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Abstract
Neural transducers have been widely used in automatic speech
recognition (ASR). In this paper, we introduce it to streaming
end-to-end speech translation (ST), which aims to convert audio
signals to texts in other languages directly. Compared with cas-
caded ST that performs ASR followed by text-based machine
translation (MT), the proposed Transformer transducer (TT)-
based ST model drastically reduces inference latency, exploits
speech information, and avoids error propagation from ASR to
MT. To improve the modeling capacity, we propose attention
pooling for the joint network in TT. In addition, we extend TT-
based ST to multilingual ST, which generates texts of multiple
languages at the same time. Experimental results on a large-
scale 50 thousand (K) hours pseudo-labeled training set show
that TT-based ST not only significantly reduces inference time
but also outperforms non-streaming cascaded ST for English-
German translation.
Index Terms: speech translation, streaming, end-to-end, neural
transducers, attention pooling

1. Introduction
Speech translation (ST) aims to convert speech signals to texts
in other languages. Conventionally, it is formulated as a two-
step cascaded task, automatic speech recognition (ASR) fol-
lowed by text-based machine translation (MT) [1, 2, 3]. Such
cascaded systems typically suffer from the following issues.
First, errors in ASR may propagate to MT. Second, since the in-
termediate representation is text, cascaded systems cannot fully
leverage speech information (e.g., prosody) for translation. Fi-
nally, the MT module cannot start until the ASR module has
(partially) finished, resulting in long inference latency. Re-
cently, end-to-end (E2E) ST (i.e., direct ST), which directly
maps audio features to texts, has become more and more pop-
ular [4, 5]. In [6], the authors propose to use attention-based
E2E encoder-decoder models (AED) [7, 8] on a small French-
English synthetic corpus. In [9], a similar model structure is ap-
plied to the Fisher Callhome Spanish-English task and outper-
forms the cascaded method on the Fisher test set. AED-based
models were also used in [10] for a large-scale E2E ST task.
However, AED models are usually operated in an offline mode
which cannot start decoding until the full utterance is observed.

E2E ST and ASR are similar in that they are both sequence-
to-sequence mappings. Many model architectures can thus
be shared, especially between ST using monotonic alignments
[11] and ASR. To enable more effective communication be-
tween users, streaming (i.e., simultaneous) models are topics
of investigation in both areas. Monotonic chunkwise attention
(MoChA) [12] was used in both MT and ASR. The MT version
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was extended to monotonic infinite lookback attention (MILk)
[13] and monotonic multi-head attention [14, 15], and the ASR
version was improved by multitask learning [16] and minimum
latency training strategies [17]. Another streaming model ar-
chitecture is the Neural transducer [18, 19, 20, 21], which out-
performs MoChA and has emerged to be the state-of-the-art
(SOTA) streaming E2E model in ASR [22], but has been less
investigated in ST. Recently, Liu et al. proposed cross attention
augmented transducer (CAAT) for ST [23]. It uses Transform-
ers in the joint network to combine encoder and prediction net-
work outputs. Due to the use of Transformers and multi-step
decision for memory footprint reduction, the latency of CAAT
is large. In addition, to train a CAAT, complicated regulariza-
tion terms and extensive hyper-parameter tuning are required.

In this paper, to leverage the success of the SOTA stream-
ing technology in ASR, we propose to use neural transducers,
specifically a low-latency and low-computational-cost Trans-
former transducer (TT) [24] for streaming E2E ST. To improve
the representation fusion ability of the joint networks in TT, we
propose attention pooling. In addition, we extend TT for mul-
tilingual ST. The TT models are trained on a 50K-hour pseudo-
labeled ST data set, which is generated by feeding the refer-
ence texts in ASR corpus to a MT model [25, 26, 27]. We do
not use any human-labeled paired ST data in this work. Ex-
perimental results on the Microsoft speech language transla-
tion (MSLT) corpus [28] demonstrate that the proposed method
not only achieves good bilingual evaluation understudy (BLEU)
scores but also significantly reduces inference latency. The re-
mainder of this paper is organized as follows. We describe the
proposed methods and model structures in Section 2. The ex-
perimental setup and evaluation results are shown in Section 3
and 4. We conclude this paper in Section 5.

2. System Description
2.1. From Wait-k To Neural Transducers

(a) wait-3 (b) wait-∞

Figure 1: Illustration of the decoding graphs of wait-k. For a
given k, the read-write path is deterministic.

Figure 1 shows the decoding graphs of the commonly
adopted wait-k algorithm [29] for streaming ST, where t ∈



[1, T ] and u ∈ [1, U ] denote the time steps for encoder output
and output labels (i.e., read and write operations), respectively.
As indicated by the names, wait-3 in Figure 1a waits for 3 read
operations to start writing, whereas wait-∞ in Figure 1b can
access the whole sentence.

Figure 2: Illustration of three possible decoding graphs of a
neural transducer. The path is chosen dynamically.

Instead of using hard-coded wait steps and a fixed read-
write policy in wait-k, neural transducers, whose decoding
graphs are depicted in Figure 2, make read and write decisions
in a data-driven fashion. During training, a neural transducer
considers all possible alignments between encoder output and
labels. At test time, it generates the most likely paths adaptively
based on the input features. As shown in Figure 2, if there is no
significant word reordering, the neural transducer may follow
the orange path or a different green path. If there is a significant
word reordering at the end of the utterance, it can use the blue
decoding path corresponding to wait-∞.

Figure 3: Illustration of neural transducers.

The model structure of neural transducers is shown in Fig-
ure 3. It has three components: an encoder network, a pre-
diction network, and a joint network. The encoder takes dx-
dimension audio features xt ∈ Rdx as input and generates
de-dimension hidden representations henc

t ∈ Rde . The pre-
diction network uses the embedding of non-blank output token
yu−1 ∈ R1 at time u − 1 and predicts hidden representation
hpred
u ∈ Rdp for step u. As for the joint network, it combines

henc
t and hpred

u to a T × U tensor, whose element at t and u is
denoted by the vector zt,u ∈ Rdz . After a softmax operation,
the model generates probability P (yu ∈ Y ∪ ∅|x1:t, y1:u−1),
where Y is the vocabulary list and ∅ denotes the blank output
(i.e., output nothing). Note that for notation simplicity, we ig-
nore batch size and use the same time resolution for xt and henc

t

in this paper. Neural transducers can use different types of net-
works as encoders, such as long short-term memory (LSTM)
recurrent neural networks (RNNs) in RNN-T models [30] and
Transformers in TT models [31, 32].

2.2. Streaming TT Model

Figure 4: Illustration of the reception field of a streaming TT at
position f10 with chunk size 3 and the number of left chunks 1.

We apply TT in this work since it usually obtains better per-
formance than RNN-T in ASR tasks [24, 31, 32]. Each Trans-
former block in the encoder is constructed from a multi-head
self-attention layer followed by a feedforward layer. In order
for TT to work in a streaming mode with low latency and low
computational cost, we apply the attention mask proposed in
[24]. The attention mask can be the same for different layers.
At each layer l, we divide the input xl

1:T into chunks cl1:S along
time with chunk size U , where cls = xl

s×U :(s+1)×U−1. At time
step t, xl

t can only see the frames inside its own chunk clt/U+1

and a fixed number B of left chunks clmax(1,t/U+1−B):t/U . Fig-
ure 4 shows an example of the reception field for a three-layer
Transformer model with chunk size U = 3 and the number
of left chunks B = 1 at output position f10. Note that since
the features cannot access the frames ahead its own chunk, as
shown by the right-most blue circle in the first input layer, the
number of look-ahead frames is kept U − 1 = 2. Moreover, the
left reception field increases linearly with the number of layers,
enabling the model to use a long history information for a better
performance.

2.3. Attention Pooling for Joint Networks

The joint network in a conventional neural transducer combines
the output representations of encoder and prediction network
with simple linear layers:

zt,u = W outf(W joint
e henc

t +W joint
p hpred

u ) (1)

where the two sources of output are multiplied with W joint
e ∈

Rde×dj and W joint
p ∈ Rdp×dj , to map the feature vectors to

dj-dimension, respectively. f denotes a non-linear function,
which is typically tanh or relu. Finally, the feature vector is
converted to the output dimension using W out ∈ Rdj×dz .

Recent study in ASR shows that the representation fusion
ability of such joint networks can be improved by a bilinear
pooling approach [33]. In this paper, we propose attention pool-
ing, which could adapt the pooling weights according to the
input using an attention-like weighting mechanism. Different
from ASR, ST needs to consider not only the current output
probability P (yu ∈ Y ∪ ∅|x1:t, y1:u−1) but also whether writ-
ing a non-blank token at a future step is better. The adaptive at-
tention weights in attention pooling may work as an additional
type of feature to help ST models to make more appropriate de-
cisions. Note that we keep the time and space complexity of
attention pooling to be linear so that it consumes less computa-
tion resources during inference. The proposed attention pooling
is defined as Equation (2) to (5) below:

zt,u = W outf(ĥ
joint

t,u +W joint
e henc

t +W joint
p hpred

u ) (2)



ĥ
joint

t,u = W proj(venc
t ⊙ vpredu ) (3)

venc
t = f((softmax(W ehenc

t ) · henc
t )) (4)

vpredu = f((softmax(W phpred
u ) · hpred

u )) (5)

where ĥ
joint

t,u ∈ Rdj is the pooling term at time steps t and
u, W proj ∈ R1×dj maps the 1-dimension feature to dj-
dimension, venc

t ∈ R1 and vpredu ∈ R1 denotes the contribu-
tion of encoder and prediction network to the pooling term, ⊙
denotes Hadamard product, W e ∈ Rde×de and W p ∈ Rdp×dp

are used to calculate the attention weights, and · denotes tensor-
dot operation.

We also design a stronger qkv attention pooling method that
uses separate weights for query, key, and value. It can be ex-
pressed by replacing Equation (4) and (5) with Equation (6) and
(7), respectively:

venc
t = f((softmax(W e

q henc
t ⊙W e

k henc
t ) · (W e

v henc
t )) (6)

vpredu = f((softmax(W p
q hpred

u ⊙W p
k hpred

u ) · (W p
v hpred

u )))
(7)

where W e
q ∈ Rde×de , W e

k ∈ Rde×de , and W e
v ∈ Rde×de are

the linear layers for query, key, and value for encoder features,
and W p

q ∈ Rdp×dp , W p
k ∈ Rdp×dp , and W p

v ∈ Rdp×dp are the
corresponding weights for the prediction network. Note that we
use Hadamard product and tensor-dot to avoid quadratic time
and space complexity.

2.4. Multilingual ST with TT

ST supporting a single language pair such as English-Chinese
(EN-ZH) are often referred to as bilingual ST. It is inefficient
to build a separate bilingual ST model for every language pair
in the world. In addition, running multiple bilingual ST mod-
els simultaneously requires a lot of memory and computation
resources. In this work, we propose to apply TT to multilin-
gual ST by sharing the encoder and using separate prediction
and joint networks for different target languages. Since the en-
coder (64M of parameters in our experiments) is much larger
than joint and prediction networks (24M combined), the size
of such a multilingual ST model is comparable to a bilingual
model.

Figure 5: Illustration of TT for multilingual ST.

Figure 5 shows the one-to-many multilingual ST model us-
ing TT. Shared encoder output henc

t is fed to multiple prediction
and joint networks. To train the multilingual ST model, we al-
ternate the training data for different batches, e.g., one batch
using EN-ZH data and another English-German (EN-DE) (i.e.,
data mixing ratio is 50%-50%).

3. Experimental Setup
We use 50 thousand (K) hours of Microsoft internal ASR data
as the training set. All the data are anonymized with personally

identifiable information removed. The original transcriptions
are in English, and we use Microsoft cognitive translation ser-
vice to translate them into Chinese and German. We do not use
any human-labeled paired ST data. For evaluation, we use the
publicly available MSLT v1.0 for EN-DE and MSLT v1.1 for
EN-ZH [28]. 1

3.1. Cascaded Method

We use the cascaded method as the baseline for our experi-
ments. The ASR module is a streaming TT model described
in Section 2.2. It is trained using the above 50K-hour English
audio and the corresponding English transcriptions. The en-
coder consists of 18 Transformer blocks, each containing 320
hidden nodes, 8 attention heads, and 2048 feedforward nodes.
As for the prediction network, we use 2 LSTM layers. Each
LSTM layer has 1024 hidden nodes and the embedding dimen-
sion is also 1024. The joint network is a simple feedforward
layer containing 512 nodes. For English transcriptions, the vo-
cabulary size is 4K. The model has 88M parameters in total.
The input to the model is 80-dimension log-Mel filter-bank fea-
tures with 25ms windows and 10ms shift, extracted from mixed
band training data [34]. Before the input is fed to the Trans-
former blocks, it is filtered and down-sampled by a factor of
4 (i.e., the resulting sampling rate is 40ms) using two convo-
lutional layers. The chunk size of the streaming mask for the
Transformer blocks is 4. The output of the ASR module is used
by a non-streaming text-based MT module to get the translation
results. The MT model consists of a 6-layer Transformer en-
coder and a 2-layer RNN decoder. Each Transformer layer has
a feedforward network of size 2048 and 8 attention heads. The
embedding size is 512. The MT model has 67M parameters.

3.2. Streaming E2E ST Models

The streaming E2E ST models are trained using the same 50K-
hour English audio, but with the corresponding translated la-
bels generated by the MT model. The ST models have the same
architecture as that of the ASR module in the above cascaded
system, except that the output dimensions are changed accord-
ing to vocabulary sizes. The vocabulary size of EN-ZH is 11K,
whereas that of EN-DE is 4K. In addition to chunk size 4, which
has 160ms look-ahead and is denoted as TT-160ms, we conduct
experiments using a chunk size of 80, whose look-ahead is 3.2s
and is thus denoted as TT-3.2s.

3.3. ASR Encoder Initialization and ASR Multi-Task
Learning

In addition to pseudo-labeling, we investigate ASR encoder ini-
tialization and ASR multi-task learning for ST. For ASR en-
coder initialization, we use the ASR module from the cascaded
method to initialize the encoder and randomly initialize the pre-
diction and joint networks. Then we fine-tune the whole model
for the EN-ZH task. As for ASR multi-task learning, we adopt
the multilingual ST model described in Section 2.4, but with
English and Chinese as the output languages.

3.4. Attention Pooling for Joint Networks

Each new weight matrix introduced by attention pooling is im-
plemented as a linear layer. The open neural network exchange
(ONNX) conversion procedures are modified accordingly.

1We are not allowed to use other public data sets due to license re-
strictions.



3.5. ONNX Conversion and Model Compression

After getting the checkpoints of E2E ST models, we convert
them to ONNX format, compress each component, and evaluate
the compressed models. The weights in the encoders are com-
pressed to uint8, and the RNN and feedforward layers in the pre-
diction and joint networks are compressed using neural-network
unified preprocessing heterogeneous architecture (NUPHAR).

3.6. Latency Measurement

We use average proportion (AP), average lagging (AL), and dif-
ferentiable average lagging (DAL) proposed in [35] to measure
the inference latencies of our ST systems. Note that different
from [35], our results are generated after the models are con-
verted to ONNX format and compressed.

4. Evaluation Results
4.1. Transformer Transducer for Speech Translation

The first parts of Table 1 and 2 contain the BLEU scores and la-
tencies of the cascaded ST models and TT-based E2E ST mod-
els. First, comparing TT-3.2s and TT-160ms, TT-3.2s outper-
forms TT-160ms in BLEU scores on both EN-ZH and EN-DE,
at the cost of a significant latency increase. The differences be-
tween TT-3.2s and TT-160ms in BLEU scores are small: 0.7
on EN-ZH and 1.3 on EN-DE, indicating that TT can maintain
a good translation quality when working in streaming mode.
The AL of TT-3.2s is about 2.2s, shorter than the look-ahead
time. The reason is that except for the first output token, TT-
3.2s does not have to wait for the whole 3.2s to generate an
output. On the contrary, the AL of TT-160ms is 841ms, longer
than 160ms. This shows that that TT-160ms requires multi-
ple frames to handle word reordering. Second, comparing the
BLEU scores of cascaded models and TT-160ms, we observe
that on EN-ZH, there is still a gap. However, on the EN-DE test
set, TT-160ms outperforms the cascaded model. Note that TT-
160ms is a streaming model with a very small latency, whereas
the cascaded model is a non-streaming model and is trained us-
ing additional text-text MT data. We also conduct experiments
on a non-streaming AED E2E model, but its performance is not
as good as TT-160ms. Finally, we mainly use pseudo-labeling
to deal with the data scarcity problem in this study. To exploit
the 50K-hour ASR training data, we investigate ASR encoder
initialization and ASR multi-task learning as described in Sec-
tion 3.3. As shown in Table 1, these two methods do not help
in our experiments, possibly because our ST models are trained
with a large amount of training data.

4.2. Attention Pooling for Joint Networks

Table 1 contains the comparison between TT-160ms and dif-
ferent pooling methods for joint networks. Bilinear pooling
does not improve the performance of TT-160ms in this study.
The reason may be that it lacks the ability to adapt the pooling
weights according to the input, which is important in ST since
the output of the prediction network is in a different language
and is not monotonic w.r.t. the audio features. The attention
pooling methods proposed in this paper show consistent BLEU
score improvements over TT-160ms. The latencies are also very
close to those of TT-160ms. Note that each input frame is 10ms
and the encoder has a subsampling factor of 4. The attention
pooling methods are thus at most 1-2 steps slower at the en-
coder output, and the slightly higher latency of simple attention
pooling over qkv attention pooling can be negligible. Since the

Table 1: Comparisons of BLEU scores and latencies on EN-ZH
of MSLT v1.1 test. The numbers following the pooling methods
denote the number of additional parameters being introduced.
The AL and DAL values are in milliseconds (ms).

methods BLEU ↑ AP ↓ AL ↓ DAL ↓

cascaded 40.0 1 ∞ ∞
TT-3.2s 35.6 0.74 2151 1886
TT-160ms 34.9 0.61 841 834

ASR encoder init 34.7 0.61 841 834
ASR multi-task learning 34.7 0.61 841 834
bilinear (+2K) 34.5 0.61 862 859
attention (+1.3M) 35.1 0.62 910 910
qkv attention (+3.9M) 35.3 0.62 875 877

multilingual EN-ZH output 34.8 0.61 841 834

Table 2: Comparisons of BLEU scores and latencies on EN-DE
of MSLT v1.0 test.

methods BLEU ↑ AP ↓ AL ↓ DAL ↓

cascaded 29.3 1 ∞ ∞
TT-3.2s 30.7 0.74 2152 1890
TT-160ms 29.4 0.61 828 828

attention (+1.3M) 29.6 0.61 871 869

multilingual EN-DE output 29.2 0.61 828 828

simple attention pooling method obtains a larger BLEU score
improvement per additional parameter, which is calculated as
∆BLEU/∆#params, we use it for the evaluation on EN-
DE. As shown in Table 2, attention pooling obtains a consistent
BLEU score improvement over TT-160ms.

4.3. Multilingual ST with TT

The last lines in Table 1 and Table 2 correspond to the EN-ZH
output and EN-DE output of the TT-based streaming E2E multi-
lingual ST. Note that although the results are shown in different
tables, they are generated simultaneously. The BLEU scores
of multilingual ST are slightly worse than those of the bilin-
gual TT-160ms models, the differences are 0.1 for EN-ZH and
0.2 for EN-DE, respectively. In addition to good BLEU scores,
multilingual ST greatly reduces the model size and computation
burden since it shares a single encoder for multiple languages.

5. Conclusions
We propose neural transducers for large-scale streaming E2E
ST. To improve the performance of TT for ST, we propose at-
tention pooling for joint networks. Moreover, we extend TT
to multilingual ST by sharing the encoder. Experimental re-
sults on the EN-ZH and EN-DE test sets of MSLT show that
the proposed TT-based streaming E2E ST models achieve high-
quality translation performance with low inference latency.
More specifically, the proposed streaming E2E ST system out-
performs a non-streaming cascaded system on EN-DE.
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