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Abstract

A big convergence of language, vision, and multimodal pretraining is emerging. In
this work, we introduce a general-purpose multimodal foundation model BEIT-3,
which achieves state-of-the-art transfer performance on both vision and vision-
language tasks. Specifically, we advance the big convergence from three aspects:
backbone architecture, pretraining task, and model scaling up. We introduce Multi-
way Transformers for general-purpose modeling, where the modular architecture
enables both deep fusion and modality-specific encoding. Based on the shared
backbone, we perform masked “language” modeling on images (Imglish), texts
(English), and image-text pairs (“parallel sentences”) in a unified manner. Exper-
imental results show that BETT-3 obtains state-of-the-art performance on object
detection (COCO), semantic segmentation (ADE20K), image classification (Im-
ageNet), visual reasoning (NLVR?2), visual question answering (VQAv2), image
captioning (COCO), and cross-modal retrieval (Flickr30K, COCO).
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Figure 1: BEIT-3 achieves state-of-the-art performance on a broad range of tasks compared with
other customized or foundation models. I2T/T2I is short for image-to-text/text-to-image retrieval.
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Category Task Dataset Metric Previous SOTA BEIT-3

Semantic Segmentation ~ADE20K mloU 61.4 (FD-SwinV2) 62.8 (+1.4)
Vision Object Detection COCO AP 63.3 (DINO) 63.7 (+0.4)
Instance Segmentation COCO AP 54.7 (Mask DINO)  54.8 (+0.1)
Image Classification ImageNetf Top-1acc. 89.0 (FD-CLIP) 89.6 (+0.6)
Visual Reasoning NLVR2 Acc. 87.0 (CoCa) 92.6 (+5.6)
Visual QA VQAv2 VQA acc.  82.3 (CoCa) 84.0 (+1.7)
Vision-Language "y Captioning COCOf  CIDEr 1453 (OFA) 147.6 (+2.3)
Finewned Reil  piinge ROU giiiecy 942010
Zero-shot Retrieval Flickr30K R@1 86.5 (CoCa) 88.2 (+1.7)

Table 1: Overview of BEIT-3 results on various vision and vision-language benchmarks. We compare
with previous state-of-the-art models, including FD-SwinV2 [WHX"22], DINO [ZLL"22], Mask
DINO [ZLL*22], FD-CLIP [WHX"22], CoCa [YWV22], OFA [WYM™22], Florence [YCCT21].
We report the average of top-1 image-to-text and text-to-image results for retrieval tasks. “t” indicates
ImageNet results only using publicly accessible resources. “I” indicates image captioning results
without CIDEr optimization.

1 Introduction: The Big Convergence

Recent years have featured a trend toward the big convergence of language [RNSS18, DCLT19,
DYW™19], vision [BDPW22, PDB*22], and multimodal [WBDW21, RKH™21, YWV22] pre-
training. By performing large-scale pretraining on massive data, we can easily transfer the models to
various downstream tasks. It is appealing that we can pretrain a general-purpose foundation model
that handles multiple modalities. In this work, we advance the convergence trend for vision-language
pretraining from the following three aspects.

First, the success of Transformers [VSP™17] is translated from language to vision [DBK™20] and
multimodal [KSK21, WBDW?21] problems. The unification of network architectures enables us to
seamlessly handle multiple modalities. For vision-language modeling, there are various ways to
apply Transformers due to the different natures of downstream tasks. For example, the dual-encoder
architecture is used for efficient retrieval [RKH21], encoder-decoder networks for generation
tasks [WYY T21], and the fusion-encoder architecture for image-text encoding [KSK21]. However,
most foundation models have to manually convert the end-task formats according to the specific
architectures. Moreover, the parameters are usually not effectively shared across modalities. In
this work, we adopt Multiway Transformers [WBDW?21] for general-purpose modeling, i.e., one
unified architecture shared for various downstream tasks. The modular network also comprehensively
considers modality-specific encoding and cross-modality fusion.

Second, the pretraining task based on masked data modeling has been successfully applied to various
modalities, such as texts [DCLT19], images [BDPW22, PDB " 22], and image-text pairs [BWDW22].
Current vision-language foundation models usually multitask other pretraining objectives (such as
image-text matching), rendering scaling-up unfriendly and inefficient. In contrast, we only use one
pretraining task, i.e., mask-then-predict, to train a general-purpose multimodal foundation model. By
regarding the image as a foreign language (i.e., Imglish), we handle texts and images in the same
manner without fundamental modeling differences. Consequentially, image-text pairs are utilized as
“parallel sentences” in order to learn the alignments between modalities. We also show that the simple
yet effective method learns strong transferable representations, achieving state-of-the-art performance
on both vision and vision-language tasks. The prominent success demonstrates the superiority of
generative pretraining [DCLT 19, BDPW22].

Third, scaling up the model size and data size universally improves the generalization quality of
foundation models, so that we can transfer them to various downstream tasks. We follow the
philosophy and scale up the model size to billions of parameters. Moreover, we scale up the
pretraining data size in our experiments while only using publicly accessible resources for academic



Masked Data Modeling | mo-------T_________

1 1
1 1
1 1
T : V-FFN L-FFN VL-FFN :
! Vision  Language VL)
,  Expert Expert Expert 1

BEIT-3 I e ot

(Multiway Transformer)

I ——
:I.:+
T T T Shared Multi-Head
Image-Text Self-Attention

Pairs }

Multimodal Input

Images Texts

Figure 2: Overview of BEIT-3 pretraining. We perform masked data modeling on monomodal (i.e.,
images, and texts) and multimodal (i.e., image-text pairs) data with a shared Multiway Transformer
as the backbone network.

reproducibility. Although without using any private data, our method outperforms state-of-the-art
foundation models that rely on in-house data by a decent margin. In addition, the scaling up benefits
from treating images as a foreign language, as we can directly reuse the pipeline developed for
large-scale language model pretraining.

In this work, we take advantage of the above ideas to pretrain a general-purpose multimodal foundation
model BEIT-3. We pretrain a Multiway Transformer by performing masked data modeling on images,
texts, and image-text pairs. During pretraining, we randomly mask some proportion of text tokens
or image patches. The self-supervised learning objective is to recover the original tokens (i.e., text
tokens, or visual tokens) given corrupted inputs. The model is general-purpose in the sense that it can
be repurposed for various tasks regardless of input modalities, or output formats.

As shown in Figure 1 and Table 1, BEIT-3 achieves state-of-the-art transfer performance across a
broad range of vision and vision-language tasks. We evaluate BEIT-3 on extensive downstream tasks
and datasets, i.e., object detection (COCO), instance segmentation (COCO), semantic segmentation
(ADE20K), image classification (ImageNet), visual reasoning (NLVR2), visual question answering
(VQAV2), image captioning (COCO), and cross-modal retrieval (Flickr30K, COCO). Specifically,
our model outperforms previous strong foundation models [YWV 122, ADL 22, YCC'21] despite
that we only use public resources for pretraining and finetuning. The model also obtains better results
than specialized models. Moreover, BEIT-3 not only performs well on vision-language tasks but also
on vision tasks (such as object detection, and semantic segmentation).

2 BEIT-3: A General-Purpose Multimodal Foundation Model

As shown in Figure 2, BEIT-3 is pretrained by masked data modeling on monomodal and multimodal
data, using a shared Multiway Transformer network. The model can be transferred to various vision
and vision-language downstream tasks.

2.1 Backbone Network: Multiway Transformers

We use Multiway Transformers [WBDW?21] as the backbone model to encode different modalities.
As shown in Figure 2, each Multiway Transformer block consists of a shared self-attention module,
and a pool of feed-forward networks (i.e., modality experts) used for different modalities. We route
each input token to the experts depending on its modality. In our implementation, each layer contains
a vision expert and a language expert. Moreover, the top three layers have vision-language experts
designed for fusion encoders. Refer to Figure 3 (a)(b)(c) for more detailed modeling layouts. Using a
pool of modality experts encourages the model to capture more modality-specific information. The
shared self-attention module learns the alignment between different modalities and enables deep
fusion for multimodal (such as vision-language) tasks.
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Figure 3: BEIT-3 can be transferred to various vision and vision-language downstream tasks. With
a shared Multiway Transformer, we can reuse the model as (a)(b) vision or language encoders; (c)
fusion encoders that jointly encode image-text pairs for deep interaction; (d) dual encoders that
separately encode modalities for efficient retrieval; (e) sequence-to-sequence learning for image-to-
text generation.

As shown in Figure 3, the unified architecture enables BEIT-3 to support a wide range of downstream
tasks. For example, BEIT-3 can be used as an image backbone for various vision tasks, including
image classification, object detection, instance segmentation, and semantic segmentation. It can also
be finetuned as a dual encoder for efficient image-text retrieval, and a fusion model for multimodal
understanding and generation tasks.

2.2 Pretraining Task: Masked Data Modeling

We pretrain BEIT-3 via a unified masked data modeling [BWDW?22] objective on monomodal (i.e.,
images, and texts) and multimodal data (i.e., image-text pairs). During pretraining, we randomly mask
some percentage of text tokens or image patches and train the model to recover the masked tokens.
The unified mask-then-predict task not only learns representations but also learns the alignment of
different modalities. Specifically, text data is tokenized by a SentencePiece tokenizer [KR18]. Image
data is tokenized by the tokenizer of BEIT v2 [PDB22] to obtain the discrete visual tokens as the
reconstructed targets. We randomly mask 15% tokens of monomodal texts and 50% tokens of texts
from image-text pairs. For images, we mask 40% of image patches using a block-wise masking
strategy as in BEIT [BDPW?22, PDB22].

We only use one pretraining task, which makes the training process scaling-up friendly. In
contrast, previous vision-language models [LYL"20, ZLH21, KSK21, LSG*21, WBDW21,
LLXH22, YWV '22] usually employ multiple pretraining tasks, such as image-text contrast, image-
text matching, and word-patch/region alignment. We show that a much smaller pretraining
batch size can be used with the mask-then-predict task. In comparison, contrastive-based mod-
els [RKH21,JYX 21, YCCT21, YWV 22] usually need a very large batch size” for pretraining,
which brings more engineering challenges, such as GPU memory cost.

>For example, CoCa [YWV22] uses 65k batch size, CLIP [RKH"21] uses 32k batch size, and Flo-
rence [YCC21] uses 24k batch size. BEIT-3 uses a much smaller 6k batch size for pretraining.



Hidden MLP #Parameters
Size Size .
V-FFN L-FFN VL-FFN Shared Attention Total
BEIT-3 40 1408 6144  692M 692M 52M 317M 1.9B

Model #Layers

Table 2: Model configuration of BEIT-3. The architecture layout follows ViT-giant [ZKHB21].

Data Source Size

Image-Text Pair CC12M, CC3M, SBU, COCO, VG 21M pairs

Image ImageNet-21K 14M images

Text English Wikipedia, BookCorpus, OpenWebText, CC-News, Stories  160GB documents

Table 3: Pretraining data of BEIT-3. All the data are academically accessible.

2.3 Scaling Up: BEIT-3 Pretraining

Backbone Network BEIT-3 is a giant-size foundation model following the setup of ViT-
giant [ZKHB21]. As shown in Table 2, the model consists of a 40-layer Multiway Transformer with
1408 hidden size, 6144 intermediate size, and 16 attention heads. All layers contain both vision
experts and language experts. Vision-language experts are also employed in the top three Multiway
Transformer layers. The self-attention module is shared across different modalities. BEIT-3 consists
of 1.9B parameters in total, including 692M parameters for vision experts, 692M parameters for
language experts, 52M parameters for vision-language experts, and 317M parameters for the shared
self-attention module. Notice that only vision-related parameters (i.e., comparable size as ViT-giant;
about 1B) are activated when the model is used as a vision encoder.

Pretraining Data BEIT-3 is pretrained on both monomodal and multimodal data shown in Table 3.
For multimodal data, there are about 15M images and 21M image-text pairs collected from five public
datasets: Conceptual 12M (CC12M) [CSDS21], Conceptual Captions (CC3M) [SDGS18], SBU
Captions (SBU) [OKB11], COCO [LMB ™ 14] and Visual Genome (VG) [KZG " 17]. For monomodal
data, we use 14M images from ImageNet-21K and 160GB text corpora [BDW 20] from English
Wikipedia, BookCorpus [ZKZ 1 15], OpenWebText®, CC-News [LOG ' 19], and Stories [TL18].

Pretraining Settings We pretrain BEIT-3 for 1M steps. Each batch contains 6144 samples in
total, including 2048 images, 2048 texts and 2048 image-text pairs. The batch size is much smaller
than contrastive models [RKH™21, JYX'21, YWV 122]. BEIT-3 uses 14 x 14 patch size and is
pretrained at resolution 224 x 224. We use the same image augmentation as in BEIT [BDPW22],
including random resized cropping, horizontal flipping, and color jittering [WXYL18]. A Senten-
cePiece tokenizer [KR 18] with 64k vocab size is employed to tokenize the text data. We use the
AdamW [LH19] optimizer with 8; = 0.9, B2 = 0.98 and € =1e-6 for optimization. We use a cosine
learning rate decay scheduler with a peak learning rate of 1e-3 and a linear warmup of 10k steps. The
weight decay is 0.05. Stochastic depth [HSL"16] with a rate of 0.1 is used. The BEiT initialization
algorithm* [BDPW22] is used to stabilize Transformer training.

3 Experiments on Vision and Vision-Language Tasks

We extensively evaluate BETT-3 on major public benchmarks for both vision-language and vision
tasks. Table 1 presents the overview of results. BEIT-3 obtains state-of-the-art performance on a
wide range of vision and vision-language tasks.

*http://skylion007.github.io/OpenWebTextCorpus

*We first randomly initialize the parameters within a small range, e.g., [—0.02, 0.02]. Next, we rescale the
{-th Transformer layer’s output matrices (i.e., the last linear projection within each sublayer) of self-attention
and FFN by ﬁ
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VQAv2 NLVR2 COCO Captioning

Model

test-dev  test-std  dev test-P B@4 M C S
Oscar [LYL120] 73.61 73.82 79.12 80.37 374 30.7 127.8 235
VinVL [ZLHt21] 76.52 76.60 82.67 8398 38.5 304 1308 234
ALBEF [LSGT21] 75.84 76.04 8255 83.14 - - - -
BLIP [LLXH22] 78.25 78.32 82.15 8224 404 136.7

SimVLM [WYY "21] 80.03 80.34 8453 85.15 406 33.7 1433 254
Florence [YCCT21] 80.16 80.36 - -

OFA [WYM™T22] 82.00 82.00 - - 439 31.8 1453 248
Flamingo [ADL"22] 82.00 82.10 - - - - 138.1 -

CoCa[YWVT22] 82.30 82.30 86.10 87.00 409 339 143.6 24.7
BEIT-3 84.19 84.03 9151 9258 441 324 147.6 254

Table 4: Results of visual question answering, visual reasoning, and image captioning tasks. We
report vqga-score on VQAV2 test-dev and test-standard splits, accuracy for NLVR2 development set
and public test set (test-P). For COCO image captioning, we report BLEU @4 (B @4), METEOR (M),
CIDEr (C), and SPICE (S) on the Karpathy test split. For simplicity, we report captioning results
without using CIDEr optimization.

3.1 Vision-Language Downstream Tasks

We evaluate the capabilities of BEIT-3 on the widely used vision-language understanding and
generation benchmarks, including visual question answering [GKS™17], visual reasoning [SZZ " 19],
image-text retrieval [PWC™ 15, LMB™14], and image captioning [LMB™ 14].

Visual Question Answering (VQA) The task requires the model to answer natural language
questions about input images. Following previous work [AHB" 18, ZLH"21, KSK21], we conduct
finetuning experiments on the VQA v2.0 dataset [GKS™ 17] and formulate the task as a classification
problem. The model is trained to predict answers from the 3129 most frequent answer candidates in
the training set. BEIT-3 is finetuned as a fusion encoder to model deep interactions of images and
questions for the VQA task. We concatenate the embeddings of a given question and an image, and
then feed the input embeddings into Multiway Transformers to jointly encode the image-question pair.
The final pooled output is fed into a classifier layer to predict the answer. The results are present in
Table 4, BE1T-3 outperforms all previous models by a large margin (more than 1.7 points), pushing
the state of the art to 84.03 with a single model.

Visual Reasoning The task needs models to perform joint reasoning about images and natural
language descriptions. We evaluate the model on the popular NLVR2 [SZZ " 19] benchmark, which
is to determine whether a textual description is true about a pair of images. Following previous
work [ZLH 21, KSK21], we construct two image-text pairs based on the triplet input. We finetune
BEIT-3 as a fusion encoder to jointly encode the image-text pairs. The final pooled outputs of the two
pairs are concatenated and then fed into a classifier layer to predict the label. As shown in Table 4,
BEIT-3 achieves a new state-of-the-art result for visual reasoning, outperforming CoCa by about 5.6
points. The performance on NLVR2 reaches above 90% for the first time.

Image Captioning The task aims to generate a natural language caption for the given image. We
use the COCO [LMB™ 14] benchmark, finetune and evaluate the model on Karpathy split [KF15].
Following UNILM [DYW " 19] and s2s-ft [BDW *21], BEIT-3 is used as a conditional generation
model via masked finetuning. To be more specific, a special self-attention mask is employed for the
image captioning task. Image tokens (i.e., image patches) can only attend to each other bidirectionally
within the image sequence. Tokens of the caption can attention to image tokens, their leftward caption
tokens, and themselves. During finetuning, we randomly mask some percentage of caption tokens.
The model is trained to recover these tokens based on the clues of the image and its leftward caption
context. We also mask the special boundary token [SEP] to help the model learn to terminate the
generation. For simplicity, BEIT-3 is trained with simple cross-entropy loss, without using CIDEr
optimization. During inference, we generate the caption tokens one by one in an autoregressive



MSCOCO (5K test set) Flickr30K (1K test set)
Model Image — Text Text — Image Image — Text Text — Image

R@1 R@5 R@10 R@1 R@5 R@10| R@1 R@5 R@10 R@1 R@5 R@10

Fusion-encoder models
UNITER [CLY "20] 65.7 88.6 93.8 529 799 880 | 873 98.0 992 756 94.1 96.8
VILLA [GCL"20] - - - - - - 87.9 97.5 988 763 942 96.8
Oscar [LYL120] 735 922 96.0 57.5 82.8 89.8 - - - - - -
VinVL [ZLH21] 754 929 962 58.8 83.5 90.3 - - - - - -

Dual encoder + Fusion encoder reranking
ALBEF [LSG™21] 77.6 943 97.2 60.7 843 90.5 | 959 99.8 100.0 856 97.5 98.9
BLIP [LLXH22] 824 954 979 65.1 863 91.8 | 974 99.8 999 87.6 97.7 99.0

Dual-encoder models
ALIGN [JYX'21] 77.0 935 969 599 833 89.8 | 953 99.8 100.0 849 97.4 98.6
FILIP [YHH'21] 789 944 974 612 843 90.6 | 96.6 100.0 100.0 87.1 97.7 99.1
Florence [YCCT21] 81.8 95.2 - 63.2 85.7 - 97.2 99.9 - 87.9 98.1 -
BEIT-3 84.8 96.5 98.3 67.2 87.7 92.8 | 98.0 100.0 100.0 90.3 98.7 99.5

Table 5: Finetuning results of image-to-text retrieval and text-to-image retrieval on COCO and
Flickr30K. Notice that dual-encoder models are more efficient than fusion-encoder-based models for
the retrieval tasks.

Flickr30K (1K test set)
Model Image — Text Text — Image

R@l R@5 R@]0 R@l R@5 R@I10

FLAVA [SHG'21] 67.7 94.0 - 65.2 894 -

CLIP [RKH"21] 88.0 987 994 687 90.6 952
ALIGN [JYXT21] 88.6 987 997 757 938 96.8
FILIP [YHH"21] 89.8 992 998 750 934 963
Florence [YCCT21]  90.9 99.1 - 76.7 93.6 -

Flamingo [ADL"22] 89.3 98.8 997 79.5 953 979
CoCa [YWV122] 925 995 999 804 957 977

BEIT-3 949 999 1000 815 956 978

Table 6: Zero-shot image-to-text retrieval and text-to-image retrieval on Flickr30K.

manner. Table 4 presents the results on COCO captioning. BEIT-3 outperforms all previous models
trained with cross-entropy loss, creating a new state-of-the-art image captioning result. The results
demonstrate the superiority of BEIT-3 for vision-language generation.

Image-Text Retrieval The task is to measure the similarity between images and texts. There are two
directions depending on the modality of the retrieved target: image-to-text retrieval, and text-to-image
retrieval. Two popular retrieval benchmarks, i.e., COCO [LMB " 14], and Flickr30K [PWC ™' 15],
are used to evaluate the model. Following previous work [ZLH 21, KSK21], we use the Karpathy
split [KF15] for the two benchmarks. BEIT-3 is finetuned as a dual encoder for efficient image-text
retrieval. Dual-encoder models separately encode images and texts to obtain their representations.
Then we calculate the cosine similarity scores of these representations. Dual-encoder models are
more efficient than fusion-encoder models. Because they do not have to jointly encode all possible
image-text pairs.

We directly finetune BEIT-3 on COCO and Flickr30K, although the model is not pretrained with
image-text contrastive loss. Surprisingly, BEIT-3 outperforms previous state-of-the-art models only
using a small amount of contrastive training. The results demonstrate that BEIT-3 effectively learns
alignments between images and texts via masked data modeling. In order to improve the performance,
we perform intermediate finetuning with an image-text contrastive objective on the pretraining
image-text pairs. We finetune the model with much fewer steps than pretraining. Then we use the
model to evaluate zero-shot and finetuned image-text retrieval. The finetuned results are present



Maximum COCO test-dev

Model Extra OD Data Image Size AP'*  Apmask
ViT-Adapter [CDW *22] - 1600 60.1 52.1
DyHead [DCX"21] ImageNet-Pseudo Labels 2000 60.6 -
Soft Teacher [XZH21] Object365 - 61.3 53.0
GLIP [LZZ121] FourODs - 61.5 -
GLIPv2 [ZZH22] FourODs - 62.4 -
Florence [YCC121] FLOD-9M 2500 62.4 -
SwinV2-G [LHL*21] Object365 1536 63.1 54.4
Mask DINO [LZX122] Object365 1280 - 54.7
DINO [ZLL*22] Object365 2000 63.3 -
BEIT-3 Object365 1280 63.7 54.8

Table 7: Results of object detection and instance segmentation on COCO benchmark. BEIT-3
uses Cascade Mask R-CNN [CV21] as the detection head. Our results are reported with multi-
scale evaluation. We report the maximum image size used for training. FLOD-9M and FourODs
also contain Object365. The results of the comparison systems are from the paperswithcode.com
leaderboard (timestamp: 08/22/2022).

in Table 5, dual-encoder BEIT-3 outperforms prior models by a large margin, achieving 3.0/4.0
absolute improvement on COCO top-1 image-to-text/text-to-image retrieval, and 0.8/2.4 absolute
improvement on Flickr30K top-1 image-to-text/text-to-image retrieval. BEIT-3 also significantly
outperforms fusion-encoder-based models, which require more computation cost for inference. As
present in Table 6, BEIT-3 also achieves better performance than previous models on Flickr30K
zero-shot retrieval.

3.2 Vision Downstream Tasks

In addition to vision-language downstream tasks, BEIT-3 can be transferred to a wide range of vision
downstream tasks, including object detection, instance segmentation, semantic segmentation, and
image classification. The number of effective parameters is comparable to ViT-giant [ZKHB21], i.e.,
about 1B, when BEIT-3 is used as a vision encoder.

Object Detection and Instance Segmentation We conduct finetuning experiments on the COCO
2017 benchmark [LMB ™ 14], which consists of 118k training, 5k validation, and 20k test-dev images.
We use BEIT-3 as the backbone and follow ViTDet [LMGH22], including a simple feature pyramid
and window attention, for the object detection and instance segmentation tasks. Following common
practices [LHL 21, ZLL"22], we first conduct intermediate finetuning on the Objects365 [SLZ T 19]
dataset. Then we finetune the model on the COCO dataset. Soft-NMS [BSCD17] is used during
inference. Table 7 compares BEIT-3 with previous state-of-the-art models on COCO object detection
and instance segmentation. BEIT-3 achieves the best results on the COCO test-dev set with a smaller
image size used for finetuning, reaching up to 63.7 box AP and 54.8 mask AP.

Semantic Segmentation Semantic segmentation aims to predict the label for each pixel of the
given image. We evaluate BEIT-3 on the challenging ADE20K dataset [ZZP " 19], which includes
150 semantic categories. ADE20K contains 20k images for training and 2k images for validation. We
directly follow the task transfer settings of ViT-Adapter [CDW ™22]. We use a dense prediction task
adapter and employ Mask2Former [CMS ™ 21] as the segmentation framework. As shown in Table 8,
BEIT-3 creates a new state-of-the-art result with 62.8 mloU, outperforming FD-SwinV2 [WHX T 22]
giant model with 3B parameters by 1.4 points. It shows that BEIT-3 achieves superior performance
on the dense prediction task.

Image Classification We evaluate the model on ImageNet-1K [RDS ™ 15], which contains 1.28M
training images and 50k validation images in 1k classes. Rather than appending a task layer to the
vision encoder [DBK*20, BDPW22], we formulate the task as an image-to-text retrieval task. We
use the category names as texts to construct image-text pairs. BEIT-3 is trained as a dual encoder to
find the most relevant label for an image. During inference, we first compute the feature embeddings
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ADE20K

Model Crop Size mloU  +MS
HorNet [RZT+22] 6402 575 579
SeMask [JSO121] 6402 570 583
SwinV2-G [LHL*21] 8962 593 599
ViT-Adapter [CDW22] 8962 59.4  60.5
Mask DINO [LZX122] - 59.5  60.8
FD-SwinV2-G [WHX22] 8962 - 61.4
BEIT-3 8962 62.0 628

Table 8: Results of semantic segmentation on ADE20K. “MS” is short for multi-scale. The results of
the comparison systems are from the paperswithcode.com leaderboard (timestamp: 08/22/2022).

Model Extra Data Image Size ImageNet

With extra private image-tag data
SwinV2-G [LHL*21] IN-22K-ext-70M 6402

ViT-G [ZKHB21] JFT-3B 5182
CoAtNet-7 [DLLT21] JFT-3B 5122
Model Soups [WIG*22] JFT-3B 5002
CoCa [YWV122] JFT-3B 5762
With only public image-tag data
BEIT [BDPW22] IN-21K 5122 88.6
CoAtNet-4 [DLLT21] IN-21K 5122 88.6
MaxViT [TTZ22] IN-21K 5122 88.7
MViTv2 [LWF122] IN-21K 5122 88.8
FD-CLIP [WHX22] IN-21K 3362 89.0
BEIT-3 IN-21K 3362 89.6

Table 9: Top-1 accuracy on ImageNet-1K.

of possible class names and the feature embedding of the image. Their cosine similarity scores are
then calculated to predict the most probable label for each image. Table 9 reports the results on
ImageNet-1K. We first perform intermediate finetuning on ImageNet-21K, then we train the model
on ImageNet-1K. For a fair comparison, we compare with the previous models only using public
image-tag data. BEIT-3 outperforms prior models, creating a new state-of-the-art result when only
using public image-tag data.

4 Conclusion

In this paper, we present BEIT-3, a general-purpose multimodal foundation model, which achieves
state-of-the-art performance across a wide range of vision and vision-language benchmarks. The
key idea of BEIT-3 is that image can be modeled as a foreign language, so that we can conduct
masked “language” modeling over images, texts, and image-text pairs in a unified way. We also
demonstrate that Multiway Transformers can effectively model different vision and vision-language
tasks, making it an intriguing option for general-purpose modeling. BEIT-3 is simple and effective,
and is a promising direction for scaling up multimodal foundation models. For future work, we are
working on pretraining multilingual BEIT-3 and including more modalities (e.g., audio) in BEIT-3 to
facilitate the cross-lingual and cross-modality transfer, and advance the big convergence of large-scale
pretraining across tasks, languages, and modalities. We are also interested in enabling in-context
learning capability for multimodal foundation models by combining the strength of BE1T-3 and
MetalLM [HSDT22].
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A Effects of Intermediate Finetuning for Retrieval

As shown in Table 10, we directly finetune BEIT-3 on COCO and Flickr30K. BEIT-3 still outper-
forms previous state-of-the-art models, even without using image-text contrastive objective during
pretraining. The results demonstrate the effectiveness of masked data modeling for learning cross-
modal representations. Next, we perform intermediate finetuning on the pretraining image-text pairs
for 5 epochs with a 16k batch size. The peak learning is 3e-5, with linear warmup over the first
epoch. The image input size is 224 x 224. The weight decay is set to 0.05. We disable dropout as in
pretraining and use drop path with a rate of 0.3. The layer-wise learning rate decay is 0.95. We use
the AdamW [LH19] optimizer with 8; = 0.9, 85 = 0.999.

MSCOCO (5K test set) Flickr30K (1K test set)
Model Image — Text Text — Image Image — Text Text — Image
R@1 R@5 R@10 R@1 R@5 R@10| R@1 R@5 R@10 R@1 R@5 R@10
BEIT-3 82.7 96.0 982 65.1 86.6 923 | 975 99.9 1000 89.1 98.6 99.3

+ Intermediate Finetuning 84.8 96.5 98.3 67.2 87.7 92.8 | 98.0 100.0 100.0 90.3 98.7 99.5

Table 10: Finetuning results of image-text retrieval on COCO and Flickr30K. BEIT-3 is directly
finetuned on downstream benchmarks without intermediate finetuning on the pretraining data.

B Hyperparameters Used for Pretraining

Hyperparameters BEIT-3
Layers 40
Hidden size 1408
FFN inner hidden size 6144
Attention heads 16
Patch size 14 x 14
Relative positional embeddings X
Training steps IM
Batch size 6144
AdamW e le-6
AdamW g (0.9, 0.98)
Peak learning rate le-3
Learning rate schedule Cosine
‘Warmup steps 10k
Gradient clipping 3.0
Dropout X
Drop path 0.1
Weight decay 0.05
Data Augment RandomResize AndCrop
Input resolution 2242
Color jitter 0.4

Table 11: Hyperparameters for pretraining BEIT-3.
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C Hyperparameters Used for Finetuning

Hyperparameters

| NLVR2  VQAv2

Peak learning rate
Fine-tuning epochs
Warmup epochs
Layer-wise learning rate decay
Batch size
AdamW e
AdamW /3

Weight decay
Drop path

Dropout

Input resolution

le-3 le-5
20 10
5 1
0.8 1.0
256 128
le-8
(0.9, 0.999)
0.05 0.01
0.4
X
2242 7562

Table 12: Hyperparameters for fine-tuning BEIT-3 on NLVR2 and VQAv2.

Hyperparameters

| COCO Captioning

Peak learning rate
Fine-tuning steps
‘Warmup steps
Layer-wise learning rate decay
Batch size
AdamW e
AdamW

Weight decay
Drop path
Dropout

Input resolution
Mask prob

Label smoothing €
Beam size

8e-6
16k
1600
1.0
256
le-8
(0.9, 0.999)
0.01
0.3
X
3922
0.6
0.1
3

Table 13: Hyperparameters for fine-tuning BEIT-3 on COCO captioning.

Hyperparameters

| COCO  Flickr30K

Peak learning rate
Fine-tuning epochs
Warmup epochs
Layer-wise learning rate decay
Batch size
AdamW e
AdamW (3

Weight decay
Drop path

Dropout

Input resolution

le-5
15
3

20
5
0.95
3k
le-8
(0.9, 0.999)
0.05
0.3
X
420?
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Table 14: Hyperparameters for fine-tuning BEIT-3 on image-text retrieval.



Hyperparameters \ ADE20K
Peak learning rate le-5
Fine-tuning steps 80k
Warmup steps 1500
Layer-wise learning rate decay 0.95
Batch size 16
AdamW ¢ le-8
AdamW S (0.9, 0.999)
Weight decay 0.05
Drop path 0.5
Dropout X
Input resolution 896>

Table 15: Hyperparameters for fine-tuning BEIT-3 on semantic segmentation.

Hyperparameters | Object365 COCO
Learning rate le-4 Se-5
Fine-tuning epochs 15 20
Warmup steps 250
Layer-wise learning rate decay 0.9

Batch size 64
AdamW e le-8
AdamW S (0.9, 0.999)
Weight decay 0.1

Drop path 0.6

Input resolution 10242 12802

Table 16: Hyperparameters for fine-tuning BEIT-3 on object detection.

Hyperparameters

| ImageNet-21K  ImageNet-1K

Peak learning rate
Fine-tuning epochs
‘Warmup epochs
Layer-wise learning rate decay
Batch size
AdamW e
AdamW S

Weight decay
Drop path

Dropout

Input resolution
Label smoothing ¢

Se-5 3e-5
50 15
5 3
0.85 0.95
16k 2k
le-6 le-8
(0.9, 0.98) (0.9, 0.999)
0.05
0.4
X
2242 3362
0.1

Table 17: Hyperparameters for fine-tuning BEIT-3 on image classification.
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