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ABSTRACT
In this paper, we study the adversarial attacks on influence max-

imization under dynamic influence propagation models in social

networks. In particular, given a known seed set 𝑆 , the problem

is to minimize the influence spread from 𝑆 by deleting a limited

number of nodes and edges. This problem reflects many application

scenarios, such as blocking virus (e.g. COVID-19) propagation in

social networks by quarantine and vaccination, blocking rumor

spread by freezing fake accounts, or attacking competitor’s influ-

ence by incentivizing some users to ignore the information from

the competitor. In this paper, under the linear threshold model, we

adapt the reverse influence sampling approach and provide effi-

cient algorithms of sampling valid reverse reachable paths to solve

the problem. We present three different design choices on reverse

sampling, which all guarantee 1/2− 𝜀 approximation (for any small

𝜀 > 0) and an efficient running time.
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• Information systems→ Social advertising; Social networks; •
Theory of computation→ Probabilistic computation; Submodular
optimization and polymatroids.
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1 INTRODUCTION
Influence maximization (IM) is the optimization problem of finding

a small set of most influential nodes in a social network that gen-

erates the largest influence spread, which has many applications

such as promoting products or brands through viral marketing in
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social networks [10, 16, 22]. However, in real life, there are so many

competitions in various scenarios with different purposes, such

as attacking competitor’s influence [18], controlling rumor [4, 14],

or blocking the virus spread. The adversary will block the virus

propagation by quarantine and vaccination, block rumor spread by

freezing fake accounts, or attack competitors’ influence by incen-

tivizing some users to ignore the information from the competitor.

All these scenarios can be modeled as the adversary trying to re-

move certain nodes and edges to minimize the influence or impact

from the competitor’s seed set in social networks, whichwe denoted

as the adversarial attacks on influence maximization (AdvIM).

We model the AdvIM task more formally as follows. The social

influence network is modeled as a weighted network𝐺 = (𝑉 , 𝐸,𝑤),
where 𝑉 is a set of nodes representing individuals, 𝐸 is a set of

directed edges representing influence relationships, and𝑤 is influ-

ence weights on edges. In the beginning, we have a fixed seed set

𝑆 , and the propagation from 𝑆 follows the classical linear threshold

model [16]. For an attack set𝐴 consisting of a mix of nodes (disjoint

from 𝑆) and edges, we measure the effectiveness of 𝐴 by the influ-
ence reduction 𝜌𝑆 (𝐴) it achieves, which is defined as the difference

in influence spread with and without removing nodes and edges in

the attack set 𝐴. Then, given a node budget 𝑞𝑁 and an edge budget

𝑞𝐸 , the AdvIM task is to find an attack set 𝐴 with at most 𝑞𝑁 nodes

(excluding any seed node) and at most 𝑞𝐸 edges, such that after

removing the nodes and edges in 𝐴, the influence spread of 𝑆 is

minimized, or the influence reduction 𝜌𝑆 (𝐴) is maximized.

We show that under the LT model, the influence reduction func-

tion 𝜌𝑆 (𝐴) is monotone and submodular, which enables a greedy

approximation algorithm. However, the direct greedy algorithm

is not efficient since it requires a large number of simulations of

propagation from the seed set 𝑆 . In this paper, we adapt the reverse

influence sampling (RIS) approach to design efficient algorithms for

the AdvIM task. Due to the nature of the problem, only successful

propagation from the seed set can be potentially reduced by the

attack set. This creates a new challenge for reverse sampling. In

this paper, we present three different design choices for such re-

verse sampling and their theoretical analysis. They all provide a

1/2 − 𝜀 approximation guarantee and have different trade-offs in

efficiency. We then conduct experimental evaluations on several

real-world networks and demonstrate that our algorithms achieve

good influence reduction results while running much faster than

existing greedy-based algorithms. To summarize, our contributions
are: (a) proposing the study of adversarial attacks on influence max-

imization problems; (b) designing efficient algorithms by adapting

the RIS approach and providing their theoretical guarantees; and

(c) conducting experiments on real-world networks to demonstrate

the effectiveness and efficiency of our proposed algorithms.
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Related Work. Domingos and Richardson first studied Influence

Maximization (IM) [10, 22], and then IM is mathematically formu-

lated as a discrete optimization problem by Kempe et al. [16], who

also formulate the independent cascade model, the linear threshold

model, the triggering model, and provide a greedy approximation

algorithm based on submodularity. After that, most works focus on

improving the efficiency and scalability of influence maximization

algorithms [3, 8, 9, 15, 26, 27, 29]. The most recent and the state of

the art is the reverse influence sampling (RIS) approach [3, 21, 25–

27], and the IMM algorithm of [26] is one of the representative

algorithms for the RIS approach. Some other studies look into dif-

ferent problems, such as competitive and complementary influence

maximization [4, 6, 12, 14, 19, 28], adoptionmaximization [2], robust

influence maximization [7, 13], etc. The most similar topic to this

work is competitive influence maximization that aims to maximize

the influence while more than one party is in the network.

One similar work also wants to stop the influence spread in the

social network [17]. However, this work has a different objective

function that estimates the total influence by summing up the influ-

ence of the individual node in seed sets, which is different from the

traditional influence maximization. They proposed the greedy ap-

proach through forward-tree simulation without time-complexity

analysis. In this work, our objective function directly matches the

original influence maximization objective function. Moreover, we

propose RIS-based algorithms to overcome the efficiency issue in

the forward simulation approach while also providing theoretical

guarantee on both the approximation ratio and the running time.

The full version of the paper with complete proofs and other

technical details is available at [23].

2 MODEL AND PROBLEM DEFINITION
Adversarial Attacks on Diffusion Model. In this paper, we focus

on the well-studied linear threshold (LT) model [16] as the basic

diffusion model. A social network under the LT model is modeled as

a directed influence graph 𝐺 = (𝑉 , 𝐸,𝑤), where 𝑉 is a finite set of

vertices or nodes, 𝐸 ⊆ 𝑉 ×𝑉 is the set of directed edges connecting

pairs of nodes, and𝑤 : 𝐸 → [0, 1] gives the influence weights on
all edges. The diffusion of information or influence proceeds in

discrete time steps 𝑡 = 0, 1, 2, . . . . At time 𝑡 = 0, the seed set 𝑆0 is
selected to be active, and also each node 𝑣 independently selects a

threshold 𝜃𝑣 uniformly at random in the range [0, 1], corresponding
to users’ true thresholds. At each time 𝑡 ≥ 1, an inactive node 𝑣

becomes active if

∑
𝑢:𝑢∈𝑆𝑡−1,(𝑢,𝑣) ∈𝐸 𝑤 (𝑢, 𝑣) ≥ 𝜃𝑣 where 𝑆𝑡−1 is the

set of nodes activated by time 𝑡 − 1. The diffusion process ends

when there are no more nodes activated in a time step.

Given the weights of all nodes 𝑣 ∈ 𝑉 , we can construct the live-

edge graph 𝐿 = (𝑉 , 𝐸 (𝐿)), where at most one of each 𝑣 ’s incoming

edges is selected with probability𝑤 (𝑢, 𝑣), and no edge is selected

with probability 1−∑𝑢:(𝑢,𝑣) ∈𝐸 𝑤 (𝑢, 𝑣). Each edge (𝑢, 𝑣) ∈ 𝐿 is called
a live edge. Kempe et al. [16] show that the propagation in the linear

threshold model is equivalent to the deterministic propagation via

bread-first traversal in a random live-edge graph 𝐿. An important

metric in a diffusion model is the influence spread, defined as the

expected number of active nodes when the propagation from the

given seed set 𝑆0 ends, and is denoted as 𝜎 (𝑆0). Let Γ(𝐺, 𝑆) denote
the set of nodes in graph 𝐺 that can be reached from the node

set 𝑆 . Then, by the above equivalent live-edge graph model, we

have 𝜎 (𝑆0) = E𝐿 [|Γ(𝐿, 𝑆0) |] =
∑
𝐿 𝑃𝑟 [𝐿 |𝐺] · |Γ(𝐿, 𝑆0) |, where the

expectation is taken over the distribution of live-edge graphs, and

𝑃𝑟 [𝐿 |𝐺] is the probability of sampling a particular live-edge graph

𝐿 in graph 𝐺 . As defined above, we have:

𝑝 (𝑣, 𝐿,𝐺) =
{
𝑤 (𝑢, 𝑣), if ∃𝑢 : (𝑢, 𝑣) ∈ 𝐿
1 −∑𝑢:(𝑢,𝑣) ∈𝐸 𝑤 (𝑢, 𝑣), otherwise

which is the probability of the configuration of incoming edges for

node 𝑣 in 𝐿; then, the probability of a particular live-edge graph 𝐿

is 𝑃𝑟 [𝐿 |𝐺] = ∏
𝑣∈𝑉 𝑝 (𝑣, 𝐿,𝐺). When we need to specify the graph,

we use 𝜎 (𝑆0,𝐺) to represent the influence spread under graph 𝐺 .

A set function 𝑓 : 𝑉 → R is called submodular if for all 𝑆 ⊆ 𝑇 ⊆
𝑉 and𝑢 ∈ 𝑉 \𝑇 , 𝑓 (𝑆 ∪{𝑢}) − 𝑓 (𝑆) ≥ 𝑓 (𝑇 ∪{𝑢}) − 𝑓 (𝑇 ). Intuitively,
submodularity characterizes the diminishing return property often

occurring in economics and operation research. Moreover, a set

function 𝑓 is calledmonotone if for all 𝑆 ⊆ 𝑇 ⊆ 𝑉 , 𝑓 (𝑆) ≤ 𝑓 (𝑇 ). It is
shown in [16] that influence spread 𝜎 for the linear threshold model

is a monotone submodular function. A non-negative monotone

submodular function allows a greedy solution to its maximization

problem subject to a cardinality constraint, with an approximation

ratio 1− 1/𝑒 , where 𝑒 is the base of the natural logarithm [20]. This

is the technical foundation for most influence maximization tasks.

Adversarial Attacks on Influence Maximization. The classical in-
fluence maximization problem is to choose a seed set 𝑆 of size at

most 𝑘 seeds to maximize the influence spread 𝜎 (𝑆,𝐺). For the
Adversarial Attacks Influence Maximization (AdvIM) problem, the

goal is to select at most 𝑞𝑁 nodes and 𝑞𝐸 edges to be removed,

such that the influence spread on a given seed set 𝑆 is minimized.

Let 𝐴 denote a joint attack set, which contains a subset of nodes

𝐴𝑁 ⊆ 𝑉 \ 𝑆 and a subset of edges 𝐴𝐸 ⊆ 𝐸, i.e. 𝐴 = 𝐴𝑁 ∪ 𝐴𝐸 .

Denote the new graph after removing the nodes and edges in 𝐴 as

𝐺 ′ = 𝐺 \𝐴. We first define the key concept of influence reduction

under the attack set 𝐴.

Definition 1 (Influence Reduction). Given a seed set 𝑆 , the influence
reduction under the attack set 𝐴, denoted as 𝜌𝑆 (𝐴), is the reduction
in influence spread from the original graph 𝐺 to the new graph 𝐺 ′ =
𝐺 \𝐴. That is, 𝜌𝑆 (𝐴) = 𝜎 (𝑆,𝐺) − 𝜎 (𝑆,𝐺 ′).

Note that 𝑆 ∩ 𝐴 = ∅, which means we cannot attack any seed

node. We can now define the main optimization task in this paper.

Definition 2. The Adversarial Attacks on Influence Maximization
(AdvIM) under the linear threshold model is the optimization task
where the input includes the directed influence graph𝐺 = (𝑉 , 𝐸,𝑤),
seed set 𝑆 , attack node budget 𝑞𝑁 and attack edge budget 𝑞𝐸 . The goal
is to find an attack set 𝐴 to remove, which contains at most 𝑞𝑁 nodes
(excluding the seed set 𝑆) and 𝑞𝐸 edges, such that the total influence
reduction is maximized: 𝐴∗ = argmax𝐴: |𝐴𝑁 | ≤𝑞𝑁 , |𝐴𝐸 | ≤𝑞𝐸 𝜌𝑆 (𝐴).

Before the algorithm design, we first establish the important fact

that 𝜌𝑆 (𝐴) as a set function is monotone and submodular.

Lemma 1. Influence reduction 𝜌𝑆 (𝐴) for the LT model satisfies
monotonicity and submodularity.

Proof. The proof is based on the live-edge graph representa-

tion of the LT model. The proof for the monotonicity property is
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straightforward, so we focus on the submodularity property. Let𝐴1

and 𝐴2 be two attack sets with 𝐴1 ⊆ 𝐴2, and 𝑥 ∈ ((𝑉 \ 𝑆) ∪ 𝐸) \𝐴2.

According to the definition of the influence reduction, we have

𝜌𝑆 (𝐴1 ∪ {𝑥}) − 𝜌𝑆 (𝐴1) ≥ 𝜌𝑆 (𝐴2 ∪ {𝑥}) − 𝜌𝑆 (𝐴2)
⇔E𝐿 [|Γ(𝐿, 𝑆) \ Γ(𝐿 \𝐴1 \ {𝑥}, 𝑆) |] − E𝐿 [|Γ(𝐿, 𝑆) \ Γ(𝐿 \𝐴1, 𝑆) |]
≥E𝐿 [|Γ(𝐿, 𝑆) \ Γ(𝐿 \𝐴2 \ {𝑥}, 𝑆) |] − E𝐿 [|Γ(𝐿, 𝑆) \ Γ(𝐿 \𝐴2, 𝑆) |] .

Then it is sufficient to show that for any fixed live-edge graph 𝐿,

for every node 𝑣 ∈ 𝑉 \ 𝑆 , if 𝑣 ∈ Γ(𝐿, 𝑆) \ Γ(𝐿 \ 𝐴2 \ {𝑥}, 𝑆) but
𝑣 ∉ Γ(𝐿, 𝑆) \Γ(𝐿 \𝐴2, 𝑆), then 𝑣 ∈ Γ(𝐿, 𝑆) \Γ(𝐿 \𝐴1 \ {𝑥}, 𝑆) but 𝑣 ∉

Γ(𝐿, 𝑆)\Γ(𝐿\𝐴1, 𝑆). Now suppose that 𝑣 ∈ Γ(𝐿, 𝑆)\Γ(𝐿\𝐴2\{𝑥}, 𝑆)
but 𝑣 ∉ Γ(𝐿, 𝑆) \ Γ(𝐿 \𝐴2, 𝑆). This means that 𝑣 cannot be reached

from 𝑆 in 𝐿 after𝐴2∪ {𝑥} are removed from 𝐿, but 𝑣 can be reached

from 𝑆 if we only remove 𝐴2 from 𝐿. Since 𝐴1 ⊆ 𝐴2, we have

that when we remove 𝐴1 from 𝐿, 𝑣 can still be reached from 𝑆 , i.e.

𝑣 ∉ Γ(𝐿, 𝑆) \Γ(𝐿\𝐴1, 𝑆). Since after further removing 𝑥 , 𝑣 cannot be

reached from 𝑆 after we already remove𝐴2, there is at least one path

𝑃 from 𝑆 to 𝑥 that passes through 𝑥 but not through any element in

𝐴2. By the live-edge graph construction in the LT model, actually

there is at most one path from 𝑆 to 𝑣 . Therefore, 𝑃 is the unique

path from 𝑆 to 𝑣 , and none of the nodes or edges in 𝐴2 are on 𝑃 but

𝑥 is on 𝑃 . Since 𝐴1 ⊆ 𝐴2, we know that after removing 𝐴1, 𝑃 still

exists but after removing 𝑥 , 𝑃 no longer exists and there is no path

from 𝑆 to 𝑣 anymore. This means that 𝑣 ∈ Γ(𝐿, 𝑆) \Γ(𝐿 \𝐴1 \ {𝑥}, 𝑆)
but 𝑣 ∉ Γ(𝐿, 𝑆) \ Γ(𝐿 \𝐴1, 𝑆). Therefore, the lemma holds. □

The monotonicity and submodularity provide the theoretical

basis for our efficient algorithm, to be presented in the next section.

3 EFFICIENT ALGORITHMS FOR ADVIM
The monotonicity and submodularity of the objective function en-

able the greedy approach for the maximization task. In this section,

we aim to speed up the greedy approach by adapting the approach

of reverse influence sampling (RIS) [3, 26, 27], which provides both

theoretical guarantee and efficiency. We first provide a general ad-

versarial attack algorithm framework AAIMM based on IMM [26]

in Section 3.1 (Algorithm 1). AAIMM relies on valid reverse reach-

able (VRR) path sampling. Then in Section 3.2, we provide several

concrete implementations of VRR path sampling.

3.1 Algorithm Framework AAIMM
All efficient influence maximization algorithms such as IMM are

based on the RIS approach, which generates a suitable number of

reverse-reachable sets for influence estimation. In our case, we need

to adapt the RIS approach for generating reverse-reachable paths

in the LT model. Let 𝑆 be the fixed seed set. Let 𝐿 be a random

live-edge graph generated from 𝐺 = (𝑉 , 𝐸,𝑤) following the LT

model. Recall that each node selects at most one incoming edge

as a live edge in 𝐿. Thus, starting from a node 𝑣 ∈ 𝑉 , we may find

at most one node 𝑢1 such that (𝑢1, 𝑣) ∈ 𝐿. Let 𝑢0 = 𝑣 . In general,

starting from 𝑢𝑖 ∈ 𝑉 , we may find at most one node 𝑢𝑖+1 ∈ 𝑉 with

(𝑢𝑖+1, 𝑢𝑖 ) ∈ 𝐿. This process stops at some node 𝑢 𝑗 when one of

the following conditions hold: (a) 𝑢 𝑗 is a seed node, i.e. 𝑢 𝑗 ∈ 𝑆 ; (b)
there is no edge (𝑢,𝑢 𝑗 ) ∈ 𝐸 (𝐿); or (c) the path loops back, that is,

the only edge (𝑢,𝑢 𝑗 ) ∈ 𝐸 (𝐿) satisfies 𝑢 ∈ {𝑢0, . . . , 𝑢 𝑗−1}. We call

this process a reverse simulation from root 𝑣 in the LT model, and

the path obtained from 𝑢 𝑗 to 𝑢0 a reverse-reachable path (RR path)
rooted at 𝑣 (under the live-edge graph 𝐿), denoted as 𝑃𝐿,𝑣 . Note that

if 𝐿 is a random live-edge graph, then 𝑃𝐿,𝑣 is a random path, with

randomness coming from 𝐿. When we do not specify the root 𝑣 , we

define a reverse-reachable path (RR path) (under a random live-edge

graph 𝐿) 𝑃𝐿 as a random 𝑃𝐿,𝑣 with 𝑣 selected uniformly at random

from the node set 𝑉 \ 𝑆 . The reason we exclude the seed set 𝑆 is

that the root 𝑣 selected in an RR path is to be used as a measure

for the influence reduction of attack nodes or edges on the path,

and since no seed node is selected in the attack set, no seed node

will be counted for influence reduction. This point will be made

clearly and formally in the following lemma. Sometimes we omit

the subscript 𝐿 in 𝑃𝐿 when the context is clear. Let 𝑉𝐸 (𝑃𝐿) be the
joint set of nodes and edges of RR path 𝑃𝐿 excluding any seed node.

We say that an RR path 𝑃𝐿 is a valid RR path or VRR path which

contains a seed node in 𝑆 ; otherwise 𝑃𝐿 is invalid. Intuitively, for a

VRR path 𝑃𝐿 , the influence of 𝑆 can reach the root 𝑣 of 𝑃𝐿 through

the path, and thus attacking any node or edge on the path would

reduce the influence to 𝑣 ; but if 𝑃𝐿 is invalid, attaching a node or

edge on 𝑃𝐿 will not reduce the influence to 𝑣 since anyway 𝑣 is

not influenced by 𝑆 . For convenience, sometimes we also use the

notation of 𝑆-conditioned RR path 𝑃𝑆
𝐿
, which is 𝑃𝐿 when 𝑃𝐿 is valid

and ∅ when 𝑃𝐿 is invalid. Let P𝑆 be the probability subspace of

VRR paths. Let 𝑛− = |𝑉 | − |𝑆 |, I{} be the indicator function, and
𝜎− (𝑆) = 𝜎 (𝑆) − |𝑆 |. The following lemma connects the influence

reduction of an attack set 𝐴 with the VRR paths.

Lemma 2. For any given seed set 𝑆 and attack set 𝐴,

𝜌𝑆 (𝐴) = 𝑛− · E𝐿 [I{𝐴 ∩𝑉𝐸 (𝑃𝑆𝐿 ) ≠ ∅}]
= 𝜎− (𝑆) · E𝐿 [I{𝐴 ∩𝑉𝐸 (𝑃𝐿) ≠ ∅} | 𝑆 ∩𝑉𝐸 (𝑃𝐿) ≠ ∅] .

Proof. By definition, we have

𝜌𝑆 (𝐴) = E𝐿 [|{𝑣 ∈ 𝑉 \ 𝑆 | 𝑣 ∈ Γ(𝐿, 𝑆) ∧ 𝑣 ∉ Γ(𝐿 \𝐴, 𝑆)}|]
= E𝐿

[
𝑛− · E𝑣∼U(𝑉 \𝑆 ) [I{𝑣 ∈ Γ(𝐿, 𝑆) ∧ 𝑣 ∉ Γ(𝐿 \𝐴, 𝑆)}]

]
= 𝑛− · E𝐿,𝑣∼U(𝑉 \𝑆 ) [I{𝐴 ∩ 𝑃𝑆𝐿 (𝑣) ≠ ∅}]
= 𝑛− · Pr

𝐿,𝑣∼U(𝑉 \𝑆 )
{𝑆 ∩ 𝑃𝐿 (𝑣) ≠ ∅}

· E𝐿,𝑣∼U(𝑉 \𝑆 ) [I{𝐴 ∩ 𝑃𝐿 (𝑣) ≠ ∅} | 𝑆 ∩ 𝑃𝐿 (𝑣) ≠ ∅]
= 𝜎− (𝑆) · E𝐿,𝑣∼U(𝑉 \𝑆 ) [I{𝐴 ∩ 𝑃𝐿 (𝑣) ≠ ∅} | 𝑆 ∩ 𝑃𝐿 (𝑣) ≠ ∅] (1)

= 𝜎− (𝑆) · E𝑃∼P𝑆 [I{𝐴 ∩ 𝑃 ≠ ∅}], (2)

whereU(𝑉 \𝑆) denote the uniform distribution among all nodes in

𝑉 \ 𝑆 . Eq. (1) is due to the original RR set connection with influence

spread [3, 26, 27], which shows that Pr𝐿,𝑣∼U(𝑉 \𝑆 ) {𝑆∩𝑃𝐿 (𝑣) ≠ ∅} =
𝜎− (𝑆)/𝑛− . Eq. (2) follows from the subspace definition of P𝑆 . □

The above property implies that we can sample enough RR path

from the original space or VRR path from subspace P𝑆 to accu-

rately estimate the influence reduction of 𝐴. More importantly, by

Lemma 2 the optimal attack set can be found by seeking the op-

timal set of nodes and edges that intersect with (a.k.a. cover) the

most number of VRR paths, which is a max-cover problem. There-

fore, following the RIS approach, we turn the influence reduction

maximization problem into a max-cover problem. We use the IMM

algorithm [26] as the template, but other RIS algorithms follow

the similar structure. Our algorithm AAIMM contains two phases,
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Algorithm 1: AAIMM: Adversarial Attacks IMM

Input: Graph 𝐺 = (𝑉 , 𝐸,𝑤), seed set 𝑆 , budgets 𝑞𝑁 , 𝑞𝐸 ,

accuracy parameters (𝜀, ℓ)
// Phase 1: Estimate 𝜃 , the number of VRR paths needed, and
generate these VRR paths

1 R ← ∅; 𝐿𝐵 ← 1; 𝜀′ ←
√
2𝜀; using binary search to find a 𝛾

such that ⌈𝜆∗ (ℓ)⌉/𝑛ℓ+𝛾 ≤ 1/𝑛ℓ ℓ ← ℓ + 𝛾 + ln 2/ln𝑛− ;
2 for 𝑖 = 1 𝑡𝑜 log

2
(𝑛 − 1) do

3 𝑥𝑖 ← 𝑛−/2𝑖 ;
4 𝜃𝑖 ← 𝜆′ · 𝜀′−2/𝑥𝑖 ; // 𝜆′ is defined in Eq. (3)
5 while |R | < 𝜃𝑖 do
6 Sample a VRR path 𝑃 from subspace P𝑆 , and insert

it into R;
7 𝐴𝑖 ← NodeEdgeSelection(R, 𝑞𝑁 , 𝑞𝐸 );
8 if 𝑛− · 𝐹𝑆R (𝐴𝑖 ) ≥ (1 + 𝜀′) · 𝑥𝑖 then
9 𝐿𝐵 ← 𝑛− · 𝐹𝑆R (𝐴𝑖 )/(1 + 𝜀′);

10 break;

11 𝜃 ← 𝜆∗ (ℓ)/𝐿𝐵; // 𝜆∗ (ℓ) is defined in Eq. (4)
12 while |R | ≤ 𝜃 do
13 Sample a VRR path 𝑃 from subspace P𝑆 , and insert it

into R;
// Phase 2: select attack nodes and edges from the generated
VRR paths

14 𝐴← NodeEdgeSelection(R, 𝑞𝑁 , 𝑞𝐸 );
15 return an attack set 𝐴

estimating the number of VRR paths needed and greedy selection

via max-cover, as shown in Algorithm 1. The two main parameters

𝜆′ and 𝜆∗ (ℓ) used in the algorithm are given below:

𝜆′ ← (2 + 2

3

𝜀′)
(
ln

((
𝑛−

𝑞𝑁

) (
𝑚

𝑞𝐸

))
+ ℓ ln𝑛− + ln log

2
𝑛−

)
· 𝑛− (3)

𝜆∗ (ℓ) ← 2𝑛 · (1/2 · 𝛼 + 𝛽)2 · 𝜀−2 (4)

𝛼 ←
√
ℓ ln𝑛 + ln 2; 𝛽 ←

√︄
1/2 ·

(
ln

((
𝑛−

𝑞𝑁

) (
𝑚

𝑞𝐸

))
+ 𝛼2

)
.

In Phase 1, we generate𝜃 valid VRR pathsR, where𝜃 is computed

to guarantee the approximation with high probability. In Phase 2,

we use the greedy algorithm to find the 𝑞𝑁 nodes and 𝑞𝐸 edges

that cover the most number of VRR paths. This greedy algorithm

is similar to prior algorithms, and thus we omit it here. Phase 1

follows the IMM structure to estimate a lower bound of the optimal

value, which is used to determine the number of VRR paths needed.

The main difference is that we need to sample valid RR paths, not

the simple RR sets as before. This part will be discussed separately

in the next section. Moreover, our solution space now is

(𝑛−
𝑞𝑁

) (𝑚
𝑞𝐸

)
,

and thus we replace the

(𝑛
𝑘

)
in the original IMM algorithm. Let 𝐴∗

be the optimal solution of the AdvIM problem, and OPT = 𝜌𝑆 (𝐴∗).

Lemma 3. For every 𝜀 > 0 and ℓ > 0, to guarantee the approximation
ratio with probability at least 1− 1

𝑛ℓ , the number of VRR paths needed

by AAIMM is 𝑂
( (𝑞𝑁 log𝑛−+𝑞𝐸 log𝑚+ℓ log𝑛− ) ·𝜎− (𝑆 )

OPT·𝜀2
)
.

Proof. When working on the subspace P𝑆 in AAIMM, we are

working on the objective function 𝑛− · E𝑃∼P𝑆 [I{𝐴 ∩𝑉𝐸 (𝑃) ≠ ∅}]
(e.g. see lines 3, 8, and 9). Thus by Lemma 2, the real objective

function 𝜌𝑆 (𝐴) is only a fraction
𝜎− (𝑆 )
𝑛− of the new objective func-

tion. Let OPT
′
be the optimal value of the new objective function.

Applying the analysis of IMM [26], we know that the number of

VRR path samples that we need in the subspace P𝑆 is

𝑂

(
(𝑞𝑁 log𝑛− + 𝑞𝐸 log𝑚 + ℓ log𝑛−) · 𝑛−

OPT
′ · 𝜀2

)
. (5)

Because OPT =
𝜎− (𝑆 )
𝑛− · OPT′, the above formula is changed to

𝑂

(
(𝑞𝑁 log𝑛− + 𝑞𝐸 log𝑚 + ℓ log𝑛−) · 𝜎− (𝑆)

OPT · 𝜀2

)
, (6)

□

The special case of adversarial attacks on influence maximization

is attacking nodes only or edge only, i.e, 𝑞𝐸 = 0 or 𝑞𝑁 = 0. Then,

the greedy algorithms of the special cases can achieve at least

(1 − 1/𝑒 − 𝜀) of the optimal performance. However, our greedy

algorithms for the AdvIM attacks both nodes and edges together.

The idea of our greedy approach is that at every greedy step, it

searches all nodes and edges in the candidate space C and picks

the one having the maximum marginal influence deduction. If the

budget for node or edge exhausts, then the remaining nodes or

edges are removed from C. Note that as C contains nodes and

edges assigned to different partitions, AAIMM selects nodes or

edges crossing partitions. This falls into a greedy algorithm subject

to a partition matroid constraint, which is defined below.

Given a set 𝑈 partitioned into disjoint sets 𝑈1, . . . ,𝑈𝑛 and I =

{𝑋 ⊆ 𝑈 : |𝑋 ∩ 𝑈𝑖 | ≤ 𝑘𝑖 ,∀𝑖 ∈ [𝑛]}, (𝑈 ,I) is called a partition
matroid. Thus, the node and edge space A with the constraint of

AdvIM, namely (A, {𝐴 : |𝐴𝑁 | ≤ 𝑞𝑁 , |𝐴𝐸 | ≤ 𝑞𝐸 }), is a partition

matroid. This indicates that AdvIM is an instance of submodular

maximization under partition matroid, which can be solved by a

greedy algorithm with 1/2-approximation guarantee [11]. Using

this result, we can obtain the result for our AAIMM algorithm.

Theorem 1. For every 𝜀 > 0 and ℓ > 0, with probability at least
1 − 1

𝑛ℓ , the output 𝐴𝑜 of the AAIMM algorithm framework satisfies

𝜌𝑆 (𝐴𝑜 ) ≥
(
1

2
− 𝜀

)
𝜌𝑆 (𝐴∗). In this case, the expected running time

for AAIMM is 𝑂
( (𝑞𝑁 log𝑛−+𝑞𝐸 log𝑚+ℓ log𝑛− ) ·𝜎− (𝑆 )

OPT·𝜀2 · ERPV
)
, where

ERPV is the mean time of generating a VRR path.

Proof. Following [11], our NodeEdgeSelection procedure finds

an attack set that covers at least 1/2 of all the VRR paths gener-

ated. Then following the standard analysis of IMM, our AAIMM
algorithm provides 1/2 − 𝜀 approximation with probability at least

1 − 1

𝑛ℓ . The expected running time follows Lemma 3. □

Theorem 1 summarizes the theoretical guarantee of the approx-

imation ratio and the running time of our algorithm framework

AAIMM. Because we are attacking both nodes and edges with sep-

arate budgets, our approximation guarantee is 1/2 − 𝜀. If we only
attack nodes (i.e. 𝑞𝐸 = 0) or only attack edges (i.e. 𝑞𝑁 = 0), then we

could achieve the approximation ratio of 1 − 1/𝑒 − 𝜀. The running
time result includes OPT. Although OPT cannot be obtained in

general, it still provides a precise idea on the running time, and is
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useful to compare different implementations. In the next section,

we will discuss concrete implementations of the VRR path sampling

method, and in some cases we will fully realize the time complexity.

3.2 VRR Path Sampling
VRR path sampling is the key new component to fully realize our

AAIMM algorithm. Here, we discuss three methods and their guar-

antees, and empirically evaluate these methods in our experiments.

Naive VRR Path Sampling. The first implementation is naively

generate a RR path 𝑃 starting from a random root 𝑣 ∈ 𝑉 \ 𝑆 , and
if 𝑃 is valid then return it; otherwise regenerate a new path (see

Algorithm 2). It is easy to see that to generate one VRR path, we

need to generate a number of RR paths. Let ERP be the expected

running time of generating one RR path. By a simple argument

based on live-edge graphs, we can get that on average we need to

generate 𝑛−/𝜎− (𝑆) RR paths to obtain one VRR path that reaches

the seed set 𝑆 . This means ERPV = ERP · 𝑛−/𝜎− (𝑆).

Algorithm 2: Naive-VRR-Path: Naive VRR Path Sampling

Input: Graph 𝐺 , seed set 𝑆

1 repeat
2 Randomly select a root 𝑣 ∈ 𝑉 \ 𝑆 , and generate the

reverse-reachable path 𝑃 rooted at 𝑣 ;

3 until 𝑃 ∩ 𝑆 ≠ ∅;
4 return a VRR path 𝑃 .

Theorem 2. Naive VRR path sampling (Algorithm 2) correctly sam-
ples a VRR path. The expected running time of AAIMM with naive
VRR path sampling (Algorithm 2) is

𝑂

(
(𝑞𝑁 log𝑛− + 𝑞𝐸 log𝑚 + ℓ log𝑛−) · 𝑛−

OPT · 𝜀2
· ERP

)
. (7)

Proof. It is obvious that the naive VRR path samplingwill return

a VRR path according to distribution P𝑆 . We just need to prove that

ERPV = ERP · 𝑛−/𝜎− (𝑆), and the rest follows Theorem 1. For each

live-edge graph 𝐿, if we randomly select a root 𝑣 ∈ 𝑉 \ 𝑆 , then with

probability ( |Γ(𝐿, 𝑆) | − |𝑆 |)/𝑛− , 𝑣 is reachable from 𝑆 in 𝐿, which

means the RR path from 𝑣 will intersect with 𝑆 on this live-edge

graph 𝐿. Taking expectation over 𝐿, we know that the probability

of an RR path is valid is E𝐿 [( |Γ(𝐿, 𝑆) | − |𝑆 |)/𝑛−] = 𝜎− (𝑆)/𝑛− .
Therefore, on average we need to generate 𝑛−/𝜎− (𝑆) RR paths to

get one VRR path, which means ERPV = ERP · 𝑛−/𝜎− (𝑆). □

Forward-Backward VRR Path Sampling. To avoid wasting RR

path samplings as in the naive method, we can first do a forward

simulation from 𝑆 to generate a forward forest, recording the nodes

and edges that a forward simulation from 𝑆 will pass. Then, when

randomly selecting a root 𝑣 , we restrict the selection to be among

the nodes touched by the forward simulation. Finally, the VRR

path is the path from 𝑆 to 𝑣 recorded in the forward forest. This is

the forward-backward sampling method given in Algorithm 3. Let

EFF(𝑆) be the meantime of generating a forward forest from seed

set 𝑆 . Then we have the following result on this method.

Algorithm 3: FB-VRR-Path: Forward-Backward VRR

Path Sampling

Input: Graph 𝐺 , seed set 𝑆

1 Initialize an empty forest 𝐹 ;

2 Forward propagating a new forest 𝐹 by using LT model with

𝑆 and 𝐺 ;

3 Randomly select a node 𝑣 ∈ 𝐹 \ 𝑆 , and set path 𝑃 to be the

one from 𝑆 to 𝑣 in the forest 𝐹 ;

4 R𝑜 ← R𝑜 ∪ 𝑃 ; return a VRR path 𝑃 .

Theorem 3. Forward-backward VRR path sampling (Algorithm 3)
correctly samples a VRR path. The expected running time of AAIMM
with forward-backward VRR path sampling (Algorithm 3) is

𝑂

(
(𝑞𝑁 log𝑛− + 𝑞𝐸 log𝑚 + ℓ log𝑛−) · 𝜎− (𝑆)

OPT · 𝜀2
· EFF(𝑆)

)
. (8)

Proof. For any fixed live-edge graph 𝐿, conditioned on sampling

a VRR path, random sampling a root 𝑣 is equivalent of sampling

from Γ(𝐿, 𝑆) \ 𝑆 uniformly at random, which is exactly from the

forward forest generated by forward simulation from 𝑆 . Thus, the

forward-backward sampling method is correct. □

Compared with naive sampling, the forward-backward sampling

saves those sampling of invalid RR paths. However, it needs to

generate a complete forward forest first, which is more expensive

than generating one reverse path. Therefore, there is a tradeoff

between the forward-backward method and the naive method, and

the tradeoff is exactly quantified by their running time results: If

EFF(𝑆)/ERP < 𝑛−/𝜎− (𝑆), then the forward-backward method is

faster; otherwise, the naive method is faster. Therefore, which one

is better will depend on the actual graph instance.

Since the forward-backward method generates a forward forest

first, onemay be tempted to samplemore VRR paths from this forest,

but it will generate correlations among these VRR paths. Another

attempt of generating a number of forward forests to record the

frequencies of node appearances, and then use these frequencies to

guide the RR path sampling would also deviate from the subspace

probability distribution P𝑆 , and thus these methods would not

provide theoretical guarantee of the overall correctness of AAIMM.

Reverse-Reachable Simulationwith DAG. The naivemethod above

wastesmany invalid RR path samplings, while the forward-backward

method wastes many branches in the forward forest. Thus, we de-

sire a method that could do a simple VRR path sampling without

such waste. For directed-acyclic graphs (DAGs), we do discover

such a VRR path sampling method by re-weighting edges.

Suppose𝐺 is a directed acyclic graph. As shown in [9], in a DAG,

influence spread of a seed set can be computed in linear time. Let

ap𝑣 (𝑆) be the probability of 𝑣 being activated when 𝑆 is the seed

set. Let 𝑁 − (𝑣) be the set of 𝑣 ’s in-neighbors. Then in a DAG 𝐺 , we

have ap𝑣 (𝑆) =
∑
𝑢∈𝑁 − (𝑣) ap𝑢 (𝑆) ·𝑤 (𝑢, 𝑣). The above computation

can be carried out with one traversal of the DAG in linear time

from the seed set 𝑆 following any topological sort order. For a DAG

𝐺 , we propose the following sampling of a VRR path in P𝑆 as

DAG-VRR-Path in Algorithm 4.
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Algorithm 4: DAG-VRR-Path: DAG VRR Path Sampling

Input: Graph 𝐺 , seed set 𝑆

1 Randomly sample root 𝑣 ∈ 𝑉 \ 𝑆 with probability

proportional to 𝑎𝑝𝑣 (𝑆), i.e. with probability

ap𝑣 (𝑆 )∑
𝑢∈𝑉 \𝑆 ap𝑢 (𝑆 )

=
ap𝑣 (𝑆 )
𝜎− (𝑆 ) ;

2 𝑢0 ← 𝑣 ; 𝑃 ← {𝑢0}; 𝑖 ← 0;

3 repeat
4 Sample 𝑢𝑖+1 ∈ 𝑁 − (𝑢𝑖 ) with probability proportional to

ap𝑢𝑖+1 (𝑆) ·𝑤 (𝑢𝑖+1, 𝑢𝑖 ), i.e.
ap𝑢𝑖+1 (𝑆 ) ·𝑤 (𝑢𝑖+1,𝑢𝑖 )∑

𝑢∈𝑁 − (𝑢𝑖 ) ap𝑢 (𝑆 ) ·𝑤 (𝑢,𝑢𝑖 )
=

ap𝑢𝑖+1 (𝑆 ) ·𝑤 (𝑢𝑖+1,𝑢𝑖 )
ap𝑢𝑖
(𝑆 ) ;

5 Add node 𝑢𝑖+1 and edge (𝑢𝑖+1, 𝑢𝑖 ) into path 𝑃 ;

6 𝑖 ← 𝑖 + 1;
7 until 𝑢𝑖 ∈ 𝑆 ;
8 return a VRR path 𝑃 .

Lemma 4. If the graph 𝐺 is a DAG, then any path sampled by
Algorithm DAG-VRR-Path follows the subspace distribution P𝑆 .

Proof. First, notice that Algorithm DAG-VRR-Path re-weights

the incoming edges (𝑢, 𝑣) of every node 𝑣 according to the activation
probability ap𝑢 (𝑆). Therefore any node 𝑢 that cannot be activated

by 𝑆 will cause (𝑢, 𝑣) to have zero weight, and thus will not be

sampled in the reverse sampling process. Therefore, the reverse

sampling process will always sample toward the seed set, and since

the graph has no cycle, it will always end at a seed node in 𝑆 . This

means that the output of DAG-VRR-Path is always a VRR path.

We just need to show that it follows the subspace distribution P𝑆 .
To show that its distribution is the same as P𝑆 , all we need

to show is that if we have two paths 𝑃1 and 𝑃2 that both start

from a seed node in 𝑆 , then the ratio of the probabilities of gen-

erating these two paths by the above procedure is the same as

the ratio in the original RR path space. Let 𝑃1 = (𝑢𝑠 , 𝑢𝑠−1, . . . , 𝑢0)
and 𝑃2 = (𝑧𝑡 , 𝑧𝑡−1, . . . , 𝑧0), with 𝑢0, 𝑧0 ∈ 𝑉 \ 𝑆 and 𝑢𝑠 , 𝑧𝑡 ∈ 𝑆 .

Let 𝜋 (𝑃) be the probability of sampling the RR path 𝑃 in the

original space. Then we have 𝜋 (𝑃1) = 1

𝑛−
∏𝑠

𝑖=1𝑤 (𝑢𝑖 , 𝑢𝑖−1), and
𝜋 (𝑃2) = 1

𝑛−
∏𝑡

𝑗=1𝑤 (𝑧 𝑗 , 𝑧 𝑗−1). So the ratio is

𝜋 (𝑃1)
𝜋 (𝑃2)

=

∏𝑠
𝑖=1𝑤 (𝑢𝑖 , 𝑢𝑖−1)∏𝑡
𝑗=1𝑤 (𝑧 𝑗 , 𝑧 𝑗−1)

. (9)

Now let 𝜋 ′ (𝑃) be the probability of generating path 𝑃 by DAG-
VRR-Path. Then we have

𝜋 ′ (𝑃1) =
ap𝑢0

(𝑆)
𝜎− (𝑆)

𝑠∏
𝑖=1

ap𝑢𝑖
(𝑆) ·𝑤 (𝑢𝑖 , 𝑢𝑖−1)
ap𝑢𝑖−1 (𝑆)

=

∏𝑠
𝑖=1𝑤 (𝑢𝑖 , 𝑢𝑖−1)

𝜎− (𝑆) ,

(10)

Where the above derivation also uses the fact that 𝑢𝑠 ∈ 𝑆 and thus

ap𝑢𝑠
(𝑆) = 1. Similarly, we have

𝜋 ′ (𝑃2) =
ap𝑧0
(𝑆)

𝜎− (𝑆)

𝑡∏
𝑗=1

ap𝑧 𝑗
(𝑆) ·𝑤 (𝑧 𝑗 , 𝑧 𝑗−1)
ap𝑧 𝑗−1 (𝑆)

=

∏𝑡
𝑗=1𝑤 (𝑧 𝑗 , 𝑧 𝑗−1)

𝜎− (𝑆) .

(11)

Therefore, clearly 𝜋 ′ (𝑃1)/𝜋 ′ (𝑃2) = 𝜋 (𝑃1)/𝜋 (𝑃2), and the above

procedure correctly generates a VRR path from P𝑆 . □

Therefore we can use DAG-VRR-Path sample from P𝑆 . Now
we just need to analyze its running time ERPV. The generation

is still similar to the LT reverse simulation. For any 𝑢 ∉ 𝑆 , let

𝜏 (𝑢) be the time needed to do a reverse simulation step from 𝑢.

For the LT model, a simple binary search implementation takes

𝜏 (𝑢) = 𝑂 (log
2
𝑑−𝑢 ) time, where 𝑑−𝑢 is the indegree of 𝑢. For an RR

path 𝑃 , let 𝜔 (𝑃) = ∑
𝑢∈𝑉 (𝑃 )\𝑆 𝜏 (𝑢) be the total time needed to

generate path 𝑃 . Let 𝜏 =
∑
𝑢∈𝑉 \𝑆 𝜏 (𝑢).

Lemma 5. Let 𝑣 be a randomly sampled node from𝑉 \𝑆 , with sample
probability proportional to 𝜏 (𝑣). Let 𝑃 be a random VRR path gener-
ated by DAG-VRR-Path, then we have ERPV = E𝑃∼P𝑆 [𝜔 (𝑃)] =

𝜏
𝜎− (𝑆 ) · E𝑣̃ [𝜌𝑆 ({𝑣})].

Proof. For a fixed RR path 𝑃 , let 𝑝 (𝑃) be the probability 𝑣 ∈
𝑉 (𝑃). Then it is clear that

𝑝 (𝑃) = E𝑣̃ [I{𝑣 ∈ 𝑉 (𝑃)}] =
𝜔 (𝑃)
𝜏

.

Let 𝑃 be a random VRR path generated by Algorithm 4. Then

E𝑃∼P𝑆 [𝜔 (𝑃)] = 𝜏 · E𝑃∼P𝑆 [𝑝 (𝑃)] = 𝜏 · E𝑃∼P𝑆 [E𝑣̃ [I{𝑣 ∈ 𝑉 (𝑃)}]]

= 𝜏 · E𝑣̃ [E𝑃∼P𝑆 [I{𝑣 ∈ 𝑉 (𝑃)}]] =
𝜏

𝜎− (𝑆) · E𝑣̃ [𝜌𝑆 ({𝑣})],

where the last equality is by Lemma 2. □

Finally, applying the above ERPV result to Theorem 1, we can

obtain the following

Theorem 4. Algorithm DAG-VRR-Path correctly samples a VRR
path. The expected running time of AAIMM with DAG-VRR-Path
sampling is𝑂

( (𝑞𝑁 log𝑛−+𝑞𝐸 log𝑚+ℓ log𝑛− ) ·𝜏 ·E𝑣̃ [𝜌𝑆 ({ 𝑣̃}) ]
OPT·𝜀2

)
, where 𝜏 =

𝑂 (∑𝑢∈𝑉 \𝑆 log2 𝑑
−
𝑢 ) = 𝑂 (𝑛 log𝑛).

Notice that when 𝑞𝑁 ≥ 1, we have E𝑣̃ [𝜌𝑆 ({𝑣})] ≤ OPT. There-

fore, in this case we will have a near-linear-time algorithm, just as

the original influence maximization algorithm IMM.

The above result relies on that 𝐺 is a DAG. When the original

graph is not DAG, we can transform the graph to a DAG, similar to

the DAG generation algorithm in the LDAG algorithm (Algorithm

3 in [6]). The difference is that in [6] it is generating a DAG to

approximate the influence towards a root 𝑣 . Instead, in our case

we want to generate a DAG that approximates the influence from

seed set 𝑆 to other nodes. But the approach is similar, and we can

efficiently implement this DAG generation process by a Dijkstra

short-path-like algorithm just as in [6].

4 EXPERIMENTAL EVALUATION
4.1 Data and Algorithms
DBLP. The DBLP dataset [24] is a network of data mining, where

every node is an author and every edge means the two authors

collaborated on a paper. The original DBLP is a graph contain-

ing 6.546 28 × 105 nodes and 3.980 318 × 106 directed edges. How-

ever, due to the limited memory of our computer (16GB memory,

1.4GHz quad-core Intel CPU), it hardly launches the whole test on

such graph. So we randomly sample 1.000 00 × 105 nodes and their

7.471 78 × 105 directed edges from the original graph, which is still

the largest size of graph among all four datasets.
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NetHEPT. The NetHEPT dataset [5] is extensively used in many

influence maximization studies. It is an academic collaboration

network from the “High Energy Physics Theory” section of arXiv

from 1991 to 2003, where nodes represent the authors and each

edge represents one paper co-authored by two nodes. We clean the

dataset by removing duplicated edges and obtain a directed graph

𝐺 = (𝑉 , 𝐸), |𝑉 | = 1.5233 × 104, |𝐸 | = 6.2774 × 104 (directed edges).

Flixster. The Flixster dataset [1] is a network of American social

movie discovery services. To transform the dataset into a weighted

graph, each user is represented by a node, and a directed edge from

node 𝑢 to 𝑣 is formed if 𝑣 rates one movie shortly after 𝑢 does so

on the same movie. The Flixster graph contains 2.9357 × 104 nodes
and 2.126 14 × 105 directed edges.

DM. The DM dataset [24] is a network of data mining researchers

extracted from the ArnetMiner archive (aminer.org), where nodes

present the researchers and each edge is the paper coauthorship

between any two researchers. DM is the small size dataset here,

which only includes 6.79×102 nodes and 3.374×103 directed edges.

4.2 Algorithms
We test all four algorithms proposed in the experiment, for the

AdvIM task with different settings. Some further details of each

algorithm are explained below.

AA-FF. This is the forward forest greedy algorithm. The number

of forward-forest simulations of AA-FF is the same as the reverse-

reachable approaches in Theorem 2. However, instead of using VRR

paths, AA-FF simulate a forward forest, i.e., a set of trees, in each

propagation, which is required to occupy a huge computer memory

to ensure theoretical guarantee. To make it practical, we follow the

standard practice in the literature and set the number of simulations

as 10000 [5, 16, 29]. The pseudo code and full analysis of AA-FF is

given in the appendix of the full version [23].

AA-IMM-Naive. This is the AAIMM algorithm with naive VRR

path simulation, as given in Algorithm 1 and Algorithm 2. AA-IMM-
Naive needs to generate plenty of RR paths for enough VRR paths

since most naive RR paths can not touch the seed set 𝑆 . Compared

(a) DBLP (𝑘 = 300) (b) NetHEPT (𝑘 = 200) (c) Flixter (𝑘 = 100) (d) DM (𝑘 = 50)

(e) DBLP (𝑘 = 300, 𝑞𝐸 = 10) (f) NetHEPT (𝑘 = 200, 𝑞𝐸 =

10)
(g) Flixter (𝑘 = 100, 𝑞𝐸 = 10) (h) DM (𝑘 = 50, 𝑞𝐸 = 10)

(i) DBLP (𝑘 = 300) (j) NetHEPT (𝑘 = 200 (k) Flixter (𝑘 = 100) (l) DM (𝑘 = 50)

(m) DBLP (𝑘 = 300, 𝑞𝑁 = 20) (n) NetHEPT (𝑘 = 200, 𝑞𝑁 =

20)
(o) Flixter (𝑘 = 100, 𝑞𝑁 = 20) (p) DM (𝑘 = 50, 𝑞𝑁 = 20)

Figure 1: Evaluation budget 𝑞𝑁 and 𝑞𝐸 on four datasets. We fixed 𝑞𝐸 for (a)-(h) and fixed 𝑞𝑁 for (i)-(p). Once we fix the node
budget, then the x-axis is the edge budget, and vice versa. The y-axis is the influence spread.
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to AA-FF, AA-IMM-Naive uses much less computer memory cost

to ensure the theoretical guarantee due to the RIS approach.

AA-IMM-FB. This is theAAIMMalgorithmwith forward-backward

VRR path simulation, as given in Algorithm 1 and Algorithm 3. Un-

like AA-IMM-Naive, no path will be wasted in AA-IMM-FB, since
all paths here are VRR paths that are randomly selected from the

forward forests. To fair compare the running time with AA-FF, We

choose to sample the same number of simulations of the forward

forests. The results show that compared with AA-FF, AA-IMM-FB
can save more computer memory and computation power.

AA-IMM-DAG. This is the DAG-based AAIMM algorithm, as

given in Algorithm 1 and Algorithm 4. Before simulation the VRR

paths from DAG, we need first create a DAG as same as [6]. Com-

pared to previous RIS approaches, AA-IMM-DAG is the fastest

approach for VRR path sampling.

We also use 10000 Monte Carlo simulations for influence spread

estimation after adversarial attacks for all the above approaches.

4.3 Result
We test all four algorithms proposed in the experiment, for the Adv-

IM with 𝑘 seeds budget, such as AA-FF, AA-IMM-Naive, AA-IMM-
FB andAA-IMM-DAG algorithms.We useR = 10000 for theAA-FF
and AA-IMM-FB on all datasets due to the high-cost computing

resource andmemory usage. Note that, due to the highmemory cost,

AA-FF can not finish the whole test even R = 10000. In all tests,

we set the seed set 𝑘 = 50, 100, 200, 300 for DM, Flixster, NetHEPT

and DBLP respectively, and we also test different combinations

of 𝑞𝑁 and 𝑞𝐸 . For clear representation, we leave out "AA-" in the

algorithms’ names in Figure 1 and Figure 2.

Influence Spread Performance. From Figure 1, it is not hard to

see that the influence of the selected seed set is decreasing while

increasing either the node budget 𝑞𝑁 or the edge budget 𝑞𝐸 over all

16 tasks. On DBLP, we can see that AA-IMM-FB > AA-IMM-DAG
> AA-IMM-DAG based on the performance on influence reduction,

and AA-FF can not finish the test with R = 10000. NetHEPT has

similar ranking results as DBLP that we have AA-IMM-FB = AA-
FF > AA-IMM-Naive > AA-IMM-DAG in most cases. However,

on Flixster, the ranking becomes very different. AA-IMM-DAG
becomes the best in most cases, and AA-FF and AA-IMM-FB show

the worst influence reduction performance in Figures 1 (c) and

(g). On DM, all methods perform close to each other. In summary,

the results demonstrate that all algorithms perform close to each

other. In general, either AA-IMM-DAG and AA-FF can achieve the

best performance in different tasks. In this case, the running time

becomes the key while applying the algorithms in real applications.

Running time. Figure 2 reports the running time of all the tested

algorithms on the four datasets. One clear conclusion is that all IMM

algorithms are much more efficient than AA-FF that even fails to

finish the test on DBLP. Among three RIS algorithms, it is obvious

that AA-IMM-DAG is the fastest algorithm, AA-IMM-Naive is the

second, and the AA-IMM-FB is the slowest one. However, from

DBLP’s results, AA-IMM-Naive is slower than AA-IMM-FB, which
is not due to the limited number of simulations of the AA-IMM-FB,
i.e., R = 10000. More importantly, AA-IMM-DAG is at least 10

times faster than all other algorithms, including other RIS-based

IMM-DAG IMM-Naive IMM-FB0

200

400

600

800
DBLP (q_E = 10)
DBLP (q_E = 30)

(a) DBLP (𝑘 = 200, 𝑞𝑁 = 30)

IMM-DAG IMM-Naive IMM-FB FF0

8

16

24

32
NetHEPT (q_E = 10)
NetHEPT (q_E = 30)

(b) NetHEPT (𝑘 = 200, 𝑞𝑁 = 30)

IMM-DAG IMM-Naive IMM-FB FF0

30

60

90

120 Flixster (q_E = 10)
Flixster (q_E = 30)

(c) Flixter (𝑘 = 100, 𝑞𝑁 = 30)

IMM-DAG IMM-Naive IMM-FB FF0.0

0.9

1.8

2.7

3.6
DM (q_E = 10)
DM (q_E = 30)

(d) DM (𝑘 = 50, 𝑞𝑁 = 30)

Figure 2: Running time analysis. For all datasets, the node
budget is fixed as 30. The y-axis is the running time (seconds).

approaches. After combining the influence spread and running time

performance together, we recommend AA-IMM-DAG and AA-IMM-
FB algorithms to be the best two choices for AdvIM, and AA-FF to

be the worst choice due to the cost of high computer memory and

high running time.

4.4 Discussion
From the experiments, we found several interesting aspects. The

most important is whyAA-FF algorithm took so muchmemory and

computing resource compared to VRR path simulation approaches.

The primary reason is that AA-FF algorithm takes too much mem-

ory space. For RR path simulation, no matter how big the original

seed set is, we only save one single path per simulation. However,

in each AA-FF simulation, the size of the forest is related not only

to the graph’s proprieties but also to the size of the target seed set.

While the target seed set contains 100 nodes, there are 100 sub-tree

in each simulation by the AA-FF algorithm. It means AA-FF can

not be practical in a real application. For example, if we want to stop

COVID-19 with a virus spread graph, the seed sets may be thou-

sands in a vast network. In this case, VRR-based path simulation is

the best for a large graph simulation for Adv-IM.

5 CONCLUSION
In this paper, we study the adversarial attack on influence maxi-

mization (AdvIM) task and propose efficient algorithms for solving

AdvIM problems. We adapt the RIS approach to improve the effi-

ciency for the AdvIM task. The experimental results demonstrate

that our algorithms are more effective and efficient than previous

approaches. There are several future directions from this research.

One direction is to attack the influence maximization on uncer-

tainty networks or dynamic networks. We can also study blocking

the influence propagation without knowing the seed set. Another

direction is to sample less number of forward forests with theo-

retical analysis. Adversarial attack on other influence propagation

models may also be explored.
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