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SUMMARY

We present the SLIM open-source software framework for com-
putational geophysics, and more generally, inverse problems
based on the wave-equation (e.g., medical ultrasound). We de-
veloped a software environment aimed at scalable research and
development by designing multiple layers of abstractions. This
environment allows the researchers to easily formulate their
problem in an abstract fashion, while still being able to exploit
the latest developments in high-performance computing. We
illustrate and demonstrate the benefits of our software design
on many geophysical applications, including seismic inversion
and physics-informed machine learning for geophysics(e.g.,
loop unrolled imaging, uncertainty quantification), all while
facilitating the integration of external software.

INTRODUCTION

Software development for exploration geophysics has been tra-
ditionally driven by performance. Though this has resulted in
very efficient code, the usability and portability of these codes
has been compromised as a result of the absence of user-level
design. Abstractions and user interfaces at a high level have
been developed in recent decades to facilitate research and
development. A number of such interfaces are available, rang-
ing from programming languages, e.g., Python (van Rossum
and Drake, 2009), Julia (Bezanson et al., 2017), and Matlab,
to domain-specific languages (DSLs), including RVL (Padula
et al., 2009), Firedrake (Rathgeber et al., 2016), and Devito
(Louboutin et al., 2019; Luporini et al., 2020). Additionally,
there has been a community initiative towards open-source
codes and reproducibility, led by Madagascar (Madagascar,
2017). These efforts have brought attention to the need for user
abstraction to easily translate mathematics into code without
having to manually refactor thousands of lines of code.

Motivated by this background, we introduce our fully open-
source software SLIM framework based on high-level abstrac-
tions and separation of concerns. Our software design relies
on three principles: (1) A high-level abstraction that represents
the mathematical problem at hand; (2) Scalability with vertical
integration of high-performance software and DSLs; (3) Inter-
operability through the adoption of language standards (object
oriented, multiple dispatch, inheritence, ...). In the following,
we will detail these three points, highlighting their importance
and implementation. We will follow with some illustrations
of the integration with external software to demonstrate how
research and development can be eased and potentially acceler-
ated by these design principles.

SOFTWARE DESIGN

The fundamental objective of a scientific software framework
is to provide users with an interface that allows them to express
their own scientific problems. In particular, the interface should
provide abstractions to define the problem as closely as possible

to its mathematical formulation. With this design philosophy,
research and development turnaround time can be drastically
reduced with quick prototyping and testing of new ideas and
algorithms. Our software framework is grounded in this idea
and led to the development of legacy software (Lin and Her-
rmann, 2015; Silva and Herrmann, 2019) adopted by industry
for real-world application. Based on these ideas and modern
programming paradigms, we designed a high-level framework
that encapsulates the mathematical definition of geoscientific
problems at every level. These different levels are handled
through the vertical integration of domain-specific languages
(DSLs). At the lowest level, Devito provides a symbolic DSL
for the definition of wave-equation and a just-in-time compiler
to target the available hardware with near-optimal performance.
On top of Devito, we developed JUDI, a linear algebra DSL
for wave-equation based modeling and inversion. Finally, we
created a machine learning framework that allows us to in-
tegrate Devito propagators and JUDI Linear Operators into
machine learning (ML) frameworks (PyTorch and Flux) open-
ing the door to ML-augmented geophysical inverse problems
and uncertainty quantification (UQ). Finally, throughout these
different layers, we committed to follow language standards
allowing easy interfacing and integration with external software
and frameworks.

WAVE-EQUATION BASED INVERSION

Linear operators are at the core of applied geophysics. Some rel-
evant examples include data filtering tools such as Fourier-based
f-k filters, the Radon transform, NMO corrections to traditional
imaging operator such as Kirchhoff migration, post-stack mi-
gration and wave-equation based inversion where the discrete
wave-equation is a linear operator. One of the first frame-
works for abstract matrix-free linear algebra was sPOT(van den
Berg and Friedlander, 2009), later extended to wave-equation
based inversion and distributed computing for wavefield re-
construction (Kumar, 2010). While its adoption was limited
by its implementation in Matlab, such user oriented abstrac-
tion laid the ground for modern abstracted frameworks such as
JOLI(Modzelewski et al., 2022) in Julia and pyLops in Python
(Ravasi and Vasconcelos, 2020).

Similarly, wave-equation based inversion can be trivially for-
mulated as simple least-squares optimization problem for the
non-linear wave-equation represented as an abstract matrix
A(m) parametrized by the model parameter m:

ng

minimize ®(m) = > P Am) P! g —dy[3,
i=1

Building on modern software solutions JUDI (Witte et al.,
2019a; Louboutin et al., 2022a) provides a high-level inter-
face allowing to define a solver for this problem with a few
lines of code. For example, FWI using Gauss-Newton updates
at each iteration can be summarized in as little as five lines
(Listing 1).
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Gauss -Newton method

judiModeling (model, srcGeom, recGeom)

= judiJacobain(F, q)

or j=1:maxiter

d_pred = Fxq

fhistory_GN[j] = .5fO*norm(d_pred - d_obs)"2

# Gauss-Newton update

p = 1lsqr(J, d_pred - d_obs)

model0.m .= proj(modelO.m .- reshape(p, modelO.n))

oG
1

end

Listing 1: FWI with Gauss-Newton updates using JUDI. The
complete example is available and reproducible in the JUDI
github repository.

In addition to offering a high-level, mathematical interface to
the wave-equation and related linear operators, JUDI builds
on multiple layers of abstractions while still providing com-
putational performance that is comparable to the state-of-the-
art(Luporini et al., 2020). JUDI integrates Devito as a backend
for the actual wave-equation solves. Devito is a stencil DSL
(Louboutin et al., 2019; Luporini et al., 2020) that offers a sym-
bolic user-level interface to the underlying numerical solver.
This symbolic interface allows the user to easily and mathemat-
ically define generic partial differential equations (PDEs), such
as the acoustic, tilted-transverse-isotropic (TTI), or elastic wave-
equations. The underlying software then provides a code gener-
ation framework than can generate highly-performant code for
numerous architectures, (CPU, GPUs, ARM, POWER). Its ease
of use and high-level interface have contributed to its adoption
in the oil-and-gas industry for production and research at scale
(Washbourne et al., 2021). We summarize the vertical integra-
tion of the different technologies (compiler, Devito, JUDI, ...)
in Figure 1, which highlights the different levels of abstrac-
tion. The 2007 BP TTI dataset, for example, can be setup and
processed with RTM within days. The results are shown in
Figure 2.
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Figure 1: Schematics of the vertical integration in JUDI that
enables at scale inversion through layers of abstractions.

Interoperability

While a proper separation of concerns can lead to highly usable,
portable, and performant software, another important aspect
to consider is interoperability, namely the ability to integrate
software from different sources and organizations. We now
describe how the design of our software framework allows for
easy interfacing with external frameworks. One major draw-
back of proprietary and low-level software is the limited capa-
bility to interface and interact with external software. Through
open-source code development, and committing to language-
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Figure 2: 2D RTM on the 2007 BP TTI model with a marine
acquisition. This RTM was run on a GPU without moving
off to the CPU at any time using randomized trace estimation
as an extension of JUDI (Louboutin and Herrmann, 2021b;
Louboutin, 2021).

specific standards (such as proper usage of types, hierarchy,
inheritance, etc.) in Julia and Python, we enable seamless inter-
operability with external software and frameworks. This greatly
increases the ability to perform research, which involves being
able to easily test and combine different ideas. For instance,
we combine core Julia packages, our numerical optimization
toolbox SlimOptim.jl (Louboutin and Herrmann, 2021a), a
constrained optimization software SetIntersectionProjection.jl
(Peters and Herrmann, 2019), and COFII’s wave-equation prop-
agators (Washbourne et al., 2021), in order to setup a full wave-
form inversion (FWI) exercise. We were able to perform FWI,
in parallel, on the Marmousi-II model by taking advantage of
the best technology available. Additionally, this demonstra-
tive example, and in general JUDI (or COFII), can trivially
be deployed in the cloud using once again dedicated software
abstractions (Washbourne et al., 2021; Louboutin et al., 2022b).

function objective(F, velocity, d_obs)
J = jacobian(F, velocity)
d_pred = F * velocity # Forward modeling with COFFI
G = J' x ({d_pred.- d_obs) # Gradient with COFII

f = .5fO*norm(d_pred .- d_obs)~2 # Misfit

return f, G
end
# Projection on TV+bounds, SetIntersectionProjection.jl
prj = setup_projection(...)

# Projected Quasi-Newton (1-BFGS) with SlimOptim.jl
sol = pqn(x->objective(F, x, d_obs), vec(v2), prj);

Listing 2: Projected Quasi-Newton FWI with multiple software
packages. The complete example can be found here

Since different software modules can be pieced together with
minimal effort, it greatly aids the development and testing of
new research. This flexibility allows, for instance, the integra-
tion of machine learning into conventional algorithm pipelines
in a plug-and-play fashion. In the following section, we provide
some notable examples of this approach.

MACHINE LEARNING

Thanks to recent theoretical and practical advances, deep learn-
ing has seen a wide adoption in various geophysical applications
ranging from processing (e.g., denoising, multiple removal) to
inverse problems and seismic interpretation (e.g., Zhang et al.,
2018; Wang et al., 2019; Yang and Ma, 2019). One of the
core challenges in the adoption of deep learning for seismic
applications is the integration of existing codes (e.g. seismic
propagators) into deep-learning frameworks based on automatic
differentiation (AD). To be able to differentiate through net-
works that contain both standard PyTorch/Tensorflow layers, as
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well as third party functions, such as a forward modeling kernel,
the third party code must have manually implemented gradients
and must be properly integrated into the deep learning frame-
work. Our high-level linear algebra abstraction framework,
which sits on top of our Devito-based propagators, facilitates
this integration, as deep learning frameworks like PyTorch or
Flux are already able to backpropagate through a linear operator
(namely by applying its adjoint to the data residual). This allows
us to implement deep neural networks in Flux, in which we can
combine standard deep learning layers with external third party
functions, e.g. convolutional layers with migration/demigration
operators. This capability has enabled various research projects
in our group, including surface-related multiple elimination
(Siahkoohi et al., 2019c), dispersion attenuation (Siahkoohi
et al., 2019a), and ML-augmented imaging and uncertainty
quantification (Siahkoohi et al., 2019b, 2020). We show in the
following two examples of machine learning for exploration
geophysics that take advantage of these high-level abstractions
to interface PDE solvers (JUDI, Devito) with deep learning
frameworks.

Seismic imaging with deep priors and uncertainty quantifi-
cation

Since we can integrate Devito’s highly optimized wave-
equation solvers with the PyTorch deep learning library, we
propose to use deep priors (Lempitsky et al., 2018) to regularize
seismic imaging, where we reparameterize the seismic image
as the output of an untrained convolutional neural network
(CNN). This approach acts as a regularization in the image
space (Lempitsky et al., 2018; Cheng et al., 2019; Dittmer
et al., 2020), which exploits the inductive bias of the CNN in
representing images without noisy artifacts (Lempitsky et al.,
2018). We perform Bayesian inference via a gradient-based
Markov chain Monte Carlo (MCMC) algorithm (Welling and
Teh, 2011), where each iteration requires differentiating the
action of the linearized Born scattering operator on the CNN
output with respect to the CNN’s weights. In order to have
access to the automatic differentiation utilities of PyTorch, we
expose Devito’s matrix-free implementations for the migration
operator and its adjoint to PyTorch via Devito4PyTorch
(Siahkoohi and Louboutin, 2021). This is exemplified in
Listing 3. Figure 3 summarizes the results of seismic imaging
and uncertainty quantification with this approach, which are
borrowed from Siahkoohi et al. (2021).

Loop-unrolled seismic imaging

Another set of applications that are enabled by the proper inte-
gration of abstract seismic modeling operators into deep learn-
ing frameworks are loop-unrolled optimization algorithms such
as the learned primal-dual reconstruction (Andrychowicz et al.,
2016; Adler and Oktem, 2018). These are special types of
networks that follows the general structure of gradient-based
optimization algorithms, in which conventional gradients are
augmented by additional neural network layers. Using our inte-
gration of JUDI operators into Flux via the JUDI4Flux package
(Witte et al., 2019b), we apply the loop-unrolled network ar-
chitecture from (Adler and Oktem, 2017) to seismic imaging.
Every iteration of the loop-unrolled algorithm consists of com-
puting the (conventional) gradient of the LS-RTM objective
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def deep_prior_imaging(d_obs, n, maxiter=1000):

J = ForwardBornLayer (model, geometry)
G

4

deep_prior_net ()
torch.randn ([1,

1, n[1], n[21]1)

optim, samples = pSGLD(G.parameters(),
for i in range(maxitr):

1r=0.001), []
x = G(z)
d_pred = J(x)

nlp = n_log_posterior(d_pred,
parameters ())

d_obs, G.+

nlp.backward ()

optim.step ()
samples.append(x.detach () .numpy ())
return samples

Listing 3: Seismic imaging and uncertainty quantification with
PyTorch and Devito as a wave-equation solver.

function g, using the forward and adjoint linearized Born scat-
tering operator, followed by the application of a shallow CNN
(Listing 4). The network takes a single simultaneous (super-)
shot record as the input and predicts an LS-RTM (or true) im-
age. We train the network in a supervised fashion, in which we
minimize the misfit between the predicted image and the true
image (whereas in reality, one would train with available LS-
RTM images). Figure 4 shows the output of the loop-unrolled
gradient descent algorithm, Listing 4, after training the network
for 2000 iterations on a training dataset of 2,000 data-image
pairs. The example is not meant to represent a realistic scenario
(as the true images which were used in the training process
are obviously unknown), but serve as a proof of concept on
how to augment physical models with data-driven approaches.
The complete example and additional variations are available
at LoopUnrolledSeismicImaging.

function loop_unrolled_lsrtm(d_obs, n; maxiter=10)
randn (Float32, n[1], n[2], 1, 1)
ny, nc, nb = size(x)
randn (Float32, nx, ny,
j=l:maxiter
= adjoint (J)*(J*xvec(x) - d_obs)
reshape (Flux.normalise(g), nx, ny, 1, 1)
cat(x, g, s, dims=3)
bnil(convi(u)); u = bn2(conv2(u)); u = bn3(+
conv3(u));
s = relu.(ul:, :, 2:6, :1)
dx = ul:, :, 1:1, :]
x += dx
end
return vec (x)
end

x =
nx,
s =
for

5, nb) # memory term

£ £ 03 03

Listing 4: Example of a physics-augmented neural network for
seismic imaging. The network consists of 10 iterations of a loop-
unrolled gradient descent algorithm, in which the conventional
LS-RTM gradient g is augmented through convolution layers.
The input into the network is the observed seismic data and the
output is the predicted image.

End-to-end inversion for geological carbon storage monitor-
ing

Finally, we show that we can easily build a framework for seis-
mic monitoring of geological carbon storage that integrates
PDE solvers, deep learning models and physical constraints.
These monitoring problems rely on three different types of
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Figure 3: Imaging a 2D subset of the Parihaka (WesternGeco., 2012) dataset with deep priors (Siahkoohi et al., 2021). (a) LSRTM
without any regularization. (b) The conditional (posterior) mean estimate, using the deep prior as regularization. (c) Normalized
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Figure 4: Loop-unrolled LSRTM on a test 2D slice of the 2D
overthrust model. (a) True image, (b) RTM of simultaneous
shot and (c) loop-unrolling of.

physics (Li et al., 2020a): fluid-flow physics, rock physics and
wave physics. Given time-lapse seismic data collected over
multiple years, we jointly invert for the rocks intrinsic perme-
ability which can be used to recover the CO, concentration. By
leveraging our high-level abstractions and AD, we can directly
differentiate through all three physics solvers which map perme-
ability to seismic data and minimize a fully coupled data misfit
objective function. At each iteration, given an estimate of the
permeability K, we model seismic data where the subsurface
velocity is translated from the solution of the fluid-flow simu-
lation. We can then compute the standard data misfit and use
automatic differentiation to compute the permeability update.
Because each step is abstracted, we can easily swap each physi-
cal solver with a different one, such as replacing the fluid-flow
solver by a trained Fourier Neural Operator (FNO) for compu-
tational efficiency (Li et al., 2020b). We show in Figure 5 that
we can recover the permeability from seismic measurements
using a pre-trained FNO in place of a fluid-flow solver.

CONCLUSIONS

Through this paper, we have introduced a software design phi-
losophy aimed at enabling research and development at scale
in geoscience, with the potential to generalize to any inverse
problem such as medical imaging. We demonstrated through
carefully chosen example that high-level abstractions allow to
express complex problem in a clear and representative way
without incurring additional computational costs. Our soft-
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opt = RMSprop()
for j=1l:maxiter
theta = params (K)
grads = gradient (theta) do
c = 8(K); v = R(c); d_pred = F(v)
return 0.5f0 * norm(d_pred-d_obs)~2f0
end
for p in theta
update! (opt, p, grads[pl)
end

a

en

Listing 5: Example of an end-to-end coupled inversion for
seismic monitoring of geological carbon storage. A pre-trained
FNO S is used as a surrogate for fluid-flow simulation. In each
iteration, we calculating the seismic data misfit, compute the
gradient with respect to input permeability, K, via AD, and
update it according to an optimizer opt.
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Figure 5: End-to-end inversion of CO, concentration from
seismic measurements. In order to obtain this end-to-end result,
the three operators representing the fluid-flow modeling, rock
property modeling, wave modeling, and their derivatives are
integrated by combining AD and manually defined gradients.

ware framework already allows for a wide range of application,
including industry scale inversion and cutting-edge physics-
informed deep learning for geophysics. We intend to build
additional capabilities to tackle modern computing environ-
ment such as Cloud computing, task dedicated accelerators (i.e
TPUs) and non-convex optimization.
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