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Abstract
In combinatorial causal bandits (CCB), the learning agent
chooses at most K variables in each round to intervene, col-
lects feedback from the observed variables, with the goal
of minimizing expected regret on the target variable Y . We
study under the context of binary generalized linear mod-
els (BGLMs) with a succinct parametric representation of
the causal models. We present the algorithm BGLM-OFU
for Markovian BGLMs (i.e. no hidden variables) based on
the maximum likelihood estimation method, and show that it
achieves O(

√
T log T ) regret, where T is the time horizon.

For the special case of linear models with hidden variables,
we apply causal inference techniques such as the do-calculus
to convert the original model into a Markovian model, and
then show that our BGLM-OFU algorithm and another algo-
rithm based on the linear regression both solve such linear
models with hidden variables. Our novelty includes (a) con-
sidering the combinatorial intervention action space and the
general causal models including ones with hidden variables,
(b) integrating and adapting techniques from diverse studies
such as generalized linear bandits and online influence max-
imization, and (c) avoiding unrealistic assumptions (such as
knowing the joint distribution of the parents of Y under all
interventions) and regret factors exponential to causal graph
size in prior studies.

1 Introduction
Causal bandit problem is first introduced in (Lattimore,
Lattimore, and Reid 2016). It consists of a causal graph
G = (X∪{Y }, E) indicating the causal relationship among
the observed variables, where the structure of the graph is
known but the underlying probability distributions govern-
ing the causal model are unknown. In each round, the learn-
ing agent selects one or a few variables in X to intervene,
gains the reward as the output of Y , and observes the values
of all variables in X ∪ {Y }. The goal is to either maximize
the cumulative reward over T rounds, or find the interven-
tion closest to the optimal one after T rounds. The former
setting, which is the one our study focuses on, is typically
translated to minimizing cumulative regret, which is defined
as the difference in reward between always playing the op-
timal intervention and playing interventions according to a
learning algorithm. Causal bandits can be applied in many
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settings that include causal relationships, such as medical
drug testing, policy making, scientific experimental process,
performance tuning, etc. Causal bandit is a form of multi-
armed bandit (cf. (Lattimore and Szepesvári 2020)), with the
main difference being that causal bandits may use the causal
relationship and more observed feedback to achieve a better
regret.

All the causal bandit studies so far (Lattimore, Lattimore,
and Reid 2016; Sen et al. 2017; Nair, Patil, and Sinha 2021;
Lu et al. 2020; Maiti, Nair, and Sinha 2021) focus on the
case where the number of possible interventions is small.
However, in many scenarios we need to intervene on a set
of variables and the number of possible choices of sets is
large. For example, in tuning performance of a large sys-
tem, one often needs to tune a large number of parameters
simultaneously to achieve the best system performance, and
in drug testing, a combination of several drugs with a num-
ber of possible dosages needs to be tested for the best result.
Intervening on a set of variables raises new challenges to
the learning problem, since the number of possible interven-
tions is exponentially large to the size of the causal graph.
In this paper, we address this challenge and propose the new
framework of combinatorial causal bandits (CCB) and its
solutions. In each round of CCB, the learning agent selects
a set of at most K observed variables in X to intervene in-
stead of one variable. Other aspects including the feedback
and reward remain the same.

We use the binary generalized linear models (BGLMs) to
give the causal model a succinct parametric representation
where all variables are binary. Using the maximum likeli-
hood estimation (MLE) method, we design an online learn-
ing algorithm BGLM-OFU for the causal models without
hidden variables (called Markovian models), and the algo-
rithm achieves O(

√
T log T ) regret, where T is the time

horizon. The algorithm is based on the earlier study on gen-
eralized linear bandits (Li, Lu, and Zhou 2017), but our
BGLM model is more general and thus requires new tech-
niques (such as a new initialization phase) to solve the prob-
lem. Our regret analysis also integrates results from online
influence maximization (Li et al. 2020; Zhang et al. 2022) in
order to obtain the final regret bound.

Furthermore, for the binary linear models (BLMs), we
show how to transform a BLM with hidden variables into
one without hidden variables by utilizing the tools in causal



inference such as do-calculus, and thus we can handle causal
model even with hidden variables in linear models. Then,
for BLMs, we show (a) the regret bound when applying the
BGLM-OFU algorithm to the linear model, and (b) a new
algorithm and its regret bound based on the linear regres-
sion method. We show a tradeoff between the MLE-based
BGLM-OFU algorithm and the linear-regression-based al-
gorithm on BLMs: the latter removes the assumption needed
by the former but has an extra factor in the regret bound. We
demonstrate effectiveness of our algorithms by experimen-
tal evaluations in appendix. Besides BLMs, we give similar
results for linear models with continuous variables. Due to
space limits, this part is put in appendix. Due to space limits,
our appendix is included in the full version (Feng and Chen
2022) on arXiv.

In summary, our contribution includes (a) proposing the
new combinatorial causal bandit framework, (b) considering
general causal models including ones with hidden variables,
(c) integrating and adapting techniques from diverse stud-
ies such as generalized linear bandits and online influence
maximization, and (d) achieving competitive online learn-
ing results without unrealistic assumptions and regret fac-
tors exponential to the causal graph size as appeared in prior
studies. The intrinsic connection between causal bandits and
online influence maximization revealed by this study may
further benefit researches in both directions.

2 Related Works
Causal Bandits. The causal bandit problem is first defined
in (Lattimore, Lattimore, and Reid 2016). The authors intro-
duce algorithms for a specific parallel model and more gen-
eral causal models to minimize the simple regret, defined as
the gap between the optimal reward and the reward of the
action obtain after T rounds. A similar algorithm to mini-
mize simple regret has also been proposed in (Nair, Patil,
and Sinha 2021) for a graph with no backdoor. To optimally
trade-off observations and interventions, they have also dis-
cussed the budgeted version of causal bandit when interven-
tions are more expensive than observations. Sen et al. (2017)
use the importance sampling method to propose an algo-
rithm to optimize simple regret when only soft intervention
on a single node is allowed. These studies all focus on sim-
ple regret for the pure exploration setting, while our work
focuses on cumulative regret. There are a few studies on the
cumulative regret of causal bandits (Lu et al. 2020; Nair,
Patil, and Sinha 2021; Maiti, Nair, and Sinha 2021). How-
ever, the algorithms in (Lu et al. 2020) and (Nair, Patil, and
Sinha 2021) are both under an unrealistic assumption that for
every intervention, the joint distribution of the parents of the
reward node Y is known. The algorithm in (Maiti, Nair, and
Sinha 2021) does not use this assumption, but it only works
on Markovian models without hidden variables. The regrets
in (Lu et al. 2020; Maiti, Nair, and Sinha 2021) also have a
factor exponential to the causal graph size. Yabe et al. (2018)
designs an algorithm by estimating each P (X|Pa(X)) for
X ∈ X ∪ {Y } that focuses on simple regret but works
for combinatorial settings. However, it requires the round
number T ≥

∑
X∈X 2|Pa(X)|, which is still unrealistic. We

avoid this by working on the BGLM model with a linear
number of parameters, and it results in completely differ-
ent techniques. Lee and Bareinboim (2018, 2019, 2020) also
consider the combinatorial settings, but they focus on em-
pirical studies, while we provide theoretical regret guaran-
tees. Furthermore, studying causal bandit problem without
the full casual structure is an important future direction. One
such study, (Lu, Meisami, and Tewari 2021), exists but it is
only for the atomic setting and has a strong assumption that
|Pa(Y )| = 1.

Combinatorial Multi-Armed Bandits. CCB can be
viewed as a type of combinatorial multi-armed bandits
(CMAB) (Chen, Wang, and Yuan 2013; Chen et al. 2016),
but the feedback model is not the semi-bandit model studied
in (Chen, Wang, and Yuan 2013; Chen et al. 2016). In partic-
ular, in CCB individual random variables cannot be treated
as base arms, because each intervention action changes the
distribution of the remaining variables, violating the i.i.d
assumption for base arm random variables across different
rounds. Interestingly, it has a closer connection to recent
studies on online influence maximization (OIM) with node-
level feedback (Li et al. 2020; Zhang et al. 2022). These
studies consider influence cascades in a social network fol-
lowing either the independent cascade (IC) or the linear
threshold (LT) model. In each round, one selects a set of at
most K seed nodes, observes the cascade process as which
nodes are activated in which steps, and obtains the reward
as the total number of nodes activated. The goal is to learn
the cascade model and minimize the cumulative regret. In-
fluence propagation is intrinsically a causal relationship, and
thus OIM has some intrinsic connection with CCB, and our
study does borrow techniques from (Li et al. 2020; Zhang
et al. 2022). However, there are a few key differences be-
tween OIM and CCB, such that we need adaptation and in-
tegration of OIM techniques into our setting: (a) OIM does
not consider hidden variables, while we do consider hidden
variables for causal graphs; (b) OIM allows the observation
of node activations at every time step, but in CCB we only
observe the final result of the variables; and (c) current stud-
ies in (Li et al. 2020; Zhang et al. 2022) only consider IC
and LT models, while we consider the more general BGLM
model, which includes IC model (see (Zhang et al. 2022) for
transformation from IC model to BGLM) and LT model as
two special cases.

Linear and Generalized Linear Bandits. Our work is also
based on some previous online learning studies on linear
and generalized linear bandits. Abbasi-Yadkori, Pál, and
Szepesvári (2011) propose an improved theoretical regret
bound for the linear stochastic multi-armed bandit problem.
Some of their proof techniques are used in our proofs. Li,
Lu, and Zhou (2017) propose an online algorithm and its
analysis based on MLE for generalized linear contextual
bandits, and our MLE method is adapted from this study.
However, our setting is much more complicated, in that (a)
we have a combinatorial action space, and (b) we have a
network of generalized linear relationships while they only
consider one generalized linear relationship. As the result,
our algorithm and analysis are also more sophisticated.



3 Model and Preliminaries
Following the convention in causal inference literature (e.g.
(Pearl 2009)), we use capital letters (U,X, Y . . .) to repre-
sent variables, and their corresponding lower-case letters to
represent their values. We use boldface letters such as X and
x to represent a set or a vector of variables or values.

A causal graph G = (U ∪ X ∪ {Y }, E) is a directed
acyclic graph where U ∪X ∪ {Y } are sets of nodes with
U being the set of unobserved or hidden nodes, X ∪ {Y }
being the set of observed nodes, Y is a special target node
with no outgoing edges, and E is the set of directed edges
connecting nodes in U ∪X ∪ {Y }. For simplicity, in this
paper we consider all variables in U ∪X ∪ {Y } are (0, 1)-
binary random variables. For a node X in the graph G, we
call its in-neighbor nodes in G the parents of X , denoted as
Pa(X), and the values taken by these parent random vari-
ables are denoted pa(X).

Following the causal Bayesian model, the causal influence
from the parents of X to X is modeled as the probability
distribution P (X|Pa(X)) for every possible value combi-
nation of Pa(X). Then, for each X , the full non-parametric
characterization of P (X|Pa(X)) requires 2|Pa(X)| values,
which would be difficult for learning. Therefore, we will
describe shortly the succinct parametric representation of
P (X|Pa(X)) as a generalized linear model to be used in
this paper.

The causal graph G is Markovian if there are no hidden
variables in G and every observed variable X has certain
randomness not caused by other observed parents. To model
this effect of the Markovian model, in this paper we dedi-
cate random variable X1 to be a special variable that always
takes the value 1 and is a parent of all other observed ran-
dom variables. We study the Markovian causal model first,
and in Section 5 we will consider causal models with more
general hidden variable forms.

An intervention in the causal model G is to force a subset
of observed variables S ⊆ X to take some predetermined
values s, to see its effect on the target variable Y . The in-
tervention on S to Y is denoted as E[Y |do(S = s)]. In this
paper, we study the selection of S to maximize the expected
value of Y , and our parametric model would have the mono-
tonicity property such that setting a variable X to 1 is always
better than setting it to 0 in maximizing E[Y ], so our inter-
vention would always be setting S to all 1’s, for which we
simply denote as E[Y |do(S)].

In this paper, we study the online learning problem of
combinatorial causal bandit, as defined below. A learn-
ing agent runs an algorithm π for T rounds. Initially, the
agent knows the observed part of the causal graph G in-
duced by observed variables X ∪ {Y }, but does not know
the probability distributions P (X|Pa(X))’s. In each round
t = 1, 2, . . . , T , the agent selects at most K observed vari-
ables in X for intervention, obtains the observed Y value as
the reward, and observes all variable values in X ∪ {Y } as
the feedback. The agent needs to utilize the feedback from
the past rounds to adjust its action in the current round, with
the goal of maximizing the cumulative reward from all T
rounds.

The performance of the agent is measured by the re-
gret of the algorithm π, which is defined as the difference
between the expected cumulative reward of the best ac-
tion S∗ and the cumulative reward of algorithm π, where
S∗ ∈ argmaxS⊆X,|S|=K E[Y |do(S)], as given below:

Rπ(T ) = E

[
T∑

t=1

(E[Y |do(S∗)]− E[Y |do(Sπ
t )])

]
, (1)

where Sπ
t is the intervention set selected by algorithm π in

round t, and the expectation is taking from the randomness
of the causal model as well as the possible randomness of
the algorithm π. In some cases our online learning algorithm
uses a standard offline oracle that takes the causal graph G
and the distributions P (X|Pa(X))’s as inputs and outputs a
set of nodes S that achieves an α-approximation with prob-
ability β with α, β ∈ (0, 1]. In this case, we consider the
(α, β)-approximation regret, as in (Chen et al. 2016):

Rπ
α,β(T ) = E

[
T∑

t=1

(αβE[Y |do(S∗)]− E[Y |do(Sπ
t )])

]
.

(2)

As pointed out earlier, the non-parametric form of dis-
tributions P (X|Pa(X))’s needs an exponential number of
quantities and is difficult to learn. In this paper, we adopt
the general linear model as the parametric model, which
is widely used in causal inference literature (Hernán and
Robins 2010; Garcia-Huidobro and Michael Oakes 2017;
Han, Yu, and Friedberg 2017; Arnold et al. 2020; Vanstee-
landt and Dukes 2020). Since we consider binary random
variables, we refer to such models as binary general lin-
ear models (BGLMs). In BGLM, the functional relation-
ship between a node X and its parents Pa(X) in G is
P (X = 1|Pa(X) = pa(X)) = fX(θ∗

X · pa(X)) + εX ,
where θ∗

X is the unknown weight vector in [0, 1]|Pa(X)|,
εX is a zero-mean sub-Gaussian noise that ensures that the
probability does not exceed 1, pa(X) here is the vector
form of the values of parents of X , and fX is a scalar and
monotonically non-decreasing function. It is worth notic-
ing that our BGLM here is a binary version of traditional
generalized linear models (Aitkin et al. 2009; Hilbe 2011;
Sakate and Kashid 2014; Hastie and Pregibon 2017). In-
stead of letting X = fX(θ∗

X · pa(X)) + εX directly, we
take fX(θ∗

X · pa(X)) + εX as the probability for X to be
1. The vector of all the weights in a BGLM is denoted by
θ∗ and the feasible domain for the weights is denoted by Θ.
We use the notation θ∗Z,X to denote the parameter in θ∗ that
corresponds to the edge (Z,X), or equivalently the entry in
vector θ∗

X that corresponds to node Z. We also use notation
ε to represent all noise random variables (εX)X∈X∪Y .

A special case of BGLM is the linear model where func-
tion fX is the identity function for all X’s, then P (X =
1|Pa(X) = pa(X)) = θ∗

X · pa(X) + εX . We refer to
this model as BLM. Moreover, when we remove the noise
variable εX , BLM coincides with the linear threshold (LT)
model for influence cascades (Kempe, Kleinberg, and Tar-
dos 2003) in a DAG. In the LT model, each node X has a
random threshold λX uniformly drawn from [0, 1], and each



edge (Z,X) has a weight wZ,X ∈ [0, 1], such that node X
is activated (equivalent to X being set to 1) when the cumu-
lative weight of its active in-neighbors is at least λX . It is
easy to see that when we set θ∗Z,X = wZ,X , the activation
condition is translated to the probability of X = 1 being
exactly θ∗

X · pa(X). It is not surprising that a linear causal
model is equivalent to an influence cascade model, since the
influence relationship is intrinsically a causal relationship.

4 Algorithm for BGLM CCB
In this section, we present an algorithm that solves the on-
line CCB problem for the Markovian BGLM. The algorithm
requires three assumptions.
Assumption 1. For every X ∈ X ∪ {Y }, fX is twice dif-
ferentiable. Its first and second order derivatives are upper-
bounded by L

(1)
fX

> 0 and L
(2)
fX

> 0.

Let κ = infX∈X∪{Y },v∈[0,1]|Pa(X)|,||θ−θ∗
X ||≤1 ḟX(v · θ).

Assumption 2. We have κ > 0.
Assumption 3. There exists a constant ζ > 0 such that for
any X ∈ X ∪ {Y } and X ′ ∈ Pa(X), for any value vector
v ∈ {0, 1}|Pa(X)\{X′,X1}|, the following inequalities hold:

Pr
ε,X,Y

{X ′ = 1|Pa(X) \ {X ′, X1} = v} ≥ ζ, (3)

Pr
ε,X,Y

{X ′ = 0|Pa(X) \ {X ′, X1} = v} ≥ ζ. (4)

The first two assumptions for our BGLM are also adopted
in a previous work on GLM (Li, Lu, and Zhou 2017), which
ensure that the change of P (X = 1|pa(X)) is not abrupt.
It is worth noting that Assumption 2 only needs the lower
bound of the first derivative in the neighborhood of θ∗X ,
which is weaker than Assumption 1 in (Filippi et al. 2010).
Finally, Assumption 3 makes sure that each parent node of
X still has a constant probability of taking either 0 or 1 even
when all other parents of X already fix their values. This
means that each parent has some independence and is not
fully determined by other parents. In appendix we give some
further justification of this assumption.

We first introduce some notations. Let n,m be the num-
ber of nodes and edges in G respectively. Let D =

maxX∈X∪{Y } |Pa(X)|, L(1)
max = maxX∈X∪{Y } L

(1)
fX

, and
c be the constant in Lecué and Mendelson’s inequality (Nie
2022) (see Lemma 11 in appendix). Let (Xt, Yt) be the
propagation result in the tth round of intervention. It con-
tains V t,X and Xt for each node X ∈ X ∪ {Y } where Xt

is the propagating result of X and V t,X is the propagating
result of parents of X . Additionally, our estimation of the
weight vectors is denoted by θ̂.

We now propose the algorithm BGLM-OFU in Algorithm
1, where OFU stands for optimism in the face of uncertainty.
The algorithm contains two phases. The first phase is the
initialization phase with only pure observations without do-
ing any intervention to ensure that our maximum likelihood
estimation of θ∗ is accurate enough. Based on Lecué and
Mendelson’s inequality (Nie 2022), it is designed to ensure
Eq. (5) in Lemma 1 holds. In practice, one alternative imple-
mentation of the initialization phase is doing no intervention

Algorithm 1: BGLM-OFU for BGLM CCB Problem

1: Input: Graph G = (X ∪ {Y }, E), intervention budget
K ∈ N, parameter L(1)

fX
, L

(2)
fX

, κ, ζ in Assumption 1 , 2
and 3.

2: Initialize M0,X ← 0 ∈ R|Pa(X)|×|Pa(X)| for all X ∈

X ∪ {Y }, δ ← 1
3n

√
T

, R ← ⌈
512D(L

(2)
fX

)2

κ4 (D2 +

ln 1
δ )⌉, T0 ← max

{
c
ζ2 ln

1
δ ,

(8n2−16n+2)R
ζ

}
and ρ ←

3
κ

√
log(1/δ).

3: /* Initialization Phase: */
4: Do no intervention on BGLM G for T0 rounds and ob-

serve feedback (Xt, Yt), 1 ≤ t ≤ T0.
5: /* Iterative Phase: */
6: for t = T0 + 1, T0 + 2, · · · , T do
7: {θ̂t−1,X ,Mt−1,X}X∈X∪{Y } =

BGLM-Estimate((X1, Y1), · · · , (Xt−1, Yt−1))
(see Algorithm 2).

8: Compute the confidence ellipsoid Ct,X = {θ′
X ∈

[0, 1]|Pa(X)| :
∥∥∥θ′

X − θ̂t−1,X

∥∥∥
Mt−1,X

≤ ρ} for any

node X ∈X ∪ {Y }.
9: (St, θ̃t) = argmaxS⊆X,|S|≤K,θ′

t,X∈Ct,X
E[Y |do(S)].

10: Intervene all the nodes in St to 1 and observe the
feedback (Xt, Yt).

11: end for

until Eq. (5) holds for every X ∈ X ∪ {Y }. The required
number of rounds is usually much less than T0. Then in the
second iterative phase, we use maximum likelihood estima-
tor (MLE) method to estimate θ∗ and can therefore create a
confidence region that contains the real parameters θ∗ with
high probability around it to balance the exploration and ex-
ploitation. More specifically, in each iteration of interven-
tion selections, we find an optimal intervention set together
with a set of parameters θ̃ from the region around our un-
biased estimation θ̂ and take the found intervention set in
this iteration. Intuitively, this method to select intervention
sets follows the OFU spirit: the argmax operator in line 9 of
Algorithm 1 selects the best (optimistic) solution in a confi-
dence region (to address uncertainty). The empirical mean θ̂
calculated corresponds to exploration while the confidence
region surrounding it is for exploration.

The regret analysis of Algorithm 1 requires two technical
components to support the main analysis. The first compo-
nent indicates that when the observations are sufficient, we
can get a good estimation θ̂ for θ∗, while the second com-
ponent shows that a small change in the parameters should
not lead to a big change in the reward E[Y |do(S)].

The first component is based on the result of maximum-
likelihood estimation. In the studies of (Filippi et al.
2010) and (Li, Lu, and Zhou 2017), a standard log-
likelihood function used in the updating process should be
Lstd
t,X(θX) =

∑t
i=1[X

i ln fX(V ⊺
i,XθX) + (1−Xi) ln(1−

fX(V ⊺
i,XθX))]. However, the analysis in their work needs



Algorithm 2: BGLM-Estimate

1: Input: All observations ((X1, Y1), · · · , (Xt, Yt)) until
round t.

2: Output: {θ̂t,X ,Mt,X}X∈X∪{Y }
3: For each X ∈ X ∪ {Y }, i ∈ [t], construct data pair

(V i,X , Xi) with V i,X the parent value vector of X in
round i, and Xi the value of X in round i if X ̸∈ Si.

4: for X ∈X ∪ {Y } do
5: Calculate the maximum-likelihood estimator

θ̂t,X by solving the equation
∑t

i=1(X
i −

fX(V ⊺
i,XθX))V i,X = 0.

6: Mt,X =
∑t

i=1 V i,XV ⊺
i,X .

7: end for

the gradient of the log-likelihood function to have the form∑t
i=1

[
Xi − fX(V ⊺

i,XθX)
]
V i,X , which is not true here.

Therefore, using the same idea in (Zhang et al. 2022), we use
the pseudo log-likelihood function Lt,X(θX) instead, which
is constructed by integrating the gradient of it defined by
▽θX

Lt,X(θX) =
∑t

i=1

[
Xi − fX(V ⊺

i,XθX)
]
V i,X . Ac-

tually, this pseudo log-likelihood function is used in line 5
of Algorithm 2. The following lemma presents the result for
the learning problem as the first technical component of the
regret analysis. Let Mt,X and θ̂t,X be as defined in Algo-
rithm 2, and also note that the definition of θ̂t,X is equiva-
lent to θ̂t,X = argmaxθX

Lt,X(θX). Let λmin(M) denote
the minimum eigenvalue of matrix M .
Lemma 1 (Learning Problem for BGLM). Suppose that As-
sumptions 1 and 2 hold. Moreover, given δ ∈ (0, 1), assume
that

λmin(Mt,X) ≥
512|Pa(X)|

(
L

(2)
fX

)2

κ4

(
|Pa(X)|2 + ln

1

δ

)
.

(5)

Then with probability at least 1 − 3δ, the maximum-
likelihood estimator satisfies , for any v ∈ R|Pa(X)|,∣∣∣v⊺(θ̂t,X − θ∗

X)
∣∣∣ ≤ 3

κ

√
log(1/δ) ∥v∥M−1

t,X
,

where the probability is taken from the randomness of all
data collected from round 1 to round t.

The proof of the above lemma is adapted from (Li, Lu,
and Zhou 2017), and is included in appendix. Note that
the initialization phase of the algorithm together with As-
sumption 3 and the Lecué and Mendelson’s inequality would
show the condition on λmin(Mt,X) in Eq.(5), and the design
of the initialization phase, the summarization of Assump-
tion 3 and the analysis to show Eq.(5) together form one of
our key technical contributions in this section.

For the second component showing that a small change in
parameters leads to a small change in the reward, we adapt
the group observation modulated (GOM) bounded smooth-
ness property for the LT model (Li et al. 2020) to show
a GOM bounded smoothness property for BGLM. To do

so, we define an equivalent form of BGLM as a threshold
model as follows. For each node X , we randomly sample
a threshold γX uniformly from [0, 1], i.e. γX ∼ U [0, 1],
and if fX(Pa(X) · θ∗

X) + εX ≥ γX , X is activated (i.e.
set to 1); if not, X is not activated (i.e. set to 0). Suppose
X1, X2, · · · , Xn−1, Y is a topological order of nodes in
X ∪ {Y }, then at time step 1, only X1 is tried to be acti-
vated; at time step 2, only X2 is tried to be activated by X1;
. . .; at time step n, only Y is tried to be activated by activated
nodes in Pa(Y ). The above view of the propagating process
is equivalent to BGLM, but it shows that BGLM is a general
form of the LT model (Kempe, Kleinberg, and Tardos 2003)
on DAG. Thus we can show a result below similar to The-
orem 1 in (Li et al. 2020) for the LT model. For complete-
ness, we include the proof in appendix. Henceforth, we use
σ(S,θ) to represent the reward function E[Y |do(S)] under
parameter θ, to make the parameters of the reward explicit.
We use γ to represent the vector (γX)X∈X∪Y .
Lemma 2 (GOM Bounded Smoothness of BGLM). For any
two weight vectors θ1,θ2 ∈ Θ for a BGLM G, the difference
of their expected reward for any intervened set S can be
bounded as

∣∣σ(S,θ1)− σ(S,θ2)
∣∣ ≤ Eε,γ

 ∑
X∈XS,Y

∣∣V ⊺
X(θ1

X − θ2
X)

∣∣L(1)
fX

 ,

(6)

where XS,Y is the set of nodes in paths from S to Y ex-
cluding S, and V X is the propagation result of the parents
of X under parameter θ2. The expectation is taken over the
randomness of the thresholds γ and the noises ε.

We can now prove the regret bound of Algorithm 1. In
the proof of Theorem 1, we use Lecué and Mendelson’s
inequality (Nie 2022) to prove that our initialization step
has a very high probability to meet the needs of Lemma 1.
Then we use Lemma 2 to transform the regret to the sum
of ∥V t,X∥M−1

t−1,X
, which can be bounded using a similar

lemma of Lemma 2 in (Li, Lu, and Zhou 2017). The details
of the proof is put in appendix for completeness.
Theorem 1 (Regret Bound of BGLM-OFU). Under As-
sumptions 1, 2 and 3, the regret of BGLM-OFU (Algo-
rithms 1 and 2) is bounded as

R(T ) = O

(
1

κ
nL(1)

max

√
DT log T

)
, (7)

where the terms of o(
√
T ) are omitted.

Remarks. The leading term of the regret in terms of T
is in the order of O(

√
T log T ), which is commonly seen

in confidence ellipsoid based bandit or combinatorial bandit
algorithms (e.g. (Abbasi-Yadkori, Pál, and Szepesvári 2011;
Li et al. 2020; Zhang et al. 2022)). Also, it matches the re-
gret of previous causal bandits algorithm, C-UCB in (Lu
et al. 2020), which works on the atomic setting. The term
L
(1)
max reflects the rate of changes in fX ’s, and intuitively, the

higher rate of changes in fX ’s, the larger the regret since
the online learning algorithm inevitably leads to some error
in the parameter estimation, which will be amplified by the



rate of changes in fX ’s. Technically, L(1)
max comes from the

L
(1)
fX

term in the GOM condition (Eq.(6)). Term n is to relax
the sum over XS,Y in Eq.(6), and it could be made tighter
in causal graphs where |XS,Y | is significantly smaller than
n, and intuitively it means that all nodes on the path from S
to Y would contribute to the regret. Term

√
D implies that

the regret depends on the number of parents of nodes, and
technically it is because the scale of ∥V t,X∥M−1

t−1,X
is ap-

proximately
√
|Pa(X)| ≤

√
D, and we bound the regret as

the sum of ∥V t,X∥M−1
t−1,X

’s as we explained earlier. Term 1
κ

comes from the learning problem (Lemma 1), which is also
adopted in the regret bound of UCB-GLM of (Li, Lu, and
Zhou 2017) using a similar learning problem. For the budget
K, it does not appear in our regret because it is not directly
related to the number of parameters we are estimating.

While our algorithm and analysis are based on several
past studies (Li, Lu, and Zhou 2017; Zhang et al. 2022;
Li et al. 2020), our innovation includes (a) the initialization
phase and its corresponding Assumption 3 and its more in-
volved analysis, because in our model we do not have direct
observations of one-step immediate causal effect; and (b)
the integration of the techniques from these separate stud-
ies, such as the maximum likelihood based analysis of (Li,
Lu, and Zhou 2017), the pseudo log-likelihood function
of (Zhang et al. 2022), and the GOM condition analysis of
(Li et al. 2020), whereas each of these studies alone is not
enough to achieve our result.

In line 9 of Algorithm 1, the argmax operator needs a
simultaneous optimization over both the intervention set S
and parameters θ′. This could be a computationally hard
problem for large-scale problems, but since we focus on
the online learning aspect of the problem, we leave the
computationally-efficient solution for the full problem as fu-
ture work, and such treatment is often seen in other combi-
natorial online learning problems (e.g. (Combes et al. 2015;
Li et al. 2020)).

5 Algorithms for BLM with Hidden
Variables

Previous sections consider only Markovian models without
hidden variables. In many causal models, hidden variables
exist to model the latent confounding factors. In this section,
we present results on CCB under the linear model BLM with
hidden variables.

5.1 Transforming the Model with Hidden
Variables to the one without Hidden Variables

To address hidden variables, we first show how to reduce the
BLM with hidden variables to a corresponding one with-
out the hidden variables. Suppose the hidden variables in
G = (U ∪X∪{Y }, E) are U = {U0, U1, U2, · · · }, and we
use Xi, Xj’s to represent observed variables. Without loss of
generality, we let U0 always be 1 and it only has out-edges
pointing to other observed or unobserved nodes, to model
the self-activations of nodes. We allow various types of con-
nections involving the hidden nodes, including edges from

observed nodes to hidden nodes and edges among hidden
nodes, but we disallow the situation where a hidden node
Us with s > 0 has two paths to Xi and Xi’s descendant
Xj and the paths contain only hidden nodes except the end
points Xi and Xj . Figure 1 is an example of a causal graph
allowed for this section.

Figure 1: An Example of BLM with Hidden Variables

Our idea is to transform such a general causal model into
an equivalent Markovian model G′ = ({X1}∪X∪{Y }, E′).
For convenience, we assume X1 is not in the original ob-
served variable set X∪{Y }. Henceforth, all notations with ′,
such as Pr′,E′,θ∗′

,Pa ′(X) correspond to the new Marko-
vian model G′, and the notations Pr,E without ′ refer to
the original model G. For any two observed nodes Xi, Xj ,
a hidden path P from Xi to Xj is a directed path from Xi

to Xj where all intermediate nodes are hidden or there are
no intermediate nodes. We define θ∗P to be the multiplica-
tion of weights on path P . Let Pu

Xi,Xj
be the set of hidden

paths from Xi to Xj . If Pu
Xi,Xj

̸= ∅, then we add edge

(Xi, Xj) into E′, and its weight θ∗
′

Xi,Xj
=

∑
P∈Pu

Xi,Xj

θ∗P .

As in the Markovian model, X1 is always set to 1, and for
each Xi ∈ X ∪ {Y }, we add edge (X1, Xi) into E′, with
weight θ∗

′

X1,Xi
= Pr {Xi = 1|do (X ∪ {Y } \ {Xi} = 0)}.

The noise variables ε are carried over to G′ without change.
The following lemma shows that the new model G′ has

the same parent-child conditional probability as the original
model G. The proof of this lemma utilizes the do-calculus
rules for causal inference (Pearl 2009).

Lemma 3. For any X ∈ X ∪ {Y }, any S ⊆ X , any value
pa ′(X) ∈ {0, 1}|Pa′(X)|, any value s ∈ {0, 1}|S| (s is con-
sistent with pa ′(X) on values in S ∩Pa ′(X)), we have

Pr
{
X = 1|Pa ′(X) \ {X1} = pa ′(X) \ {x1}, do(S = s)

}
= Pr ′

{
X = 1|Pa ′(X) = pa ′(X), do(S = s)

}
.

The next lemma shows that the objective function is also
the same for G′ and G.

Lemma 4. For any S ⊆ X , any value s ∈ {0, 1}|S|, we
have E[Y |do(S = s)] = E′[Y |do(S = s)].

The above two lemmas show that from G to G′ the parent-
child conditional probability and the reward function are all
remain unchanged.

5.2 Applying BGLM-OFU on BLM
With the transformation described in Section 5.1 and its
properties summarized in Lemmas 3 and 4, we can apply



Algorithm 1 on G′ to achieve the learning result for G. More
precisely, we can use the observed data of X and Pa ′(X)

to estimate parameters θ∗′

X and minimize the regret on the
reward E′[Y |do(S)], which is the same as E[Y |do(S)]. Fur-
thermore, under the linear model BLM, Assumptions 1 and 2
hold with L

(1)
fX

= κ = 1 and L
(2)
fX

could be any constant
greater than 0. We still need Assumption 3, but we change
the Pa(X)’s in the assumption to Pa ′(X)’s. Then we can
have the following regret bound.
Theorem 2 (Regret Bound of Algorithm 1 for BLM). Under
Assumption 3, Algorithm 1 has the following regret bound
when running on BLM with hidden variables:

R(T ) = O
(
n
√
DT log T

)
, (8)

where n is the number of nodes in G′, and D =
maxX∈X∪{Y } |Pa ′(X)| is the maximum in-degree in G′.

Remarks. We compare our regret bound to the one in
(Li et al. 2020) for the online influence maximization prob-
lem under the LT model, which is a special case of our
BLM model with εX = 0 for all X’s. Our regret bound is
O(n

3
2

√
T lnT ) while theirs is O(n

9
2

√
T lnT ). The n3 fac-

tor saving comes from three sources: (a) our reward is of
scale [0, 1] while theirs is [0, n], and this saves one n fac-
tor; (b) our BLM is a DAG, and thus we can equivalently fix
the activation steps as described before Lemma 2, causing
our GOM condition (Lemma 2) to save another factor of n;
and (c) we use MLE, which requires an initialization phase
and Assumption 3 to give an accurate estimate of θ∗, while
their algorithm uses linear regression without an initializa-
tion phase, which means we tradeoff a factor of n with an
additional Assumption 3.

5.3 Algorithm for BLM based on Linear
Regression

Now we have already introduced how to use Algorithm 1
and 2 to solve the online BLM CCB problem with hidden
variables. However, in order to meet the needs of Lemma 1,
we have to process an initialization phase. Assumption 3
needs to hold for the Markovian model G′ after the transfor-
mation. We can remove the initialization phase and the de-
pendency on Assumption 3, by noticing that our MLE based
on pseudo log-likelihood maximization is equivalent to lin-
ear regression when adopted on BLMs. In particular, we use
Lemma 1 in (Li et al. 2020) to replace Lemma 1 for MLE.
We rewrite it as Lemma 11 in appendix.

Based on the above result, we introduce Algorithm 3 us-
ing the linear regression. Algorithm 3 is designed for Marko-
vian BLMs. For a BLM G with more general hidden vari-
ables, we can apply the transformation described in Sec-
tion 5.1 to transform the model into a Markovian model G′

first. The following theorem shows the regret bound of Al-
gorithm 3.
Theorem 3 (Regret Bound of Algorithm 3). The regret of
BLM-LR (Algorithm 3) running on BLM with hidden vari-
ables is bounded as

R(T ) = O
(
n2
√
DT log T

)
.

Algorithm 3: BLM-LR for BLM CCB Problem

1: Input: Graph G = (X ∪ {Y }, E), intervention budget
K ∈ N.

2: Initialize M0,X ← I ∈ R|Pa(X)|×|Pa(X)|, b0,X ←
0|Pa(X)| for all X ∈ X ∪ {Y }, θ̂0,X ← 0 ∈
R|Pa(X)| for all X ∈ X ∪ {Y }, δ ← 1

n
√
T

and ρt ←√
n log(1 + tn) + 2 log 1

δ +
√
n for t = 0, 1, 2, · · · , T .

3: for t = 1, 2, · · · , T do
4: Compute the confidence ellipsoid Ct,X = {θ′

X ∈
[0, 1]|Pa(X)| :

∥∥∥θ′
X − θ̂t−1,X

∥∥∥
Mt−1,X

≤ ρt−1} for

any node X ∈X ∪ {Y }.
5: (St, θ̃t) = argmaxS⊆X,|S|≤K,θ′

t,X∈Ct,X
E[Y |do(S)].

6: Intervene all the nodes in St to 1 and observe the
feedback (Xt, Yt).

7: for X ∈X ∪ {Y } do
8: Construct data pair (V t,X , Xt) with V t,X the par-

ent value vector of X in round t, and Xt the value
of X in round t if X ̸∈ St.

9: Mt,X = Mt−1,X + V t,XV ⊺
t,X , bt,X = bt−1,X +

XtV t,X , θ̂t,X = M−1
t,Xbt,X .

10: end for
11: end for

The proof of this theorem is adapted from the proof of
Theorem 2 in (Li et al. 2020). For completeness, the proof
is put in appendix. Comparing the algorithm and the regret
bound of BLM-LR with those of BGLM-OFU, we can see
a tradeoff between using the MLE method and the linear re-
gression method: When we use the linear regression method
with the BLM-LR algorithm, we do not need to have an ini-
tialization phase so Assumption 3 is not required anymore.
However, the regret bound of BLM-LR (Theorem 3) has an
extra factor of n in regret bound, comparing to the regret
bound of BGLM-OFU on BLM (Theorem 2).

6 Conclusion and Future Work
In this paper, we propose the combinatorial causal bandit
(CCB) framework, and provide a solution for CCB under the
BGLM. We further study a special model, the linear model.
We show that our algorithm would work for models with
many types of hidden variables. We further provide an algo-
rithm for linear model not relying on Assumption 3 based
on the linear regression.

There are many open problems and future directions to
extend this work. For the BGLM, one could study how to
remove some assumptions (e.g. Assumption 3), how to in-
clude hidden variables, or how to make the computation
more efficient. For the linear model, one could consider how
to remove the constraint on the hidden variable structure that
does not allow a hidden variable to connect to an observed
variable and its observed descendant via hidden variables.
More generally, one could consider classes of causal models
other than the BGLM.
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proved algorithms for linear stochastic bandits. Advances in
Neural Information Processing Systems, 24.
Aitkin, M.; Francis, B.; Hinde, J.; and Darnell, R. 2009. Sta-
tistical Modelling in R. Oxford University Press Oxford.
Arnold, K. F.; Davies, V.; de Kamps, M.; Tennant, P. W.;
Mbotwa, J.; and Gilthorpe, M. S. 2020. Reflection on mod-
ern methods: generalized linear models for prognosis and
intervention—theory, practice and implications for machine
learning. International Journal of Epidemiology, 49(6):
2074–2082.
Chen, W.; Wang, Y.; and Yuan, Y. 2013. Combinatorial
multi-armed bandit: General framework and applications. In
International Conference on Machine Learning, 151–159.
PMLR.
Chen, W.; Wang, Y.; Yuan, Y.; and Wang, Q. 2016. Combi-
natorial multi-armed bandit and its extension to probabilis-
tically triggered arms. The Journal of Machine Learning
Research, 17(1): 1746–1778.
Combes, R.; Shahi, M. S. T. M.; Proutiere, A.; et al. 2015.
Combinatorial bandits revisited. In Advances in Neural In-
formation Processing Systems, 2116–2124.
Feng, S.; and Chen, W. 2022. Combinatorial Causal Bandits.
arXiv preprint arXiv:2206.01995.
Filippi, S.; Cappe, O.; Garivier, A.; and Szepesvári, C. 2010.
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