithcode.com/paper/improving-
language-understanding-by. Accessed: 2022-08-05.

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. Journal of Machine Learning Research,
21(140): 1-67.

Shannon, C. E. 1948. A mathematical theory of communica-
tion. The Bell system technical journal, 27(3): 379-423.

5140

Spotify. 2022. ANNOY library. https://github.com/spotify/
annoy. Accessed: 2022-08-01.

StackOverflow. 2022. StackOverflow Website.
stackoverflow.com/.

Témasdoéttir, K. F.; Aniche, M.; and Van Deursen, A. 2018.
The adoption of javascript linters in practice: A case study on
eslint. IEEE Transactions on Software Engineering, 46(8):
863-891.

Wexelblat, R. L. 1976. Maxims for malfeasant designers, or
how to design languages to make programming as difficult as
possible. In Proceedings of the 2nd international conference
on Software engineering, 331-336.

Yasunaga, M.; and Liang, P. 2020. Graph-based, self-
supervised program repair from diagnostic feedback. In In-
ternational Conference on Machine Learning, 10799-10808.
PMLR.

Yasunaga, M.; and Liang, P. 2021. Break-it-fix-it: Unsuper-
vised learning for program repair. In International Confer-
ence on Machine Learning, 11941-11952. PMLR.

Zhong, H.; and Su, Z. 2015. An Empirical Study on Real Bug
Fixes. 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, 1: 913-923.

https://

