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Deep networks are vulnerable to adversarial examples

Clean images Adversarial noise Adversarial examples

—_ ': . - A‘ﬁ' - ,’
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(Figure is from Dong et al. CVPR 2018)
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Adversarial attack in practice

# Adversarial attack happens in both digital and physical worlds

Unlocked 19 types of the mainstream smart phones

. o 10
within 15 minutes with one “adversarial glass”! failure chance 99.1%

Cannot detect adv object in both
camera and LiDAR in any frames
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[Cao, Wang, Xiao, et al, IEEE Symposium on Security and Privacy, 2021]
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Movie Review (Positive (POS) <+ Negative (NEG)) E Uz- ®
Original (Label: NEG) The characters, cast in impossibly contrived situations, are totally estranged from reality. ° %
Attack (Label: POS) The characters, cast in impossibly engineered circumstances, are fully estranged from reality. N e e R 3
Original (Label: POS) It cuts to the knot of what it actually means to face your scares, and to ride the overwhelming metaphorical z %
wave that life wherever it takes you. @ g
Attack (Label: NEG) It cuts to the core of what it actually means to face your fears, and to ride the big metaphorical wave that z
life wherever it takes you.
SNLI (Entailment (ENT), Neutral (NEU), Contradiction (CON))
Premise Two small boys in blue soccer uniforms use a wooden set of steps to wash their hands.
Original (Label: CON) The boys are in band uniforms.
Adversary (Label: ENT)  The boys are in band garment.
Premise A child with wet hair is holding a butterfly decorated beach ball. Original Proposed
Original (Label: NEU) The child is at the beach. Data Adversarial
Adversary (Label: ENT)  The youngster is at the shore. Sample Example
NLP (Jin et al. AAAI 2020)
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Reinforcement Learning (Lin et al. IJCAl 2017) Audio (Carlini and Wagner. S&P 2018) /




Not only in computer vision

Attack Pipeline
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LiDAR Scene Modified LIDAR Scene Detection Output

LiDAR (Tu et al. CVPR 2020)
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Representative Example

vC

OD: Given a string a, what is the length of a.
00: (strlen a)
AD: Given a string b, what is the length of b.
AQ: (strlen a)

OD: Given a number a, compute the product of all the numbers from 1 to a.

00: (invokel (lambdal (if ( < argl 1 )1(x( self( —-argl 1 ))
argl ))) a)

AD: Given a number a, compute the product of the numbers from 1 to a.

AO: ( » a 1)

SR

OD: consider an array of numbers, what is reverse of elements in the given array that are
odd

00: (reverse ( filter a ( lambdal ( == ( % argl 2 )1))))

AD: consider an array of numbers, what equals reverse of elements in the given array that
are odd

AQO: (reduce ( filter a ( lambdal ( == ( % argl 2 )1))))

Code Generation (Anand et al. 2021)
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3D Point Cloud (Lang et al. 2020)

O usernode = user-temeature pain
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1) Policy network explores 2) Encoder transforms paths 3) Detector classifies an action
knowledge graph and into low dimension feature sequence to judge if the
generates a path as an action vectors through an RNN system is attacked

Recommender System (Cao et al. SIGIR 2020)
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Competitions on adversarial attack and defense

# Google Brain organized the 1*' competition on Adversarial Attack
and Defense at NeurIPS 2017
a Three tasks (black-box)
Non-targeted adversarial attack (91 teams)
Targeted adversarial attack (65 teams)
Defense against adversarial attack (107 teams)
1 We won all three tasks with a large margin (2 papers at CVPR 2018)
A summary paper on this competition (Kurakin et al., 2018)

# GeekPwn competitions
o We won the 1st place at Defcon Al Security competition, 2018 Tianchi Big Data Competition
a CAAD CTF 201 9 two 1St plaCeS Big data and distributed computing resources, Cutting-edge

solutions for real-world applications.

# Security Al Challenger Program, from 2019 (completed seven

Challenge S) Security Al Challenger Program Season 1- Facial Adversary Examples

o Joint with ICDM 2020, CVPR 2021 o s

it gmes




Categories of existing defense

#The defense techniques can be categorized as (Dong et al., 2020):

o Robust Training

Adversarial training

Regularization — Classifier
0 InputTransformation u &

0 Randomization

o Model Ensemble
o Certified Defenses

I$ Denoiser
Image

denmsmg
Classifier <] u

Adversarial training

Randomization

Classifier

i

Random
Classifier




Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness

(Pang, Xu, Dong, Du, Chen, Zhu, ICLR 2020)




Observation: Adversarial Robustness requires Higher Sample Complexity

MNIST CIFAR10
100 - 100 A
80 - 30 A
S 60 - 60 -
:

g 40 - 40 -

m— Adversarial train = Adversarial train

20 1 e Adversarial test 20 - e Adversarial test

0 w== Standard test 0 === Standard test
0 20000 40000 60000 0 20000 40000 60000 80000
Training Steps Training Steps

The same dataset, e.g., CIFAR-10, which enables good standard
accuracy may not suffice to train robust models.

K (Schmidt et al. NeurIPS 2018)




Possible Solutions

-

. Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)

Our solution: Increase sample density to induce locally
sufficient training data for robust learning

Q1:What is the definition of sample density?

Q2: Can existing training objectives induce high sample density?

/




/Sample Density

Given a training dataset D with N input-label pairs, and the feature mapping Z trained by the
objective L(Z(x),y) on this dataset, we define the sample density nearby the feature point z = Z(x)
following the similar definition in physics (Jackson, 1999) as

D(z) =

AN
Vol(AB)’

2)

Here Vol(-) denotes the volume of the input set, AB is a small neighbourhood containing the feature
point z, and AN = |Z(D) N AB| is the number of training points in A B, where Z(D) is the set of
all mapped features for the inputs in D. Note that the mapped feature z is still of the label y
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Lymc € [€Cq, €1 + AC]
(low sample density)

MMC

@ Prefixed feature center of label y in Lymc

4 Moving directions of learned features during training
@ Learned features of training data with label y ——- Contours of the objective loss (C; > C,, AC is a small value)




/Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

Losce(Z(xz),y) = —1,; log [softmax(h)],

where }, = —(z — M%-)TZZ- (Z — Ni) + B; is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

T , . . leg 2 b?; 1 Wz‘ 2
softmax(Wz +b); = exp(W; = 1 bi) exp(—|lz — gWillz + b + 7|[Will2)

- ZZG[L] exp(W," z + by) - Zze[L] exp(—||z — %VVZH% + b+ }IHWZH%)
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Key results #1: The widely used g-SCE loss is not sufficient!

Theorem 1. (Proof in Appendix A.1) Given (z,y) € Dy i, 2 = Z(z) and Lgsce(z,y) = C, if there

are Xy, = o1, ¥; = o1, and oy, # o3, then the sample density nearby the feature point z based on
the approximation in Eq. (6) is

N_:-p, :(C Npe—pzll3  Br—Bs:
SID)(Z) o k,k k,k( ) — and Bk ’;: O'k;O'k-”/«"k‘ p’2k||2 + k k;, (7)
[B 1og(ce_1)] = ’ (ox—0o3) Ok—0%
k,}{-:_I— Ok—0p,

where for the input-label pair in D, 1, there is Lq.sce ~ py, 7.(¢)-
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oo, loss value = 0
oo, loss value — oo
The case: g, > 073, The case: 0, < 0j;

K (Preferred by models since lower loss values)
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The ‘Curse’ of Softmax Function

Losce(Z(x),y) = —1:;r log [softmax(h)],

y

* The softmax makes the loss value only depend on the relative relation among logits.

* This causes indirect and unexpected supervisory signal on the learned features.




/Our Method: Max-Mahalanobis Center (MMC) Loss

) lz—p 113 I T
B exp(— y B exp(z ' fy)
Lyvmioa(Z(z),y) =¢ log R ERT Y ~ log > exp(z ' )
e exp( : )_ | Zule[L] l
1

Lyvmc(Z(z),y) = 5“2 — P/;H%

* No softmax normalization

K [Pang et al., Max-Mahalanobis Linear Discriminant Analysis Networks, [CML 2018]




/Key results #2: The MMC loss induces a higher sample density locally

Theorem 2. (Proof in Appendix A.2) Given (x,y) € Dy, z = Z(z) and Lymc(z,y) = C, the
sample density nearby the feature point z is

Ny - px(C)
CcF
where for the input-label pair in Dy, there is Lypc ~ pr(c).

SD(z) o

, ©)

oo, loss value — oo

Higher sample density!

\&& loss value=0
N > Npr /.

The sample density will exponentially PR .Zz

’f

increase as C gets to 0 o0, loss value — oo

= Moving directions in training @ Feature points




Empirical Faster Convergence
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mm SCE mmm Center msMMLDA == AT (SCE)
m= AT (MMC-100)
mm MMC-10 === MMC-100 mm L-GM  mmAT (MMC-10)

MMC loss leads to faster convergence, while keeping comparable performance on the clean images (AT sacrifices clean accuracy)
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/White-box Robustness (Adaptive Attacks)

Perturbation ¢ = 8/255

Perturbation ¢ = 16/255

Methods Clean | PGDY¥ | PGDY! | PGDY¥ | PGDY | PGDY | PGDY} | PGD% | PGDY
SCE 92.9 <1 3.7 <1 3.6 <1 2.9 <1 2.6
Center loss 92.8 <1 4.4 <1 4.3 <1 3.1 <1 2.9
MMLDA 92.4 <1 16.5 <1 9.7 <1 6.7 <1 5.5
L-GM 92.5 37.6 19.8 8.9 4.9 26.0 11.0 2.5 2.8
MMC-10 (rand) | 92.3 43.5 29.2 20.9 18.4 31.3 17.9 8.6 11.6
MMC-10 92.7 48.7 36.0 26.6 24.8 36.1 25.2 13.4 17.5
AT (SCE) 83.7 70.6 49.7 69.8 47.8 48.4 26.7 31.2 16.0
AT (MMC-10) | 83.0 69.2 54.8 67.0 53.5 58.6 47.3 44.7 45.1
ATY} (SCE) 80.9 69.8 55.4 69.4 53.9 53.3 34.1 38.5 21.5
AT (MMC-10) | 81.8 70.8 56.3 70.1 55.0 54.7 37.4 39.9 27.7

CIFAR-10




Adversarial Distributional Training for Robust Deep Learning

(Dong, Deng, Pang, Zhu, Su, NeurIPS 2020)




Adversarial Training

# Adversarial training (AT) is formulated as a minimax optimization problem

(Madry et al., 2018)

Outer minimization: train a robust classifier
|\

1

O;ES

:
AN
mé}ngzl: max L(fy(x; + 8;), i) S={0:|6]l < €}

\ )
I

[nner maximization: generate an adversarial example

* Adversarial attacks can be used to find an approximate solution, e.g., FGSM

(Goodfellow et al., 2015), PGD (Madry et al., 2018)




Problem I: Training Speed

# PGD-based adversarial training is much slower than normal training, which cannot be
accomplished on ImageNet (except Facebook, Google...)

# Free Adversarial Training (Shatahi et al., 2019)
o Recycling the gradient information computed when updating model parameters

# Fast Adversarial Training (Wong et al., 2020)

o Use FGSM for training with random initializations, cyclic learning rate, early stopping, etc.

( )

But these methods cannot yield the same level of robustness compared with
PGD-based AT on ImageNet.

\. J




Problem I1: Attack Generalization

# Most AT methods solve the inner maximization using a specific attack, which can result in

poor generalization for other attacks under the same threat model.

# Several recent works (Zhang and Wang, 2019) improving AT upon Madry et al. (2018)

have this problem.

Model Anat FGSM PGD-20 PGD-100 MIM C&W FeaAttack Arob
Standard 94.81 % 12.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ATrgsm 093.80% 0.12% 0.04% 0.06% 0.13% 0.01% 0.01%
ATpgp ! 87.25% 56.04% 45.88% 45.33% 47.15% 46.67% 46.01% 44.89%
ATpgp 86.91% 58.30% 50.03% 49.40% 51.40% 50.23% 50.46% 48.26%
ALP 86.81% 56.83% 48.97% 48.60% 50.13% 49.10% 48.51% 47.90%
FeaScatter 89.98% 37.45%




Problem I1l: Large Generalization Gap

Accuracy
100% —
80% - (Iarge)
generalization gap
60%
40%
Regularization does not
o seem to help either
0%
0 10000 20000 30000 40000 50000 60000 70000 80000
Adv Evaluation Adv Trainining What's going on?

(Figure from https://mcdia.ncul'ips.cc/C()hlbl'cnccs/N[PSZO]8/Slidcs/a(l\'ersarial ml slides parts | 4.})(1{)



https://media.neurips.cc/Conferences/NIPS2018/Slides/adversarial_ml_slides_parts_1_4.pdf

Adversarial Distributional Training

4 We formulate adversarial distributional training (ADT) as a different minimax

optimization problem

Outer minimization: train a robust classifier p = {p Supp(p) C S}
A
| 1 n |
mging L pgslsép EpsylL(fo(xi + 61, yi)]
=
\ J

Y
Inner maximization: learn an adversarial distribution

#To prevent ADT from degenerating into AT, we add an entropic regularizer

1
meinaz: p{gSPE(P](P((Si), 0);  J®0(6,),0) = Epsy[L(fo(x; + 8), y)] + 2H(p(6)))

n
=1

[Dong et al., Adversarial distributional training for robust deep learning, NeurIPS 2020] /




Advantages

# Better generalization across attacks

# Better model robustness (more flattened loss surfaces in the vicinity of a nature input)

® PGD ® PGD ® PGD
EXP EXP EXP

loss

o
5
ed BT "dg

(c) ADTexp

-0 10

ed ¥
(a) Standard

Model |Dominant eigenvalue
Standard 1.8301+6.3663
ATpcp 0.0242+0.0478
ADTexp 0.0180+0.0311
w ADTexp-am| 0.0181£0.0270

ADTivp-am | 0.0211+0.0353
(f) Comparison on the Hessian

® PGD ® PGD | ® PGD 10
EXP EXP EXP

loss

0
5
<10 .10 ed

ed >
(d) ADTexp-Am

[Dong et al., Adversarial distributional training for robust deep learning, NeurIPS 2020] /




Benchmarking Adversarial Robustness of Image Classification

(Dong, Fu,Yang, Pang, Su, Xiao, Zhu, CVPR 2020, Oral)
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https: // github.com/ thu-ml/ares
Platform: Ares

Attacks Defenses

Adaptive attacks [Athalye et al., 2018
1'\ Randomization, denoising [Xie et al., 2018; Liao et al,,

Optimization-based attacks [Carlini and Wagner, / 2018]

2017] \
Iterative attacks[kurakin et al., 2016]/'

\
One-step attacks [Goodfellow et al., /

2014]

Defensive distillation [Papernot et al., 2016]

Adversarial training with FGSM [Kurakin et al., 2015]

# We developed Ares, a platform for adversarial machine learning research focusing on
benchmarking adversarial robustness on image classification

4 Support all attacks in various threat models;
# Provide ready-to-use pre-trained baseline models (8 on ImageNet & 8 on CIFAR10);

# Provide efficient & easy-to-use tools for benchmarking models.

(Dong, Fu,Yang, Pang, Su, Xiao, Zhu, CVPR 2020, Oral)
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Attacks in our Benchmark

https: // github.com/ thu-ml/ares

Attack Method Knowledge Goal Capability Distance Metrics
FGSM [Goodfellow et al., 2015] white-box & transfer-based | untargeted & targeted | constrained L, le
BIM [Kurakin et al., 2017] white-box & transfer-based | untargeted & targeted | constrained L, lo
MIM [Dong et al., 2018] white-box & transfer-based | untargeted & targeted | constrained L, e
DeepFool [Moosavi-Dezfooli et al., 2016] white-box untargeted optimized L, ly
C&W [Carlini & Wagner, 2017] white-box untargeted & targeted | optimized L,
DIM [Xie et al., 2019] transfer-based untargeted & targeted | constrained L, le
ZOO [Chen et al., 2017] score-based untargeted & targeted | optimized [,
NES [llyas et al., 2018] score-based untargeted & targeted | constrained L, le
SPSA [Uesato et al., 2018] score-based untargeted & targeted | constrained L, le
NATTACK [Li et al., 2019] score-based untargeted & targeted | constrained L, le
Boundary [Brendel et al., 2018] decision-based untargeted & targeted | optimized l,
Evolutionary [Dong et al., 2019] decision-based untargeted & targeted | optimized [,

-

™~
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Defenses in our Benchmark: CIFAR-10 & ImageNet

™~

https: // github.com/ thu-ml/ares

Model Category Intended Threat Model | Accuracy (%)
Res-56 [He et al., 2016] Natural training - 02.6
PGD-AT [Madry et al., 2018] Robust training l, (€ = 8/255) 87.3
DeepDefense [Yan et al., 2018] Robust training [, 79.7
TRADES [Zhang et al., 2019] Robust training l, (6 =0.031) 84.9
Convex [Wong et al., 2018] Certified robust training l, (€ = 2/255) 66.3
JPEG [Dziugaite et al., 2016] Input transformation General 80.9
RSE [Liu et al., 2018] Randmization & ensemble [, 86.1
ADP [Pang et al., 2019] Ensemble General 04.1

Model Category Intended Threat Model | Accuracy (%)
Inc-v3 [Szegedy et al., 2016] Natural training - 78.0
Ens-AT [Tramer et al., 2018] Robust training l, (€ =16/255) 73.5
ALP [Kannan et al., 2018] Robust training l, (€ =16/255) 49.0
FD [Xie et al., 2019] Robust training l, (€ =16/255) 64.3
JPEG [Dziugaite et al., 2016] Input transformation General 77.3
Bit-Red [Xu et al., 2018] Input transformation General 61.8
R&P [Xie et al., 2018] Randomization General 77.0

\_ RandMix [Zhang & Liang., 2019]| Certified randomization General 52.4 %




A Case Study: AT has inconsistent results ...

Rice et al. (ICML 2020) find that simply early stopping the training process of PGD-AT can attain
the gains from almost all the previously proposed improvements, including state-of-the-art TRADES.

Test standard
Train standard

Test robust

Train robust

* TRADES also applied early stopping by
decaying learning rate at 75th epoch and
used the checkpoint of 76th epoch.

(I) 5I0 l(I)O lgO Z(I)O .
Epochs Who 1s wron g?

(From Rice et al. 2020)

Gowal et al. (2020) find that TRADES actually performs better than PGD-AT




Training settings in previous work are highly inconsistent

-

Method Lt Total epoch Batch| Weight Early stop Warm-up
o (L.r. decay) size decay |(train/ attack)|(l.r. / pertub.)

Madry et al. (2018) 0.1 200 (100, 150) 128 |2 x 104 No/No No/No
Cai et al. (2018) 0.1 300 (150, 250) 200 | 5x 1074 No/No No / Yes
Zhang et al. (2019Db) 0.1 76 (75) 128 | 2x 1074 Yes / No No/No
Wang et al. (2019) 0.01 120 (60, 100) 128 |1 x 1074 No / Yes No/No
Qin et al. (2019) 0.1 110 (100, 105) 256 | 2 x 1074 No/No No / Yes
Mao et al. (2019) 0.1 80 (50, 60) 50 |2x104 No/No No/No
Carmon et al. (2019) 0.1 | 100 (cosine anneal) | 256 | 5 x 10~ No / No No / No
Alayrac et al. (2019) 0.2 64 (38, 46, 51) 128 | 5 x 1074 No/No No/No
Shafahi et al. (2019b) | 0.1 200 (100, 150) 128 | 2 x 1074 No/No No/No
Zhang et al. (2019a) 0.05 105 (79, 90, 100) 256 | 5 x 1074 No/No No/No
Zhang & Wang (2019)| 0.1 200 (60, 90) 60 |2x10~* No/No No/No
Atzmon et al. (2019) | 0.01 100 (50) 32 11x1074 No/No No/No
Wong et al. (2020) 0~0.2 30 (one cycle) 128 | 5 x 1074 No / No Yes / No
Rice et al. (2020) 0.1 200 (100, 150) 128 | 5 x 1074 Yes / No No/No
Ding et al. (2020) 0.3 128 (51,77, 102) 128 | 2x 1074 No/No No/No
Pang et al. (2020a) 0.01 200 (100, 150) 50 |1x10~4 No/No No/No
Zhang et al. (2020) 0.1 120 (60, 90, 110) 128 | 2 x 1074 No / Yes No/No
Huang et al. (2020) 0.1 | 200 (cosine anneal) | 256 | 5 x 10~4 No / No Yes / No
Cheng et al. (2020) 0.1 200 (80, 140, 180) | 128 | 5 x 1074 No/No No/No
Lee et al. (2020) 0.1 200 (100, 150) 128 | 2 x 1074 No/No No/No
Xu et al. (2020) 0.1 120 (60, 90) 256 | 1 x 104 No/No No/No

[Pang et al., Bag of tricks for Adversarial Training, ICLR 2021]

Code: https:/ /github.com/P2333/Bag—of—Tricks—for—AT




Takeaways through Extensive Benchmarking

Takeaways:

(i) Slightly different values of weight decay could largely affect the robustness of trained models;
(ii) Moderate label smoothing and linear scaling rule on lL.r. for different batch sizes are beneficial;
(ii1) Applying eval BN mode to craft training adversarial examples can avoid blurring the distribution;
(iv) Early stopping the adversarial steps or perturbation may degenerate worst-case robustness;

(v) Smooth activation benefits more when the model capacity is not enough for adversarial training.

* Adversarial training is more sensitive to these usually overlooked
hyperparameters, compared to standard training.

« Standardize the basic training setting enables fairer benchmarks.

K [Pang et al., Bag of tricks for Adversarial Training, ICLR 2021] =~ Code: https://github.com/P2333/Bag-of-Tricks-for-AT
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ADVERSARI/
R O B U S | http://ml.cs.tsinghua.edu.cn/adv-bench/

BENCHL.

The goal of the adversarial robustness benchmark is to provide a comprehensive
comparison of adversarial defense models. These models are evaluated against
various attacks developed by research and during the CVPR 2021 competition of
white-box adversarial attacks on ML defense models. We welcome contributions to
both robust models and effective attacks.

PO

Defense Leaderboard Attack Leaderboard
Defense Leaderboard: CIFAR-10, Untargeted (epsilon=8/255)

Method Clean = PGD-100 = CW-100 = MIM-100 = Overall Robust Accuracy =

Towards Deep Learning

Models Resistant to 87.25% 45.33% 46.61% 46.21% 45.18%
Adversarial Attacks

e e 62.30% s0.97% 62.90% CaE

Theoretically Principled

Trade-off between 84.92% 55.09% 53.73% 55.53% 53.10%
Robustness and Accuracy




Summary

# Adversarial robustness is a crucial issue of deep learning for safety—critical applications

# Much progress has been done on adversarial attack, including program synthesis for automated
attack
o E.g., AutoDA (Fu et al., USENIX Security Symposium 2022)

i

& Defending over adversarial attack requires a deep investigatig

i

learning objectives, uncertainty, theory, evaluation, etc. é
o E.g., certified defense against semantic transformations (Hao %
effect of adversarial training (Dong et al., NeurIPS 2022) 2 e N
# Robustness is closely related to interpretability, privacy, Oolji8 I— —I

ATERERE

# Upcoming book on Al Safety, stay tuned ... @@g%%%g




Thank you!




