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Abstract
Recent years have witnessed the wide adoption of RDMA
in the cloud to accelerate first-party workloads and achieve
cost savings by freeing up CPU cycles. Now cloud providers
are working towards supporting RDMA in general-purpose
guest VMs to benefit third-party workloads. To this end, cloud
providers must provide strong performance isolation so that
the RDMA workloads of one tenant do not adversely impact
the RDMA performance of another tenant. Despite many ef-
forts on network performance isolation in the public cloud, we
find that RDMA brings unique challenges due to its complex
NIC microarchitecture resources (e.g., the NIC cache).

In this paper, we aim to systematically understand the im-
pact of RNIC microarchitecture resources on performance
isolation. We present a model that represents how RDMA
operations use RNIC resources. Using this model, we develop
a test suite to evaluate RDMA performance isolation solu-
tions. Our test suite can break all existing solutions in various
scenarios. Our results are acknowledged and reproduced by
one of the largest RDMA NIC vendors. Finally, based on the
test results, we summarize new insights on designing future
RDMA performance isolation solutions.

1 Introduction
Multiplexing workloads from different tenants on a shared
computing infrastructure enables the modern cloud comput-
ing era. The global cloud infrastructure revenue has already
surpassed 400 billion US dollars and is forecast to grow to
reach around 1 trillion US dollars in the next decade [7].

It is well known that having different tenants’ workloads
share computing resources can lead to unpredictable applica-
tion performance interference [12, 18, 66] and privacy leak-
age [32, 39]. This drives plenty of studies focusing on per-
formance isolation in the cloud, especially for performance-
critical applications that have stringent service-level objec-
tives [11, 12, 18, 41, 63, 66, 70]. The state of the art in practice
has also significantly advanced: CPU vendors even imple-
ment hardware mechanisms to control and isolate access to
CPU caches [20]. Side channels through shared resources are
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Figure 1: Violations of performance isolation under existing methods

being patched over time [39].

In this paper, we visit one particular hardware device, the
RDMA NIC (RNIC). RDMA offloads the network stack from
OS kernel to NIC hardware to provide high throughput and
ultra-low processing latency with near-zero CPU overhead.
RDMA has been deployed in datacenters at scale to improve
performance and free up CPU cores for first-party workloads
like storage and ML [14, 17, 38, 51]. Now cloud providers
are working towards supporting RDMA in general-purpose
guest VMs to benefit third-party workloads. To this end, cloud
providers must provide strong performance isolation for ten-
ants sharing the same RNIC.

Many efforts have been made to improve network perfor-
mance isolation in the public cloud, with a special focus on
bandwidth and packet processing capacity [3, 15, 16, 25, 34,
62, 64]. However, RDMA brings new challenges due to its
unique and complex NIC microarchitecture resources (e.g.,
NIC caches and processing units). Their existence and impact
on performance are already known to the research commu-
nity [29, 33]. To avoid performance anomalies, developers
carefully design RDMA systems to avoid exhausting these
microarchitecture resources [5,9,10,27,30,50,61]. Our study
is from a different angle: we look at how these microarchi-
tecture resources affect RDMA performance isolation from a
public cloud provider’s perspective. The cloud provider has
no knowledge and control of tenants’ RDMA applications,
and tenants can consume RNIC microarchitecture resources
in arbitrary manners.



To demonstrate RNIC microarchitecture resources’ signifi-
cant impact on performance isolation, we test the state-of-the-
art approach: using SR-IOV with separated hardware traffic
class (HW TC). Both SR-IOV and HW TC are hardware
mechanisms available on commodity RNICs. HW TC lever-
ages multiple hardware queues (usually 8 queues) in RNICs.
We can assign each tenant application to use one queue. We
run one victim traffic between two virtual machines using
ib_write_bw, a standard RDMA bandwidth testing tool in
Perftest [56]. Each virtual machine is on a different server,
and the two servers are equipped with 100 Gbps NVIDIA
ConnectX-5 RNICs. Figure 1 shows the bandwidth. The band-
width test achieves 80 Gbps. We start one virtual machine on
each server to represent an attacker (i.e., a buggy or malicious
tenant application) and enable performance isolation to grant
half of the total bandwidth to the victim and the attacker. The
victim traffic reduces to 50 Gbps, which is expected. How-
ever, when we start a carefully designed attacker traffic of
only 1 Gbps to intentionally exhaust one of the RNIC microar-
chitecture resources, the victim immediately drops to 2 Gbps,
violating the performance isolation guarantee (i.e., 50 Gbps
of guaranteed network bandwidth for the victim).

We develop a set of experiments to study how RNIC
microarchitecture resources are used by different types of
RDMA operations. Our experiments surface several interest-
ing findings, including: (1) Exception or error handling pauses
the RNIC’s pipelines and causes other tenants’ performance
to drop drastically. (2) Control verbs cause a severe increase
in cache misses and impair other tenants’ performance. (3)
Data verbs can exhaust different types of microarchitecture
resources and violate performance isolation. To the best of
our knowledge, we are the first to systematically study the
impact of all types of control verbs and exceptions on RDMA
microarchitecture resource consumption.

We leverage these findings to create an RDMA operation
model to describe the relationship between the RDMA verb
operations and the microarchitecture resources consumed.
Our model allows us to understand how to exhaust each of the
RNIC resources. Using the operation model, we create the
first test suite, Husky, to systematically test and evaluate RNIC
performance isolation solutions. Unfortunately, running our
test suite on commodity RNICs reveals bad news: there is
currently no solution that can provide RNIC performance
isolation. We have already reported all of our findings to three
major RNIC vendors, NVIDIA, Chelsio, and Intel. Our results
are fully reproduced and acknowledged by NVIDIA, one of
the largest RDMA NIC manufacturers. Finally, we present
new insights on how future performance isolation solutions
should be built. We hope these insights can benefit future
RNIC design and RDMA software development.

This paper makes the following contributions:

• We identify multiple interactions between RDMA opera-
tions and the RNIC microarchitecture resources, includ-
ing the previously unknown impact of error handling and

control operations.

• We introduce the first RDMA operation model to de-
scribe how RNIC microarchitecture resources are con-
sumed in verb operations (the standard RDMA program-
ming API) and why these microarchitecture resources
affect performance isolation.

• We build the first test suite to systematically test and eval-
uate RNIC performance isolation solutions. We show
that none of the existing performance isolation solutions
can pass our test suite. Husky test suite is available at
https://github.com/host-bench/husky.

This work demonstrates that providing performance isola-
tion for RDMA in the public cloud is much more difficult than
one may think. There must be a higher standard for future
RDMA performance isolation solutions: they should carefully
consider RNIC microarchitecture resources and be evaluated
by systematic benchmarks.

2 Background and Motivation
We first present the background knowledge of the network
performance isolation in the public cloud. Then we introduce
RDMA and discuss new challenges presented by the RDMA
network performance isolation.

2.1 Network Performance Isolation in the Public Cloud

Tenants in the cloud mainly cause contention on two types
of network resources. The first the most obvious one is the
bandwidth in the network fabric. To mitigate bandwidth con-
tention among tenants, one line of work [58, 60, 62] statically
limits per-tenant bandwidth. Another line of work [1, 3, 4, 6,
16, 24, 25, 37, 58, 59, 68] gives each tenant a minimum band-
width guarantee and allows tenants to use spare bandwidth
capacity. The second type of resource is the packet process-
ing resources at the end host. Per-packet processing costs
depend on many factors, such as cache misses and operations
to perform. Recently, PicNIC [34] provides isolation for such
software packet processing. People also leverage specialized
hardware to achieve the same goal [64].

It is worthwhile to note that network performance isola-
tion is very different from network virtualization. Network
virtualization orchestrates network resources to provide each
tenant with an illusion of an independent network. A tenant
should not impact the connectivity of the network of another
tenant. The goal of network virtualization is to achieve low
overhead [19, 31, 57]. In comparison, network performance
isolation focuses on how to manage resource contentions to
ensure that tenants can achieve guaranteed performance.

2.2 RDMA Overview

RDMA allows the NIC to directly transfer data between the
wire and the application memory. The networking protocol is
implemented in the NIC. Figure 2 presents the overview of
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Figure 2: Overview of RDMA workflow. Verbs processing logics
are heavily offloaded to the RNIC.

the RDMA workflow. It classifies standard RDMA program-
ming interface, a.k.a., verbs, into two categories: control and
data. An application first needs to call several control verbs
to allocate necessary objects, such as queue pair (QP) and
completion queue (CQ), to set up a reliable connection (RC),
an unreliable connection (UC), or an unreliable datagram
(UD) transmission endpoint. Then the application needs to
register a memory region (MR). This registration essentially
pins the memory in the host DRAM and obtains the mapping
from virtual addresses to physical addresses, which enables
the RNIC to directly read from or write to this memory re-
gion. All these control verbs are processed by the following
procedure: RDMA’s userspace libraries and kernel drivers
process the verb request, generate a request command, put
the command in a negotiated command queue, and ring the
RNIC’s doorbell (e.g., memory-mapped registers). The RNIC
fetches the command from the command queue, processes it,
and pushes the response back to the queue. The drivers then
process the response and return the object to the application.

After the above initialization, the application can start data
transmissions between local and remote memory. There are
several types of operations that applications can use, such as
SEND/RECV, WRITE, READ, and ATOMIC. We name these
operations as data verbs. To issue a data verb, the applica-
tion generally posts a request to its send queue and rings the
RNIC’s doorbell through userspace libraries. The RNIC then
parses the request, reads data from the host memory, segments
data into packets, and transmits packets. This procedure by-
passes the kernel. There are certain differences in processing
different types of requests. For example, for SEND/RECV
messages, the receiver should post enough RECV requests be-
fore the sender issues SEND requests. Otherwise, the incom-
ing SEND requests may be dropped or need retransmissions
because the receiver RNIC lacks receive requests to process
them, which is known as the receive not ready (RNR) error.
For WRITE/READ data to/from the remote end or execute
ATOMIC operations, the sender should specify correct remote
virtual addresses and memory keys. An invalid address or a
wrong key will trigger a memory protection error and cause
the QP to transition into the error state.

2.3 Why RDMA Performance Isolation is Hard?

As shown above, RDMA offloads many host network func-
tionalities to the RNIC, which has many invisible hardware
components, and each component may individually become a
performance bottleneck. Figure 3 shows the hardware com-
ponents of a commodity RNIC. We draw this figure based on
publicly available documents from NVIDIA [44, 46, 48]. In
addition to the packet buffers (TX/RX Buffer), the RNIC also
has multiple processing units (PU) and many types of internal
caches. Each internal cache is used to store a specific type of
metadata. For example, in NVIDIA RNICs, the Interconnect
Context Memory (ICM) cache stores QP contexts; the Mem-
ory Translation Table (MTT) and Memory Protection Table
(MPT) store entries for memory address translation and pro-
tection information; and the Work Queue Entry (WQE) cache
stores prefetched send WQEs and posted receive WQEs. As
these caches are derived from the design needs, other RNICs
include similar components. We name these RNIC hardware
components microarchitecture resources based on the anal-
ogy for CPU hardware. CPUs are designed to conform to
a standard instruction set architecture (e.g., ARM, x86), but
the CPU designers can make the microarchitecture-level deci-
sions, such as how many levels of caches and the cache sizes.
RNICs are similar because RNIC vendors have to provide the
same programming interface for RDMA application develop-
ers, but the vendors can decide on these microarchitecture-
level details, e.g., RNIC caches.

Many previous efforts have already identified some im-
pacts of these microarchitecture resources on RDMA applica-
tion performance. For example, [5, 29, 50] find that an RNIC
caches QP contexts. A QP context cache miss can trigger
an additional PCIe round trip for the RNIC to fetch the con-
text from the host DRAM, thus degrading application per-
formance. For example, 200 connections can cause an 90%
request rate drop on NVIDIA ConnectX-3 NIC [5]. However,
these efforts study microarchitecture resources from the per-
spective of an application developer. After a performance
degradation, they identify the bottleneck resource, seek more
efficient methods to use data verbs, and modify their applica-
tions correspondingly.

However, in public clouds, cloud providers have no control
over tenants’ applications. Tenants thus can consume RNIC’s
microarchitecture resources as they wish, even maliciously.
Therefore, from the perspective of the cloud provider, we need
to understand the microarchitecture resource consumption of
most of (if not all) RDMA verbs, not just common data verbs.
Only with this knowledge can we properly allocate RNIC’s
microarchitecture resources to different tenants to deliver
predictable performance.

3 RNIC Microarchitecture Resources
In this section, we present a study on all the RNIC microarchi-
tecture resources that we are currently aware of. Prior works
have already identified several particular forms of resource



Memory
Device

PCIe
Network

RX Pipeline
(Processing Unit)

ICM Cache

MTT/MPT
Cache

TX Pipeline
(Processing Unit)

RX Buffer

TX Buffer

WQE Cache

(4)

(1) (2)
(2) (2)

(6)

(6)

Data Execution Flow
Request for metadata from NIC Cache Metadata from NIC cache

Request for metadata from DRAM Metadata from host DRAM

(3)

(5)

Figure 3: RDMA NIC microarchitecture hardware details: when the doorbell is rung, the RNIC first fetches the control/data verbs request from
the host DRAM. (1) To fetch and process this request, the RNIC may need several metadata (e.g., QP contexts) and there are different types of
caches inside the RNIC that can store this metadata. The RNIC can get the metadata directly from these caches, (2) or fetch them from DRAM
if a cache miss happens (red lines in the figure). Then the RNIC processes the request and (3) sends the response back to the host DRAM for
control verbs or issues DMA requests to read payload for data verbs. After (4) reading data from the host DRAM, the RNIC (5) processes the
data into network packets and (6) sends them to the fabric. The symmetric receiver side is not shown for simplicity.

contention. But our goal here is to systematically study all
possible types of resource contention. For each microarchitec-
ture resource, we study how it is consumed by three categories
of RDMA operations: (1) control verbs that allocate objects
for applications (e.g., ibv_create_qp), (2) data verbs that
initiate data transfer (e.g., ibv_post_send), and (3) excep-
tion handling operations that handle exceptions or errors (e.g.,
RNR errors). Due to space limitations, we first present a few
key findings that have significant implications on RNIC perfor-
mance isolation. After that, we summarize several other find-
ings. We present a detailed analysis of NVIDIA’s responses
to these findings in Appendix B.

3.1 Methodology

Our findings center around how to exhaust RNIC microarchi-
tecture resources through the verbs interface [21], the stan-
dard RDMA programming API. For each key finding, we
demonstrate it with a concrete setting, which consists of a
victim workload and an attacker workload. Although we use
the terminology attacker, the attacker tenant does not get
unauthorized access to other tenants through vulnerabilities.
Instead, the attacker is just a normal RDMA application that
issues standard RDMA verbs. Each tenant has one client and
one server. The clients of the victim and the attacker locate
on the same physical machine and share the same RNIC.
The servers of the victim and the attacker are colocated on
a different physical server. During the measurement, we do
not enable any isolation mechanism. We will study existing
performance isolation solutions in §5.

We focus on the performance interference between the
victim and the attacker through the exhaustion of microar-
chitecture resources. We first run only the victim to saturate
the link bandwidth capacity (bits per second) or the RNIC’s

maximum request rate (requests per second). We then start
the attacker and measure the two metrics for both the victim
and the attacker. If there is no microarchitecture resource con-
tention, the sum of the performance metrics of the two tenants
should match the RNIC’s limit in the specification. Modern
RNICs specify their bandwidth capacity and request rate lim-
its. If the sum of the two tenants’ performance metrics falls
below both specified limits, we attribute this to the contention
of microarchitecture resources. For example, assume there is
no attacker, and the victim can achieve 100 Gbps. However,
with an X Gbps attacker, the victim reduces to Y Gbps, and
X +Y < 100. Let us also assume the total request rate is below
the RNIC specification. In this situation, we conclude that
some microarchitecture resource is bottlenecked. The traffic
is using RC connection unless otherwise noted.

We test four types of 100 Gbps RNICs: NVIDIA
ConnectX-5 EN and ConnectX-6 Dx, Chelsio T62100-LP-
CR, and Intel E810. NVIDIA NICs runs RoCE, and the Chel-
sio NIC runs iWARP. Intel E810 supports both RoCE and
iWARP, but we currently only test its RoCE implementation.
RoCE and iWARP are two standard ways to run RDMA
over Ethernet-based networks. Our testbed consists of two
servers, each equipped with an RNIC, and the two RNICs
are connected via a 100 Gbps switch. For NVIDIA RNICs,
we have access to their hardware counters, e.g., cache miss
counters, through their network adapter management tool
NEO-Host [44]. These hardware counters allow us to pin-
point which resource is oversubscribed. For example, when
the ICM cache miss counter increases quickly with a certain
application workload, we learn that this workload heavily uses
this cache, making it oversubscribed. Since other RNICs do
not expose such counters, we experiment other RNICs based
on their end-to-end performance metrics (e.g., bandwidth).



Scenarios Alone Registration Deregistration
BW / Gbps 96.6 95.9 48.0
Miss Rate 17.2% 22.9% 49.1%

Table 1: MR control verbs exhaust the MTT cache and reduce band-
width.

3.2 NIC Caches

We are aware that an RNIC has at least three types of caches,
as shown in Figure 3. The RNIC stores several types of
metadata in these caches to accelerate the request processing,
such as the QP contexts in the ICM cache. Prior works have
identified some RNIC cache contention problems caused by
data verbs with particular patterns. For example, transmitting
small messages across many RC QPs simultaneously and
random accesses to a large number of memory regions can
cause certain types of severe cache misses (e.g., ICM and
MTT/MPT) [29, 53]. ScaleRPC [5] found that this scalability
problem can reduce the WRITE request rate by 90%.

In addition to these well-known problems, we observe a
new, and even more severe way to exhaust caches:

Key finding #1: control verbs can cause excessive cache
misses and a drastic performance reduction. Control verbs
(e.g., ibv_reg_mr) are used to create and destroy objects like
MRs and QPs, which will be used by data verbs to transfer
data. To the best of our knowledge, there is no study on how
control verbs consume RNIC microarchitecture resources.
We find that control verbs can easily trigger excessive cache
misses, thus degrading bandwidth and request rate.

We demonstrate this finding with a simple experiment on
NVIDIA ConnectX-5 RNICs. We let the victim tenant use
6 cores, 16 connections per core, to issue 512B WRITE re-
quests to exhaust the bandwidth capacity of the RNIC (i.e.,
100 Gbps). Table 1 shows the results. The victim can achieve
96.6 Gbps with 17.2% MTT cache miss rate. The victim can
still achieve line rate under such cache miss rate because
QP multiplexing and the RNIC pipeline design can mask the
overhead of cache misses to some degree. We let a single-
threaded attacker keep registering memory regions (MRs)
using ibv_reg_mr (∼5K registration per second) on the vic-
tim’s sender side. In this scenario, the victim’s bandwidth is
almost not affected, staying at 95.9 Gbps with the miss rate
slightly increased to 22.9%. However, if the attacker keeps
deregistering MRs, we can see a significant impact on the
victim: the cache miss rate increases to 49.1%, and the band-
width degrades to 48 Gbps. The overhead under such a high
cache miss rate becomes significant and can no longer be
masked by the RNIC processing pipeline. It is worthwhile to
note that the attacker does not need to issue any data verbs,
so the attacker consumes no network bandwidth or request
rate at all. Fortunately, we observe that such interference is
negligible at the receiver side.

Compared with data verbs, we find that control verbs are

easier to cause performance interference. To overfill cache
resources, we need to launch enough in-flight data verbs and
force them to randomly access a large number of objects (e.g.,
MRs). For example, on NVIDIA ConnectX-5 RNIC, we find
that it takes 6 threads to access more than 18K MRs with
96 QPs to cause serious enough MTT cache misses that can
degrade bandwidth by 40.1%. We believe cache misses due to
data verbs will become less serious since RNIC vendors keep
increasing on-chip cache resources. In contrast, control verbs
impact cache resources by their special semantics instead of
simply consuming them, and thus the impact from control
verbs can be hard to mitigate. For example, we speculate that
the MR deregistration may invalidate the entire MTT/MPT
cache to avoid accessing outdated MRs. This causes cache
misses for accessing other MRs.

We also conduct the same experiments on Chelsio and Intel
NICs, and we observe similar results.

3.3 Processing Units

The RNIC has several processing units (PUs) to process verbs
requests. Due to the lack of public available counters to mon-
itor the status of PUs, we use the request rate as the metric
to measure how PUs are consumed by different verbs. We
summarize the following two key findings:

Key finding #2: performance interference between differ-
ent data verbs depends on the complexity of verbs. Dif-
ferent data verbs have different complexities. Simple verbs,
like send and read, only copy data between machines. Com-
plex verbs, such as fetch_and_add, atomically add a 64-bit
value to the memory of a remote address. This operation lever-
ages PCIe features (e.g., read-modify-write transactions), and
may also acquire a lock on the target address. These complex
verbs consume more PU resources, resulting in a lower re-
quest rate [29]. Our new discovery here is that this difference
in resource consumption can also open a new pathway for per-
formance interference through resource exhaustion: a victim’s
performance can be substantially penalized when colocated
with an attacker that uses complex verbs intensively.

To understand this effect, we first measure the data verbs
request rate when competing with other data verbs. We begin
with the NVIDIA 100 Gbps ConnectX-5 RNIC. We set up
two workloads for each test, and each workload runs 8 QPs
across 8 dedicated CPU cores to saturate the RNIC’s rate. To
avoid RNIC severe cache misses, we only use 128 QPs in
total and 16 MRs. We observe less than 1% cache miss in all
the PU tests. To avoid reaching the bandwidth capacity limit,
we use 8B as the request size of all data verbs. We first set up
one workload (victim) using a particular type of data verbs,
and then set up the attacker workload with different types of
data verbs. We show their request rate results in Figure 4.

Our first takeaway is that in addition to the ATOMIC opera-
tions [29], the READ operations are also more expensive than
SEND/RECV and WRITE. When they are running alone (as
victim traffic), FAA and CAS only achieve 5.2 Mrps and 4.8
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Mrps respectively. READ achieves approximately 60 Mrps.
SEND and WRITE can achieve more than 90 Mrps.

The second and the more important takeaway is that the
contention behavior between different combinations of data
verb operations can vary. For example, when the victim runs a
READ workload alone, it can achieve 60 Mrps. If the attacker
runs a CAS workload, the victim’s request rate immediately
drops to 3 Mrps. If the attacker runs a READ workload, the
victim’s request rate only drops to 30 Mrps. This means the
complex verbs (e.g., CAS) can consume more resources and
penalize other colocated verb workloads. One non-intuitive
behavior we want to highlight is that the request rate of the vic-
tim running FAA or CAS can actually increase if the attacker
runs a SEND or WRITE workload under this setting1.

We also conduct similar tests on 100 Gbps Chelsio T62100-
LP-CR RNIC, and the results are shown in Figure 5. This
iWARP RNIC does not support ATOMIC operations. We ob-
serve that the iWARP RNIC’s request rate for all types of data
verbs is lower compared with RoCE RNICs, which matches
findings from previous works [8, 49, 71]. We find that the
contention among data verbs on Chelsio’s RNIC also varies.
For example, the victim with WRITE workload can achieve
4.76 Mrps without interference. The attacker can cause the
victim’s request rate to drop 55.0% with SEND workload and
73.1% with READ workload. The specific patterns are differ-
ent from NVIDIA RNIC, but this result still demonstrates our
key finding: the PU overhead of different data verbs varies.

Key finding #3: error handling can stall RNIC processing
units and hang all the applications. RNICs need to handle a
few types of errors, including transport timeout (the responder
side does not send an ACK or NACK), Receive Not Ready

1We report this to the RNIC vendor and this observation is acknowledged.
However, the root cause currently has not been figured out yet.

Scenario Victim Bandwidth SEND Bandwidth
Victim Only 97.07 -

w/o RNR 93.53 4.01
w/ RNR 0.018 0

Table 2: The impact of RNR errors on bandwidth. The unit is Gbps.

(RNR) error (the responder does not have enough receive
requests for arriving send requests), local or remote protection
error (the posted request does not reference a valid local or
remote memory region), and local operation error (an opcode
is operated on the wrong type of QP). Handling these errors
require resources from RNIC processing units and some errors
can be expensive for RNICs to handle.

On NVIDIA ConnectX-5 and ConnectX-6 RNICs, we find
handling RNR errors can completely stall the RNIC process-
ing units. For the victim, we use Perftest [56] to keep 128
outstanding 64KB WRITE requests on a single QP to saturate
the bandwidth capacity. For the attacker, we only use a single
QP (i.e., the SEND application in the table) to keep only one
in-flight 4KB SEND request to consume a small amount of
bandwidth. As shown in Table 2, if the SEND application
generates traffic normally (e.g., the responder posts enough
receive requests), it consumes 4 Gbps bandwidth, and the
bandwidth for the victim only drops approximately 3.5 Gbps.
However, when the SEND application triggers RNR errors
(e.g., the responder side does not post any receive requests),
both the SEND application and the victim are stalled. We
test this RNR errors with both directions and see the same
results. The reason is that the RNIC of the RNR receiver is
stalled, and the RNIC cannot even process the ACK packet.
The victim therefore is stalled even when they are sending
traffics in the opposite direction.

We conduct the same experiments using both Intel and
Chelsio NICs. We observe that the victim’s QP connections
are also terminated unexpectedly during data transfer for Intel
E810. Fortunately, we do not see such RNR issue for Chelsio
T62100-LP-CR. Our best guess is that the iWARP is designed
on the top of TCP and aimed at running on a lossy fabric, so
it may have a more effective error handling mechanism.

3.4 PCIe Bandwidth

The RNIC is connected to the PCIe controller and transfers
data from/to the CPU using PCIe lanes. The impact of PCIe



on the networking stacks has been studied by several prior
works [29, 34, 52]. Based on existing PCIe models, we fur-
ther study how RDMA verbs consume and even use up the
PCIe bandwidth. Previous works have already identified how
RDMA loopback traffic can exhaust PCIe bandwidth [26, 33].
We therefore focus on the normal RDMA TX and RX traffic.
To transfer an RDMA message, PCIe introduces the following
types of extra bytes: (1) an MMIO to ring the doorbell on the
RNIC (64B, depending on cache line size), (2) a Work Queue
Element (WQE) (36B or 64B), (3) the PCIe protocol overhead
(e.g., TLP headers), and (4) extra PCIe operations triggered
by cache misses. Our key observation for PCIe bandwidth is:

Key finding #4: PCIe bandwidth will only become the
bottleneck when the request size is in a specific range. We
only need a single tenant to demonstrate this key finding. We
run the experiment on NVIDIA 100 Gbps ConnectX-5 RNIC.
The PCIe bandwidth capacity is 128 Gbps (PCIe Gen 3.0
x16). We use 96 QPs across 6 cores to saturate the PCIe TX
bandwidth. Each QP keeps 256 outstanding WRITE requests.
We vary the request size and collect both the NIC and the PCIe
bandwidth consumption by reading the RNIC’s counters. The
result is shown in Figure 6. We first observe that when the
payload size is small, the commodity RNIC can mitigate the
WQE overhead by embedding the small message in the WQE.
As shown in the green rectangle, when the request size is
smaller than 28B, increasing the request size does not cause
more PCIe bandwidth consumption because the payload is
embedded in the same MMIO operation with the WQE.

Our second observation is that PCIe TX bandwidth may
only become the bottleneck when the payload size of the
request is in a specific range. The reason is that short re-
quests are first throttled by the request rate before exhausting
PCIe bandwidth while large requests are always throttled by
the RNIC’s bandwidth capacity. We confirm this observa-
tion through a theoretical PCIe consumption model and we
present two concrete examples. We assume the network MTU
is 4096B and the maximum payload per PCIe transaction is
128B (the worst setting to maximize the PCIe overhead). The
TLP overhead depends on the implementation [52] and we
assume it as 20B, a typical size for a PCIe 3.0 device. Trans-
mitting a 29-byte message will consume at most 127 network
bytes and at least 189 PCIe bytes [29, 69]. Therefore, to satu-
rate the link bandwidth (100 Gbps), we need at least 148.8
Gbps PCIe bandwidth, which is much larger than the PCIe
3.0x16 capacity. Appendix A includes the detailed compu-
tation. Our measurement shows that the actual consumption
can be even higher, as shown in Figure 6. The consumption
model for PCIe RX bandwidth (i.e., the RNIC to the host) is
similar to that of TX. Additionally, too many cache misses
may also cause high PCIe bandwidth consumption due to lots
of PCIe reads to fetch metadata. However, in most scenarios,
the large number of cache misses will first slow down the
RNIC execution (e.g., introduce extra latency) and the PCIe
bandwidth is therefore less consumed. In our measurement
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Figure 6: The PCIe bandwidth and RNIC bandwidth consumed by
the application.

of cache misses, we do not observe cases where PCIe TX
bandwidth is exhausted.

Both the theoretical model and our experimental results
demonstrate that the PCIe bandwidth can become the bottle-
neck, but only for a particular request size range.

3.5 Other findings

We also have several other interesting findings. In the interest
of space, we only briefly present them here. However, we do
use these findings to guide our test suite design in §4.

Other finding #1: Data verbs contend for different RNIC
caches. We conduct the scalability test using different data
verbs, and observe different types of cache contention. For
example, a large number of RC QPs that issue READ and
WRITE will mainly cause ICM cache misses. A large number
of UD QPs that issue SEND/RECV requests or many RC
QPs that issue ATOMIC requests can cause severe RECV
WQE cache misses. This observation indicates that data verbs
contend for cache differently, similar to the contention on
RNIC PUs.

Other finding #2: Wide range access across many objects
(QP, CQ, MR) causes ICM cache misses. The scalability
issue has been well studied, but our measurement reveals new
observations. In addition to QP and MR, the context of the
completion queue (CQ) is also stored in the ICM cache. Thus,
accessing a large number of CQs can also trigger severe ICM
cache misses. In addition, allocating a large number of these
objects does not necessarily cause severe ICM cache misses.
Wide range access across the objects (i.e., poor locality) is the
key to triggering severe ICM cache misses and performance
degradation.

Other finding #3: The impact of control verbs is restricted
by its kernel involvement. We observe that all control verbs
are first processed by the kernel drivers, thus causing expen-
sive context switch. The execution rates of these control verbs
are usually throttled by the kernel instead of RNIC process-
ing. Therefore, control verbs have a limited impact on ex-
hausting RNIC PUs. However, they can still cause significant
performance interference and affect the other applications by
triggering severe cache misses, as our key finding #1 shows.



Data Verbs

Control Verbs

Processing Units

NIC Bandwidth

NIC Caches

Receiver not 
ready

PCIe Bandwidth

RNIC Error Handling

Post
Request

WRITE SEND
READ CASFAA

Transport 
timeout

Wide range accessCQ QP MR

Deallocation

Modification

AllocationObjects
CQQP

MR PD
Context

Figure 7: The relationship between verbs and microarchitecture
resources. The arrow indicates heavy resource consumption.

3.6 The Resource Consumption Model

We summarize our findings in an RDMA operation model
shown in Figure 7. This model describes which microarchitec-
ture resource a verb operation consumes heavily. Note that a
verb operation can also use other microarchitecture resources
that are not captured by our experiments. This is because the
usages of these resources are low and do not lead to resource
contention. This model is qualitative: we do not try to under-
stand the exact resource usage since we have no visibility into
proprietary RNIC hardware. For example, we know a certain
traffic pattern can trigger a certain type of cache misses, but
we does not figure out the total size of the cache or how much
of the cache an operation consumes. Even so, we show that
this model is sufficiently powerful for us to create the first test
suite for RNIC performance isolation, and it can capture a
wide range of workloads that can break existing performance
isolation solutions.

4 The Husky Test Suite
After we understand how different RDMA operations use
these microarchitecture resources, we can design a test suite
to evaluate performance isolation solutions. Our goal is the
following: given an RNIC hardware and a performance isola-
tion solution, we want to find a set of workloads combinations
for an attacker and a victim that can break the performance
isolation. We need to check different victim workloads for
completeness because different victim workloads are sensitive
to exhaustion of different microarchitecture resources.

Our test suite must be general: we will use it to test various
RNIC performance isolation solutions on different RNICs.
This means we cannot rely on tools and features from spe-
cific vendors, such as Mellanox Neo-Host [44]. In addition,
different RNICs have different amounts of microarchitecture
resources. And existing performance isolation solutions may
only be able to mitigate contention on specific resources.

To this end, we build Husky to systematically test and eval-
uate RNIC performance isolation solutions. Husky targets
at four types of resources: NIC bandwidth, PCIe bandwidth,
NIC PU, and NIC cache. For each type of resource, we de-
sign synthetic workloads with different types of behaviors
(e.g., control verbs) to exhaust this resource. More specifi-

cally, we exhaust NIC BW with long messages using different
opcodes (e.g., WRITE); we exhaust PCIe bandwidth with
loopback traffic and specific message patterns (from key find-
ing #4); we exhaust NIC PU with expensive data verbs (key
finding #2), small messages, or error handling behaviors (key
finding #3); we exhaust different types of RNIC cache with
intensive control verbs (key finding #1) and a wide range
access of data verbs. We vary parameters (e.g., connection
types) of some synthetic workloads to be more inclusive. In
all, Husky includes 52 attacker synthetic workloads (6 for
NIC BW, 4 for PCIe BW, 14 for NIC PU, and 28 for NIC
cache) and 20 synthetic victim workloads. Many of the at-
tacker workloads cannot be directly generated with existing
RDMA traffic engines. We therefore extend Collie [33]’s traf-
fic engine, the most flexible one to the best of our knowledge,
to generate these synthetic RDMA traffics, including flexible
control verbs workloads and error handling workloads.

Husky’s framework can also easily allow running real ap-
plications as additional victim workloads. Husky currently
contains two real applications, including the OSU bench-
mark [54] and eRPC-based Masstree key-value store [27, 40].
The OSU benchmark contains workloads such as allreduce
and allgather. Note that we can integrate any RDMA applica-
tions into Husky. We test all the (victim, attacker) workload
pair exhaustively from our test suite.

One key question is how to define a violation of perfor-
mance isolation. Our definition of violation depends on the
concrete isolation solution. Husky uses a user-specified predi-
cate to compute the expected performance results when isola-
tion is enabled. Husky compares the actual performance with
the expected performance to identify violation. For example,
most of existing performance isolation solutions only provide
bandwidth guarantee. The expected performance for these iso-
lation solutions therefore is a guaranteed bandwidth, Bg. We
assume the application can consume bandwidth of Ba when
running alone. The bandwidth of this application should be at
least (1−α)min(Ba,Bg) under any attacker workload, where
α is a tolerance level. A lower α means stricter isolation. We
use an example to demonstrate how this definition works: let
us assume that attacker and the victim are configured to share
the same 100 Gbps network and we set α to be 25%. If the
victim can achieve 60 Gbps when running alone, it should be
able to achieve at least (1− 25%)min(60,50) = 37.5 Gbps
under the attacker’s workload. If the victim can only achieve
10 Gbps when running alone, its consumed bandwidth should
not be less than (1−25%)min(10,50) = 7.5 Gbps. In prac-
tice, we find all existing performance isolation solutions for
commodity RNICs are bandwidth guarantee or can be trans-
lated into bandwidth guarantee. We use this definition for
performance isolation violation in §5 and set α to be 25%.

5 Evaluation
We use a NVIDIA testbed to evaluate existing RDMA perfor-
mance isolation solutions. There are two servers in the testbed,



Resource Processing Units RNIC Cache PCIe BW
Isolation

Mechanism
Error Handling

(RC)
Error Handling

(UD & UC) Data Verbs Control Verbs Data Verbs Data Verbs

SR-IOV ✓ ✗ ✗ ✗ ✗ ✗

HW TC ✗ ✗ ✗ ✗ ✗ ✗

SR-IOV + HW TC ✓ ✗ ✗ ✗ ✗ ✗

Justitia ✗ ✗ ✓ ✗ ✗ ✗

Justitia + HW TC ✗ ✗ ✓ ✗ ✗ ✗

Table 3: Performance isolation violation caused by exhausting microarchitecture resource. Justitia can only provide isolation among applications
using the same function, so cannot be combined with SR-IOV. ✓ means performance isolation is properly enforced. ✗ means Husky can find a
workload pair (attacker, victim) to violate performance isolation by exhausting microarchitecture resources.

and each is equipped with one 100 Gbps NVIDIA ConnectX-
5 RNIC. The server is equipped with Intel Xeon Gold 5215
CPUs, and the RNICs are connected to the server through
PCIe 3.0 x16. The RNICs are connected to a 100 Gbps
NVIDIA switch. We use Ubuntu 20.04 and the kernel version
is 5.11. For NVIDIA NICs, the kernel drivers and verbs li-
braries are both from 5.4-OFED. The firmware version is
16.31.1014. We also conduct all the experiments also on
NVIDIA ConnectX-6 RNICs and the result is similar.

We evaluate 3 different isolation solutions provided by
RNIC vendors and prior work: (1) NVIDIA separate hard-
ware traffic class (HW TC). Cloud operators can set separate
TCs for different tenants to use, which separate the RNIC
bandwidth and packet buffers [47] to enforce performance
isolation. Modern RNICs typically only have 8 traffic classes.
This means we cannot use HW TC when we want to colocate
more than 8 tenants in a physical server. (2) NVIDIA SR-IOV.
Though the SR-IOV technique is designed for hardware vir-
tualization, it provides separate virtual functions with some
separated resources to different tenants and actually achieves
some degrees of performance isolation [45]. (3) Justitia, a
software-based performance isolation solution [71]. Justitia
implements data verbs rate-limiting and pacing in RDMA
userspace libraries to enforce performance isolation. This
means Justitia has no security: malicious applications can
easily circumvent the userspace library. Although Justitia’s
software architecture does not target a multi-tenant public
cloud environment, we still use Husky to evaluate the effect
of its isolation policy (e.g., its token-based algorithm). We
also evaluate all the possible combinations of the above solu-
tions2. Unfortunately, though we have a testbed with Chelsio
T62100-LP-CR and Intel E810 NICs, we did not enable their
hardware-based isolation mechanisms. Justitia also does not
support Chelsio or Intel drivers. We therefore are not able to
conduct the same evaluation on Chelsio or Intel NICs. 3

2We do not test Justitia with SR-IOV because Justitia only isolates traffic
through the same device. When SR-IOV is enabled, tenants are using different
devices (i.e., VF) and Justitia does not work for that scenario.

3We contact the NIC vendors and have multiple rounds of conversations
with their experts. However, we still fail to enable any hardware isolation
solution for RDMA on both NICs. In addition, we are not aware of any prior
work that can set up such RDMA isolation.

5.1 Testing Existing Performance Isolation Solutions

Based on the types of verbs and the exhausted resources, we
categorize the workloads generated by Husky into 6 groups.
We distinguish the error handling of RC from UD & UC be-
cause they cause different behaviors of RNIC PU, and we
observe some isolation solution (e.g., SR-IOV) provides dif-
ferent degrees of isolation on these PU behaviors.

We first take a look at the hardware-based isolation mecha-
nism provided by NVIDIA. For NVIDIA SR-IOV, we enable
two virtual functions (VF) and assign both the victim ten-
ant and the attacker tenant with one VF. We also enable the
VF-based rate limiter and restrict the maximal TX bandwidth
of each tenant to be 50 Gbps, which is a typical fair sharing
setting for the public multi-tenant environment. Given this
configuration, we therefore define the isolation violation for
NVIDIA SR-IOV as the victim’s consumed bandwidth (in
terms of bits per second) being reduced by the attacker to
less than (1−α)min(50,Ba), where α is 25% and Ba is the
victim’s bandwidth without attack. For NVIDIA HW TC, we
assign each tenant with a dedicated TC. For example, the vic-
tim exclusively uses TC 0 and the attacker exclusively uses
TC 3. We configure TC 0 and TC 3 to equally share the RNIC
bandwidth and the NIC buffer (which stores the packets, dif-
ferent from the cache). The violation definition for NVIDIA
HW TC therefore is the same as that of NVIDIA SR-IOV.

The first three rows of Table 3 show the isolation effect
provided by SR-IOV, HW TC, and the combination of them.
Unfortunately, we find both SR-IOV and HW TC fail to pro-
vide enough isolation on RNIC’s microarchitecture resources.
For example, by exhausting RNIC’s cache through either con-
trol verbs or data verbs, Husky can successfully affect the
colocated victim’s applications, even when both SR-IOV and
HW TC are enabled. The key reason is that both SR-IOV
and HW TC only isolate the architectural resources (e.g., link
bandwidth) and do not restrict the cache usage of a single
tenant. Husky therefore is able to use an attacker workload
that exhausts RNIC cache, such as MTT/MPT cache. Other
applications would suffer from severe cache miss and hence
the performance drop. In addition, we find that although SR-
IOV is mainly aimed at virtualization, it has indeed enforced
some isolation, especially for RNIC PUs. The RC RNR error



handling can cause RNIC PUs to pause and even hang the
colocated applications if there is no performance isolation
mechanism enabled. With SR-IOV, the RC RNR error does
not affect tenants running on other VFs. However, the similar
RNR exception handling process for UD and UC still violates
the isolation of SR-IOV. Due to the RNIC’s black box nature,
we do not know the root cause of such a difference. Our best
guess is that some part of the RNIC’s PUs (e.g., that handles
RC RNR) is isolated by different VFs, while other parts are
not well isolated. These hardware-based solutions also cannot
isolate PCIe bandwidth well. We observe that an attacker can
consume substantial PCIe bandwidth and reduce the victim’s
usable bandwidth.

We then evaluate the software-based solution, Justitia. Justi-
tia is not designed for the public cloud and requires the tenant
to cooperate (e.g., using modified RDMA libraries). Husky
can certainly break its isolation by bypassing the modified
libraries, but this would defeat the purpose of testing Justitia.
We therefore require all of Husky’s traffics (both the victim
and the attacker) to go through Justitia’s modified drivers and
be paced by Justitia. In addition, Justitia only supports limited
types of data verbs on the latest drivers (i.e., mlx5), so we
restrict the applications to only use the opcodes that Justitia
supports. Justitia aims at providing each tenant a fair share
of the NIC resource. We only set up two tenants, so we sim-
ply define the violation of Justitia as the victim’s bandwidth
is less than (1−α)min(Ba,50), similar to the definition for
SR-IOV. We also test the combination of Justitia and HW TC.

As shown in Table 3, Justitia does provide some PU iso-
lation but to a limited extent. For example, Justitia takes the
RNIC’s request rate (i.e., execution throughput) into its iso-
lation consideration. It therefore uses a pacer to control the
request rate for each tenant and successfully prevent a single
tenant from posting a large number of requests to exhaust
the PUs. However, its isolation is violated when the attacker
keeps posting requests that trigger error handling on the RNIC.
The reason is that these errors are detected and handled by
RNIC, which is out of Justitia’s control. In addition, Justitia
does not take cache and PCIe into consideration. The attacker
tenant therefore can still exhaust the RNIC cache and PCIe
bandwidth and cause other tenants to suffer from excessive
cache misses or low usable PCIe bandwidth.

It is worthwhile to note that these solutions already provide
more or less tolerable isolation for architectural resources,
e.g., NIC bandwidth. Husky includes a set of workloads that
only contend for NIC bandwidth, and we do not see such
violation on those workloads when enabling these solutions.
However, ignoring microarchitecture resources makes these
solutions insufficient for real public cloud deployment.

5.2 Impact for Real Applications

Next, we conduct experiments on a larger testbed to study
how microarchitecture resource exhaustion impacts real ap-
plication workloads when using state-of-the-art performance

isolation solutions. We use the allreduce workload [54] on
an RDMA-based MPI implementation [55] and eRPC-based
Masstree (a key-value store) [27, 40] as two real victim appli-
cations. Our testbed consists of four physical servers. Each
server is equipped with one 100 Gbps NVIDIA ConnectX-5
RNIC. The other settings are the same as §5.1. The victim ap-
plications run their VMs on all the four servers. The attacker
tenant controls two VMs, each on a different server. We set
up the testbed this way to emulate a real multi-tenant environ-
ment because an attacker may not have VMs colocated with
all the victim’s VMs. However, our results demonstrate that
violation of performance isolation in a subset of the victim’s
VMs is already enough to substantially reduce the overall
end-to-end performance of the real distributed applications.

For protection mechanisms, we enable either SR-IOV +
HW TC or Justitia + HW TC to provide isolation for the col-
lective communication application. For eRPC-based Masstree,
we only enable SR-IOV + HW TC. This is because Justitia
only supports high-performance RDMA WRITE on the lat-
est NVIDIA drivers, but eRPC-based Masstree leverages UD
SEND/RECV for its communication.

We use four types of attackers from the Husky test suite
to demonstrate our results: (1) BW attack is the baseline.
We use the standard Perftest [56] ib_write_bw to set up a
bandwidth-hungry application. It uses 16 RC QPs and each
QP keeps 128 outstanding 1 MB WRITE requests to saturate
the link bandwidth (consuming ∼50 Gbps when rate limiter
is enabled). BW attack does not target any microarchitecture
resources. (2) PCIe attack exhausts PCIe TX bandwidth.
It runs 36 RC QPs on 6 cores and keeps 128 outstanding
257 B WRITE requests. It also consumes almost 50 Gbps
link bandwidth (less than 20 Mrps) but causes more than
73 Gbps PCIe TX bandwidth consumption. This leaves only
about 50 Gbps usable PCIe TX bandwidth (i.e., less than
50 Gbps usable network bandwidth) for the victim. (3) Cache
attack exhausts RNIC cache. It runs 1536 RC QPs on 6 cores,
uses 12288 MRs and each QP keeps only a single 256 B
outstanding request. This attacker causes severe cache miss
and only uses less than 7 Gbps link bandwidth (i.e., 3 Mrps).
(4) PU attack pauses RNIC PUs. It runs 1 UC QP on a single
core and keeps 128 outstanding SEND/RECV requests. Its
receiver side does not post any receive requests, so the RNIC
has to handle many receive not ready exceptions. It consumes
less than 0.5 Gbps and less than 0.5 Mrps.

We begin with testing the RDMA-based allreduce work-
load. Allreduce is a collective communication operation
widely used in distributed deep learning training. It aggre-
gates a vector across all workers and propagates the result
back to all workers. We set up 2 workers on each host (8 in
total) to run allreduce. The allreduce buffer size is set to 1 MB.
We run allreduce continuously and record the execution rate
(allreduce operations per second). The raw rate without any
isolation mechanism and interference is shown as the leftmost
bars in the figure. The bar of no attack indicates the effect of
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Figure 8: Allreduce results under exhaustion of different resources.

enabling these isolation solutions. When Justitia is enabled,
the allreduce rate drops by 38.5%. One possible reason is that
Justitia uses a shim layer (the pacer) to exert sender admis-
sion control, which introduces extra performance overheads
compared to the hardware-based solutions. Since the allre-
duce workload only uses less than half of the NIC bandwidth
(23 Gbps), its performance under attack should be at least
(1−α)Pa, where α is 25% and Pa is its performance without
any attack. We can then compute a violation threshold in allre-
duce rate for each isolation solution based on the bandwidth
the victim should consume.

The result for allreduce is shown in Figure 8. The horizontal
red lines show the violation threshold. Bars under the red
line indicate isolation violation. Pa for the application with
Justitia + HW TC is 38.5% lower than that with SR-IOV +
HW TC. This means the violation threshold is also 38.5%
lower for Justitia + HW TC. We first observe that the BW
attack only causes a negligible performance drop for SR-
IOV + HW TC setting. And Justitia + HW TC also achieves
the bandwidth isolation goal within the tolerance. We then
observe that all the PCIe, Cache, and PU attacks successfully
violate the isolation provided by either Justitia + HW TC or
SR-IOV + HW TC. For example, the PCIe attack can cause
the performance of the allreduce application to drop 27.3%
for SR-IOV + HW TC and 42.1% for Justitia + HW TC. The
impact of the Cache attack is more significant. Allreduce
workload’s performance drops more than half (71.3%) for
Justitia + HW TC and almost half for SR-IOV + HW TC. We
observe that the PU attack is the most powerful. It can directly
stall the allreduce application by exhausting the RNIC PUs.

We use the same set of attackers to test the eRPC-based
Masstree. We use the default setting of eRPC-based Masstree
(e.g., key size and the number of threads). We set up the key-
value server in one physical server and three clients each in a
different physical server. We colocate one attacker VM with
the key-value server and another attacker VM with one of the
clients. We collect the execution rate (in terms of the number
of GET requests per second) and the latency from all the
clients. The Masstree server only uses 14 Mrps and less than
20 Gbps, so we define the isolation violation as the same as
the violation of allreduce. Figure 9 and Figure 10 show the
GET rates and the latency results. The SR-IOV + HW TC
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more or less achieves the BW isolation goal within tolerance.
We find that all microarchitecture resource exhaustion attacks
successfully violate the isolation for the client that is colocated
with an attacker VM. Similar to the allreduce workload, the
PU attacker stalls the entire key-value store system. Worse
still, it even pauses the clients that are not colocated with an
attacker VM. This is because we stall the key-value server.

Another observation is that the performance of eRPC-based
Masstree is impaired by the cache exhaustion attack but to
a very limited extent. One possible reason is that the eRPC
leverages UD transport. A UD QP does not need as much
connection metadata as an RC QP does and therefore is less
sensitive to the RNIC internal cache miss. In addition, we
find that the Masstree is more sensitive to PCIe exhaustion.
This is probably due to its small request size. According to
our key finding #4, requests of a relatively small size cause
more extra PCIe TX bandwidth consumption.

We have several high-level takeaways from the real appli-
cation results.

Takeaway #1: targeting microarchitecture resources
makes violating performance isolation easy. If we treat the
RNIC as a black box, it is quite difficult to break performance
isolation. The BW attack targets the bandwidth resource, and
we observe that all the existing solutions provide good pro-
tection. However, once we know a few more details about
how an RNIC works (e.g., the potential microarchitecture
resources), breaking isolation becomes simple. Our attack is
very efficient. For example, Cache Attack only needs 7 Gbps
and 3 Mrps. PU Attack stalls victims with even less bandwidth



and request rate. Note that these attacks are only targeting
publicly disclosed microarchitecture components.

Takeaway #2: applications’ sensitivity for resource con-
tention is different. Applications’ end-to-end performance
drops can be quite different even for the same attack. The
allreduce application is more sensitive to the cache exhaustion
while the Masstree is more vulnerable to the PCIe exhaustion.

Takeaway #3: distributed applications need performance
isolation on every single server. For both applications, the
attacker only has two VMs, but why does the application-level
performance drop substantially even if the application is run-
ning across four machines? Many modern distributed systems’
performance is usually bottlenecked by a few slowest workers
in the system. For example, in allreduce, each iteration re-
quires synchronization of all workers. Thus, our attack on one
or two workers can slow down the entire allreduce procedure.

5.3 Analysis for Existing Solutions

Our evaluation shows that all existing approaches fail to pro-
vide RDMA performance isolation.We now analyze the fun-
damental restrictions of these solutions and some potential
improvements we may achieve.

SR-IOV and separate HW TC. These hardware based
solutions already provide some hardware resource isolation
(e.g., the hardware queue and the on-NIC packet buffer). The-
oretically, RNIC vendors should be able to incorporate more
hardware isolation features to these solutions. For example,
to statically separate NIC PU or partition NIC cache for dif-
ferent VFs can help to build a better isolation mechanism
for SR-IOV. However, these hardware modifications are non-
trivial and can hardly be applied to existing hardware. RNIC
vendors usually release these new features together with their
new hardware products. Cloud providers thus cannot use these
features in existing hardware.

Justitia. Justitia uses delay to track resource contention
and paces RDMA data verbs to allocate network bandwidth
and executing rate among different tenants. As originally
designed, Justitia does not provide isolation for control verbs
or some RNIC resources (e.g,. RNIC cache). It is possible
that Justitia could be modified to control more resources,
but this requires more investigation. For example, the delay-
based verbs pacing approach taken by Justitia could possibly
detect RNIC cache resource contention as increases in latency
and pace tenants’ rate accordingly. However, it is unclear
if this approach could accurately detect contention and if
this approach would be responsive enough to prevent SLO
violations from interference. Further, it is likely that having
the RNIC provide per-tenant cache usage statistics could lead
to a simpler and more accurate solution.

6 Guidelines
Our results show that, unfortunately, no existing RNIC per-
formance isolation solution is sufficient. We analyze the fail-
ure of existing isolation solutions based on our key findings,

and we present several design guidelines for potential future
RDMA performance isolation work. These guidelines may
also be helpful for RDMA application developers to write
better RDMA applications under multi-tenant environments.

Hardware support for isolation is needed. Software ap-
proaches like Justitia [71] have a common problem. They only
monitor architecture-level metrics, e.g., latency, bandwidth,
and request rate. They cannot detect contention in microarchi-
tecture resources, e.g., caches, let alone manage and fair share
those resources. We believe future performance isolation so-
lutions will have to leverage hardware support, similar to how
modern hypervisors can use Intel Resource Director Technol-
ogy (RDT) to monitor and manage access to the last-level
cache and memory. NVIDIA RNICs expose several useful
hardware counters, but they are still insufficient. For example,
we can only observe cache misses, but we cannot manage the
cache access or split the cache for different tenants.

A layer of indirection is needed. RDMA means kernel
bypass for data verbs. This enables low latency and reduced
CPU overheads. So where should performance isolation be en-
forced? We believe that future performance isolation solutions
will require a layer of indirection either in NIC or in software.
Having the enforcement point in the userland RDMA library
(as Justitia) does not work, because it lacks security. Instead,
a software indirection can have a microkernel-like design,
with a set of cores running the isolation logic in a separate
protection domain [43]. RDMA performance isolation should
be enforced in such a central controller that takes over both
control verbs and data verbs.

Programmer, compiler, and library support for RDMA
applications. After a future performance isolation solution
is invented, applications may need modification as well. If
the future performance isolation solution requires strict par-
titioning of microarchitecture resources, this means each ap-
plication has limited microarchitecture resources to use and
can lead to substantially reduced performance. The amount of
microarchitecture resource an application uses may also vary
(depending on how many other tenants are on the same server
or other configurations). Building high-performance RDMA
applications will require additional effort for the programmer,
compiler, and application library to efficiently use these lim-
ited resources. For CPU cache, these efforts occurred in the
research community two decades ago [35, 36, 42].

7 Discussion

The impact of broken RDMA performance isolation. Our
evaluation shows that a malicious tenant can cause other ten-
ants’ to suffer from drastic performance drop or even get
stuck. In addition, a broken performance isolation exposes
vulnerability for malicious users to conduct side-channel at-
tacks. Since the tenant can affect others’ performance on the
same host, it can set up side channels that leak access pat-
terns of victim nodes or deliver information by affecting the



host’s performance in a pattern [65]. RDMA performance
isolation therefore is a critical feature for a secured RDMA
public cloud.

What RDMA performance isolation solution should cloud
providers use today? One good news is that we are not
aware of any cloud provider that currently using commodity
RNICs to provide RDMA-capable VMs with partitioned host
resources. To rent an RDMA-capable VM, customers have
to rent the entire physical machine. This means currently we
do not need an RNIC performance isolation solution at all,
because the RNIC only runs a single tenant’s traffic. To move
forward to multi-tenant usage of an RNIC, we believe per-
formance isolation is still a major blocker, and multi-tenancy
should not be enabled until a mature performance isolation
solution is ready, one that can at least pass our test suite.

Generalizability to other kernel bypass host networking
architectures. Our test suite design is based on the verbs
interface, which is RDMA-specific. However, we believe our
methodology should be generalizable to find violations of
performance isolation in other kernel bypass architectures,
e.g., DPDK [13], 1RMA [64], as these implementations com-
monly require RDMA-like mechanisms in the DMA portion
of the design. The industry trend today is to offload functions
to hardware accelerators. For example, RDMA is offload-
ing congestion control and reliable message delivery into the
hardware. Microarchitecture resources in hardware are criti-
cal to delivering these offloaded functions. Paying attention to
these microarchitecture resources for performance isolation
is going to be increasingly important.

8 Related Work

Microarchitecture resources in RNICs. The existence of
RNIC microarchitecture resources is well-known in the net-
working community, and many studies focus on how to design
RDMA applications to circumvent certain RNIC performance
anomalies due to these resources. For example, HERD [28],
FaSST [30], and eRPC [27] avoid using RDMA reliable con-
nection to mitigate the QP context cache miss for better scal-
ability. ScaleRPC [5] and Flock [50] multiplex reliable con-
nections in a time-sharing manner to mitigate the scalability
problem. Kalia et al. [29] studies the RNIC’s PCIe behaviors
and provides guidelines for writing efficient RDMA programs.
Unfortunately, these works only focus on optimizing applica-
tions to fully utilize the limited resources in RNICs. However,
public cloud providers cannot control the third-party tenants’
applications. Collie [33] conducts a systematic search on
RDMA performance anomalies, and the anomalies are mostly
due to oversubscribed microarchitecture resources. However,
since Collie only focuses on first-party traffic, it just builds
a search space based on normal operations. It therefore only
considers normal data verbs and fails to uncover findings
related to other types of behaviors. For example, the key find-
ings #1, #2, and #3 in §3 are fundamentally not covered by

Collie’s search space because Collie does not take control
verbs, error handling, and expensive atomic verbs into consid-
eration. In all, prior works focus more from the perspective of
application developers. Our work is on a complementary as-
pect by looking from the public cloud provider’s perspective:
how these microarchitecture resources affect performance
isolation. This requires us to be microarchitecture resource
aware and take a look at all types of RDMA behaviors, in-
cluding control verbs and error handling, because we need to
deal with misbehaving and even malicious tenants.

Other NIC performance isolation solutions. PicNIC [34]
provides isolation for both packet processing and bandwidth
on NIC. This allows latency-bound workloads not to be af-
fected by bandwidth-bound workloads. FairNIC [15] isolates
resources in SoC-based SmartNICs. Compared with them,
our work focuses on the RDMA-related resources on NICs.

Performance isolation in other contexts. Performance iso-
lation problems are not limited to NICs. Other server hard-
ware components also have this issue, and they already have
corresponding solutions. There exist several partitioning tech-
niques for CPU caches [11, 20] and memory bandwidth [22].
Network bandwidth in the network fabric is also a crucial
resource to isolate [1, 3, 4, 6, 16, 24, 25, 37, 58–60, 62, 68] as
well as the switch processing piplines [67].

9 Conclusion

RDMA is a promising networking technology to enable low
latency and high CPU efficiency in datacenter networks. To
enable RDMA in a multi-tenant environment, performance
isolation is an important property, and RDMA NICs (RNICs)
bring new challenges due to the existence of microarchitecture
resources (e.g., RNIC cache, processing units). We present an
RNIC operation model on how these resources are used by dif-
ferent RDMA operations. Using this model, we create Husky,
the first test suite to evaluate RNIC performance isolation
solutions. Our results show that none of the existing RNIC
performance isolation solutions provides sufficient isolation
against workloads that try to exhaust these microarchitecture
resources. Our findings are acknowledged and reproduced
by one of the largest RDMA NIC vendors. We believe that
building a usable RNIC performance isolation solution will
be a long battle.
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A Network v.s. PCIe
To transmit a payload through Ethernet-based IP-routed
RDMA network (i.e., RoCEv2), the network protocol intro-
duces the following overhead.

1. Ethernet overhead. Each Ethernet frame includes 14-
byte Ethernet (exclude VLAN) header and 4-bytes CRC
as L2 overhead. In addition, each Ethernet frame has L1
overhead - each frame is preceded by a 7-byte preamble
and 1-byte start-of-frame delimiter. The frame is also
followed by an inter-frame gap. The gap should be at
least 12-byte. The total Ethernet overhead per frame
therefore is 38-byte [23].

2. IP overhead. IP overhead comes from the IP header,
with a least size 20-byte.

3. UDP overhead. UDP overhead comes from the 8-byte
UDP header.

4. Infiniband overhead. The Infiniband protocol imple-
ments headers inside the UDP payload. A simple
WRITE message through reliable connection (RC) needs
12-byte Base Transport Header (BTH), 16-byte RDMA
Extended Transport Header (RETH), and 4-byte invari-
ant CRC. Hence, the Infiniband protocol overhead is at
least 32-byte [2].

To transmit the payload from the host DRAM to the RNIC,
the RNIC PCIe behaviors include the following overhead.

1. Ringing the doorbell. To post a work request, users need
to ring the RNIC’s doorbell through memory-mapped IO
(MMIO). Each MMIO has a fixed aligned size 64-byte.

2. Work Queue Element. The RNIC needs to fetch a work
queue element (WQE) from host DRAM to the NIC. A
WQE for RC/UC is 36-byte, and 68-byte for UD.

3. TLP overhead. Each PCIe transaction has PCIe Trans-
action Layer Packet (TLP) header, and the header size
varies for different PCIe implementation. We assume its
least size as 20-byte according to [29, 69].

We next shows the computation of the 29-byte payload
example in §3. The 29-byte payload is obviously less than
the MTU, and can be sent using a single network packet.
Therefore, the network bytes consumed by this payload is:

Bytes(network) = Bytes(payload)+Bytes(Ethernet)

+Bytes(IP)+Bytes(UDP)+Bytes(IB)

= 29+38+20+8+32

= 127(bytes)

For PCIe consumption, the 29-byte payload is larger than
the maximal inline size (28-byte). So it cannot be delivered



in the same PCIe transaction as the WQE. It therefore needs
three PCIe transactions: (1) Doorbell, (2) WQE, and (3) pay-
load, and consume the following bytes:

Bytes(PCIe) = Bytes(payload)+Bytes(payload TLP)

+Bytes(WQE)+Bytes(WQE TLP)

+Bytes(Doorbell)+Bytes(DB TLP)

= 29+20+36+20+64+20

= 189(bytes)

Therefore, the PCIe consumption for such payload when
saturating the link capacity (100 Gbps) is:

Bandwidth(PCIe) = Bandwidth(network)∗ Bytes(PCIe)
Bytes(network)

= 100∗ 189
127

= 148.8(Gbps)

B Response from NIC Vendors
We report our findings and results to the NIC vendors, in-
cluding NVIDIA, Intel, and Chelsio. NVIDIA, one of the
largest RDMA NIC vendors, has spent substantial effort on
acknowledging and reproducing our experiments. They have
successfully reproduced all of our findings in their own en-
vironment. In addition, NVIDIA provides us with detailed
analysis and feedback. We would like to share them here.

Key finding #1: control verbs can cause excessive cache
misses and a drastic performance reduction. NVIDIA
provides a more accurate analysis of this finding: the deregis-
tration control verbs can cause drastic performance reduc-
tion mainly because of the NIC internal QoS scheduling
policy. The deregistration control verbs have higher prior-
ity than other types of operations and will be scheduled first.
Consequently, these deregistration verbs trigger excessive
cache misses and cause the performance to drop drastically.
NVIDIA has already figured out a solution to address this
issue. The high-level idea is to tune the NIC internal QoS pol-
icy so that deregistration does not have such a high priority.
They are planning for a firmware upgrade to fix this issue.

Key finding #2: performance interference between dif-
ferent data verbs depends on the complexity of verbs.
NVIDIA is familiar with this phenomenon and will roll out
new firmware upgrades to address this issue.

Key finding #3: error handling can stall RNIC processing
units and hang all the applications. NVIDIA provides a
more accurate explanation of this phenomenon: for unreliable
transport types (UC and UD), there is not the same specific
RNR exception handling procedure as RC. Instead, they have
other processing logic that involves firmware that handles

out-of-order packets. This is the root cause of the perfor-
mance interference when attacking using unreliable transport
types. NVIDIA also provides a potential solution to mitigate
such interference. NVIDIA Connect-X series NICs support
monitoring per-VM consumption of the NIC resources. The
cloud operators therefore can enforce VM capabilities policy
based on the visibility of NIC resources consumption. Further-
more, NVIDIA is planning to introduce an additional layer of
protection in the coming NIC firmware/hardware release to
completely eliminate the attack vector for RC.

Key finding #4: PCIe bandwidth will only become the
bottleneck when the request size is in a specific range.
Though PCIe bandwidth contention is not a unique interfer-
ence brought by RDMA, NVIDIA still acknowledged and con-
firmed our observation on the PCIe consumption for RDMA
NIC.

We thank NVIDIA for their kind and great support. We
believe the above understanding will benefit cloud operators
and RDMA application developers. In addition, our collabo-
ration with NVIDIA also demonstrates how Husky can help
to improve existing RDMA solutions and build robust RDMA
performance isolation in the future.
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