
19December 2021 | Volume 25, Issue 4 GetMobile

Inference latency has become a crucial metric in running Deep Neural Network
(DNN) models on various mobile and edge devices. To this end, latency prediction of
DNN inference is highly desirable for many tasks where measuring the latency on real
devices is infeasible or too costly. Yet it is very challenging and existing approaches

fail to achieve a high accuracy of prediction, due to the varying model-inference latency
caused by the runtime optimizations on diverse edge devices. In this paper, we propose and
develop nn-Meter, a novel and efficient system to accurately predict the DNN inference
latency on diverse edge devices. The key idea of nn-Meter is dividing a whole model
inference into kernels, i.e., the execution units on a device, and conducting kernel-level
prediction. nn-Meter builds atop two key techniques: (i) kernel detection to automatically
detect the execution unit of model inference via a set of well-designed test cases; and
(ii) adaptive sampling to efficiently sample the most beneficial configurations from a large
space to build accurate kernel-level latency predictors. nn-Meter achieves significant high
prediction accuracy on four types of edge devices.

[HIGHLIGHTS]
Ph

ot
o,

 is
to

ck
ph

ot
o.

co
m

Excerpted from “nn-Meter: towards accurate latency prediction of deep-learning model inference on diverse edge
devices” from MobiSys ’21: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and
Services with permission. https://dl.acm.org/doi/10.1145/3458864.3467882 ©ACM 2021

Li Lyna Zhang Microsoft Research Shihao Han Microsoft Research, Rose-Hulman Institute of Technology
Jianyu Wei Microsoft Research, University of Science and Technology of China
Ningxin Zheng, Ting Cao and Yuqing Yang Microsoft Research
Yunxin Liu Institute for AI Industry Research (AIR), Tsinghua University

Editors: Nicholas D. Lane and Xia Zhou

nn-METER:
TOWARDS ACCURATE LATENCY
PREDICTION OF DNN INFERENCE
ON DIVERSE EDGE DEVICES

GetMobile December 2021 | Volume 25, Issue 420

[HIGHLIGHTS]

DNNs have been widely used in today’s
mobile and edge applications [1]. In many
applications, such as on-device video
analytics, face recognition, AR/VR, etc.,
DNN models are constrained by efficiency
constraints (e.g., latency). To design a model
with both high accuracy and efficiency,
model compression [2,3] and the recent
Neural Architecture Search (NAS) [4,5]
consider the inference latency of DNN
models as the hard design constraint.

However, measuring the inference
latency for DNN models is laborious and
expensive. It requires developers to perform
a deployment process on the physical device
to obtain the latency. The engineering effort
is tremendous for diverse edge devices
(e.g., mobile CPU/GPU and various
AI accelerators) and different inference
frameworks (e.g., TFLite and OpenVINO).
Even on a single device, it may be extremely
time-consuming to measure a large number
of models in NAS tasks (e.g., ProxylessNAS
[4] explores ~0.3 millions of models in
just one round of search). Such a high cost
can hinder the scalability and make the
measurement-based method practically
infeasible to support the fast-growing
number of edge devices.

Consequently, approaches have been
proposed to predict the inference latency.
For example, the FLOPs (i.e., the number
of multiply-adds) based method has been
widely applied to evaluate the efficiency [3,6],
which is simple but not a direct metric of
latency. To predict a model latency, many NAS
works [4,5] build the operator-wise lookup
table. Such operator-level methods sum up the
latencies of all operators. However, they do not
consider the model latency differences caused
by runtime optimizations of model graphs. For
instance, many frameworks merge multiple
operators into one fused operator to accelerate
the inference, which impacts the inference
latency significantly. Recently, the state-of-the-
art BRP-NAS [7] uses graph convolutional
networks (GCN) to predict latency of the
NASBench201 [8] dataset on various devices.
It captures the runtime optimizations by
learning the representation of model graphs
and corresponding latency. However, this
model-graph based approach depends heavily
on the tested model structures and may not
work for many unseen model structures.

In this work, we propose and develop a
novel system called nn-Meter that aims to

of DNN models, the kinds of operators and
kernels are stable with a relatively small set.
Any models are just different combinations
of operators/kernels. Therefore, kernel-level
prediction is generic enough to support
unseen new models.

Figure 1 illustrates the system archi-
tecture of nn-Meter. nn-Meter employs
two core components to realize accurate
latency prediction for a DNN model: Kernel
Detection and Adaptive Data Sampling.
Conceptually, the former automatically
divides the target model into a set of
kernels, and the latter samples the most
beneficial configurations from a large
space to build accurate kernel-level latency
predictors. For each kernel of a given
model, we extract the features and predict
its latency. Then, nn-Meter sums up all the
predicted kernel latencies as the whole-
model latency.

KERNEL DETECTION
Challenges
The first challenge of nn-Meter is how to
split a model into a proper set of kernels
on various edge devices. Due to the diverse
runtime optimizations, the executed kernels
are varying on different devices. For example,
the Conv+add is a fused kernel on a mobile
GPU, but not on a mobile CPU or Intel VPU.
Furthermore, many inference frameworks
are not open-sourced. Even for the open-
sourced ones, it requires runtime expertise
to determine the kernels.

To address this challenge, nn-Meter
employs a kernel detector that automatically
detects the possible kernels on various
edge devices in a black-box matter. We
design a set of test cases to detect whether
two operators can be fused or not. A DFS

accurately predict the latency of arbitrary
DNN models on diverse edge devices. The
key idea of nn-Meter is dividing a whole
model inference into multiple kernels that
are independent execution units of the
model inference on a device. A kernel may
be either a single primitive operator or a
fusion of multiple operators, depending
on the runtime and hardware. nn-Meter
builds latency predictors for kernels and
predicts the total latency of a model by the
latency sum of all kernels of the model.
We implement and evaluate nn-Meter on
four popular platforms of edge devices:
mobile CPU, mobile Adreno640 GPU,
mobile Adreno630 GPU and Intel VPU
(a representative AI accelerator for edge
devices). Significantly, nn-Meter achieves
a prediction accuracy of 99.0%, 99.1%,
99.0%, 83.4% on the CPU, Adreno640 GPU,
Adreno630 GPU and VPU, respectively.

In this article, we first introduce the
high-level system design of nn-Meter, then
we present our two key components: kernel
detection and adaptive data sampling.
Finally, we report the evaluation results to
demonstrate the effectiveness of nn-Meter.

nn-METER DESIGN
One key design choice of nn-Meter for high
prediction accuracy is to conduct kernel-
level prediction. This design choice is based
on two observations. First, kernel is the
basic scheduling and execution unit (e.g.,
GPU kernels) in deep-learning frameworks,
particularly on edge devices. Thus, the
notion of kernel naturally captures the
diverse runtime optimizations including
operator fusion, the most important
optimization that can largely impact the
latency. Second, despite a very large number

FIGURE 1. System architecture of nn-Meter. It offline detects fusion rules and builds
machine learning predictors of kernels.

21December 2021 | Volume 25, Issue 4 GetMobile

[HIGHLIGHTS]

multi-outbound and multi-inbound, which
are the targets of the fusion rules.

Based on the analysis above, for operator
type, our test cases include the single in/
outbound connection permutation of
every two possible operators, to detect
whether they can be fused. Then, the fusible
operators are selected to compose multi-in/
outbound connections to detect the rules
for different connections.

The inference latency difference of
connected and separated operators is used
as the metric to judge whether fusion
happens. That is, for a single in/outbound
connection (op1, op2), if the time of
operators follows the formula Top1 + Top2
– T(op1,op2) > a*min(Top1, Top2), they
are regarded as being fused as op1+op2.
In the formula, Top1 and T(op1,op2) are
the measured time of op1 and (op1, op2)
connection respectively. α is the empirical
coefficient as a threshold.

Find All Kernels of a Model. With the
detected fusion rules, for a model graph,
nn-Meter recursively applies the rules to
the graph to find all the constituent kernels
(i.e., fused operators). For example, with
matching the fusion rules on mobile GPU,
nn-Meter divides a ResNet18 subgraph into
three different kernels in Figure 2.

LATENCY PREDICTOR
Challenges
By applying the kernel detection to the target
model, we get a set of kernels. The next
step is to build latency predictors for these
kernels. However, it is non-trivial to build
accurate kernel predictors. The kernels show
non-linearity between latency and prediction
features (shown in Figure 3). Moreover, the
multiple configurable dimensions of kernels
lead to a huge possible sampling space for
the latency prediction. For instance, Conv
kernels usually have a 6-dimension of
configuration parameters: input height H,
input width W, kernel size K, stride S, input
channel number Cin, and output channel
Cout. The size of the sample space is the
multiplication of the size of every dimension
and can easily reach billions. Sampling the
whole space to get labeled training data is
infeasible. Thus, how to do efficient sampling
while ensuing high prediction accuracy
remains a big challenge.

To reduce the data sampling cost,
nn-Meter uses an adaptive data sampling
algorithm that leverages both the model
design and hardware latency characteristics.

(Depth-first search) rule matching algorithm
is designed to search for the maximum
fusion unit (i.e., kernel) in a model.

Test Case Design. Our test case design
is driven by two features of a NN model,
which can impact the fusion rules on target
devices, i.e., operator type and operator
connection. Operator type can impact
fusion rules because the fusion of different
operators requires different implementation
efforts. For example, the code of injective
operators can be easily connected (and
thus fused) to the code of other operators
compared to that of non-injective operators.
Operator connection also impacts fusion
rules. This is because improper fusion may
not only cause additional time cost, but
also cyclic operator dependency. Although
the model graphs are arbitrary, they are
all composed of three basic operator
connection types, i.e., single in/outbound,

FIGURE 2. A kernel search example on a subgraph of ResNet18 model.
The found kernels are maxpool, Conv+bn+relu, Conv+bn+add+relu.

WE PROPOSE
nn-METER…
TO PREDICT THE
DNN INFERENCE
LATENCY ON DIVERSE
EDGE DEVICES

FIGURE 3. Latency of Conv+bn+relu with different output channel number Cout. The groundtruth
exhibits a staircase pattern on GPU and VPU. Random sampling misses many hardware-crucial data.
(HW=112, Cin =32, K=3, S=1)

GetMobile December 2021 | Volume 25, Issue 422

[HIGHLIGHTS]

It firstly prunes the kernel configurations
that are rarely considered in DNN models.
Then, an iterative sampling process is
executed to automatically detect the most
beneficial configurations to sample, instead
of random selection. Finally, we build
machine-learning regressors to learn the
non-linearity with the sampled data.

Adaptive Data Sampling. We now describe
the main steps of the adaptive data sampling
algorithm in Figure 4. First, to generate
sufficient configurations that are likely to
be considered in NN design, we sample
by a prior possibility distribution, which
is calculated with kernel configurations
in existing CNN models. The distribution
describes the boundary and the possibility
of each data (i.e., kernel configuration)
to sample. Through sampling from the
distribution, we can prune lots of rarely
considered configurations.

Then, we run an iterative process to
sample more data around inaccurate
prediction data. Since large errors usually
indicate that prediction model requires more
information around them, we treat them as
the hardware-crucial data and perform more
fine-grained sampling. At each iteration, we
first collect all the available data to update
the machine learning predictor. We adapt the
Random Forests Regression as the predictor
model, which can learn the non-linearity.
Then, we use the predictor to evaluate each
data in the test set and pick out those with
large errors. We further conduct fine-
grained sampling around them. Specifically,
we leverage our observation in Figure 3 to
sample more data in the channel number C
dimension. For each data, we fix all the other
dimensions except the channel number C.
We randomly sample M data from [0.4 ×
C, 1.2 × C]. The iterative process continues
until the predictor accuracy meets the user’s
requirements.

Finally, we collect all the sampled data to
build the predictors for kernels. For a given
model, we sum up all the kernels’ predicted
latencies as the model latency.

EVALUATION
Benchmark dataset collection. To evaluate
the effectiveness of nn-Meter on an arbitrary
DNN model, we need a representative data-
set that covers a large prediction scope. First,
we collect 12 state-of-the-art CNN models
on the ImageNet2012. For each model, we
generate 2,000 variants by re-sampling the
output channel number and kernel size for
each layer. Besides, we add 2,000 models with
the highest test accuracy on CIFAR10 from
the NASBench201, where each model has a
different set of edge connections. In total, our
dataset contains 26,000 models.

End-to-end prediction results. We evaluate
nn-Meter on the benchmark dataset for 4
types of devices in Table 1. We predict the
latency of 26,000 models on each evaluated
device. We report the ±10% accuracy [7], that
are the percentage of models with predicted
latency within the corresponding error bound
relative to the measured latency. Remarkably,
we achieve 99.0%, 99.0% and 99.1% prediction

accuracy on the CPU, Adreno630 and
Adreno640 GPU, respectively. On the Intel
VPU, we can predict 83.4% models within the
±10% error boundary. With detailed manual
analysis, we found that VPU performs ad-hoc
optimizations that merges the computation
of Conv+bn+relu and the next maxpool
layer in VGG models. Fortunately, these
ad-hoc optimizations are rare, and their
impact on prediction accuracy is limited.

Comparison with baselines on unseen
models. In real-world scenarios, a usable
predictor must be able to predict unseen
models (i.e., a new model). nn-Meter
requires no model-level data for building
the predictors and can make predictions on
models it has not seen before. To demon-
strate it, we implement 3 baselines for
comparison: (1) FLOPs, (2) FLOPs+MAC,
(3) BRP-NAS. Baselines (1) and (2) are the
widely used latency predictors. Baseline (3)
is the latency predictor in BRP-NAS, one
of the state-of-the-art model-graph based
prediction by GCN on the NASBench201
dataset. Since the three baselines require
model-level information, we design a
k-fold cross-validation experiment for
evaluation.

Figure 5 shows the prediction accuracy
achieved by different predictors. Compared
with the baselines, nn-Meter is the only
approach that consistently achieves accurate
predictions on various devices. None of
the baselines can achieve comparable
performance for unseen models on any
device. Specifically, on average, nn-Meter
achieves 89.2% accuracy, significantly better
than FLOPs (22.1%), FLOPs+MAC (17.1%),
and BRP-NAS (8.5%) on the three devices.

FIGURE 4. The adaptive data sampling algorithm.

Device	 Processor	 Framework	 Accuracy

Pixel 4 	 CortexA76 CPU	 TFLite v2.1	 99.0%

Pixel 3XL	 Adreno630 GPU	 TFLite v2.1	 99.0%

Mi9	 Adreno640 GPU	 TFLite v2.1	 99.1%

Intel NCS2	 Myriad VPU	 Openvino 2019R2	 83.4%

TABLE 1. End-to-end latency prediction for 26,000 models on mobile CPU, GPU and Intel VPU.

23December 2021 | Volume 25, Issue 4 GetMobile

CONCLUSION
We propose nn-Meter, a kernel-based
prediction system that accurately predicts
the latency of DNN models on diverse edge
devices. nn-Meter introduces kernel detection
that captures the various operator-fusion
behaviors. By sampling the most beneficial
data, nn-Meter efficiently builds latency
predictors for kernels. We demonstrate the
effectiveness of nn-Meter with experiments on
a large dataset and four types of edge devices.

While we have obtained promising results
of nn-Meter on the three platforms, it requires
joint efforts across the community to apply
nn-Meter onto many other types of edge devices.
To this end, we open-source1 our code for other
researchers and developers to build latency
predictors for their own devices. Collectively,
we expect that the community can work
together to realize accurate latency prediction
of DNN models for a variety of edge devices. n

Li Lyna Zhang is a senior researcher at Microsoft
Research. Her research interests are edge AI
computing, hardware aware AutoML and model
compression. She received her Ph.D. (2018)
and B.S. (2013) at University of Science and
Technology of China.

Shihao Han is a third-year student at Microsoft
Research, Rose-Hulman Institute of Technology,
where he is pursuing a degree in Electrical
Engineering. His research interests lie primarily
in efficient edge AI.

Jianyu Wei is a first-year Master’s student at
University of Science and Technology of China.
He received his B.S. at University of Science and
Technology of China in 2021.

Ningxin Zheng is a research software develop-
er at Microsoft Research. His research interests
are AI systems, cloud computing, and data-
center. He received his M.S. from Shanghai Jiao
Tong University in 2020.

FIGURE 5. Compared to the baselines, nn-Meter achieves much higher accuracy on unseen models.

(a) Mobile CPU (b) Adreno640 GPU (c) Intel VPU

REFERENCES
[1] Mengwei Xu, Jiawei Liu, Yuanqiang Liu,

Felix Xiaozhu Lin, Yunxin Liu, and Xuanzhe
Liu. 2019. A first look at deep learning apps on
smartphones. The World Wide Web Conference
(WWW).

[2] Song Han, Huizi Mao, and William J. Dally.
2016. Deep compression: Compressing
deep neural networks with pruning, trained
quantization and Huffman coding. International
Conference on Learning Representations (ICLR).

[3] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang,
Li-Jia Li, and Song Han. 2018. AMC: AutoML
for model compression and acceleration
on mobile devices. European Conference on
Computer Vision (ECCV).

[4] Han Cai, Ligeng Zhu, and Song Han. 2019.
ProxylessNAS: Direct neural architecture search
on target task and hardware. In International
Conference on Learning Representations (ICLR).

[5] Bichen Wu, Xiaoliang Dai, Peizhao Zhang,
Yanghan Wang, Fei Sun, Yiming Wu, Yuandong

Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer.
2019. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture
search. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR). 10734–10742.

[6] Zechun Liu, Haoyuan Mu, Xiangyu Zhang,
Zichao Guo, Tim Kwang-Ting Cheng Xin Yang,
and Jian Sun. 2019. MetaPruning: Meta learning
for automatic neural architecture channel pruning.
Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV).

[7] Lukasz Dudziak, Thomas Chau, Mohamed
Abdelfattah, Royson Lee, Hyeji Kim, and
Nicholas Lane. 2020. BRP-NAS: Prediction-
based NAS using GCNs. Advances in Neural
Information Processing Systems (Neurips).

[8] Xuanyi Dong and Yi Yang. 2020. NAS-
Bench-201: Extending the scope of reproducible
neural architecture search. In International
Conference on Learning Representations (ICLR).

[HIGHLIGHTS]

1 https://github.com/microsoft/nn-Meter

Ting Cao is a senior research manager in
Microsoft Research. Her research interests
include deep learning systems, Hardware/
Software co-design, high-level language
implementation, and energy efficient
hardware design. She received her PhD from
the Australian National University. Before
joining MSRA, she worked in 2012 Labs,
Huawei Technologies.

Yuqing Yang is principal research SDE manager
at Microsoft Research. His research focuses
on efficient AI systems, such as accelerating
deep learning training and inference, and
creating specialized clusters for deep learning
workloads. He received his Ph.D. (’11) and B.S.
(’06) from Fudan University, Shanghai, China.

Yunxin Liu is a Guoqiang professor at the
Institute for AI Industry Research (AIR),
Tsinghua University. His research interests
are mobile computing and edge computing.
He received his Ph.D. from Shanghai Jiao
Tong University in 2011, M.S. from Tsinghua
University in 2001, and B.S. from University of
Science and Technology of China in 1998.

