
33

FlashFill++: Scaling Programming by Example by Cutting to
the Chase
JOSÉ CAMBRONERO∗,Microsoft, USA

SUMIT GULWANI∗,Microsoft, USA

VU LE∗,Microsoft, USA

DANIEL PERELMAN∗,Microsoft, USA

ARJUN RADHAKRISHNA∗,Microsoft, USA

CLINT SIMON∗,Microsoft, USA

ASHISH TIWARI∗,Microsoft, USA

Programming-by-Examples (PBE) involves synthesizing an intended program from a small set of user-provided

input-output examples. A key PBE strategy has been to restrict the search to a carefully designed small
domain-specific language (DSL) with effectively-invertible (EI) operators at the top and effectively-enumerable
(EE) operators at the bottom. This facilitates an effective combination of top-down synthesis strategy (which

backpropagates outputs over various paths in the DSL using inverse functions) with a bottom-up synthesis

strategy (which propagates inputs over various paths in the DSL). We address the problem of scaling synthesis

to large DSLs with several non-EI/EE operators. This is motivated by the need to support a richer class of

transformations and the need for readable code generation. We propose a novel solution strategy that relies

on propagating fewer values and over fewer paths.

Our first key idea is that of cut functions that prune the set of values being propagated by using knowledge

of the sub-DSL on the other side. Cuts can be designed to preserve completeness of synthesis; however, DSL

designers may use incomplete cuts to have finer control over the kind of programs synthesized. In either case,

cuts make search feasible for non-EI/EE operators and efficient for deep DSLs. Our second key idea is that of

guarded DSLs that allow a precedence on DSL operators, which dynamically controls exploration of various

paths in the DSL. This makes search efficient over grammars with large fanouts without losing recall. It also

makes ranking simpler yet more effective in learning an intended program from very few examples. Both

cuts and precedence provide a mechanism to the DSL designer to restrict search to a reasonable, and possibly

incomplete, space of programs.

Using cuts and gDSLs, we have built FlashFill++, an industrial-strength PBE engine for performing rich

string transformations, including datetime and number manipulations. The FlashFill++ gDSL is designed to

enable readable code generation in different target languages including Excel’s formula language, PowerFx,

and Python. We show FlashFill++ is more expressive, more performant, and generates better quality code than

comparable existing PBE systems. FlashFill++ is being deployed in several mass-market products ranging

from spreadsheet software to notebooks and business intelligence applications, each with millions of users.
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1 INTRODUCTION
Programming-by-examples (PBE) has seen tremendous interest and progress in the last decade [Gul-

wani et al. 2017]. A variety of approaches have been proposed targeting various applications. Starting

from purely symbolic techniques, the field has explored neural [Devlin et al. 2017] and neurosym-

bolic approaches [Chaudhuri et al. 2021; Kalyan et al. 2018; Rahmani et al. 2021; Verbruggen et al.

2021]. In this paper, we present novel symbolic techniques to improve the scalability of PBE systems.

PBE applications range from enabling non-experts to author programs for spreadsheet data

manipulation [Gulwani et al. 2012] or application creation in a low-code/no-code setting [Lukes

et al. 2021], to improving productivity of data scientists for data wrangling tasks [Le and Gulwani

2014; Miltner et al. 2018] and even automating professional developers’ repeated edits [Pan et al.

2021; Rolim et al. 2017]. A flagship application for PBE is that of string transformations, for

instance, converting ‘Alan Turing’ to ‘turing, alan’—such tasks are very common and are

well described by examples [Gulwani 2011]. We focus on such string transformations, though our

technical contributions are more generally applicable to any grammar-based synthesis setting.

Most PBE engines work by defining a program search space, and then employing some strategy

to search over it. The program space is often defined by a domain-specific language (DSL), which

fixes a finite set of operators and all the different ways they can be composed to create programs. A

key challenge in PBE is scaling the search to very large program spaces. DSL designers have to

build DSLs that are expressive enough to be useful, yet small enough to keep the program search

space small. This tension in DSL design has hindered broader applications of program synthesis.

Users implicitly advocate for larger DSLs as they want synthesizers to produce programs that are

closer to the ones they would manually write, i.e., ones that use a large variety of functions that

are available in general purpose programming languages. On the other hand, these larger DSLs

(a) make the search space large and the synthesis slow, and (b) more importantly, allow the large

number of functions to be combined in unintuitive ways to produce undesirable programs. Program

synthesis research has mainly focused on completeness, i.e., ensuring that we find a program when

one exists, and insisting on completeness for large DSLs exacerbates these problems. We introduce

two new mechanisms, cuts and precedence, by which DSL designers can control the program search

space even as the DSL itself grows in size. This not only eases the job of the DSL designer, but also

enables them to build synthesizers based on very expressive DSLs.

Challenges. Let us say we are given an input-output example: a tuple of input values and one

output value. There are two commonly used search strategies to find programs that would generate

the output value using the input values: bottom-up and top-down.

Bottom-up (BU) search starts with the inputs and generates all possible values that can be computed
from the inputs using all possible (partial) programs in the search space. It does so by applying the

executable semantics functions of the DSL operators. Thus, information flows from the inputs, and all

computed intermediate results are completely oblivious to the output. The BU strategy is effective

only when the sets of values generated in each intermediate stage remains small. This happens

when there are only a small number of leaf constants and each operator is effectively-enumerable
(EE) – namely, it has a small arity and many-to-one semantics, thus having a small dynamic fan-out.
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Top-down (TD) search starts with the output and applies the inverse semantics of the operators,

so-called witness functions, to generate intermediate values that can generate the output value. Thus,
information flows from the output value, and at every stage, the intermediate values are computed

solely based on the output and are completely oblivious to the input values. The TD strategy is

effective only when these intermediate sets are small. This happens only when every operator is

effectively invertible (EI) – namely, it allows for effective (inverse) computation of various inputs

that can yield a given output.

If the DSL has both non-EE and non-EI operators, then neither bottom-up nor top-down strategies

are effective. Recently, it was observed that one could scale synthesis to larger DSLs by combining

the two strategies [Lee 2021]. If there is a partition of the DSL such that the sub-DSL closer to

the start symbol has EI operators, and the rest contains EE operators, then the two strategies

can be combined to yield a meet-in-the-middle strategy at that cut [Lee 2021]. However, this new

strategy still has only a limited form of information flow between the inputs and the output. In

fact, the DSLs used in Duet [Lee 2021] are relatively small, albeit larger than those in FlashFill and

FlashMeta [Gulwani 2011; Polozov and Gulwani 2015]. These latter systems are based on a TD

strategy over very small DSLs.

An alternate way to scale PBE synthesis is based on abstraction and refinement types [Feng et al.

2017; Guo et al. 2020; Polikarpova et al. 2016; Wang et al. 2017]. The idea behind abstraction is that

instead of computing the exact set of values that can be generated (in either top-down or bottom-up

strategy), we compute overapproximations of the sets of values. This approach works when high

quality abstractions can be quickly generated. Typically, it is still “one-sided” – either the inputs flow

to intermediate values or the output value flows backwards to intermediate values. Furthermore,

abstractions of compositions of operators are computed by composing the abstractions of operators,

which loses accuracy as the composition depth grows. We overcome some of these shortcomings

in our work; however, abstraction-based approaches are inherently complementary.
1

Our Contribution. In this paper, we present two novel techniques - cuts and precedence - to

effectively address the scalability challenges of PBE synthesis. The executable semantics functions

(that are the basis of BU) and the witness functions (that are basis of TD) are defined to allow

information to flow in one direction. We introduce cuts that prune values generated by witness

functions guided by the values that sub-DSLs could possibly compute on the inputs. This concept

inherently builds in bi-directional information flow in its definition, and in fact, generalizes the

semantics functions and witness functions. A DSL designer can author a cut function based on their

intuition of the form of values that can be computed at a nonterminal using the inputs, and then

restricting them to those that would be relevant for the output. Unlike abstractions, cuts are not

computed compositionally. They are provided for whole sub-DSLs; thus, they avoid information loss

accumulated by composing lossy abstractions. This is similar to how accelerations avoid information

loss in program analysis by capturing the effect (composition or transitive closure) of multiple state

transitions by a single “meta transition” [Finkel 1987; Karp and Miller 1969].

A top-down strategy would get stuck at a non-EI operator. However, a cut function for an

argument of that non-EI operator can help unblock TD synthesis. As a special case, a cut for that

argument can be generated using bottom-up enumeration, in which case we get the meet-in-the-

middle strategy [Lee 2021]. However, cuts may be generated by other means based on the DSL

designer’s insight. In general, we get a novel search strategy, middle-out synthesis, which uses cuts

1
In this paper, we focus exclusively on synthesis approaches based on concrete values: the specification is a concrete IO

example, and the semantics functions (and the inverse semantics) are given on concrete values (and not abstract values or

refinement types). More specifically, we are in the context of version-space algebra (VSA) driven synthesis, and hence the

terms top-down and bottom-up are always used in that context.
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to reduce the original PBE problem over a large DSL (with potentially non-EI and non-EE operators)

into simpler PBE problems over (smaller depth) sub-DSLs with only EI or only EE operators.

Our second key idea is to introduce precedence over operators in the grammar of domain-specific

languages. Precedence is a natural concept in grammars and arises naturally when the DSL designer

wants to prefer certain operators over others. We show that if the precedence is a series-parallel

partial order, then it can be encoded as an ordering on grammar rules to create a guarded DSL (gDSL),
and program search can be performed directly on the gDSL without compromising soundness or

completeness, while gaining efficiency. The ordering on rules in a gDSL is interpreted as a mandate

to explore a certain branch only when higher-ordered branches have failed to return a result. This

has two major advantages. First, it makes the search more scalable by dynamically using different

underapproximations of the DSL to be explored. Second, it makes ranking simpler to write for DSL

designers because the precedence already builds in a default ranking over programs.

Cuts and precedence provide DSL designers two new mechanisms to control the program search

space, beyond what they get through designing DSLs. Our contributions include:

• A new algorithmic approach for PBE (middle-out synthesis) that leverages a novel cut rule to
speed up synthesis over large DSLs and to handle non-EI and non-EE operators.

• A new formalism of guarded DSLs that supports operator precedence, and an extension of

our synthesis approach to gDSLs that scales synthesis to large DSLs and gives ranking based

on path orderings [Dershowitz and Jouannaud 1990] for free.

• A new and expressive system FlashFill++ for string transformations that supports datetime &

number manipulations and is designed for readable code generation.

• An extensive comparison of FlashFill++ with existing state-of-the-art PBE systems for string

transformations (FlashFill [Gulwani 2011], SmartFill [Chen et al. 2021a], and Duet [Lee 2021])
that shows improvements in expressiveness, learning performance, and code readability.

2 OVERVIEW
2.1 New Challenges in PBE for String Transformations
We first discuss some challenges faced by the current generation of PBE tools for string trans-

formations. These challenges were compiled in collaboration with two key industrial deployers

of PBE: the Microsoft Excel and the Microsoft PowerBI teams. To compile these challenges, we

interviewed several product managers in these teams, interacted with both expert and novice users

of the FlashFill feature, and analyzed online help posts.

Generating Readable Code. Consider the task of transforming the input pair ("David Walker",
"623179") to the output string "D-6231#walker". Any string processing library would contain

many redundant methods for extracting "Walker" from "David Walker". For example, in Python,

we could use the splitmethod to accomplish the task. Alternatively, we could use the findmethod

along with string slicing, or use regular expressions.

In contrast to the design of string processing libraries, the prevailing wisdom in DSL design for

synthesis has been to work with a minimal number of operators [Gulwani 2016]. For example,

FlashFill [Gulwani 2011] and the more recent Duet [Lee 2021] DSLs contain only 3 and 5 functions

that directly operate on strings, respectively. Smaller DSLs lead to smaller program search spaces,

yielding better synthesis performance and effective ranking [Polozov and Gulwani 2015]. Following

this minimalism to an extreme can lead to a DSL whose programs translate to very unnatural and

unreadable programs in target languages like Python (see Figure 1) or PowerFx (see Figure 2).

One straightforward approach to readability is writing a good translator from the synthesis DSL

to the target language. However, if the semantic gap between the DSL and the target languages’

operators is large, then “readable translation” itself becomes a new and nontrivial synthesis problem.
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# Python program generated by FlashFill

import regex

def transformation_text_program(input1 , input2 ):

computed_value_83 = regex.search(r"\p{Lu}+", input1 ).group (0)

index1_83 = regex.search(r"[-.\p{Lu}\p{Ll}0-9]+", input2 ).start()

computed_value_0_83 = input2[index1_83 :( len(input2) + -2)]

kth_match_83 = l i s t (regex.finditer(r"[-.\p{Lu}\p{Ll}0-9]+", input1 ))[-1]

computed_value_1_83 = kth_match_83.group (0). lower()

return computed_value_83+"-"+computed_value_0_83+"#"+computed_value_1_83

# Python program generated by FlashFill ++

def formula(i1 , i2):

s1 = i1[:1]

s2 = i2[:4]

s3 = i1.split(" ")[1]. lower()

return s1 + "-" + s2 + "#" + s3

# Python program generated by FlashFill ++ and renamed by Codex

def formula(name , number ):

first_initial = name [:1]

number_prefix = number [:4]

last_name = name.split(" ")[1]. lower()

return first_initial + "-" + number_prefix + "#" + last_name

Fig. 1. The python programs generated by FlashFill and FlashFill++ for the task of transforming ("David
Walker", "623179") to "D-6231#walker". FlashFill++’s program is much more readable and its readability
is further improved by renaming variables using a pretrained large language model, as shown.

Our insight is that to effectively generate readable code the DSLs should not be designed with the

single-minded goal of efficient learning, but also pay heed to the target languages.

While generating readable code is challenging, the need is sorely felt in industrial PBE tools—

users are more likely to trust and use PBE tools if they produce idiomatic, readable code. Quoting

one study participant in [Drosos et al. 2020]: “don’t know what is going on there, so I don’t know if I
can trust it if I want to extend it to other tasks. I saw my examples were correctly transformed, but
because the code is hard to read, I would not be able to trust what it is doing”. The lack of readable

code is one of the primary challenges preventing a broader adoption of PBE technologies.

Multiple Target Languages. The need for readable code generation is compounded by the

proliferation of different target languages, each with their own set of operations; see Figure 3.

These target languages range across standard programming languages (e.g., Python, R), individual

libraries (e.g., Pandas, PySpark), data query languages (e.g., SQL), and custom application-specific

languages (e.g., Google Sheets & Excel formula languages, PowerBI’s M language). Apart from the

obvious benefit, multiple target support can also help with learning: seeing the same program in

multiple languages helps with cross-language knowledge transfer [Shrestha et al. 2018].

Date-Time and Numeric Transformations. Most string PBE technologies cannot natively

handle date-time and numeric operations efficiently, leading to situations like transforming ‘jan’
to ‘Janember’ given the input-output example ‘nov’ ↦→ ‘November’. Duet [Lee 2021] does allow
for limited numeric operators, but still lacks support for important data-processing operations

such as rounding and bucketing. According to the Microsoft Excel team, date-time and numeric

operations (of the kind shown in Figure 3) are among the most requested FlashFill features. However,

as illustrated in Section 2.2, these operations are not amenable to standard synthesis techniques.
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# PowerFx formula generated by FlashFill

Concatenate(

Mid(Left(input1 , Match(input1 , "\p{Lu}+"). StartMatch

+ Len(Match(input1 , "\p{Lu}+"). FullMatch) - 1),

Match(input1 , "\p{Lu}+"). StartMatch),

Concatenate("-",

Concatenate(Mid(Left(input2 ,Len(input2)-2), Match(input2 ,"[0-9]+"). StartMatch),

Concatenate("#",

Lower(Mid(

Left(input1 ,

First(LastN(MatchAll(input1 , "[\p{Lu}\p{Ll}]+"), 1)). StartMatch

+ Len(First(LastN(MatchAll(input1 , "[\p{Lu}\p{Ll}]+"), 1)). FullMatch )-1),

Last(MatchAll(input1 , "[\p{Lu}\p{Ll}]+")). StartMatch ))))))

# PowerFx formula generated by FlashFill ++

Left(input1 , 1) & "-" & Left(input2 , 4) & "#"

& Lower(Last(FirstN(Split(input1 , " "), 2)). Result)

Fig. 2. PowerFx formulas generated by FlashFill and FlashFill++ to transform ("David Walker", "623179") into
"D-6231#walker". The latter is much more readable than the former.

Performing operations over datetimes and numbers allows our system to handle use cases like

the one detailed in Fig. 4(a), which presents 911 call records that need to be transformed. Each call

log, shown in the Input column, contains an (optional) address, the township, the call date and time,

followed by possible annotations indicating the specific 911 station that addressed the call. Let us

suppose that a data scientist wants to extract the date (2015-12-11) and time (13:34:52) from each log,

and map it to the corresponding weekday (Fri) and the 3-hour window (12PM - 3PM), as shown in

the Output column. Performing this transformation requires string processing to extract candidate

dates and times, parsing these substrings into appropriate datatypes, performing type-specific

transformations on the extracted values, and then formatting them into an appropriate output

string value. This is beyond the capabilities of current synthesizers. Our system can synthesize the

intended program (shown in Fig. 4(b)) from just the first example. This program is readable and

also serves educational value (e.g. teaching the API of the popular datetime Python library).

2.2 Overview of FlashFill++
We now show how our novel techniques address the various challenges from subsection 2.1.

Extended Domain-Specific Language. The main strength of FlashFill++ compared to previous

systems is its expanded DSL containing over 40 operators, including 25 for just strings and the rest

for datetime and numbers, such as for rounding and bucketing; see Figure 7. Contrast this with the

numbers 3 and 5 mentioned previously for FlashFill and Duet.

This extended DSL supports more expressive and more readable programs. Contrast the code

generated by FlashFill++ in Fig. 1 and 2 to that generated by FlashFill to see the clear difference an

extended DSL makes. However, expanding the DSL comes with its own set of challenges: (a) Given

the larger search space, standard synthesis techniques fall short on efficiency. (b) The larger search

space also complicates ranking—the problem of picking the best (or intended) program among all

the ones consistent with the examples. (c) Handling numeric and date-time operators requires new

synthesis techniques. Next, we discuss some novel strategies to address these challenges.

Cuts and Middle-Out Synthesis. Our new DSL contains several non-EI operators (required for

number and datetime operations) that inhibit use of a top-down synthesis strategy across those

operators. Furthermore, bottom-up synthesis is not feasible for the sub-DSLs below those operators
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Round to last day of month: 2/5/2020 =⇒ 2/29/2020

from datetime import datetime

from dateutil.relativedelta import *

def formula(i1):

month_start = datetime(i1.year ,i1.month ,1)

month_end = month_start

+ relativedelta(months =1)

return month_end - relativedelta(days =1)

EOMONTH(A1)

With({ monthStart:

Date(Year(i1), Month(i1), 1)

},

DateAdd(

DateAdd(

monthStart , 1, "" Months ""),

-1, ""Days""

))

Round to start of quarter: 2/5/2020 =⇒ 1/1/2020

from datetime import datetime

def formula(i1):

quarter = (i1.month - 1) // 3 + 1

return datetime(i1.year ,3* quarter -2,1)

EOMONTH(

DATE(YEAR(A1),

ROUNDUP(MONTH(A1)/3,

0)*3,1),

0)

With({ quarter:

RoundUp(Month(i1) / 3, 0)

},

Date(Year(i1),quarter *3-2,1)

+ Time(0, 0, 0))

Days since start of year: 2/5/2029 =⇒ 36

def formula(i1):

return i1.timetuple (). tm_yday
A1 - DATE(YEAR(A1), 1, 1) + 1

DateDiff(

Date(Year(i1),1,1),i1) + 1

Create year-quarter string: 4/5/1983 =⇒ ‘1983-Q2’

from datetime import datetime

def formula(i1):

quarter = (i1.month -1)//3 + 1

return i1.strftime("%Y") +

"-Q"+f"{quarter :01.0f}"

YEAR(A1) & "-Q" &

& ROUNDUP(MONTH(A1)/3, 0)

Text(i1, "yyyy", "en-US")

& "-Q" &

Text(

RoundUp(Month(i1) /3, 0),

"0",

"en-US")

Extract number, convert and round: ‘Your Total: $1,2564.45’ =⇒ 12564.5𝑑

from decimal import *

def formula(i1):

source = Decimal( s t r ( f l oa t (
i1.split("$")[-1]. replace(",", ""))))

delta = Decimal("0.5")

return f l oa t (( source / delta)

.quantize(0, ROUND_CEILING) * delta)

ROUNDUP(

NUMBERVALUE(

RIGHT(A1,

LEN(A1)-FIND("$", A1))

) / 0.5,

0

) * 0.5

RoundUp(Value(

Last(

Split(i1, "$")

).Result ,

"en-US"

) * 2, 0) / 2

Fig. 3. Code produced by FlashFill++ for various date-time and rounding scenarios in Python (left), Excel
(center), and PowerFx (right) respectively.

due to enumeration blowup, rendering a meet-in-the-middle strategy infeasible. We propose a

novel middle-out synthesis strategy that uses cuts to deal with such non-EI operators.

Consider the number parsing, rounding, and formatting subset of the FlashFill++ DSL below

decimal roundNumber := RoundNumber(parseNumber, roundNumDesc)
decimal parseNumber := ParseNumber(substr, locale) | ...
string substr := ...

Fix the input-output example ⟨“The price is $24.58 and 46 units are available.” ↦→
24.00⟩ for the non-terminal roundNumber. We first discuss the short-comings of both bottom-

up and top-down synthesis in this case.

Top-Down Synthesis using Witness Functions. In FlashMeta-style programming-by-example, the

primary deductive tools are witness functions. Given a specification in the form of an input-output
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(a)

Input Output

CEDAR AVE & COTTAGE AVE; HORSHAM; 2015-12-11 @ 13:34:52; Fri, 12PM - 3PM

RT202 PKWY; MONTGOMERY; 2016-01-13 @ 09:05:41-Station:STA18; Wed, 9AM - 12PM

; UPPER GWYNEDD; 2015-12-11 @ 21:11:18; Fri, 9PM - 12AM

(b)

def derive_value(_input ):

text = _input.split(";")[2]

part_0 = text.split(" ")[0]; part_1 = text.split(" ")[2][:8]

date = datetime.datetime.strptime(part_0 , "%Y-%m-%d")

time = datetime.datetime.strptime(part_1 , "%H:%M:%S")

base_value = datetime.timedelta(hours=time.hour , minutes=time.minute ,

seconds=time.second , microseconds=time.microsecond)

delta_value = datetime.timedelta(hours =3)

time_str = (time - base_value % delta_value ). strftime("%#I%p")

rounded_up_next = (time - base_value % delta_value) + delta_value

computed_value = time_str + "-" + rounded_up_next.strftime("%#I%p")

return date.strftime("%a") + ", " + computed_value

Fig. 4. (a) A task to map the 911-call logs in the Input column to weekday/time buckets in the Output column.
(b) Python function synthesized by our approach for this task from just one example.

example 𝑖 ↦→ 𝑜 and a top-level operator 𝐹 , a witness function for position 𝑘 generates a sub-

specification for the 𝑘𝑡ℎ parameter for 𝐹 . For example, if the top-level operator is concat(𝑁1, 𝑁2)
and the input-output example is 𝑖 ↦→ “abc”, the witness function for the 1

𝑠𝑡
position will return

{“a”, “ab”} (assuming we do not consider the trivial case of appending an empty string). In the

example we are considering, writing a witness functions for the RoundNumber operator is not as
straight-forward—there are an infinite set of numbers that can round to 24.00. A standard top-down

procedure cannot handle this infinite-width witness function.

Bottom-Up Synthesis. The other major paradigm for programming-by-example is bottom-up syn-

thesis: here, the synthesizer starts enumerating programs – starting from constants and iteratively

applying operators from the grammar on the previously generated programs – and checks if any

of the enumerated programs satisfies the given input-output example. An efficient bottom-up

synthesizer will avoid enumerating all programs using observational equivalence—that is, it only
generate programs that produce different outputs for the given input. In our running example, the

synthesizer will begin by generating substr sub-programs and concrete values for locale and

roundNumberDesc. However, enumerating such sub-programs is expensive—the fragment of the

DSL reachable from the non-terminal substr is large. In fact, string operations like substr are

best handled using witness functions.

Middle-Out Synthesis using Cuts. Examining our input-output example by hand, it is easy to see that

in any valid program the output of ParseNumber should be derived from a numerical substring

in the input. Intuitively, it does not matter what or how complex the substr sub-program is; we

can be confident that the output of the ParseNumber will be either 24.58 or 46. Cuts capture this
simple intuition—for a given input-output example 𝑖 ↦→ 𝑜 and a non-terminal 𝑁 that expands to

𝑓 (𝑁1, 𝑁2), the cut for 𝑁1 (say) in the context of 𝑁 will be a set of values {𝑜1, 𝑜2, . . . , 𝑜𝑛} such that

in any desired program 𝑃 generated by 𝑁 , the output of the sub-program corresponding to 𝑁1 will

be one of the 𝑜𝑘 for 𝑘 ∈ {1, 2, . . . , 𝑛}.
Given that the output of ParseNumber will be either 24.58 or 46, the synthesizer has two sub-

tasks for the 24.58 case (the 46 case will be similar): (a) synthesizing a program for 𝑝𝑎𝑟𝑠𝑒𝑁𝑢𝑚𝑏𝑒𝑟

for the example 𝑖 ↦→ 24.58, and (b) synthesizing a program for 𝑟𝑜𝑢𝑛𝑑𝑁𝑢𝑚𝑏𝑒𝑟 for the example

𝑖 ↦→ 24.00 using a modified DSL, which is generated dynamically in middle-out synthesis, where
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parseNumber → 24.58 is the only rule whose head is parseNumber. Both sub-tasks can now be

recursively solved, possibly using either the top-down strategy or the bottom-up strategy.

Guarded Context-Free Grammars. The larger program space resulting from an extended DSL

with a wide range of operators poses both efficiency and ranking challenges. However, human

programmers often encounter the same challenge when writing their own implementations and

decide between these operators and programs using simple rules of thumb, which can be leveraged

both for improving search efficiency and ranking. For example, “if a task can be done using a date-

time function, do not use string transformation functions” or “if a task can be done using string

indexing, do not use regular expressions”. To mimic this kind of coarse reasoning, we introduce

the notion of gDSLs. In a gDSL, the production rules for each non-terminal are ordered (with a

partial order |⊲ ), with production rules earlier in the order preferred to ones later in the order. For

example, the rule concat := segment |⊲ Concat(segment, concat) expresses that we always

prefer programs that do not use the Concat operation to ones that do. During synthesis for a gDSL

rule 𝑁 → 𝛼 |⊲ 𝛽 the branch 𝛽 is explored only if the branch 𝛼 fails to produce a program. This

greatly improves the performance of synthesis and the FlashFill++ synthesis times are competitive

with other synthesis techniques that work with significantly smaller DSLs.

Apart from improving the efficiency of search, gDSLs also simplify the task of writing ranking

functions. Intuitively, the precedence in the guarded rules induce a ranking on programs, and any

additional ranking function only needs to order the remaining incomparable programs. Precedences

rank programs by a lexicographic path ordering (LPO) [Dershowitz and Jouannaud 1990], and our

final ranker will be a lexicographic combination of LPO and base arithmetic ranker – such program

rankers have not been used in program synthesis before.

3 BACKGROUND: PROGRAMMING BY EXAMPLE
We now define the problem of programming-by-example and discuss common solutions.

3.1 Domain-Specific Languages
We use domain-specific languages (DSLs) to specify the set of target programs for a synthesizer.

Formally, a DSL D is given by ⟨N ,T , F ,R,Vin, 𝑣out⟩ where:
• N is a finite set of non-terminal symbols (or non-terminals). The symbol 𝑣out is a special start
non-terminal in N that represents the output of a program in the DSL.

• T is a set of terminal symbols (or terminals) that is partitioned asVin ∪ O into inputsVin and

values O. The setVin contains special terminals, in1, in2, . . ., that represent the input symbols

in a program of the DSL. The set O contains constant values.

• F is a finite set of function symbols (or operations). Each operation f ∈ F has a fixed arity

Arity(f). The semantics of f, denoted by JfK, is a mapping from OArity(f)
to O.

• R is a set of rules of the form 𝑁 → f (𝑣1, . . . , 𝑣𝑘 ) or 𝑁 → 𝑣0 where 𝑁 ∈ N , f ∈ F , 𝑣0 ∈ T ,

and 𝑣1, . . . , 𝑣𝑘 ∈ N ∪ T .

The formalism above is untyped for ease of reading. In practice, the FlashFill++ DSL is typed— values

can be integers, floats, strings, Booleans, and date-time objects, and each non-terminal, terminal,

and operator have specific type signatures.

Every terminal or nonterminal 𝑣 generates a set L(𝑣) of programs defined recursively as follows:

(a) L(in𝑘 ) = {in𝑘 } for all input symbols in𝑘 ∈ Vin, (b) L(𝑜) = {𝑜} for all values 𝑜 ∈ O, and
(c) L(𝑁 ) =

{
f (𝑃1, . . . , 𝑃𝑛) | 𝑁 → f (𝑣1, . . . , 𝑣𝑛) ∈ R,∀𝑖 .𝑃𝑖 ∈ L(𝑣𝑖 )

}
∪
{
𝑃 | 𝑁 → 𝑣 ∈ R, 𝑣 ∈ T , 𝑃 ∈

L(𝑣)
}
. The set of programs defined by the whole DSL L(D) is L(𝑣out).
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Example 3.1. The following is a simple DSL D𝐴 for affine arithmetic expressions over naturals

N: (a) Here, the terminals T are {input
1
, input

2
, 0, 1, 2, . . .}, with input

1
, input

2
being the spe-

cial input terminals in Vin. (b) The non-terminals N are {output, addend, const}, with output
being the output symbol 𝑣out. (c) The operators F are Plus and Times. (d) The rules R are given

by {output → Plus(addend, output), output → const, addend → Times(const, input1),
addend → Times(const, input2), const → 0 | 1 | 2 | . . .}. Note that the declaration uint
const; in the listing is shorthand for a set of rules for the form const → 𝑘 for each 𝑘 ∈ N.
Plus(Times(5, input1), 3) is a sample program in L(D𝐴). □

@input uint input1, input2;
@start uint output := Plus(addend, output) | const;

uint addend := Times(const, input1) | Times(const, input2);
uint const;

3.2 Synthesis Tasks and Solutions
A state 𝑆 is a valuation of all input symbols in a DSL, i.e., 𝑆 = {in1 ↦→ 𝑜1, . . . , in𝑘 ↦→ 𝑜𝑘 } where in𝑖
are input symbols and 𝑜𝑖 are values. An example Ex is a pair 𝑆 ↦→ 𝑜 of a state 𝑆 and value 𝑜 .

A synthesis task ⟨𝛼,R, 𝑆 ↦→ 𝑜⟩ is given by: (a) a term 𝛼 , which is either a nonterminal, terminal, or

right-hand side of a rule, (b) a set R of rules, and (c) an example 𝑆 ↦→ 𝑜 . A solution of the synthesis

task ⟨𝛼,R, 𝑆 ↦→ 𝑜⟩ is a program 𝑃 such that: (a) J𝑃K(𝑆) = 𝑜 , and (b) 𝑃 ∈ L(𝛼). Here, J𝑃K : OVin ↦→ O
represents the standard semantics of a program. Formally, J𝑃K(𝑆) is recursively defined as: (1)

Jin𝑖K(𝑆) = 𝑆 (in𝑖 ), (2) J𝑜K(𝑆) = 𝑜 for every value 𝑜 , (3) Jf (𝑣1, 𝑣2)K(𝑆) = JfK(J𝑣1K(𝑆), J𝑣2K(𝑆)) for every
operator f. To keep the presentation simple, the synthesis task is defined to contain one input-output
example. In practice, a synthesis task often involves multiple examples. It is straight-forward to

extend our technique for this, as done in our implementation.

Example 3.2. A sample synthesis task for the affine expression DSL D𝐴 is ⟨output,R, 𝑆 ↦→ 7⟩
where 𝑆 = {input1 ↦→ 2, input2 ↦→ 0}. The program Plus(Times(3, input1), 1) is a solution of

this task. Here Times and Plus have their usual arithmetic semantics. □

Given a synthesis task ⟨𝛼,R, 𝑆 ↦→ 𝑜⟩, a synthesizer generates a program set PS such that every

program in the set PS is a solution of the synthesis task, which we denote by the assertion PS |=
⟨𝛼,R, 𝑆 ↦→ 𝑜⟩. Note that it is vacuously true that ∅ |= ⟨𝛼,R, 𝑆 ↦→ 𝑜⟩, and so practical synthesizers

strive to establish the above assertion for nonempty sets PS. The notation ̸ |= ⟨𝛼,R, 𝑆 ↦→ 𝑜⟩ denotes
that there is no nonempty set PS that is a solution for the synthesis task.

3.3 Bottom-Up and Top-Down Synthesis
There are two main approaches for solving the synthesis task: bottom-up and top-down.

The bottom-up (BU) approach enumerates programs generated by different nonterminals of the

grammar and collects the values that those programs compute on the input state 𝑆 . More precisely,

for each nonterminal 𝑁 ′
, the BU approach computes the bottom-up value set bu𝑁 ′ (𝑆 ↦→ 𝑜) given by

{J𝑃 ′K(𝑆) | 𝑃 ′ ∈ L(𝑁 ′)}. These sets are computed starting from the leaf (terminals) of the grammar

and moving up to the root (start symbol 𝑣out). Success is declared if the output value 𝑜 is found to

be in the set bu𝑣out (𝑆 ↦→ 𝑜). Note that the BU procedure is not guided by the output value 𝑜 .

The top-down (TD) approach starts with the output value 𝑜 that needs to be generated at start

symbol 𝑣out, and for every nonterminal 𝑁 ′
, it computes the set of values that flow to 𝑜 at 𝑣out.

More formally, we say a value 𝑜 ′ at 𝑁 ′
flows to value 𝑜 at 𝑁 if either (a) 𝑁 → 𝑓 (. . . , 𝑁 ′, . . .) is a

grammar rule and J𝑓 K(𝑜1, . . . , 𝑜 ′, . . . , 𝑜𝑘 ) = 𝑜 for some values 𝑜1, . . . , 𝑜𝑘 , or (b) there exist 𝑜
′′
and

𝑁 ′′
s.t. 𝑜 ′ at 𝑁 ′

flows to 𝑜 ′′ at 𝑁 ′′
and 𝑜 ′′ at 𝑁 ′′

flows to 𝑜 at 𝑁 . For each nonterminal 𝑁 ′
, the
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TD approach computes a top-down value set td𝑁 ′ (𝑆 ↦→ 𝑜) that contains the values 𝑜 ′ at 𝑁 ′
that

flow into the value 𝑜 at 𝑣out. The top-down value sets are computed using witness functions. An
operator f with arity 𝑛 is associated with 𝑛 witness functions - one for each argument position. The

𝑘-th witness function,WFf,𝑘 : O𝑘 ↦→ 2
O
, for operator f maps the desired output and 𝑘 − 1 values

for previous arguments to possible values for the 𝑘-th argument. Such a parameterized collection

of witness functions is sound (complete) if 𝑜𝑘 ∈ WFf,𝑘 (𝑜, 𝑜1, . . . , 𝑜𝑘−1) for 𝑘 = 1, . . . , 𝑛 implies (is

implied by) JfK(𝑜1, . . . , 𝑜𝑛) = 𝑜 . For example, if the top-level operator is Plus and the output is 7, the
possible arguments for Plus would be (0, 7), (1, 6), (2, 5), . . ., and hence, WFPlus,1 (7) = {0, 1, 2, . . .}
and WFPlus,2 (7, 𝑥) = {7 − 𝑥}.
Top-down and bottom-up synthesis are both efficient and practical in different scenarios. TD

synthesis performs well when operators are effectively invertible (EI), i.e., the witness functions
WFf,𝑘 for each operator f produces sets that are finite and manageable in size. BU synthesis performs

well when the grammar is effectively enumerable (EE), i.e., both the number of constants in the

grammar is bounded and the number of different intermediate values produced is manageable.

Note that the focus in this paper is exclusively on synthesis approaches based on concrete values:

the semantics and witness functions are given on concrete values, and not abstract values or types.

Abstractions and types can make top-down strategies work on grammars with non-EI operators,

for example [Feng et al. 2017; Polikarpova et al. 2016], but require additional machinery, such as

type systems, abstract domains, and constraint solvers.

Example 3.3. The affine expression DSL from Example 3.1 is neither effectively invertible nor

effectively enumerable. The operator Plus has a witness functionWFPlus,1 which produces a set

of size 𝑛 + 1 for an example 𝑆 ↦→ 𝑛. Further, it contains an infinite number of constants (i.e., the

non-negative integers) which make bottom-up approach infeasible. In the FlashFill++ DSL, many

string operators are not effectively invertible. E.g., the LowerCase operator’s witness function that

can produce a set that is exponential in the input’s length: WFLowerCase,1 (‘abc’) produces a set of
size 8, i.e., {‘ABC’, ‘ABc’, ‘AbC’, ‘aBC’, ‘abC’, ‘aBc’, ‘Abc’, ‘abc’}. □

In Section 4, we introduce cuts that can be used to decompose the synthesis problem to enable

middle-out synthesis, which can learn over deep DSLs – DSLs that can generate programs with

large depth – where neither bottom-up nor top-down is feasible. In Section 5, we introduce gDSLs,

which provide a precedence-based mechanism to help learning scale to broad DSLs – DSLs with

several options for a single nonterminal.

4 CUTS AND MIDDLE-OUT SYNTHESIS
Top-down and bottom-up approaches, as well as their combination, struggle to scale to large DSLs.

Cuts can help scale synthesis. If we want to generate a value 𝑜 at nonterminal 𝑁 , and another

nonterminal 𝑁 ′
is on the path from 𝑁 to the terminals, then a cut at 𝑁 ′

returns values to generate

at 𝑁 ′
that can help with generating 𝑜 at 𝑁 .

Definition 4.1 (Cuts). Given a synthesis task ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩ and a non-terminal 𝑁 ′ ∈ N , a cut
Cut𝑁 ′,𝑁 for 𝑁 ′ in the context 𝑁 , maps an example, 𝑆 ↦→ 𝑜 , to a set of values. Such a function is

complete if for every solution 𝑃 for the task ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩, whenever 𝑃 contains a sub-program

𝑃 ′ ∈ L(𝑁 ′), then J𝑃 ′K(𝑆) ∈ Cut𝑁 ′,𝑁 (𝑆 ↦→ 𝑜).

Note that 𝑁 need not be the start symbol of the grammar and 𝑜 need not be the original output

value in the input-output example. Typically, we define cuts Cut𝑁 ′,𝑁 when 𝑁 → 𝑓 (𝑁 ′, 𝑁 ′′) is a
grammar rule. Such a cut can be used in place of the witness function for the first argument of 𝑓 .

Let us illustrate cuts through an example.
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MO.Cut

PS1 |= ⟨𝑁1,R, 𝑆 ↦→ 𝑜1⟩ PS2 |= ⟨𝑁,R with 𝑁1 → 𝑜1, 𝑆 ↦→ 𝑜⟩⋃
𝑜1

PS2 [𝑜1 ↦→ PS1] |= ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩
if 𝑜1 ∈ Cut𝑁1,𝑁 (𝑆 ↦→ 𝑜)

Fig. 5. The cut inference rule that enables middle-out program synthesis.

Example 4.2. Consider again the synthesis task from Section 2.2, where the input-output example

was 𝑆 ↦→ 24.00 and the input state 𝑆 was ⟨in1 ↦→ “The price is $24.58 and 46 units are
available.” ⟩. Suppose we want to synthesize a program from this example starting from the

nonterminal roundNumber of the FlashFill++ DSL (Figure 7). One potential cut for parseNumber in

the context roundNumber could work by scanning the input for any maximal substrings that are

numerical constants and returning them (as a number). Here, it would return {24.58, 46}. A more

sophisticated cut could additionally look at the output 24.00 and only return the set {24.58}, as it is
the only value in the string that can be rounded down to 24.00. These cuts are not complete as they

do not include 24.5, which can also be extracted from the input and rounded to 24. □

Recall that we model synthesizers as generating nonempty program sets PS and asserting

PS |= ⟨𝛼,R, 𝑆 ↦→ 𝑜⟩. Figure 5 presents a new inference rule, called the cut rule, that can be used

to generate such assertions. This rule can be used in conjunction with any synthesizer (such

as those based on top-down or bottom-up approach). The cut rule uses a cut for a nonterminal

𝑁1 in the context of 𝑁 to decompose the overall synthesis task ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩ into two subtasks

⟨𝑁1,R, 𝑆 ↦→ 𝑜1⟩ and ⟨𝑁,R with 𝑁1 → 𝑜1, 𝑆 ↦→ 𝑜⟩. The first, or inner, subtask tries to find a program
in L(𝑁1) that maps 𝑆 to 𝑜1, whereas the second, or outer, subtask tries to find a program in L(𝑁 )
that maps 𝑆 to 𝑜 assuming that we have a program to maps 𝑆 to 𝑜1. The notation R with 𝑁1 → 𝑜1
simply means we remove all old rules in R of the form 𝑁1 → 𝛼 and only have one rule 𝑁1 → 𝑜1.

The cut rule also shows how the solutions to the two subtasks are combined to generate a solution

for the original synthesis task.

Theorem 4.3. [Soundness] If program sets PS1 and PS2 are such that PS1 |= ⟨𝑁1,R, 𝑆 ↦→ 𝑜1⟩ and
PS2 |= ⟨𝑁,R with 𝑁1 → 𝑜1, 𝑆 ↦→ 𝑜⟩, then PS2 [𝑜1 ↦→ PS1] |= ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩. Furthermore, [complete-
ness] if a program 𝑃 is a solution for the synthesis task ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩ and the program 𝑃 contains a
subprogram 𝑃1 ∈ L(𝑁 ′) that maps the input 𝑆 to a value 𝑜1 (i.e., J𝑃1K(𝑆) = 𝑜1), then 𝑜1 will be in the
cut Cut𝑁1,𝑁 (𝑆 ↦→ 𝑜) assuming that the cut is complete, and moreover, the program 𝑃 [𝑃1 ↦→ 𝑜1] is a
solution for the task ⟨𝑁,R with 𝑁1 → 𝑜1, 𝑆 ↦→ 𝑜⟩.

We use the termmiddle-out synthesis to describe the synthesis approach that uses the RuleMO.Cut

to perform synthesis. Note that the subproblems created by Rule MO.Cut can be solved using either

the top-down approach, or the bottom-up approach, or the middle-out approach, or a hybrid

combination of the approaches. One common strategy is: after applying Rule MO.Cut, we solve

the outer subtask using bottom-up or hybrid approach, and for each 𝑜1 for which the outer has a

solution, we solve the inner subtask using the top-down or hybrid approach. Note that the cut rule

can be used multiple times to solve a synthesis task.

Example 4.4. Consider the synthesis task ⟨roundNumber,R, 𝑆 ↦→ 24.00⟩ from Example 4.2. Us-

ing the fact that 24.58 was in the cut for parseNumber, we can use MO.Cut rule from Figure 5

and get the subtasks ⟨parseNumber,R, 𝑆 ↦→ 24.58⟩ and ⟨roundNumber,R ′, 𝑆 ↦→ 24.00⟩, where R ′

is R with parseNumber → 24.58. The second subproblem now has only one rule for parseNumber,
which directly generates 24.58. The first subproblem now has to generate 24.58 from the input, and

the second subproblem has to round 24.58 to 24.00. □
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4.1 Generalizing Top-Down and Bottom-Up Synthesis
Examining the top-down and bottom-up synthesis approaches closely, it can be seen that top-

down synthesis is purely output driven and bottom-up synthesis is purely input driven. Cuts neatly
generalize both these approaches, allowing us the possibility to use a set of values influenced by

both: (a) the set 𝐵 of values reachable through forward semantics from the input values (bottom-up

search), and (b) the set 𝑇 of values reachable through inverse semantics from the output values

(top-down search).

Recall that the set bu𝑁 ′ is the set of values that bottom-up enumeration generates corresponding

to nonterminal 𝑁 ′
and the set td𝑁,𝑁 ′ is the set of values that arise at 𝑁 ′

by repeatedly applying

(precise) witness functions starting from 𝑁 . Let real value set rv𝑁,𝑁 ′ (𝑆 ↦→ 𝑜) be the set of values
J𝑃 ′K(𝑆) where 𝑃 ′ ∈ L(𝑁 ′) is a sub-program of a program 𝑃 ∈ L(𝑁 ) such that J𝑃K(𝑆) = 𝑜 . Clearly,

it can be seen that rv𝑁,𝑁 ′ (𝑆 ↦→ 𝑜) ⊆ td𝑁,𝑁 ′ (𝑆 ↦→ 𝑜) ∩ bu𝑁 ′ (𝑆 ↦→ 𝑜). Restating the definition of

complete cuts, a cut is complete if and only if the set it returns is a superset of rv𝑁,𝑁 ′ (𝑆 ↦→ 𝑜). Both
top-down and bottom-up search for synthesis are special cases of cut-based middle-out synthesis.

Theorem 4.5. [Cuts generalize top-down and bottom-up value sets.] Given a synthesis problem
⟨𝑁,R, 𝑆 ↦→ 𝑜⟩ and a non-terminal 𝑁 ′, both the functions bu𝑁 ′ and td𝑁,𝑁 ′ are complete cuts for the
non-terminal 𝑁 ′ in the context of 𝑁 .

In the light of this theorem, restricting the cut in the middle-out synthesis rule from Figure 5 to

only being bu𝑁 ′ produces the state-of-the-art combination of top-down and bottom-up synthesis

Duet [Lee 2021]. While the above theorem states that TD and BU analyses produce complete cuts,

not all complete cuts are (overapproximations of) top-down value set or bottom-up value set.

Example 4.6. Building on Example 4.2, consider now the example 𝑆 ↦→ 24.58, but we want

to synthesize a program from this example starting from the nonterminal parseNumber, which
has a rule parseNumber → ParseNumber(substr, locale). One potential cut for substr in the

context parseNumber could be obtained by scanning the input string for any substrings that are

numerical constants and returning them (as a string). Here it returns a set containing “24.58” and

“46” and all substrings of these two strings that are valid numbers. This complete cut is not an

overapproximation of the bottom-up values that substr can generate since there are many more

substrings in an input. However, it is complete in the context parseNumber because these are the
only strings that can be parsed as numbers. □

4.2 Computing Cuts
We can use top-down value sets or bottom-up value sets as the cuts, as shown in Theorem 4.5;

however, if we do that, we only replicate top-down, bottom-up, and Duet’s meet-in-the-middle

synthesis [Lee 2021]. DSL designers can provide more refined cuts that would enable going beyond

current methods. How can designers author more refined cuts? For most operators, using witness

functions to perform top-down synthesis might suffice. Specialized cuts are only required when we

have not-effectively-invertible operators that have either no witness function or very inefficient

witness functions.

In practice, DSL designers do not necessarily have to use complete cuts. Looking back at Exam-

ple 4.6, the set {“24.58”, “46”} is a reasonable, but incomplete cut, because any program that extracts

a number from a strict substring, say “4.5”, of these two strings would be a contrived program. Cuts

are reminiscent of interpolants or invariants from program analysis: a cut at 𝑁 ′
in the context of 𝑁

is the denotation of an invariant that holds true at 𝑁 ′
for all programs that compute the desired

output at 𝑁 . We next describe a few cut functions used in FlashFill++ along with the DSL designer’s

intuition about the DSL that helped construct that cut function.
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Cut for LowerCase.When computing a cut for a nonterminal 𝑁 ′
in context of nonterminal 𝑁 , we

need to consider all paths from 𝑁 ′
to 𝑁 in the grammar. We focus on one path at a time, and take a

union if there are multiple paths. Consider the grammar rule single := LowerCase(concat) in the

FlashFill++ DSL (Figure 7), and ignore the other paths between nonterminals single and concat
for now. Clearly, the witness function is given as:

WFLowerCase,1 (𝑦) = {𝑥 | lowercase(𝑥) = 𝑦}

The returned set contains 2
len(𝑦)

strings. In contrast, the cut could be much smaller. Ignoring other

paths between the two nonterminals, one possible cut is:

Cutconcat,single (𝑆 ↦→ 𝑦) = {𝑥 | lowercase(𝑥) = 𝑦 and each char of 𝑥 is in some input in 𝑆}.

Here the DSL designer uses their knowledge that the non-terminal concat can only generate strings
whose characters are in some input. One exception to this invariance rule are strings that are

generated as “constant strings", and hence this cut is not complete, but it may be a reasonable

compromise between completeness and efficiency. An alternative cut could be:

{𝑥 | lowercase(𝑥) = 𝑦 and for each char 𝑥 [𝑖] of 𝑥 , 𝑥 [𝑖] is in some input or 𝑥 [𝑖] == 𝑦 [𝑖]}.

Finally, the designer can further refine the cut to only include those strings that contain large

chunks of substrings of some input. Consider input ‘Amal Ahmed <AMAL@CCS.NEU.EDU>’ and

output ‘amal’. The witness function would return 16 values, all variations of the string ‘amal’
with each letter optionally capitalized. However, a cut would only return 2 values ‘Amal’ and

‘AMAL’, i.e., those variations that occur contiguously in the input. The same kind of reasoning

can be used on all other paths from concat to single that go via the operators UpperCase and

ProperCase, and thus we can get a cut for concat in the context of single.

Cut for Concat. Consider the grammar rule concat := segment|Concat(segment, concat) in the

FlashFill++ DSL (Figure 7). The witness function for (the first argument of) Concat is given by

WFConcat,1 (𝑦) = {𝑥 | 𝑥 is a prefix of 𝑦}

The DSL designer knows the invariant that every string generated by segment is either a substring
of an input, or a string representation of date or number, or a constant string. So, a possible cut,

Cutsegment,concat (𝑆 ↦→ 𝑦), could be:

{𝑥 | 𝑥 is maximal prefix of 𝑦 either contained in some input or a number or a date}.

This cut is not complete since segment could generate a constant string, but the DSL designer may

prefer to use this cut and fallback on the witness function only if the above choices fail to work.

Cut for RoundNumber and FormatDateTime. Example 4.2 presented the cut for parseNumber
in the context roundNumber. The witness function for roundNumber on the input 𝑆 ↦→ 24.00 will

have to return an infinite set of floating point values that can all round to 24.00. However, the DSL

designer knows that parseNumber can only generate a number that occurs in the input, i.e., 24.58 or
46, and furthermore, numbers such as 4.5 are not reasonable choices. Hence, the designer can pick the

cut CutparseNumber,roundNumber (𝑆 ↦→ 𝑦):

{𝑥 | 𝑥 is a maximally long number extracted from a substring of an input}.

Here the DSL designer used their knowledge about the form of values that a nonterminal can

generate to construct a cut. Another such example is the cut, CutasDate,formatDate (𝑆 ↦→ 𝑦), which
can be computed as:

{𝑥 | 𝑥 is a maximally long datetime value extracted from a substring of an input}.
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Cut for Const in the Affine Grammar. The DSL designer of arithmetic expressions given in

Example 3.1 can provide a cut for const in the context output by noting the monotonicity invariant:
values computed by subexpressions are smaller than values computed by the whole expression. Consider
the input state 𝑆 = ⟨in1 ↦→ 2, in2 ↦→ 0⟩ and the input-output example 𝑆 ↦→ 7. Since the output is 7, we

can restrict the potential values for the coefficient of in1 (which is 2) to at most 3 values, i.e., {0, 1, 2, 3}
as any larger value will make the product exceed the value 7. Thus, the cut, Cutconst,output (𝑆 ↦→ 𝑦),
is computed as:

{𝑥 ∈ N | 0 ≤ 𝑥 ≤ ⌊ 𝑦

𝑆 [in1]
⌋}.

Using this cut we can now perform bottom-up synthesis, whereas it wasn’t possible before since

there are an infinite set of possible values for the non-terminal const and the grammar is not

effectively enumerable.

Whenever there is a nontrivial invariant that holds for all values that can be generated at a

certain nonterminal, we can usually exploit that invariant to design a cut for that nonterminal.

While we have focused mainly on the FlashFill++ DSL to illustrate this process of designing good

cuts, the ideas extend to DSLs for any other domain.

5 PRECEDENCE IN DOMAIN-SPECIFIC LANGUAGES
We first define the problem of synthesis in presence of precedence over operators. We then introduce

gDSLs, which extend the notion of DSL (Section 3.1) with precedence. We then present the gDSL

for FlashFill++ and inference rules that solve the PBE synthesis problem over gDSLs.

5.1 Synthesis with Preference
DSL designers who want to translate programs generated in a DSL into a popular target language,

such as Python, typically want the DSL to contain all operators from the target language libraries.

These operators are often redundant. For example, substrings of a string can be extracted using

absolute index positions, or regular expressions, or finding locations of constant substrings in the

string, or splitting a string by certain delimiters. In such cases, whenever a task is achievable in

many different ways, we get a so-called broad DSL. For broad DSLs, DSL designers often have a

preference for which operators to use. For example, they may prefer split over find, which they

may prefer in turn over using regular expressions or absolute indices. As another example, DSL

designers may prefer transforming a string containing “Jan” to “January” by treating the substring

around “Jan” in the input as a datetime object and working with them, rather than generating

“January” by concatenating “Jan” with a constant string “uary”.

Example 5.1. Consider the task of extracting the second column from a line in a comma-separated

values (CSV) file, specified by the input-output example ‘WA, Olympia, UTC-8’ ↦→ ‘Olympia’.
In the FlashFill++ DSL, this can be done using the program Split(x, ‘,’, 2), where 𝑥 is the input,

or using the program Slice(x, Find(x, ‘,’, 1, 0), Find(x, ‘,’, 2, 0)). A traditional VSA-based syn-

thesizer would (possibly implicitly) produce both programs, assign scores to both using a ranking

function, and return the better ranked one. However, typically we strictly prefer programs that use

the Split operator over the Slice operator. Ideally, a synthesizer should not even examine Slice
programs when an equivalent Split program exists. Similar preference is also seen in Python

programmers who often prefer to use str.split over regex.find or str.find. □

This motivates the need to perform synthesis over a broad DSL where there is preference over

operators. Suppose a DSL designer has a DSL and a preference over operators and terminals. Let

Σ := F ∪ T be the collection of all operators and terminal symbols in the DSL and let ≻Σ be a

precedence relation on the symbols f ∈ Σ. We make the assumption that (A1) the DSL designer
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only provides precedence over operators that occur as alternates for the same nonterminal; that is,

if the designer sets f1 ≻Σ f2, then 𝑁 → f1 (. . .) ∈ R and 𝑁 → f2 (. . .) ∈ R are two rules with the

same nonterminal 𝑁 in the grammar. We also assume that (A2) the relation ≻Σ is a strict partial

order (irreflexive, asymmetric, transitive) to ensure that the DSL designers preference is consistent.

We first need to formalize what it means for a synthesizer to satisfy the operator precedence ≻Σ

provided by the DSL designer. For this, we need to lift ≻Σ to a precedence on the set of programs 𝑃

generated by the DSL. However, this is not easy since it is not clear which of f1 (f2 (in)) or f ′1 (f ′2 (in))
to prefer if the DSL designer says f1 ≻Σ f ′

1
and f ′

2
≻Σ f2. We resolve this issue by saying that the

preference for the operator occurring “above” in the program is more important than anything

below. In the above example, we give more weight to f1 ≻Σ f ′
1
and hence we want f1 (f2 (in)) to be

preferred over f ′
1
(f ′
2
(in)). This follows the intuition that operators at the top in, say, the FlashFill++

DSL, such as Concat, FormatNumber, or FormatDateTime, are more influential in determining the

high-level strategy for solving a task than operators at the bottom, such as Split or Slice. Hence,
we extend the user provided ≻Σ to ≻𝑒

Σ⊇≻Σ so that whenever 𝑁0 → f1 (. . . , 𝑁1, . . .) and 𝑁1 → f2 (. . .)
are rules in the DSL, then f1 ≻𝑒

Σ f2.

Example 5.2. Consider the synthesis task from Example 4.2 of generating ‘24.00’ from the input

string. One possible program is Concat(𝑝1, ‘.00’), where 𝑝1 is a subprogram that extracts ‘24’
from the input string. A second possible program is Segment(FormatNumber(𝑝2, fmt_desc) that
generates ‘24.00’ by formatting a number computed by program 𝑝2. Here, Segment is a dummy

identity operator having higher preference than Concat in the FlashFill++ gDSL (Figure 7). In the

FlashFill++ DSL, the second program is preferred since it does not use concatenation, irrespective of

how 𝑝1 and 𝑝2 work—at the top-level concatenation is strictly less preferred. Note that here 𝑝1 is

likely to be significantly smaller and simpler than 𝑝2 as it is just extracting the string ‘24’, while
𝑝2 is extracting a number and then rounding it. A traditional arithmetic ranking function (as used

in FlashFill and FlashMeta) intuitively computes the score of programs as a weighted sum of the

score of its sub-programs, and hence, will need to be tuned carefully to ensure that the smaller

concat program is scored worse than the larger segment program. □

We want the relation ≻𝑒
Σ to be a strict partial order. However, in general, it may not be a strict

partial order due to cycles in the grammar (where some 𝑁0 generates a term containing 𝑁0), which

again makes ≻𝑒
Σ violate irreflexivity or transitivity. We make the reasonable assumption that there

are no cycles since we often limit the depth of terms being synthesized and then the assumption

can be satisfied by renaming the nonterminals. Thus, without loss of much generality, we can

assume that the extended precedence ≻𝑒
Σ on Σ is a strict partial order.

Now we formalize synthesizing in presence of precedence ≻Σ by lifting the precedence ≻Σ on

Σ to ≻𝑒
Σ, and then to a preference on programs (trees) over Σ using the well-known lexicographic

path ordering (LPO), ≻𝑙𝑝𝑜 , which is defined as follows [Dershowitz and Jouannaud 1990]: Given

programs 𝑃1 := f1 (𝑃11, . . . , 𝑃1𝑘 ) and 𝑃2 := f2 (𝑃21, . . . , 𝑃2𝑙 ), we have 𝑃1 ≻𝑙𝑝𝑜 𝑃2 if either (a) f1 ≻𝑒
Σ f2

and 𝑃1 ≻𝑙𝑝𝑜 𝑃2𝑖 for all 𝑖 , or (b) f1 = f2 and there exists a𝑚 s.t. 𝑃1𝑖 = 𝑃2𝑖 for 𝑖 < 𝑚 and 𝑃1𝑚 ≻𝑙𝑝𝑜 𝑃2𝑚 ,

or (c) 𝑃1𝑖 ≻𝑙𝑝𝑜 𝑃2 for some 𝑖 .

Definition 5.3. Let ⪰base be the base ordering to rank programs that are unordered by ≻𝑙𝑝𝑜 . Given

a DSL D with precedence ≻Σ on the set Σ := F ∪ T of all operators and terminal symbols in D, and
⪰base, the PBE synthesis with precedence problem is to find the maximally ranked program by the
lexicographic combination of ≻𝑙𝑝𝑜 and ⪰base that satisfies a given example, where ≻𝑙𝑝𝑜 is the LPO

induced by the extended precedence ≻𝑒
Σ.
2

2
Given orderings ≻1 and ≻2, the lexicographic combination ≻≻1,≻2 is defined as follows: 𝑠 ≻≻1,≻2 𝑡 if either (a) 𝑠 ≻1 𝑡 , or

(b) 𝑠 ⊁1 𝑡 and 𝑡 ⊁1 𝑠 and 𝑠 ≻2 𝑡 .
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We solve the PBE synthesis with precedence problem by extending DSLs to gDSLs and modifying

the inference rules to correctly handle the precedence.

5.2 Guarded Domain-Specific Languages
A guarded domain-specific language (gDSL) is a DSL D = ⟨N ,T , F ,R,Vin, 𝑣out⟩ where the set R of

rules can additionally contain guarded rules of the form 𝑁 → 𝛼1 |⊲ 𝛼2 |⊲ · · · |⊲ 𝛼𝑘 where each 𝛼𝑖 is

either f (𝑣1, . . . , 𝑣𝑛) or 𝑣0, where f ∈ F , 𝑣0 ∈ T , and 𝑣1, . . . , 𝑣𝑛 ∈ N ∪ T . A non-terminal 𝑁 can have

any number of guarded rules associated with it, each with possibly different values of 𝑘 ≥ 1.

The rules in a regular DSL can be viewed as a special case of guarded rules where 𝑘 = 1 (in the

definition of guarded production rules above.) When 𝑘 > 1, a guarded rule 𝑁 → 𝛼1 |⊲ · · · |⊲ 𝛼𝑘
associated with the nonterminal 𝑁 has 𝑘 alternates on the right-hand side that are ordered. The 𝑖-th
alternate 𝛼𝑖 yields a (regular) rule 𝑁 → 𝛼𝑖 . We call 𝑁 → 𝛼𝑖 the 𝑖-th constituent rule of the original
guarded rule. Define R𝑐

as the collection of all constituent rules of rules in R; that is, R𝑐
:= {𝑁 →

𝛼𝑖 | 𝑁 → (. . . |⊲ 𝛼𝑖 |⊲ . . .) ∈ R}. We call the (regular) DSL D𝑐
:= ⟨N ,T , F ,R𝑐 ,Vin, 𝑣out⟩ obtained

from a gDSL D := ⟨N ,T , F ,R,Vin, 𝑣out⟩ a constituent DSL of the gDSL D.
Given an instance of the PBE synthesis with precedence problem, we can annotate the given DSL

with precedence to get a gDSL.We assume that the precedence relation≻Σ satisfies Assumptions (A1)

and (A2). Furthermore, we also assume that (A3) the precedence is a series-parallel partial order
(SPPO) [Béchet et al. 1997]. Under Assumption (A3), the precedence can be encoded in gDSL

by introducing new nonterminals where necessary. Specifically, if we have a maximal chain

f1 ≻Σ f2 ≻Σ . . . ≻Σ f𝑘 over alternate operators 𝑁 → f1 (. . .) | · · · |f𝑘 (. . .) in the DSL, then we

add a guarded rule 𝑁 → f1 (. . .) |⊲ · · · |⊲ f𝑘 (. . .). However, if certain alternate operators are left

incomparable by the DSL designers, then we introduce a new nonterminal. For example, if f1 ≻Σ f3
and f2 ≻Σ f3, but there is no preference between f1 and f2, then we introduce a new nonterminal

𝑁 ′
and have 𝑁 → 𝑁 ′ |⊲ f3 (. . .) and 𝑁 ′ → f1 (. . .) |f2 (. . .) in the gDSL. Any SPPO ≻Σ can thus be

encoded in the gDSL.

Example 5.4. Consider the DSL for affine arithmetic from Example 3.1. Suppose the DSL designer

wants the precedence input1 ≻Σ input2. Then, we can replace the two rules for nonterminal

addend by a single guarded rule: addend → Times(const, input1) |⊲ Times(const, input2) to
get a gDSL, D𝑔

𝐴
. In the LPO induced by the extension ≻𝑒

Σ of this preference, the program 𝑃1 :=

Plus(Times(3, input1), 1) is preferred over 𝑃2 := Plus(Times(3, input2), 7). □

Let ⟨𝑣out,R, 𝑆 ↦→ 𝑜⟩ be a synthesis task, where R is the rules of a gDSL D. We say a program 𝑃 is

a solution for this task if

(a) 𝑃 is a solution for the task ⟨𝑣out,R𝑐 , 𝑆 ↦→ 𝑜⟩ (in the constituent DSL D𝑐
), and

(b) for any other 𝑃 ′
that is a solution in the constituent DSL, 𝑃 ′ ⊁𝑙𝑝𝑜 𝑃 , where ≻𝑙𝑝𝑜 is the LPO

induced by the extended precedence ≻𝑒
Σ coming from the guarded rules.

Condition (a) says that 𝑃 should be a solution for the synthesis problem ignoring the precedence.

Condition (b) says that the ordering in the rules should be interpreted as an ordering on programs

using the induced LPO, and we should ignore programs smaller in this ordering.

Example 5.5. Consider the gDSLD𝑔

𝐴
and programs 𝑃1, 𝑃2 from Example 5.4. Consider the synthesis

task ⟨𝑣out,R, ⟨input1 ↦→ 2, input2 ↦→ 0⟩ ↦→ 7⟩ from Example 3.2, but with R now coming from the

gDSL D𝑔

𝐴
. Both programs, 𝑃1 and 𝑃2, map the input state to 7. However, 𝑃2 is now not a solution in

D𝑔

𝐴
because there exists 𝑃1 that is preferred. The program 𝑃3 := 7 also maps the input state to 7.

The (derivations of) 𝑃1 and 𝑃3 are incomparable; and in fact, both are solutions in D𝑔

𝐴
. □

If a solution for the unguarded DSL exists, then there will be a solution that is maximal and

hence a solution for the gDSL will exist.
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Guarded.If

PS1 |= ⟨𝛼1,R, 𝑆 ↦→ 𝑜⟩ 𝑁 → 𝛼1 |⊲ 𝛼2 ∈ R
PS1 |= ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩

Guarded.Else

̸ |= ⟨𝛼1,R, 𝑆 ↦→ 𝑜⟩ 𝑁 → 𝛼1 |⊲ 𝛼2 ∈ R PS2 |= ⟨𝛼2,R, 𝑆 ↦→ 𝑜⟩
PS2 |= ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩

Fig. 6. Extending top-down synthesis for guarded rules.

Theorem 5.6 (Precedence preserves solvability.). Let D be a gDSL based on precedence ≻Σ

that is a strict partial order. Let ⟨𝑣out,R, 𝑆 ↦→ 𝑣⟩ be a synthesis task. This task has a solution in D iff
there is a solution in D𝑐 .

If we can compute all solutions for a synthesis task over a gDSL, we can order them by any ⪰base
ordering to solve the PBE synthesis with precedence problem.

5.3 PBE Synthesis Rules for Guarded DSLs
Figure 6 contains two inference rules that describe how guarded rules are handled in top-down,

bottom-up, or middle-out synthesis. If 𝑁 → 𝛼1 |⊲ 𝛼2 is a guarded rule in R and we can (recursively)

prove 𝑃𝑆1 |= ⟨𝛼1,R, 𝑆 ↦→ 𝑜⟩, then Rule Guarded.If can be used to assert 𝑃𝑆1 |= ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩. (This
assertion will be nontrivial only if 𝑃𝑆1 ≠ ∅.) In case there is no program that solves ⟨𝛼1,R, 𝑆 ↦→ 𝑜⟩,
and we can (recursively) prove 𝑃𝑆2 |= ⟨𝛼2,R, 𝑆 ↦→ 𝑜⟩, then Rule Guarded.Else can be used to assert

𝑃𝑆2 |= ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩.
Recall that the notation 𝑃𝑆 |= ⟨𝑁,R, 𝑆 ↦→ 𝑜⟩ simply asserts that every program in 𝑃𝑆 solves the

given synthesis task, and does not require 𝑃𝑆 to contain all solutions. The Rule Guarded.Else has a
condition that a certain synthesis task be unsolvable. If we have the ability to compute all solutions

(such as, using version-space algebras, or VSAs), then that can help in determining when a problem

is unsolvable, but other synthesis approaches that can establish infeasibility can also be used.

Example 5.7. Continuing from Example 5.5, consider the task of generating 7 from inputs 2

and 0. Say we reduce the original task to the proof obligation 𝑋 |= ⟨addend,R, 𝑆 ↦→ 𝑥⟩, where
we pick say 6 for 𝑥 . Now, we have a guarded rule for addend and we can use Rule Guarded.If

to get the proof obligation 𝑋 |= ⟨Times(const, input1),R, 𝑆 ↦→ 6⟩. This subtask has a solution

𝑋 = {Times(3, input1)}, and hence we will not consider the option Times(const, input2). □

Performing synthesis over the gDSL is equivalent to solving PBE synthesis with precedence.

Theorem 5.8. Let ≻Σ be a precedence on Σ := F ∪T that satisfies Assumptions (A1), (A2), and (A3).
Let D := ⟨N ,T , F ,R,Vin, 𝑣out⟩ be a gDSL that encodes ≻Σ. Let D𝑐

:= ⟨N ,T , F ,R𝑐 ,Vin, 𝑣out⟩ be
its (unguarded) constituent DSL. Let ⪰base be an ordering on programs and let ⟨𝑣out,R, 𝑆 ↦→ 𝑜⟩ be a
synthesis task. Then, the following are equivalent:
(1) {𝑃} |= ⟨𝑣out,R, 𝑆 ↦→ 𝑜⟩ and 𝑃 is maximal w.r.t ⪰base among all such solutions.
(2) The program 𝑃 is a solution inD𝑐 for the task ⟨𝑣out,R𝑐 , 𝑆 ↦→ 𝑜⟩ that is maximal w.r.t a lexicographic
combination of ≻𝑙𝑝𝑜 (induced by ≻Σ) and ⪰base .

Theorem 5.8 shows that using a ranker ⪰base with a gDSL D has the same effect as using a

complex ranker (lexicographic combination of ≻𝑙𝑝𝑜 and ⪰base) with a regular DSL D𝑐
. This shows

that our gDSL-based approach solves the PBE synthesis with precedence problem (under some

assumptions). Theorem 5.8 also explains why the ranker ⪰base used with a gDSL D can be very

simple compared to what is needed with a regular DSL D𝑐
. Designing a good complex ranking

function has traditionally been very challenging in PBE, taking many developer-months to converge

on a good ranking function [Kalyan et al. 2018; Natarajan et al. 2019; Singh and Gulwani 2015]. In

contrast, FlashFill++ uses the power of gDSLs (Theorem 5.8) to reduce the requirements on its base

ranker, which was developed significantly faster.
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language FlashFillPP;
@start string output := single |> If(cond, single, output)
// conditions
bool cond := pred |> And(pred, cond);
bool pred := StartsWith(x, matchPattern) |> EndsWith(x, matchPattern)

|> Contains(x, matchPattern) |> ...;
// single branch
string single := concat | LowerCase(concat) | UpperCase(concat) | ProperCase(concat);
// optional concatenation of substrings
string concat := segment |> Concat(segment, concat)
// substring logic
string segment := substr | formatNumber | formatDate | constStr;
// format substring as a number
string formatNumber := FormatNumber(roundNumber, numFmtDesc);
decimal roundNumber := parseNumber |> RoundNumber(parseNumber, roundNumDesc);
decimal parseNumber := AsNumber(row, columnName) |> ParseNumber(substr, locale);
// format substring as a date
string formatDate := FormatDateTime(asDate, dateFmtDesc);
DateTime asDate := AsDateTime(row, columnName) |> ParseDateTime(substr, parseDateFmtDesc);
// find a substring within the input x
string substr := Split(x, splitDelimiter, splitInstance)

|> Slice(x, pos, pos)
|> MatchFull(x, matchPattern, matchInstance);

// find a position within the input x
int pos := End(x) |> Abs(x, absPos)

|> Find(x, findDelimiter, findInstance, findOffset)
|> Match(x, matchPattern, matchInstance)
|> MatchEnd(x, matchPattern, matchInstance);

// literal terminals
FmtNumDescriptor numFmtDesc; RndNumDescriptor roundNumDesc;
FmtDateTimeDescriptor dateFmtDes, parseDateFmtDesc;
string constStr, splitDelimiter, findDelimiter;
int splitInstance, findInstance, matchInstance, findOffset;
Regex matchPattern; int absPos;

Fig. 7. A fragment of the gDSL for FlashFill++. | choices are unguarded, |> choices are guarded.

5.4 Guarded DSL for FlashFill++
We now describe the FlashFill++ gDSL and compare it to FlashFill. Figure 7 shows a major part of the

DSL. FlashFill++ shares the top level rules that perform conditional statements, case conversion, and

string concatenation with FlashFill. Conditionals enable if-then-else logic. The condition is one or

more conjunctive predicates based on properties of the input string. Case conversion transforms a

string into lower-, upper-, or proper-case. Concatenation concatenates two strings.

Although FlashFill can perform some datetime and number operations using text manipulation

(such as "01/01/2020"→ "2020" or "10.01"→ "10"), it is unable to express other sophisticated

datetime and number operations as it does not incorporate operations over those datatypes, but

rather treats them as standard strings. For instance, FlashFill cannot get the day of week from a date

(such as "01/01/2020" → "Wednesday"), or round up a number (e.g., "10.49" → "10.5"). This
motivates us to add new rules to support richer datetime (rules parseDate and formatDate) and
number (rules parseNumber and formatNumber) transformations.

The next major differences are in the substr and pos rules. FlashFill has a single Slice operator

which selects a substring defined by its start and end positions. These positions can be defined

either as absolute positions or with the complex RegPos operator which finds the 𝑘 th place in the
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string where the left- and right substrings match the two given regular expressions. While this is

expressive enough to cover any desired substring selection and all of the operators in FlashFill++
can technically be expressed in terms of it, this introduces a challenge for an industrial synthesizer

that targets different languages for code generation: not all platforms of interest support regular

expressions natively (e.g. Microsoft Excel’s formula language does not support regular expressions).

In contrast, when designing FlashFill++ we chose a wider collection of more natural operators that

are closer to what developers use in practice when working with target languages – this removes

the mismatch between synthesis DSL and code generation target language.

In particular, instead of only allowing substrings to be defined as a Slice with their start and

end positions, FlashFill++ adds a Split operator to select the 𝑘 th element in a sequence generated

by splitting the input string by some delimiters. We also add a MatchFull operator to find the 𝑘 th

match of a regular expression. Additionally, in FlashFill++ the pos rule replaces the operator RegPos
(which relies on a pair of regular expressions to identify a position) with a Find of a constant string
in the input and a Match/MatchEnd of a regular expression.

Example Guarded Rules in the FlashFill++DSL. We go over a few cases of guarded rules in FlashFill++
to show they capture natural intuitions and rules of thumb in the string transformation domain.

• Single segments over concats. The guarded rule segment |⊲ Concat(segment, concat) ensures
that we try to synthesize programs that generate the whole output at once, before generating

programs that produce a prefix and a suffix of the output and then combine them. Whenever

such a program exists, this guarded rule potentially saves the exploration of a huge portion

of the program space. This single guarded rule plays a crucial role in keeping FlashFill++
performant since witness function of the concat operator produces 2(𝑛 − 1) subtasks, one
each for the prefix and suffix at each point where the output string can be split.

• Splits over slices. As illustrated Example 5.1, FlashFill++ strictly prefers programs that use

the Split operator over programs that use the Slice operator. Program in data wrangling

scenarios very commonly begin by extracting the appropriate part of the input from a

delimited file record (CSVs, TSVs, etc). In all such cases, a split program more closely follows

the human intuition of “extract the 𝑛𝑡ℎ column delimited by” as compared to a slice program.

Note that the split operator is a “higher level” construct preferred over the “low-level” slice.

• Input numbers over rounded numbers. The RoundNumber operator in Figure 7 is guarded by

parseNumber, meaning that we can only generate a program that rounds a number if no

number in the input can be used directly to produce the same output.

6 EXPERIMENTAL EVALUATION
We now present our experimental results, including an ablation study and survey-based user study.

6.1 Methodology
We used 3 publicly available benchmark sets – Duet string benchmarks [Lee 2021], Playgol [Cropper
2019], and Prose [PROSE 2022] – covering a range of string transformations, including datetime

and number formatting.

We compare FlashFill++ with three systems: two publicly available state-of-the-art synthesis

systems that are deployed in productions, namely FlashFill [Gulwani 2011] and SmartFill [Chen
et al. 2021a; Google 2021], and one, Duet, from a recent publication [Lee 2021]. To experiment with

FlashFill, we implemented it on top of the FlashMeta framework [Polozov and Gulwani 2015]. We

carry out our FlashFill, FlashFill++, and Duet experiments on a machine with 2 CPUs & 8GB RAM. To

experiment with SmartFill, we employ Google Sheets in Chrome and use it to solve the subset of

tasks that are suitable for its spreadsheet environment.
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Table 1. Comparing different tools (rows) on the 3 public benchmarks (columns) based on (1) number of
benchmarks correctly solved (Columns 2–5) and (2) average number of examples required on the successful
benchmarks (Columns 6–8). The total number of benchmarks attempted are shown in brackets.

Number benchmarks solved Average #examples required

Duet (205) Playgol (327) Prose (354) Total (886) Duet Playgol Prose

FlashFill 139 264 172 575 1.41 1.26 1.54

FlashFill++ 159 307 353 819 1.69 1.46 1.52
Duet 102 211 166 479 1.97 2.11 2.01

SmartFill 37 (158) 34 (327) 18 (296) 89 (781) 2.75 2.85 2.83

Since SmartFill is not exposed in the Google Sheets API, we rely on browser-automation using

Selenium [Selenium 2022] for SmartFill evaluation. Moreover, we remove problematic benchmark

tasks and use 158, 327, and 296 tasks from the Duet, Playgol, and Prose benchmarks, respectively,

for SmartFill evaluation. The tasks removed were unsuitable for browser automation (e.g. too many

rows or new line characters).

The Duet tool [Lee 2021] accepts a DSL as part of its input. Different Duet benchmarks used

slightly different DSLs. For fair comparison, we set a single fixed DSL. We obtained the fixed DSL

by taking all commonly-used rules in the string transformation benchmarks of Duet. Second, Duet
has some hyperparameters, for which we picked the best setting after some experimentation.

6.2 Expressiveness and Performance
A key feature of FlashFill++ is improved expressiveness. Table 1 (Columns 2–5) shows the number

of benchmark tasks that the various tools (rows) can correctly solve. FlashFill++ produces a correct
program for most number of benchmarks. FlashFill is limited due to a lack of datetime and number

formatting. The DSL used in the Duet tool has no datetime support, and only limited support for

number and string formatting. The SmartFill tool is a neural-based general purpose tool and has

the weakest numbers here. Since our SmartFill experiments rely on browser-based interaction, it is

possible that the underlying synthesizer can solve more benchmarks but these are not exposed to

the UI. However, our setup reflects the experience that a user would face.

Our DSL is expressive, covering a large class of string, datetime and number transformations;

thus showing the added value from using cuts and guarded rules.

While increasing expressiveness enables users to accomplishmore tasks, there is a risk of reducing

performance on existing tasks. To this end, we consider the minimum number of examples required

for a synthesizer to learn a correct program. To find that number, we use a counter-example guided

(CEGIS) loop which provides the next failing I/O example in every iteration to the synthesizer.

We use a time out of 20 seconds. Table 1 Columns 6–8 present the average number of examples

the various tools used across the benchmarks where they were successful. Here FlashFill has the
best numbers, which indicates that when it works (for string benchmarks), it learns with very

few examples. Our tool FlashFill++ takes only slightly more examples on average, partly because

datetime and number formatting typically requires more examples for intent disambiguation. For

example, the string ‘2/3/2020’ can either be the 2
𝑛𝑑

of March or the 3
𝑛𝑑

of February. The Duet and
SmartFill tools take more examples in general. We emphasize that the performance of FlashFill++ is
good here because it solves more problems (presumably much harder instances) and yet it doesn’t

use too many more examples (the harder instances did not make the averages much worse).
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Fig. 8. FlashFill++ is generally faster – up to two orders of magnitude – than the best of FlashFill and Duet,
and the slowdowns are mostly on fast benchmarks.

Despite solving more tasks, FlashFill++ continues to require a reasonable number of examples

compared to baselines, showing that it generalizes to unseen examples and does not overfit.

We next compare synthesis times (averaged over 5 runs). In particular, we compute the synthesis

time when the tools are given the minimum number of examples they required to produce the

correct program. Figure 8 shows the results. We restrict this experiment to FlashFill, Duet, and
FlashFill++, as synthesis time for SmartFill is unobservable through the browser.

Figure 8a compares FlashFill++ with the faster of FlashFill and Duet. We focus on benchmarks that

are solved by FlashFill++, and by either FlashFill or Duet. The y-axis displays the log base 10 of the
ratio of the best of FlashFill and Duet synthesis time to the FlashFill++ synthesis time. A higher value

represents a larger reduction in synthesis time. On the x-axis we display the best of FlashFill and
Duet synthesis time (in milliseconds) for that benchmark task. FlashFill++ reduces synthesis time

in 63% of the benchmarks, and the remaining 37% happen to be benchmarks where synthesis is

fast (< 500𝑚𝑠 in most cases) and slowdown is likely not observable in a user-facing application. In

37.3% cases, FlashFill++ is at least one order of magnitude faster and in 18% cases it is at least two

orders of magnitude faster. Table 8b shows the average synthesis time for various tools across the

benchmark classes. We averaged over the benchmarks that the tool solved. We see that FlashFill++
has better averages despite solving more (presumably harder) benchmarks.

FlashFill++ is faster on average despite solving more (presumably harder) benchmarks and better

than the best of the baselines on most hard instances.

Finally, we evaluate the gain from using gDSLs. We create FlashFill++− by replacing gDSL used

in FlashFill++ by a regular DSL ( |⊲ operator is treated as the usual |). We compare FlashFill++ and
FlashFill++− on synthesis time and minimum examples required metrics. Figure 9b summarize the

results. We note that gDSLs reduce synthesis time in 91% of the benchmark tasks, give more than

3x speedup in 20% of cases, and generate better performance across the benchmarks and metrics.

Precedences in gDSLs consistently help FlashFill++ in improving both search (synthesis time)

and ranking (minimum number of examples).

6.3 Code Readability
Traditionally DSL design has focused on efficacy of the learning and ranking process, and not on

readable code generation. We evaluated the extent to which FlashFill++ enables such readable code.
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Fig. 9. FlashFill++ improves over an ablation that removes the use of gDSLs, denoted FlashFill++−.

First, we compared the code complexity for programs synthesized by FlashFill++ and FlashFill for
two target languages: Python & PowerFx, the low/no-code language of the Power platform [PowerFx

2021]. On average, FlashFill++’s Python is 76% shorter and uses 83% fewer functions, whereas

FlashFill++’s PowerFx is 57% shorter and uses 55% fewer functions. We next compared the Google

Sheets formula language code generated by SmartFill with Excel code generated by FlashFill++. We

found that FlashFill++ does better in ≈ 60% of the formulas generated and is at parity for ≈ 20% of

the formulas. We did not compare with Duet since it generates programs only in its DSL and not in

any target language.

Next, we carried out a survey-based user study where we asked users to read and compare

different Python functions synthesized by alternative approaches. In our study, we further augment

FlashFill++ with a procedure to rename variables. This part of the system is optional, and is only

added to further underscore the benefits of readable code generation. To perform variable renaming

we use the few-shot learning capability of Codex [Chen et al. 2021b], a pretrained large language

model, and iteratively provide the following prompt [Gao et al. 2021]: (1) two samples of the

renaming task, where each sample contains I/O examples, FlashFill++ program, and the renamed

program, (2) the current renaming task, which contains the examples and the FlashFill++ program
to be renamed, and (3) partially renamed program up to the next non-renamed variable.

We sampled 10 tasks from our benchmarks, with probability proportional to the number of

identifier renaming calls made to Codex. For each task, we displayed the Python code generated by

FlashFill, FlashFill++, and FlashFill++ with Codex (anonymized as A, B, and C). For the first 5 tasks,

the participants were asked (on a 7-point Likert scale) the extent to which they agreed with the

statements “FlashFill++ is more readable than FlashFill” and “FlashFill++ with Codex is more readable
than FlashFill++”. For the last 5 tasks, the participants answered (on a 7-point Likert scale) the extent

to which they agreed with the statement “X is similar to the code I write”, where X was replaced

with the corresponding (anonymized) system name.

Figure 10a shows that participants found code generated by FlashFill++ (without identifier renam-

ing) was more readable than code generated by FlashFill for the same task. Adding Codex-based

renaming further improved readability with most participants at least somewhat agreeing.

Figure 10b shows that participants strongly disagreed that FlashFill code is similar to the code

they write. In contrast, most participants at least somewhat agreed that FlashFill++ code is similar

to the code they write. Adding identifier renaming resulted in improvements, across all five tasks.

We also provided an open-ended text box for additional feedback with each task. Here are some

illustrative excerpts, wherewe have replaced the anonymized systemnames (A,B,C)withmeaningful

counterparts: FlashFill: “is a mess”, FlashFill++: “very readable”, FlashFill++ +Codex: "parameter name is
more self describing” ; “FlashFill is just confusing while FlashFill++ and/or FlashFill++ with Codex are
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Fig. 10. Survey: D3-S3 Strongly disagree/agree. FF=FlashFill, FF++=FlashFill++, FF++ w/Codex=FlashFill++
with Codex.

quite simple and direct” ; and “FlashFill is very badly written, and FlashFill++ with Codex’s parameter
name tells a much better story”.

7 DISCUSSION
7.1 Related Work
Cuts are closely related to the widely-studied concept of accelerations in program analysis. Accel-

erations are used to capture the effect (transitive closure) of multiple state transitions by a single

“meta transition” [Finkel 1987; Karp and Miller 1969]. It has often been used to handle numerical

updates in programs, especially when more classical abstract interpretation techniques either do

not converge or become very imprecise [Bardin et al. 2008; Boigelot 2003; Jeannet et al. 2014].

Our use of cuts inherits its motivation and purpose from these works, but applies them to PBE.

Whereas in program analysis, accelerations had success mostly on numerical domains, in PBE we

find cuts helpful more generally. Currently, we assume cuts are provided by the DSL designer, but

automatically generating them remains an interesting topic for future research.

In PBE, cuts help speed-up search (by guiding top-down propagation across non-EI operators

based on abstracting behavior of inner sub-DSLs). Other ways to speed-up search include using

types and other forms of abstractions [Guo et al. 2020; Osera and Zdancewic 2015; Wang et al.

2018], or combining search strategies [Lee 2021]. The difference between cuts and abstraction-based

methods in synthesis is the same as the difference between accelerations and abstraction in program

analysis. We need cuts for only some operators, whereas abstract transformers are required for

all operators. Moreover, the methods are not incompatible – a promising direction would be to

combine them.

Middle-out synthesis, enabled by cuts, is a new way to combine bottom-up [Alur et al. 2013,

2017] and top-down [Gulwani 2011; Polozov and Gulwani 2015] synthesis. It is very different from

themeet-in-the-middleway of combining them where search starts simultaneously from the bottom

(enumerating subprograms that generate new values) and from the top (back propagating the

output) until we find values that connect the two [Gulwani et al. 2011; Lee 2021]. Helped by the

jump provided by cuts, middle-out synthesis starts at the middle creating two subproblems that can

be solved using either approach. Meet-in-the-middle approach in [Lee 2021] guides the top-down

search based on the values propagated by bottom-up, similar to middle-out synthesis; however, our
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cuts are more general and can handle more scenarios because they overcome issues (not effectively

enumerable operators and large number of constants) that may make partial bottom-up fail.

Middle-out synthesis can be viewed as a divide-and-conquer strategy for synthesis. The coopera-

tive synthesis framework in [Huang et al. 2020] proposes 3 such strategies that are used when the

original synthesis problem remains unsolved. However, [Huang et al. 2020] works on complete

logical specifications, and not on input-output examples.

At a very abstract level, top-down synthesis and middle-out synthesis can both be viewed as

an approach that synthesizes a sketch and then fills the sketch in a PBE setting [Feng et al. 2017;

Polikarpova et al. 2016; Wang et al. 2017, 2020]. In this context, Scythe [Wang et al. 2017] uses

overapproximation of the set of values that are computed by partial programs to synthesize a sketch.

Unlike our work, [Wang et al. 2017] is exclusively focused on bottom-up synthesis. Since [Wang

et al. 2017] is bottom-up, its approximations get coarser as the program gets deeper. Scythe, tends

to do well for shallow programs. FlashFill++’s use of cuts is more “on-demand” and thus not affected

by depth of programs. In fact, FlashFill++ can synthesize deep programs, with the largest solution in

our benchmark suite having a depth of 24, with over 10% of our benchmarks requiring programs

with a depth of at least 10. Furthermore, [Wang et al. 2017] is exclusively focused on SQL – its

main contribution is an approach to overapproximate SQL queries that abstracts carefully selected

nonterminals. In contrast, our formalization is not fixed to any particular DSL, but relies on the

DSL designer to provide the cuts.

Morpheus [Feng et al. 2017] and Synquid [Polikarpova et al. 2016] overapproximate each com-

ponent to prune partial programs to synthesize sketches that are subsequently filled. Morpheus

is specialized to tables and uses the distinction between value and table transformations. In con-

trast, our framework is more general as it allows the use of approximations (cuts) for only certain

functions (wherever they are provided); however, we cannot (and do not) prune partial programs.

We always work on concrete values – there is no abstract domain involved. We do not use SMT

solvers, whereas SMT solvers are a key component of [Feng et al. 2017; Polikarpova et al. 2016].

Precedence and gDSLs. Precedences or priorities have been used in many grammar formalisms,

but mainly for achieving disambiguation while parsing in ambiguous grammars [Aasa 1995; Aho

et al. 1973; Earley 1974; Heering et al. 1989]. Disambiguation here refers to preferring the parse

𝑎+(𝑏 ∗𝑐) over (𝑎+𝑏) ∗𝑐 for the same string 𝑎+𝑏 ∗𝑐 . In contrast, we use gDSLs to compare derivations

of different strings (programs). Furthermore, in the work on filters and SDF [Heering et al. 1989],

the semantics of the precedence relation ≻ on rules is different: there 𝑆1 → 𝑤1 ≻ 𝑆2 → 𝑤2 means

that one can not use 𝑆2 → 𝑤2 as a child of 𝑆1 → 𝑤1 in a parse tree [van den Brand et al. 2002]. In

our case, we disallow precedence on rules with different left-hand nonterminals. Nevertheless, our

precedence can be viewed as a specialized filter in the terminology of [van den Brand et al. 2002].

Farzan and Nicolet [Farzan and Nicolet 2021] use a sub-grammar to optimize search. This can be

modeled using our precedence operator. They use constraint-based synthesis (using SMT solvers)

where the interest is in any one correct program. Ranking is not of interest there, whereas we use

precedence in the context of top-down synthesis where we synthesize program sets and rank them.

The interaction of precedence in the grammar and the program ranking is one of our contributions.

Casper [Ahmad and Cheung 2018] uses a hierarchy of grammars growing in size for synthesis,

making search efficient. This hierarchy is dynamically generated - guided by the input-output

example. Our precedence-based approach provides a different mechanism to constrain search. The

value of our approach is that it is easily integrated with the underlying synthesis framework, giving

synthesis-engine-builders more flexibility in controlling search and ranking. Precedence is also

intuitive for DSL designers because they must think only locally to decide if the operators need a

precedence relation. Technically speaking, our notion of precedence implicitly represents a lattice

of grammars rather than a strict linear hierarchy.
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Earlier work on “Parsing expression grammars” [Ford 2004] introduces grammars that are like

CFGs, but contain features such as prioritized choice (precedence), greedy repetitions, etc., but

it does so for parsing, whereas our focus is on top-down, bottom-up, and combination synthesis

techniques. Our novelty is in supporting precedence in our synthesis framework, and formally

working out how it impacts ranking and search.

Using precedence is one way to handle potentially redundant operators in the DSL and prune

search space. The other way is to explicitly write the equivalence relation on programs and

only consider programs that are canonical representatives of each equivalence class [Osera and

Zdancewic 2015; Smith and Albarghouthi 2019; Udupa et al. 2013]. The gDSL approach is low

overhead, but may consider equivalent programs during search. However, this is by design as our

goal is to generate whatever program leads to most naturally readable code.

Precedence of grammar rules can be viewed as a specialized case of probabilistic context-free

grammars (pCFGs) that have been used to bias the enumeration of programs through their gram-

mar [Lee et al. 2018; Liang et al. 2010; Menon et al. 2013]. While specialized, precedence is actually

preferable in many scenarios where we want to synthesize not just any program that works on the

input-output examples, but one that has other desirable properties, such as, the program generalizes

to unseen inputs and has a readable translation in target language. As such, precedence in gDSLs

give designers of synthesizers a clean way to state their ranking preference. Weights in a pCFG

have to be learned from data or manually set – both are daunting tasks compared to writing a gDSL.

The contrast between pCFGs and gDSLs is akin to that between neural and symbolic approaches.

FlashFill [Gulwani 2011] demonstrated the effectiveness of inductive synthesis at tackling

complex string transformation. FlashMeta [Polozov and Gulwani 2015] recognized that many

popular inductive synthesizers [Gulwani 2011; Le and Gulwani 2014] could be decomposed into

domain-specific features, such as the DSL operators and their semantics, and general (shareable)

deductive steps. We used the FlashMeta framework to implement FlashFill, based on the original

paper [Gulwani 2011], for our experiments. We also built FlashFill++ the same way, which extends

the capabilities of FlashFill to include new operations like date and number formatting, and also

focuses on generating readable code.

In recent work [Verbruggen et al. 2021], FlashFill has been combined with a pre-trained language

model (LM), GPT3, to facilitate semantic transformations, such as converting the city "San Francisco"

to the state "CA". Complementing FlashFill’s syntactic effectiveness with GPT3’s ability to do

semantic transformation is interesting, but orthogonal to the problem here. However, we do exploit

a LM to (optionally) generate meaningful variable names for our user study on code readability.

Trust and readability. Wrex [Drosos et al. 2020] argues that readable code is indispensable
for users of synthesis technology. Wrex employed hand-written rewrite rules to produce readable

code for their user study. However, this is not an approach that easily extends to all scenarios and

larger languages. FlashFill++ is inspired by Wrex [Drosos et al. 2020] to address the readable code

generation challenge in a more general and scalable way: redesigning the DSL used with a focus

on enabling readable code generation, rather than post-processing.

Zhang et al [Zhang et al. 2021, 2020] introduced a system for interpretable synthesis, where the
user interacts with the synthesizer. This approach is complementary to FlashFill++.

7.2 Limitations
The concepts of cuts and precedence have been developed exclusively for synthesis approaches

based on concrete values, so-called version space algebra (VSA) based methods, in this paper. The

term top-down, respectively bottom-up, has been used for techniques that are based on propagation

of concrete output (respectively, input) values through partial sketches (respectively, programs)

typically represented using VSAs. In systems that represent approximations of the sets of values
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(at each component) using abstractions or refinement types (e.g., Synquid, Morpheus, etc), cuts

can potentially address the issue of abstractions becoming too coarse as they are composed from

abstractions of sub-components. This is similar to how interpolants can be used to compute tight

invariants in program verification when successive application of abstract transformers lead to

overly general invariants. Studying broader implications of these ideas is left for future work.

Nontrivial cuts that go beyond bottom-up or top-down approaches can only be computed if there

are nontrivial invariants that hold (about the values that are generated) at certain intermediate

nonterminals in the grammar. Moreover, the DSL designer must be aware of these invariants. The

DSL designer can choose to write cuts that are incomplete in theory, but reasonable in practice,

guided by their understanding of the domain. Nontrivial cuts are likely to exist in large DSLs where

different forms of values flow on different paths. We have not done a formal study of how difficult

it is for a DSL designer to write useful cut functions—this is beyond the scope of the current paper

which just lays down the foundations for cuts.

Designing a guarded DSL requires the DSL designer to have clear preference for certain operators

over other alternatives, and moreover, any precedence on operators closer to the start symbol (in the

grammar) should override any precedence on operators closer to the leaves of the program tree. The

“higher-up” operators in any DSL typically establish the high-level tactic of the program, and hence

this requirement often holds. Precedences in a grammar are likely to exist if it contains redundant

operators that are some preferred compositions of other low-level operators in the grammar. Further,

there are certain technical assumptions we make about precedences. The assumption that the

precedence is a series-parallel partial order is not required if we start with the gDSL (rather than

start with precedences), which is what we do in practice. The assumption that the reachability

relation on the grammar nonterminals be acyclic is required only to provide a clean mathematical

interpretation of the ranking induced by gDSL on programs (terms) as a path ordering. In the

presence of cycles, the synthesis rule and the full system can still be used without problems, but

ranking cannot be described in a simple way.

8 CONCLUSION
We introduced two techniques, cuts and precedence through guarded DSLs, that DSL designers can

use to prune search in programming by example. Cuts enable a novel synthesis strategy: middle-

out synthesis. This strategy allows FlashFill++ to support synthesis tasks that require non-EI/EE

operators, such as datetime and numeric transformations. The use of precedence through gDSLs

allows us to increase the size of our DSL, by incorporating redundant operators, which facilitate

readable code generation in different target languages. We compare our tool to existing state-of-

the-art PBE systems, FlashFill, Duet, and SmartFill, on three public benchmark datasets and show

that FlashFill++ can solve more tasks, in less time, and without substantially increasing the number

of examples required. We also perform a survey-based study on code readability, confirming that

the programs synthesized by FlashFill++ are more readable than those generated by FlashFill.
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