
DeepSpeed Data Efficiency: Improving Deep Learning

Model Quality and Training Efficiency via Efficient Data

Sampling and Routing

Conglong Li, Zhewei Yao, Xiaoxia Wu, Minjia Zhang, and Yuxiong He

Microsoft

{conglong.li, zheweiyao, xiaoxiawu, minjiaz, yuxhe}@microsoft.com

December 8, 2022

Abstract

Recent advances on deep learning models come at the price of formidable training cost.
The increasing model size is one of the root cause, but another less-emphasized fact is that
data scale is actually increasing at a similar speed as model scale, and the training cost is
proportional to both of them. Compared to the rapidly evolving model architecture, how to
efficiently use the training data (especially for the expensive foundation model pretraining)
is both less explored and difficult to realize due to the lack of a convenient framework that
focus on data efficiency capabilities. To this end, we present DeepSpeed Data Efficiency
library, a framework that makes better use of data, increases training efficiency, and
improves model quality. Specifically, it provides efficient data sampling via curriculum
learning, and efficient data routing via random layerwise token dropping. DeepSpeed Data
Efficiency takes extensibility, flexibility and composability into consideration, so that users
can easily utilize the framework to compose multiple techniques and apply customized
strategies. By applying our solution to GPT-3 1.3B and BERT-Large language model
pretraining, we can achieve similar model quality with up to 2x less data and 2x less time,
or achieve better model quality under similar amount of data and time.

1 Introduction

Recently, large-scale deep learning models are empowering us to achieve more in many ways,
such as improving programming efficiency by code generation [1] and providing art inspiration
by text-to-image generation [2, 3]. To enable these services and keep improving the quality, deep
learning model architecture evolves rapidly, and the model size is also growing at a tremendous
speed. For example, from GPT to GPT-3 the model size increased 1500x in 2 years [4, 5]. The
increasing model size leads to unprecedented training cost, which recently grows to 2 months
on thousands of GPUs/TPUs [6, 7]. On the other hand, a less-emphasized perspective is that
the training cost is proportional to both model scale and data scale, and recently data scale
is increasing as fast as model scale. In Figure 1, we plot the model and data scales of several
representative language models in the last 5 years. From the oldest model on the left to the

Code will be released soon as a part of https://github.com/microsoft/DeepSpeed.

1

ar
X

iv
:2

21
2.

03
59

7v
1

 [
cs

.L
G

]
 7

 D
ec

 2
02

2

https://github.com/microsoft/DeepSpeed

2018
BERT

2019
Megatron GPT-2

2020
GPT-3

2021
MT-NLG

2022
PaLM

0
200
400
600
800 Model Scale (Billion)

Data Scale (Billion)

Figure 1: Model scale (number of parameters) and data scale (number of tokens consumed
during training) of representative language models in the last 5 years [8, 9, 5, 6, 7].

newest models on the right, both the model and data scales increase at a similar speed. This
demonstrates the importance of improving data efficiency: to achieve same model quality with
less data and/or to achieve better model quality with the same amount of data.

Although there exist various techniques that improve data efficiency during training, applying
them to large scale models still has many challenges in practice:
• Lack of extensibility. Techniques like Curriculum Learning improves data efficiency by

indexing and sampling training data based on certain difficulty metric [10]. However, AI
frameworks such as PyTorch only provides uniformly random data sampler, and it is difficult
to find a general and extensible library to analyze, index, and sample large-scale training data
based on arbitrary difficulty metric or even a combination of metrics.

• Lack of flexibility. Techniques like TokenBypass [11] provides data routing decisions and
skips the compute of part of the input tokens at some middle layers during BERT pretraining,
reducing pretraining cost while maintaining model quality. However, it requires several special
implementations that may only work for the tested BERT pretraining case, such as using an
importance score to determine which tokens to drop, and adding whitelist for special tokens
(e.g., [CLS]). This could limit the possibility and benefit of applying it to other cases.

• Limited composability. Although promising data efficiency solutions have been proposed
independently, combining multiple methods together for the best outcome is still a laborious
process, requiring changes in multiple places in the training pipeline: data loader, data
sampler, model architecture, etc.
To address these above challenges, we present DeepSpeed Data Efficiency library, a frame-

work that makes better use of data, increases training efficiency, and improves model quality.
Specifically, DeepSpeed Data Efficiency library demonstrates the following contributions:
• Efficient data sampling via curriculum learning. We present a general curriculum

learning library which enables users to employ curriculum learning to their models at maximum
extensibility: users can analyze, index, and sample their training data based on any custom
difficulty metric or a combination of multiple metrics. Using this library, we are able to
explore multiple metrics for GPT-3 and BERT pretraining, and identify the best metric (and
the combination of metrics). This best metric provides up to 1.5x data and time saving while
still achieving similar model quality compared to the baseline with full data. When using the
same amount of data, curriculum learning with our best metric provides even better model
quality than baseline.

• Efficient data routing via random layerwise token dropping. We employ a recently
proposed technique called random layerwise token dropping (random-LTD), which skips the
computation of a subset of the input tokens at all middle model layers [12]. Compared to
previous work, random-LTD provides a more flexible data routing solution that can be easily
applied to various model architecture and training tasks.

• Seamlessly composing multiple methods. The proposed DeepSpeed Data Efficiency

2

framework seamlessly composes the curriculum learning and random-LTD techniques, and
only requires minimal changes on user code side. Furthermore, by composing both methods
we can achieve even better data and training efficiency: for GPT-3 1.3B pretraining we can
achieve up to 2x data and 2x time saving together with better or similar model quality as
compared to the baseline training. When using the same amount of data, our approach
further improves the model quality than baseline. Users can also extend and contribute to the
library by adding additional data efficiency techniques (e.g., different metrics for curriculum
learning and different data routing methods) to compose together.

2 Background and Related Works

Data sampling. For deep learning, the most common data sampling method for minibatch
stochastic gradient descent is uniform sampling, where at each step a batch of data is drawn
uniformly at random from the whole training data. However, it’s potentially beneficial for the
learning process to focus on different kinds of data at different training stages, and one example
here is the curriculum learning technique [10]. Curriculum learning aims to improve training
convergence speed by presenting relatively easier or simpler examples earlier during training.
Building a curriculum learning solution usually requires two components: the difficulty metric
(i.e., how to quantify the difficulty of each data sample) and the pacing function (i.e., how to
decide the curriculum difficulty range when sampling next training data batch). In the NLP area,
curriculum learning has been applied on small-scale one-stage tasks and downstream fine-tuning
tasks, such as neural machine translation (NMT) [13, 14, 15, 16, 17] and natural language
understanding (NLU) [18, 19, 20, 21]. There are also a few works that explore curriculum
learning for language model pretraining [22, 23, 24, 25]. However, one common limitation among
existing works is that there does not exist a generalized and extensible curriculum learning
library, which allows practitioners to easily apply custom curriculum difficulty metrics, the
combination of metrics, and pacing functions. One evidence is that for the curriculum learning
works for language model pretraining, most of them only focus on the sequence length metric
due to the difficulty of exploring other metrics on the huge pretraining dataset.

Data routing. In common deep learning training, the model is considered as a whole and
all sampled data will be routed to all model components. However, it’s potentially beneficial to
route each data sample to only a subset of model components, improving the training efficiency.
One direction of efficient data routing is to add data bypassing/skipping capability to existing
model architectures. TokenBypass [11] skips the compute of part of the input tokens at some
middle layers during BERT pretraining, reducing pretraining cost by 25% while maintaining
model quality. However, as mentioned in Section 1 TokenBypass includes many specialized
implementations that limit its flexibility. More recently, random layerwise token dropping
(random-LTD) [12] proposes to skip the computation of a subset of the input tokens at all
middle layers. Compared to previous works, random-LTD does not require any importance
score or any special token treatment, and it can be applied to all middle layers except the first
and last layers. As a result, random-LTD demonstrates broad workload coverage (GPT/BERT
pretraining and GPT/ViT finetuning) and good data/training efficiency improvement (up to
1.5x data and 1.3x time savings). Random-LTD is a quite flexible method applicable to various
training tasks, but one limitation is that it has no control on the data batch itself, which is still
uniformly sampled from the data pool at random. This motivates us to explore how to compose
it with the efficient data sampling technique.

Another direction (that is less related to our work but still) related to data efficiency is
Mixture-of-Experts (MoE) [26, 27, 28, 29, 30, 31] which is a novel model architecture that has
parallel and sparsely activated model components called experts. During training, each data

3

Data pool

Data sampler

Data batch

Model

Model layer

Data router

Data Data Data

Model layer

Data router

Data Data Data

……

Figure 2: Design of the DeepSpeed Data Efficiency framework.

sample will only activate a subset of experts which leads to better training efficiency. However,
one limitation of MoE is that it requires changing the model architecture which could lead to
suboptimal model quality, and it could be difficult to make the architecture change (e.g., when
finetuning a model that is already pretrained).

3 Design

At high-level, the proposed DeepSpeed Data Efficiency framework has two components as shown
in Figure 2: First we have efficient data sampling, where instead of the baseline’s random
sampling, we aim to sample the most suitable next data batch from the whole data pool. We
will describe how we achieve so by a general curriculum learning library, and how it is different
from existing curriculum learning solutions; Second we have efficient data routing, where instead
of pass all input data to all model components, we aim to efficiently route each data through
different components of model. We will describe how we achieve so by leveraging the recently
proposed random layerwise token dropping (random-LTD) technique, and how we seamlessly
compose it with curriculum learning. One thing to note is that curriculum learning and random-
LTD are just one solution for efficient data sampling and routing, and we hope DeepSpeed Data
Efficiency, with its extensibility/flexibility/composibility, could become a platform to host and
compose more and more data efficiency techniques.

3.1 Efficient data sampling via curriculum learning

In Section 2 we discussed that existing curriculum learning works tend to focus on a small set
of difficulty metrics and pacing functions, which may work well for limited tested workloads
but has no guarantee on other cases. Furthermore, existing implementations are usually highly
specialized, making it difficult for practitioners to easily apply these methods to their own
workloads, and explore various customized difficulty metrics or pacing functions.

4

Data pool

Data analyzer (offline on CPU)
Difficulty

metric

Data pool indexed based on difficulty

Data sampler (online)

Data batch based on current step’s

desired curriculum difficulty

Curriculum

scheduler

Figure 3: Design of the general curriculum learning library.

To solve these limitations, we design and implement a general curriculum learning library
emphasizing the extensibility. It consists of three components as shown in Figure 3. First we
use a data analyzer to perform the offline CPU-only data analysis which indexes the whole data
pool based on any difficulty metric, which could be the sequence length, the vocabulary rarity,
or anything defined by user. This data analyzer employs a simple Map-Reduce scheme: During
the Map stage, user provides a function that computes the desired difficulty metric, the raw
training dataset, and other configurations such as number of CPU nodes and number of threads
per node. Then the data analyzer will automatically splits the dataset based on number of
workers, compute the difficulty values in a batched fashion, and write the results to two indexes:
one index maps each data sample to its difficulty value, and another index maps each distinct
difficulty value to the corresponding samples. During the Reduce stage, the data analyzer will
merge the index files produced by all workers. This Map-Reduce scheme is necessary since the
training data could be huge thus has to be distributed. For instance, we have 173 million data
samples (each with sequence length 2048) for GPT-3 pretraining and 2.5 billion data samples
(each with sequence length 6 512) for BERT pretraining. To reduce the memory overhead when
analyzing the huge dataset, we write the index files as numpy memory-mapped files. Using
this data analyzer we are able to efficiently analyze GPT-3 and BERT pretraining data based
on various difficulty metrics. Using 40 CPU threads on a single node with AMD EPYC 7V12
64-Core Processor, we can finish the analysis on one metric within 3 hours for GPT-3 data or
80 hours for BERT data.

Next, during training, the curriculum scheduler will determine the difficulty threshold for
the current step based a pacing function such as linear, rooted, or any strategy provided by
user. Then the data sampler will sample the data with desired difficulty from the indexed data
pool. To apply the proposed curriculum learning solution to a existing training pipeline, user
just need to call an API and provide the raw training data, path to the difficulty metric index
(computed in the offline analysis), and pacing function configurations. Based on those, the
DeepSpeed Data Efficiency framework will provide a curriculum learing-based data loader that
users can simply iterate at each step. Using this general and extensible curriculum learning
solution for GPT and BERT-style model pretraining, we are able to easily analyze and index
the huge training data based on up to 7 difficulty metrics and enable better data and training
efficiency, which we will present in Section 4.

5

3.2 Efficient data routing via random layerwise token dropping

For efficient data routing, we choose to employ the recently proposed random-LTD technique
due to its flexibility and broad workload coverage. To apply random-LTD to an existing training
pipeline, user needs to provide some configurations for random-LTD (e.g., the dropping ratio to
start with, and the pacing function of the dropping ratio at each step), together with the module
class that they want to apply random-LTD (e.g., a TransformerLayer class). Then DeepSpeed
Data Efficiency will wrap the module with a new module that includes token dropping capability,
and drop some of the input tokens for this module during training.

3.3 Composing curriculum learning and random-LTD

The curriculum learning and random-LTD techniques are complementary. During training,
curriculum learning helps to sample the next data batch, and random-LTD helps to decide
how to route each sampled data inside the model. DeepSpeed Data Efficiency hides several
complexities when composing the two techniques so that users can easily enable/disable each
technique. For example, some curriculum learning metrics would affect the actual sample
sequence length, thus inside DeepSpeed Data Efficiency we make sure that the random-LTD’s
token dropping mechanism is aware of this, and also adjust the calculation of number of actual
consumed tokens which are affected by both techniques. The composibility of DeepSpeed Data
Efficiency enables us to leverage both data efficiency techniques and achieve even better data
and training efficiency, which we will present in Section 4. Furthermore, this composibility also
applies to data sampling and routing techniques in general, so that DeepSpeed Data Efficiency
provides a platform to implement additional data efficiency techniques and compose them
together.

4 Evaluation

In this section we evaluate the proposed DeepSpeed Data Efficiency framework by GPT-3 and
BERT pretraining. We first evaluate the benefit of using the curriculum learning technique
(efficient data sampling). Then we present the benefit of using both curriculum learning and
random-LTD (efficient data routing) techniques.

4.1 Setup

Model and data. We use the Pile public dataset [32] to perform the pretraining of GPT-3
1.3B [5] (24 layers, 2048 hidden size, 16 attention heads) and BERT-Large [8] (24 layers, 1024
hidden size, 16 attention heads) models.

Hardware. For GPT-3 pretraining, all of the experiments are performed on 64 NVIDIA
V100 GPUs (32GB memory). There are 4 nodes and 16 GPUs per node. For BERT-Large
pretraining, all of the experiments are performed on 64 NVIDIA A100 GPUs (40GB memory).
There are 8 nodes and 8 GPUs per node.

Pretraining hyperparameter. For GPT-3 pretraining, we set some of the hyperparame-
ters the same as the original OpenAI work [5]: seqlen 2K, batch size 512, learning rate 2e-4. We
set other hyperparameters differently: (1) OpenAI pretrains GPT-3 on 300B tokens. To evaluate
data efficiency techniques, we pretrain with 3 different total training tokens: 300B, 200B (67%),
and 150B (50%). (2) When using less than 300B training tokens, we increase the peak learning
rate proportionally (e.g., 2x LR when using 50% data). This is similar to the situation where
we increase learning rate when increasing batch size. (3) We do not use OpenAI’s batch size

6

warmup method because our GPT-3 125M model pretraining experiments show that it does not
help on model quality under the same training tokens. And the smaller batch sizes prevent us
to pretrain on large number of GPUs at the beginning, which leads to longer training wall-clock
time; (4) Since we don’t use the batch size warmup, our training has more tokens at early steps.
Thus we increase the linear learning rate warmup duration from OpenAI’s 375M tokens to 3B
tokens; (5) OpenAI uses a single cycle cosine learning rate decay over 260B tokens, and the
min learning rate is 10% of peak learning rate. However, based on our experiments and related
works [33, 34], we changed the decay duration to always equal to total training token and the
min learning rate to always equal to 1e-6, which provide better model quality.

For BERT-Large pretraining, we set some of the hyperparameters the same as the Megatron-
LM work [9] since it achieves better model quality than original BERT: seqlen 512, batch size
1024, learning rate 1e-4 with linear warmup up at first 10000 steps and then linearly decay
to 1e-5. We set other hyperparameters differently: (1) Megatron-LM pretrains over 2M steps
(1049B tokens). To evaluate data efficiency techniques, we pretrain with 2 different total training
tokens: 1049B and 734B (70%). (2) When using less than 1049B training tokens, we increase
the peak learning rate proportionally. (3) Megatron-LM decays the learning rate over 2M steps.
Since our techniques could change the number of tokens at some steps, we change the decay to
token-based and set the decay duration always the same as total training tokens.

Curriculum learning (CL) hyperparameter. For GPT-3 and BERT-Large pretraining,
we explore 7 CL difficulty metrics:
• Truncation-based sequence length (seqtru), for GPT and BERT. This metric start

with shorter data samples and gradually increase the sequence length during training. To
change the sequence length, this metric will truncate the sequences (from the end of sequence)
while keeping the number of samples unchanged, thus the number of tokens will decrease.
This metric is recently applied to GPT-2 and GPT-3 models and demonstrate decent training
efficiency gains [35]. The original BERT pretraining recipe has two stages with sequence
length 128/512, which is kind of similar to this metric but it is an abrupt length increase
instead of continuous sequence length warmup.

• Reshape-based sequence length (seqres), for GPT. This metric is similar to seqtru
metric, but instead of truncating we break the original sequences into segments based on the
desired new sequence length. Thus we are essentially “reshaping” the input tensor into more
samples and shorter lengths. This metric is proposed in MosaicML Composer as a variant
of the seqtru metric [36], but their documentation does not describe which way provides
better model quality. We don’t apply the seqres to BERT case because unlike GPT data
where all tokens are valid, BERT input sequences only include two natural sentences thus
each sequence has different “effective sequence length” and then padded to 512. If we simply
“reshape” BERT sequences, some of the new short sequences may only contain padding tokens.

• Reorder-based sequence length (seqreo), for BERT. This metric is similar to seqtru
metric, but instead of truncating we adjust the sequence length by reordering the training
data based on the “effective sequence length” in BERT training data sequences.

• Vocabulary rarity (voc), for GPT and BERT. This metric is proposed in a work
applying CL to neural machine translation [16]. It computes the product of the unigram

probabilities for each sequence by −
∑N

k=1 log(p(wk)) where p(wk) is the vocabulary frequency
(inside whole training data) of the kth word in the sequence. Lower value indicates that the
sequence has more common vocabularies. This value can be regarded as an approximate
language model and it also implicitly incorporates the sequence length information (since
longer sentences leads to product of more terms thus larger values).

• seqtru voc, for GPT and BERT. seqres voc, for GPT. seqreo voc, for BERT.
These 3 metrics are combinations of above metrics. For seqtru voc and seqres voc, we first

7

reorder the training data based on voc metric, then apply seqtru or seqres as a kind of
post-processing. For seqreo voc, we treat it as a single new metric and reindex the data based
on it.
Besides the difficulty metrics, another set of CL hyperparameters is the pacing function:

the start and end difficulty (ds and de), total number of CL steps (Tc), and the kind of pacing
function (linear, sqrt, etc.). For seqtru and seqres metrics, we set the ds and de as value-based
(e.g., ds = 80 and de = 2048) since the possible values of these two metrics are continuous.
For other metrics, we usually set ds and de as percentile-based (e.g., ds = 1% and de = 100%)
since the possible values of these metrics are discrete, but in some cases we found that it’s
beneficial to also set them as value-based. For seqtru and seqres we use a linear pacing function
(dt = ds +(de−ds)×min(t

Tc
, 1)) following the preivous work [35], while for other metrics we use

a sqrt pacing function (dt = ds + (de − ds)×min((t
Tc

)2, 1)). This is because all other metrics
will only sample from a subset of data pool before reaching the end difficulty, and previous work
finds that in such case it’s beneficial to use a sqrt function to avoid sampling too much easy
samples at the beginning [16]. ds and Tc are the only two parameters that need tuning (de is
always the highest possible difficulty). For some cases, we follow the low-cost tuning strategy
proposed in previous work [35], where we perform binary search on a very small portion of
early training. For remaining cases, we simply use the same set of hyperparameters or scale Tc

proportionally based on the total training token ratio.
Random-LTD hyperparameter. We follow the hyperparameter settings in the original

random-LTD work [12], which is similar to CL: starting from a sequence length rs which denotes
how many tokens left for each middle layer after dropping, random-LTD will gradually drop less
tokens (following a linear function) and eventually stop dropping after Tr steps. When using
100% training data, we simply use the same rs and Tr as the original work. When using less
data, we reduce the Tr proportionally.

Model quality evaluation. To evaluate the quality of pretrained GPT-3 models, we per-
form 0-shot and 10-shot evaluations on 19 tasks: HellaSwag [37], LAMBADA [38], TriviaQA [39],
WebQs [40], Winogrande [41], PIQA [42], ARC Challenge/Easy [43], ANLI R1/R2/R3 [44],
OpenBookQA [45], RACE-h [46], BoolQ [47], Copa [48], RTE [49], WSC [50], MultiRC [51],
and ReCoRD [52]. To evaluate the quality of pretrained BERT-Large models, we finetune the
models for 4 tasks: MNLI [53], QQP [54], and RACE (middle and high difficulty) [46]. We follow
the fine-tuning hyperparameters from the Megatron-LM work [55]: for MNLI/QQP/RACE we
finetune with 10/12/3 epochs, batch size 128/128/32, and learning rate 1e-5/5e-5/2e-5.

4.2 Evaluation of curriculum learning (CL)

GPT-3 pretraining. Among the 5 CL difficulty metrics we have for GPT-3 1.3B model, to
find out which metric provides the best model quality we pretrain the model (with 100% data)
5 times (each time with 1 CL metric). For seqtru metric (the only metric that was previously
applied to GPT-3 model pretraining to our knowledge), we tune the CL hyperparameters ds
and Tc based on the low-cost tuning strategy proposed in previous work [35]. Then for other
metrics we use the same hyperparameters without retuning for fair comparison. For voc metric
the ds is changed to percentile-based (1%) as explained in Section 4.1. After pretraining we
compare the model quality by 0-shot and 10-shot evaluation accuracy as presented in Table 1
case 1 to 6. Results show that all 5 CL metrics provide better model quality than baseline
(except (4)CL voc’s 0-shot accuracy), and the (5)CL seqtru voc provides the best quality. The
extensibility of our general CL library enables us to swiftly apply different CL metrics to
this large-scale model pretraining with huge training data, and identify a new CL metric that
provides better model quality than existing solution ((2)CL seqtru).

8

Table 1: GPT-3 1.3B pretraining cost and average evaluation accuracy on 19 tasks. Accuracy
results for each single task can be found in Appendix A.1

CL/rLTD Pretrain data Pretrain time Avg 0-shot Avg 10-shot
Case hyperparameter (billon tokens) (hours on 64 V100) accuracy accuracy

(1)baseline N/A 300 (1x) 260 (1x) 42.5 44.0
(2)CL seqtru ds = 80, Tc = 110K 300 (1x) 257 (1.01x) 43.4 44.8
(3)CL seqres ds = 80, Tc = 110K 300 (1x) 248 (1.05x) 43.0 44.5
(4)CL voc ds = 1%, Tc = 110K 300 (1x) 257 (1.01x) 42.3 44.5
(5)CL seqtru voc same as (2) + (4) 300 (1x) 259 (1.00x) 43.6 44.9
(6)CL seqres voc same as (3) + (4) 300 (1x) 248 (1.05x) 43.0 44.4
(7)rLTD rs = 128, Tr = 200K 300 (1x) 263 (0.99x) 43.7 44.9
(8)CL seqtru voc+rLTD same as (5) + (7) 300 (1x) 260 (1.00x) 43.8 45.1

(9)baseline N/A 200 (1.5x) 174 (1.49x) 41.9 44.0
(10)CL seqtru voc seqtru: ds = 80, Tc = 73K 200 (1.5x) 171 (1.52x) 42.7 44.5

voc: ds = 1%, Tc = 73K

(11)baseline N/A 150 (2x) 130 (2.00x) 42.0 42.7
(12)CL seqtru voc seqtru: ds = 80, Tc = 55K 150 (2x) 129 (2.02x) 42.6 43.7

voc: ds = 1%, Tc = 55K
(13)rLTD rs = 128, Tr = 100K 150 (2x) 131 (1.98x) 42.7 43.5
(14)CL seqtru voc+rLTD same as (12) + (13) 150 (2x) 130 (2.00x) 42.8 44.0

All 5 CL cases have similar total training time as the baseline since they all use 300B tokens
training data, although the seqres metric in cases 3 and 6 provides a slight time saving. This is
because seqres change long sequences into more but shorter sequences, which helps reducing
computation time because inside each Transformer block the self-attention and intermediate
layers have time complexity of O(B × L2 × H) and O(B × L × H2), respectively (B,L,H
represent batch size, sequence length, hidden size). The seqtru metric has less such benefit
because it has less tokens per step than seqres due to truncation instead of reshape. Thus it
requires more steps to reach the same 300B tokens which takes more time.

Next we pretrain the model with 67% data, comparing the baseline and the best CL metric
we find (seqtru voc). Results show that the average 0-shot evaluation accuracy drops from 42.5
to 41.9 when baseline use less data (Table 1 case 1, 9). On the other hand, our CL solution
(case 10) with 67% data is able to achieve better 0-shot and 10-shot accuracy than baseline with
100% data, achieving a 1.5x data and time saving.

BERT pretraining. Among the 5 CL difficulty metrics we have for BERT-Large model, to
find out which metric provides the best model quality we pretrain the model (with 100% data)
5 times (each time with 1 CL metric). For seqtru metric (the only metric that was previously
applied to GPT-3 model pretraining to our knowledge), we tune the CL hyperparameters ds
and Tc based on the low-cost tuning strategy proposed in previous work [35]. Then for other
metrics we use the same hyperparameters without retuning for fair comparison. For seqreo and
voc metrics the ds is changed to percentile-based (5%). After pretraining we compare the model
quality by finetuning accuracy as presented in Table 2 case 1 to 6. Results show that all 5 CL
metrics provide better model quality than baseline, and the (4)CL voc provides the best quality.
One thing we notice about this metric is that the last 5% most difficult data have a much larger
abosolute value change: the first 95% data has vocabulary rarity up to 3987, while the last 5%
has vocabulary rarity up to 9069. This motivates us to try the case with the same CL metric
but use value-based pacing function instead of percentile based. And the result (case 7) shows
that it does provide better model quality (than case 4). All 5 CL cases have similar yet slightly
higher total training time than the baseline. This is because curriculum learning requires extra
indexing and sampling overhead than uniform sampling, which is an fixed latency regardless of
the model size (about 0.005 ms per step in our GPT/BERT cases). Because the BERT-Large is
a smaller model than GPT-3 1.3B, this fixed latency overhead has a larger relative impact to
the training time in BERT-Large case. The seqtru metric (in case 2, 5) requires longest time
because it has less tokens per step due to truncation. Thus it requires more steps to reach the
same tokens. On the other hand, we believe that when the goal is to maximize model quality
using all data, it’s still beneficial to employ curriculum learning (with the voc metric) and take

9

Table 2: BERT-Large pretraining cost and average finetuning accuracy on 4 tasks. Accuracy
results for each finetuning task can be found in Appendix A.2

CL/rLTD Pretrain data Pretrain time Avg finetune
Case hyperparameter (billon tokens) (hours on 64 A100) accuracy

(1)baseline N/A 1049 (1x) 141 (1x) 85.42±0.31
(2)CL seqtru ds = 128, Tc = 960K 1049 (1x) 153 (0.92x) 85.77±0.28
(3)CL seqreo ds = 5%, Tc = 960K 1049 (1x) 144 (0.98x) 85.46±0.33
(4)CL voc ds = 5%, Tc = 960K 1049 (1x) 144 (0.98x) 85.91±0.24
(5)CL seqtru voc same as (2) + (4) 1049 (1x) 152 (0.93x) 85.8±0.27
(6)CL seqreo voc same as (3) + (4) 1049 (1x) 144 (0.98x) 85.61±0.32
(7)CL voc value-based ds = 600, Tc = 960K 1049 (1x) 144 (0.98x) 86.13±0.27

(8)CL voc ds = 5%, Tc = 700K 734 (1.4x) 101 (1.40x) 85.02±0.29
(9)CL voc value-based ds = 600, Tc = 700K 734 (1.4x) 101 (1.40x) 85.59±0.25

the 2% extra training time.
Next we pretrain the model with 70% data, comparing the baseline and the best CL metric

we find (voc). For CL we again test both percentile-based and value-based pacing function.
Results show that the value-based CL again provides better model quality, and it matches the
model quality of baseline with 100% data (case 8, 9). This demonstrates a 1.4x data and time
saving by CL.

4.3 Evaluation of composed DeepSpeed Data Efficiency solution

GPT-3 pretraining. To explore whether composing CL and random-LTD could achieve even
better data and training efficiency, first we pretrain the model (same 100% training data) with
CL or random-LTD only and with both techniques composed together. Results (Table 1 case 5,
7, 8) show that using either of the technique it’s possible to achieve better model quality than
baseline, but when composed together it’s possible to further improve the model quality. This
demonstrate the composability strength of the proposed DeepSpeed Data Efficiency framework.
The random-LTD only case has 1% higher training time than baseline because the token dropping
mechanism introduces a small computation overhead.

Next we pretrain the model with 50% data. Results (Table 1 case 11 to 14) show that the
baseline has worse 0-shot and 10-shot evaluation accuracy under 2x less data. Using CL or
random-LTD can only recover part of the accuracy loss. On the other hand, the composed data
efficiency solution is able to achieve the same or better accuracy results as baseline with 100%
data, demonstrating a 2x data and 2x time saving.

To better understand how the proposed approach influences the model convergence, Figure 4
plots the token-wise validation perplexity during pretraining. At the beginning of the training
the proposed approach has slower convergence since we focus on easier/simpler data samples
(CL) and drop more tokens (random-LTD) at the beginning. On the other hand, at the later
stage of training the proposed approach is able to provide faster convergence speed than baseline.
Our approach with 50% data is able to achieve similar final validation perplexity as baseline
with 100% data (while baseline with 50% data cannot). Our approach with 100% data is able
to achieve even better final validation perplexity which leads to the highest model quality.

5 Conclusion

Unlike model scale which could reduce in the future with novel architecture, the amount of
available training data will increase continuously and irreversibly. Language model pretraining
is the first to reach a data scale that even training one full epoch is difficult, but sooner or
later all machine learning tasks will face the same data efficiency challenge. In this work we
propose the DeepSpeed Data Efficiency framework, which demonstrate the power of composing

10

0 7.5B 15B 22.5B 30B
Tokens

0

20

40

60

80

100
Va

lid
at

io
n

Pe
rp

le
xi

ty
Baseline 300B tokens
CL+rLTD 300B tokens
Baseline 150B tokens
CL+rLTD 150B tokens

(a) Begining of training (first 30B tokens)

0 75B 150B 225B 300B
Tokens

5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50

Va
lid

at
io

n
Pe

rp
le

xi
ty

Baseline 300B tokens
CL+rLTD 300B tokens
Baseline 150B tokens
CL+rLTD 150B tokens

(b) End of training

Figure 4: Validation perplexity during GPT-3 1.3B pretraining, comparing the baseline and the
best DeepSpeed Data Efficiency solution under 100% and 50% training data.

different data efficiency techniques together. This enables us to achieve a 2x data and time
saving for GPT-3 and BERT pretraining, or to achieve even better data quality under similar
data and time. We hope this work could motivate more research on data efficiency, and we
hope DeepSpeed Data Efficiency could become a data efficiency platform that accelerate these
research.

References

[1] GitHub. Github copilot. https://github.com/features/copilot/, 2021.

[2] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[3] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10684–10695,
2022.

[4] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc., 2020.

[6] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al.
Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative
language model. arXiv preprint arXiv:2201.11990, 2022.

11

https://github.com/features/copilot/

[7] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311,
2022.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[9] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using
model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[10] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th annual international conference on machine learning,
pages 41–48, 2009.

[11] Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song,
and Denny Zhou. Token dropping for efficient BERT pretraining. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 3774–3784, Dublin, Ireland, May 2022. Association for Computational Linguistics.

[12] Zhewei Yao, Xiaoxia Wu, Conglong Li, Connor Holmes, Minjia Zhang, Cheng Li, and
Yuxiong He. Random-ltd: Random and layerwise token dropping brings efficient training
for large-scale transformers. arXiv preprint arXiv:2211.11586, 2022.

[13] Tom Kocmi and Ondřej Bojar. Curriculum learning and minibatch bucketing in neural
machine translation. In Proceedings of the International Conference Recent Advances in
Natural Language Processing, RANLP 2017, pages 379–386, 2017.

[14] Ondřej Bojar, Jindřich Helcl, Tom Kocmi, Jindřich Libovickỳ, and Tomáš Musil. Results
of the wmt17 neural mt training task. In Proceedings of the second conference on machine
translation, pages 525–533, 2017.

[15] Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup, Mar-
ianna J Martindale, Paul McNamee, Kevin Duh, and Marine Carpuat. An empiri-
cal exploration of curriculum learning for neural machine translation. arXiv preprint
arXiv:1811.00739, 2018.

[16] Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabás Póczos, and
Tom M Mitchell. Competence-based curriculum learning for neural machine translation. In
NAACL-HLT, 2019.

[17] Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul McNamee, Marine Carpuat, and
Kevin Duh. Curriculum learning for domain adaptation in neural machine translation. In
NAACL-HLT, 2019.

[18] Mrinmaya Sachan and Eric Xing. Easy questions first? a case study on curriculum learning
for question answering. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 453–463, 2016.

[19] Mrinmaya Sachan and Eric Xing. Self-training for jointly learning to ask and answer
questions. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 629–640, 2018.

12

[20] Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C Phan, Xingdi Yuan, Jinfeng
Rao, Siu Cheung Hui, and Aston Zhang. Simple and effective curriculum pointer-generator
networks for reading comprehension over long narratives. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 4922–4931, 2019.

[21] Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan Wang, Hongtao Xie, and Yongdong
Zhang. Curriculum learning for natural language understanding. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 6095–6104, 2020.

[22] Ofir Press, Noah A Smith, and Mike Lewis. Shortformer: Better language modeling using
shorter inputs. arXiv preprint arXiv:2012.15832, 2020.

[23] Wei Zhang, Wei Wei, Wen Wang, Lingling Jin, and Zheng Cao. Reducing bert computation
by padding removal and curriculum learning. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 90–92. IEEE, 2021.

[24] Daniel Campos. Curriculum learning for language modeling. arXiv preprint
arXiv:2108.02170, 2021.

[25] Conglong Li, Minjia Zhang, and Yuxiong He. The stability-efficiency dilemma: Investigating
sequence length warmup for training gpt models. In Advances in Neural Information
Processing Systems, 2022.

[26] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. arXiv preprint arXiv:1701.06538, 2017.

[27] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models
with conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668,
2020.

[28] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[29] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing mixture-
of-experts inference and training to power next-generation AI scale. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceed-
ings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 18332–18346. PMLR, 17–23 Jul 2022.

[30] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of
language models with mixture-of-experts. arXiv preprint arXiv:2112.06905, 2021.

[31] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer,
Xi Victoria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman,
Xian Li, Shuohui Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh
Koura, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Mona Diab, Zornitsa Kozareva, and
Ves Stoyanov. Efficient large scale language modeling with mixtures of experts. arXiv
preprint arXiv:2112.10684, 2021.

13

[32] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset
of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

[33] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466,
2022.

[34] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark,
et al. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556,
2022.

[35] Conglong Li, Minjia Zhang, and Yuxiong He. Curriculum learning: A regularization method
for efficient and stable billion-scale gpt model pre-training. arXiv preprint arXiv:2108.06084,
2021.

[36] MosaicML. Sequence length warmup, mosaicml composer. https://docs.mosaicml.com/
en/v0.11.1/method_cards/seq_length_warmup.html, 2022.

[37] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[38] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella
Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The
lambada dataset: Word prediction requiring a broad discourse context. arXiv preprint
arXiv:1606.06031, 2016.

[39] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

[40] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on
freebase from question-answer pairs. In Proceedings of the 2013 conference on empirical
methods in natural language processing, pages 1533–1544, 2013.

[41] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande:
An adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 8732–8740, 2020.

[42] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about
physical commonsense in natural language. In Proceedings of the AAAI conference on
artificial intelligence, pages 7432–7439, 2020.

[43] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[44] Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela.
Adversarial nli: A new benchmark for natural language understanding. arXiv preprint
arXiv:1910.14599, 2019.

14

https://docs.mosaicml.com/en/v0.11.1/method_cards/seq_length_warmup.html
https://docs.mosaicml.com/en/v0.11.1/method_cards/seq_length_warmup.html

[45] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor
conduct electricity? a new dataset for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

[46] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale
reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

[47] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

[48] Ardavan Afshar, Ioakeim Perros, Evangelos E Papalexakis, Elizabeth Searles, Joyce Ho,
and Jimeng Sun. Copa: Constrained parafac2 for sparse & large datasets. In Proceedings
of the 27th ACM International Conference on Information and Knowledge Management,
pages 793–802, 2018.

[49] Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto. Recognizing textual
entailment: Models and applications. Synthesis Lectures on Human Language Technologies,
6(4):1–220, 2013.

[50] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge.
In Thirteenth International Conference on the Principles of Knowledge Representation and
Reasoning. Citeseer, 2012.

[51] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsuper-
vised selection of justification sentences for multi-hop question answering. arXiv preprint
arXiv:1911.07176, 2019.

[52] Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin
Van Durme. Record: Bridging the gap between human and machine commonsense reading
comprehension. arXiv preprint arXiv:1810.12885, 2018.

[53] Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

[54] Shankar Iyer, Nikhil Dandekar, and Kornl Csernai. First quora dataset release: Question
pairs, 2017. URL https://data. quora. com/First-Quora-Dataset-Release-Question-Pairs,
2017.

[55] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using
model parallelism. arXiv preprint arXiv:1909.08053, 2019.

15

Table 3: GPT-3 1.3B 0-shot evaluation results. The first column is the results of the original
OpenAI GPT-3 1.3B model [5]. All the other columns are in the same order as the rows in main
paper Table 1. OpenAI results are not directly comparable to ours because the training data
are different.

(8) (14)
(5) (6) CL (10) (12) CL

(2) (3) (4) CL CL seqtru CL CL seqtru
(0) (1) CL CL CL seqtru seqres (7) +voc (9) seqtru (11) seqtru (13) +voc

Case OpenAI baseline seqtru seqres voc +voc +voc rLTD +rLTD baseline +voc baseline +voc rLTD +rLTD
Train tokens 300B 300B 300B 300B 300B 300B 300B 300B 300B 200B 200B 150B 150B 150B 150B

Avg. 47.9 42.5 43.4 43.0 42.3 43.6 43.0 43.7 43.8 41.9 42.7 42.0 42.6 42.7 42.8

(0) HellaSwag 54.7 51.9 52.3 52.4 51.8 52.7 52.2 54.1 54.3 50.9 52.0 49.9 50.6 51.6 52.1
(1) LAMBADA 63.6 62.0 61.2 61.7 60.6 61.9 61.1 62.9 62.3 59.8 61.4 59.5 59.6 61.3 61.7
(2) TriviaQA 19.7 7.0 7.91 7.63 6.66 7.65 6.07 7.9 7.55 6.15 6.46 5.9 7.2 6.37 7.42
(3) WebQs 4.63 1.38 1.62 2.07 2.56 1.38 2.02 3.15 2.17 2.46 1.67 1.03 2.26 2.66 3.2
(4) Winogrande 58.7 55.6 59.1 58.2 57.1 58.9 56.9 58.5 58.4 54.9 58.2 56.6 57.1 57.1 57.5
(5) PIQA 75.1 71.4 71.0 72.1 70.8 71.4 72.1 71.2 71.5 70.7 71.4 71.4 71.9 70.5 72.0
(6) ARC Challenge 35.5 29.4 29.6 29.3 28.8 30.1 28.9 28.7 30.1 28.5 28.2 27.2 27.0 28.7 27.6
(7) ARC Easy 53.8 53.7 54.3 55.0 54.0 55.2 55.0 54.4 56.4 53.5 53.2 52.7 53.7 54.1 54.0
(8) ANLI R1 33.4 31.6 33.3 30.7 33.4 33.5 31.6 33.0 31.6 31.6 29.8 33.0 32.9 32.1 33.7
(9) ANLI R2 33.3 33.7 33.8 32.8 33.0 33.3 32.9 32.5 31.5 30.4 33.2 31.8 33.9 34.6 33.6
(10) ANLI R3 33.4 33.1 35.2 33.5 33.2 33.3 33.9 33.4 35.2 33.7 35.8 32.4 34.8 34.9 35.0
(11) OpenBookQA 46.8 32.4 31.8 32.0 31.2 34.0 34.6 34.0 34.0 31.0 33.0 30.4 32.4 33.6 32.4
(12) RACE-h 40.9 35.2 34.2 35.7 35.3 35.3 34.3 35.4 36.4 34.6 33.9 34.3 34.2 34.6 34.9
(13) BoolQ 62.4 62.4 63.1 62.5 60.2 62.7 63.6 61.9 63.6 62.0 62.8 61.2 59.6 61.5 61.9
(14) Copa 77.0 72.0 70.0 75.0 72.0 73.0 77.0 76.0 75.0 71.0 74.0 72.0 75.0 71.0 71.0
(15) RTE 56.0 54.2 58.1 54.9 52.0 56.0 54.2 55.0 54.5 55.2 54.9 59.2 55.6 55.2 54.5
(16) WSC 61.5 36.5 42.3 36.5 34.6 43.3 36.5 43.3 40.4 36.5 37.5 36.5 36.5 37.5 36.5
(17) MultiRC 13.6 1.05 2.1 1.47 3.15 0.944 0.944 0.839 2.41 0.839 0.839 0.839 1.68 1.05 1.15
(18) ReCoRD 85.2 83.3 83.7 83.5 83.2 83.8 83.3 84.7 84.3 82.8 82.4 82.5 82.6 83.6 83.6

A Appendix

A.1 GPT-3 1.3B evaluation results

Table 3 and 4 present the 0-shot and 10-shot accuracy results for each task achieved by the
pretrained GPT-3 1.3B models.

A.2 BERT-Large finetuning results

Table 5 presents the finetuning results for each task achieved by the pretrained BERT-Large
models.

16

Table 4: GPT-3 1.3B 10-shot evaluation results. The first column is the results of the original
OpenAI GPT-3 1.3B model [5]. All the other columns are in the same order as the rows in main
paper Table 1. OpenAI results are not directly comparable to ours because the training data
are different. Note that OpenAI used different number of shots for each task, while we use the
same 10 shots for all tasks.

(8) (14)
(5) (6) CL (10) (12) CL

(2) (3) (4) CL CL seqtru CL CL seqtru
(0) (1) CL CL CL seqtru seqres (7) +voc (9) seqtru (11) seqtru (13) +voc

Case OpenAI baseline seqtru seqres voc +voc +voc rLTD +rLTD baseline +voc baseline +voc rLTD +rLTD
Train tokens 300B 300B 300B 300B 300B 300B 300B 300B 300B 200B 200B 150B 150B 150B 150B

Avg. 49.0 44.0 44.8 44.5 44.5 44.9 44.4 44.9 45.1 44.0 44.5 42.7 43.7 43.5 44.0

(0) HellaSwag 54.9 52.4 52.7 52.6 52.0 52.7 52.8 54.7 55.1 51.2 52.2 50.5 50.9 52.2 53.0
(1) LAMBADA 57.0 57.6 56.0 57.0 55.7 57.0 57.6 59.5 59.6 55.1 56.4 54.2 55.7 57.5 58.9
(2) TriviaQA 32.1 13.5 14.0 13.9 13.2 14.7 13.0 13.5 13.7 12.6 12.9 11.5 12.0 11.5 12.3
(3) WebQs 19.6 11.8 11.9 12.0 12.9 12.6 12.5 12.5 13.8 12.1 11.5 10.0 11.6 10.2 12.1
(4) Winogrande 59.1 57.4 56.7 58.9 58.2 60.0 58.2 58.7 58.1 55.9 59.2 56.8 58.0 58.4 58.4
(5) PIQA 74.3 71.5 71.4 71.5 71.4 71.5 72.3 71.6 72.6 71.1 72.0 71.2 71.7 71.4 71.4
(6) ARC Challenge 36.7 32.8 32.2 33.4 32.7 32.8 32.5 32.8 34.6 32.3 32.7 31.7 31.2 30.5 31.7
(7) ARC Easy 59.1 63.5 65.2 64.6 64.7 64.7 64.4 64.2 65.9 63.2 63.9 61.5 63.0 61.7 63.0
(8) ANLI R1 32.5 29.8 31.6 31.4 31.7 31.6 32.7 32.3 32.7 31.3 32.5 32.0 30.8 33.0 32.4
(9) ANLI R2 31.4 34.4 34.6 33.0 31.2 33.7 31.9 32.4 32.6 34.0 32.9 31.0 32.0 34.0 34.0
(10) ANLI R3 36.0 33.6 34.1 33.1 33.4 33.8 33.8 32.8 33.8 31.9 33.9 32.7 31.7 35.2 35.2
(11) OpenBookQA 50.6 32.4 34.0 34.6 34.0 35.4 35.2 33.6 32.6 33.0 33.2 33.4 33.4 32.2 29.8
(12) RACE-h 41.4 34.5 36.6 35.4 35.3 36.7 35.5 37.1 36.7 35.7 34.4 35.5 34.2 35.9 34.6
(13) BoolQ 64.1 60.8 63.5 59.4 63.1 62.1 63.1 64.2 64.0 62.8 62.1 58.8 63.4 58.2 62.0
(14) Copa 77.0 76.0 74.0 79.0 76.0 76.0 74.0 73.0 74.0 74.0 77.0 69.0 70.0 71.0 70.0
(15) RTE 50.9 48.0 55.2 50.5 53.8 52.7 49.1 53.1 52.0 56.0 54.5 48.0 56.0 48.4 51.2
(16) WSC 49.0 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5
(17) MultiRC 20.8 5.88 7.24 5.35 6.93 5.77 5.98 6.19 5.35 4.51 5.67 4.51 6.19 5.67 6.4
(18) ReCoRD 84.0 83.0 83.4 83.3 82.4 83.6 83.2 84.6 84.0 82.3 82.7 82.2 82.4 83.8 83.3

Table 5: BERT-Large finetuning results. The first row is the results of the original Megatron-LM
BERT-Large model [9]. All the other rows are in the same order as the rows in main paper
Table 2. Megatron-LM results are not directly comparable to ours because the training data are
different, and because Megatron-LM reports median while we report mean and std.
Case Train tokens MNLI-m (dev) MNLI-mm (dev) QQP (dev) RACE-m (dev) RACE-m (test) RACE-h (dev) RACE-h (test) Average

(0)Megatron-LM 1049B 89.7 90.0 92.3 N/A 86.9 N/A 81.5 N/A
(1)baseline 1049B 89.09±0.05 89.52±0.23 92.29±0.13 84.58±0.28 82.88±0.63 80.54±0.32 79.01±0.51 85.42±0.31
(2)CL seqtru 1049B 89.15±0.36 89.65±0.1 92.25±0.06 84.42±0.26 83.79±0.51 81.39±0.41 79.72±0.29 85.77±0.28
(3)CL seqreo 1049B 89.08±0.2 89.29±0.04 92.29±0.06 84.03±0.43 83.14±0.85 81.2±0.36 79.18±0.38 85.46±0.33
(4)CL voc 1049B 89.16±0.11 89.55±0.17 92.23±0.06 84.75±0.29 83.96±0.29 81.69±0.27 80.0±0.48 85.91±0.24
(5)CL seqtru voc 1049B 89.19±0.13 89.5±0.06 92.37±0.04 85.18±0.76 83.49±0.51 81.12±0.23 79.77±0.16 85.8±0.27
(6)CL seqreo voc 1049B 89.07±0.16 89.25±0.12 92.3±0.1 84.44±0.47 83.57±0.76 80.94±0.23 79.7±0.39 85.61±0.32
(7)CL voc value-based 1049B 89.28±0.08 89.44±0.13 92.29±0.05 85.42±0.36 84.0±0.61 81.83±0.39 80.65±0.3 86.13±0.27
(8)CL voc 734B 88.89±0.13 89.4±0.11 92.35±0.04 82.96±0.6 83.1±0.44 79.99±0.44 78.46±0.25 85.02±0.29
(9)CL voc value-based 734B 89.06±0.15 89.33±0.05 92.36±0.06 84.47±0.24 83.26±0.6 81.44±0.44 79.24±0.18 85.59±0.25

17

	1 Introduction
	2 Background and Related Works
	3 Design
	3.1 Efficient data sampling via curriculum learning
	3.2 Efficient data routing via random layerwise token dropping
	3.3 Composing curriculum learning and random-LTD

	4 Evaluation
	4.1 Setup
	4.2 Evaluation of curriculum learning (CL)
	4.3 Evaluation of composed DeepSpeed Data Efficiency solution

	5 Conclusion
	A Appendix
	A.1 GPT-3 1.3B evaluation results
	A.2 BERT-Large finetuning results

