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Deep networks are vulnerable to adversarial examples

Clean images Adversarial noise Adversarial examples

(Figure is from Dong et al. CVPR 2018)

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. In ICLR, 2014

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR, 2015



Adversarial attack in practice

Adversarial attack happens in both digital and physical worlds

[Cao, Wang, Xiao, et al, IEEE Symposium on Security and Privacy, 2021]

Unlocked 19 types of the mainstream smart phones 

within 15 minutes with one “adversarial glass”!
failure chance >= 99.1%



Not only in computer vision 

NLP (Jin et al. AAAI 2020) Graph (Dai et al. ICML 2018)

Reinforcement Learning (Lin et al. IJCAI 2017) Audio (Carlini and Wagner. S&P 2018)



LiDAR (Tu et al. CVPR 2020) 3D Point Cloud (Lang et al. 2020)

Recommender System (Cao et al. SIGIR 2020)Code Generation (Anand et al. 2021)

Not only in computer vision 



Competitions on adversarial attack and defense

Google Brain organized the 1st competition on Adversarial Attack 
and Defense at NeurIPS 2017

❑ Three tasks (black-box)
 Non-targeted adversarial attack (91 teams)

 Targeted adversarial attack (65 teams)

 Defense against adversarial attack (107 teams)

❑ We won all three tasks with a large margin (2 papers at CVPR 2018)
 A summary paper on this competition (Kurakin et al., 2018)

GeekPwn competitions

❑ We won the 1st place at Defcon AI Security competition, 2018

❑ CAAD CTF 2019 two 1st places

Security AI Challenger Program, from 2019 (completed seven 
challenges)

❑ Joint with ICDM 2020, CVPR 2021



Categories of existing defense

The defense techniques can be categorized as (Dong et al., 2020):

❑ RobustTraining
 Adversarial training

 Regularization

❑ InputTransformation

❑ Randomization

❑ Model Ensemble

❑ Certified Defenses
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Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness

(Pang, Xu, Dong, Du, Chen, Zhu, ICLR 2020)



Observation: Adversarial Robustness requires Higher Sample Complexity

The same dataset, e.g., CIFAR-10, which enables good standard 

accuracy may not suffice to train robust models.

(Schmidt et al. NeurIPS 2018)



Possible Solutions

• Introducing extra labeled data 
(Hendrycks et al. ICML 2019)

• Introducing extra unlabeled data 
(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)

Our solution: Increase sample density to induce locally 

sufficient training data for robust learning 

Q1: What is the definition of sample density?

Q2: Can existing training objectives induce high sample density?



Sample Density

(low sample density)

(high sample density)

(medium sample density)

(medium sample density)

SCE MMC

Learned features of training data with label
Prefixed feature center of label in

Contours of the objective loss ( , is a small value)

Moving directions of learned features during training



Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

where                                                                     is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as



Key results #1: The widely used g-SCE loss is not sufficient!



The ‘Curse’ of Softmax Function

• The softmax makes the loss value only depend on the relative relation among logits. 

• This causes indirect and unexpected supervisory signal on the learned features.



Our Method: Max-Mahalanobis Center (MMC) Loss

• No softmax normalization

[Pang et al., Max-Mahalanobis Linear Discriminant Analysis Networks, ICML 2018]



Key results #2: The MMC loss induces a higher sample density locally

Higher sample density!

The sample density will exponentially 

increase as C gets to 0

𝑁𝑘 > 𝑁𝑘,෨𝑘



Empirical Faster Convergence
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MMC loss leads to faster convergence, while keeping comparable performance on the clean images (AT sacrifices clean accuracy)



White-box Robustness (Adaptive Attacks)

CIFAR-10



Adversarial Distributional Training for Robust Deep Learning

(Dong, Deng, Pang, Zhu, Su, NeurIPS 2020)



Adversarial Training

Adversarial training (AT) is formulated as a minimax optimization problem

(Madry et al., 2018)

min
𝜃

1

𝑛
෍

𝑖=1

𝑛

max
𝛿𝑖∈𝑆

𝐿 𝑓𝜃 𝑥𝑖 + 𝛿𝑖 , 𝑦𝑖

* Adversarial attacks can be used to find an approximate solution, e.g., FGSM 

(Goodfellow et al., 2015), PGD (Madry et al., 2018)

Inner maximization: generate an adversarial example

Outer minimization: train a robust classifier

𝑆 = {𝛿: 𝛿 ∞ ≤ 𝜖}



Problem I: Training Speed

PGD-based adversarial training is much slower than normal training, which cannot be

accomplished on ImageNet (except Facebook, Google...)

Free AdversarialTraining (Shafahi et al., 2019)

❑ Recycling the gradient information computed when updating model parameters 

Fast AdversarialTraining (Wong et al., 2020)

❑ Use FGSM for training with random initializations, cyclic learning rate, early stopping, etc.

But these methods cannot yield the same level of robustness compared with

PGD-based AT on ImageNet.



Problem II: Attack Generalization

Most AT methods solve the inner maximization using a specific attack, which can result in 

poor generalization for other attacks under the same threat model.

Several recent works (Zhang andWang, 2019) improving AT upon Madry et al. (2018)

have this problem.



(Figure from https://media.neurips.cc/Conferences/NIPS2018/Slides/adversarial_ml_slides_parts_1_4.pdf)

Problem III: Large Generalization Gap

https://media.neurips.cc/Conferences/NIPS2018/Slides/adversarial_ml_slides_parts_1_4.pdf


Adversarial Distributional Training

We formulate adversarial distributional training (ADT) as a different minimax

optimization problem

min
𝜃

1

𝑛
෍

𝑖=1

𝑛

max
𝑝(𝛿𝑖)∈𝑃

𝔼𝑝(𝛿𝑖) 𝐿 𝑓𝜃 𝑥𝑖 + 𝛿𝑖 , 𝑦𝑖

To prevent ADT from degenerating into AT, we add an entropic regularizer

min
𝜃

1

𝑛
෍

𝑖=1

𝑛

max
𝑝(𝛿𝑖)∈𝑃

𝐽(𝑝 𝛿𝑖 , 𝜃) ; 𝐽 𝑝 𝛿𝑖 , 𝜃 = 𝔼𝑝(𝛿𝑖) 𝐿 𝑓𝜃 𝑥𝑖 + 𝛿𝑖 , 𝑦𝑖 + 𝜆𝐻 𝑝 𝛿𝑖

Inner maximization: learn an adversarial distribution

Outer minimization: train a robust classifier 𝑃 = {𝑝: supp(𝑝) ⊆ 𝑆}

[Dong et al., Adversarial distributional training for robust deep learning, NeurIPS 2020]



Advantages

Better generalization across attacks

Better model robustness (more flattened loss surfaces in the vicinity of a nature input)

Model Dominant eigenvalue

Standard 1.8301±6.3663

ATPGD 0.0242±0.0478

ADTEXP 0.0180±0.0311

ADTEXP-AM 0.0181±0.0270

ADTIMP-AM 0.0211±0.0353

(f) Comparison on the Hessian

(a) Standard

(d) ADTEXP-AM (e) ADTIMP-AM

(b) ATPGD (c) ADTEXP

[Dong et al., Adversarial distributional training for robust deep learning, NeurIPS 2020]



Benchmarking Adversarial Robustness of Image Classification

(Dong, Fu, Yang, Pang, Su, Xiao, Zhu, CVPR 2020, Oral)



Platform: Ares

We developed Ares, a platform for adversarial machine learning research focusing on 

benchmarking adversarial robustness on image classification

Support all attacks in various threat models;

Provide ready-to-use pre-trained baseline models (8 on ImageNet & 8 on CIFAR10);

Provide efficient & easy-to-use tools for benchmarking models.

Adaptive attacks [Athalye et al., 2018]

Optimization-based attacks [Carlini and Wagner,

2017]

Iterative attacks[kurakin et al., 2016]

Attacks Defenses

Adversarial training with FGSM [Kurakin et al., 2015]
One-step attacks [Goodfellow et al.,

2014]

Defensive distillation [Papernot et al., 2016]

Randomization, denoising [Xie et al., 2018; Liao et al.,

2018]

(Dong, Fu, Yang, Pang, Su, Xiao, Zhu, CVPR 2020, Oral)

https://github.com/thu-ml/ares



Attacks in our Benchmark

Attack Method Knowledge Goal Capability Distance Metrics

FGSM [Goodfellow et al., 2015] white-box & transfer-based untargeted & targeted constrained 𝑙2, 𝑙∞

BIM [Kurakin et al., 2017] white-box & transfer-based untargeted & targeted constrained 𝑙2, 𝑙∞

MIM [Dong et al., 2018] white-box & transfer-based untargeted & targeted constrained 𝑙2, 𝑙∞

DeepFool [Moosavi-Dezfooli et al., 2016] white-box untargeted optimized 𝑙2, 𝑙∞

C&W [Carlini & Wagner, 2017] white-box untargeted & targeted optimized 𝑙2

DIM [Xie et al., 2019] transfer-based untargeted & targeted constrained 𝑙2, 𝑙∞

ZOO [Chen et al., 2017] score-based untargeted & targeted optimized 𝑙2

NES [Ilyas et al., 2018] score-based untargeted & targeted constrained 𝑙2, 𝑙∞

SPSA [Uesato et al., 2018] score-based untargeted & targeted constrained 𝑙2, 𝑙∞

NATTACK [Li et al., 2019] score-based untargeted & targeted constrained 𝑙2, 𝑙∞

Boundary [Brendel et al., 2018] decision-based untargeted & targeted optimized 𝑙2

Evolutionary [Dong et al., 2019] decision-based untargeted & targeted optimized 𝑙2

https://github.com/thu-ml/ares



Defenses in our Benchmark: CIFAR-10 & ImageNet

Model Category Intended Threat Model Accuracy (%)

Res-56 [He et al., 2016] Natural training - 92.6

PGD-AT [Madry et al., 2018] Robust training 𝑙∞ (𝜖 = 8/255) 87.3

DeepDefense [Yan et al., 2018] Robust training 𝑙2 79.7

TRADES [Zhang et al., 2019] Robust training 𝑙∞ (𝜖 = 0.031) 84.9

Convex [Wong et al., 2018] Certified robust training 𝑙∞ (𝜖 = 2/255) 66.3

JPEG [Dziugaite et al., 2016] Input transformation General 80.9

RSE [Liu et al., 2018] Randmization & ensemble 𝑙2 86.1

ADP [Pang et al., 2019] Ensemble General 94.1

Model Category Intended Threat Model Accuracy (%)

Inc-v3 [Szegedy et al., 2016] Natural training - 78.0

Ens-AT [Tramer et al., 2018] Robust training 𝑙∞ (𝜖 = 16/255) 73.5

ALP [Kannan et al., 2018] Robust training 𝑙∞ (𝜖 = 16/255) 49.0

FD [Xie et al., 2019] Robust training 𝑙∞ (𝜖 = 16/255) 64.3

JPEG [Dziugaite et al., 2016] Input transformation General 77.3

Bit-Red [Xu et al., 2018] Input transformation General 61.8

R&P [Xie et al., 2018] Randomization General 77.0

RandMix [Zhang & Liang., 2019] Certified randomization General 52.4

https://github.com/thu-ml/ares



Rice et al. (ICML 2020) find that simply early stopping the training process of PGD-AT can attain

the gains from almost all the previously proposed improvements, including state-of-the-art TRADES.

• TRADES also applied early stopping by
decaying learning rate at 75th epoch and
used the checkpoint of 76th epoch.

(From Rice et al. 2020)

A Case Study: AT has inconsistent results …

Gowal et al. (2020) find that TRADES actually performs better than PGD-AT

Who is wrong?



Training settings in previous work are highly inconsistent

[Pang et al., Bag of tricks for Adversarial Training, ICLR 2021] Code: https://github.com/P2333/Bag-of-Tricks-for-AT



Takeaways through Extensive Benchmarking

• Adversarial training is more sensitive to these usually overlooked 
hyperparameters, compared to standard training.

• Standardize the basic training setting enables fairer benchmarks.

[Pang et al., Bag of tricks for Adversarial Training, ICLR 2021] Code: https://github.com/P2333/Bag-of-Tricks-for-AT



http://ml.cs.tsinghua.edu.cn/adv-bench/



Summary

Adversarial robustness is a crucial issue of deep learning for safety-critical applications

Much progress has been done on adversarial attack, including program synthesis for automated 
attack

❑ E.g., AutoDA (Fu et al., USENIX Security Symposium 2022)

Defending over adversarial attack requires a deep investigation on the learning paradigm, including 
learning objectives, uncertainty, theory, evaluation, etc. 

❑ E.g., certified defense against semantic transformations (Hao et al., ICML 2022), memorization 
effect of adversarial training (Dong et al., NeurIPS 2022)

Robustness is closely related to interpretability, privacy, OoD generalization, security …

Upcoming book on AI Safety, stay tuned …



Thank you!


