
UGLAD: A DEEP LEARNING MODEL TO RECOVER
CONDITIONAL INDEPENDENCE GRAPHS

Harsh Shrivastava1 Urszula Chajewska1 Robin Abraham1 Xinshi Chen2

1Microsoft Research, Redmond, 2School of Mathematics, Georgia Tech

ABSTRACT

Probabilistic Graphical Models are generative models of complex systems. They
rely on conditional independence assumptions between variables to learn sparse
representations which can be visualized in a form of a graph. Such models are used
for domain exploration and structure discovery in poorly understood domains. This
work introduces a novel technique to perform sparse graph recovery by optimizing
deep unrolled networks. Assuming that the input data X ∈ RM×D comes from an
underlying multivariate Gaussian distribution, we apply a deep model on X that
outputs the precision matrix Θ. Then, the partial correlation matrix P is calculated
which can also be interpreted as providing a list of conditional independence
assertions holding in the input distribution. Our model, uGLAD1 , builds upon
and extends the state-of-the-art model GLAD [47] to the unsupervised setting. The
key benefits of our model are (1) uGLAD automatically optimizes sparsity-related
regularization parameters leading to better performance than existing algorithms.
(2) We introduce multi-task learning based ‘consensus’ strategy for robust handling
of missing data in an unsupervised setting. We evaluate performance on synthetic
Gaussian, non-Gaussian data generated from Gene Regulatory Networks, and
present case studies in anaerobic digestion and infant mortality.
Keywords: Graphical Lasso, Deep Learning, Unrolled Algorithms, Conditional
Independence graphs, Sparse graphs

1 INTRODUCTION

Probabilistic graphical models (PGMs) [32; 26] are generative models of complex systems, used
to describe dependencies within a set of random variables and visualize the structure of a domain.
The models rely on conditional independence assumptions between variables, which result in sparse
representation and enable efficient inference. In the graphical representation of the models, conditional
independence is indicated by an absence of an edge between two variables. Such models can be
learned from observational data [18; 12]. Structure discovery enabled by PGMs is important for new
and poorly understood domains where relationships between variables are not known. PGMs have
been used in various domains, including medical diagnosis [19; 20], fault diagnosis, genomic data
analysis via gene regulatory networks [28; 35; 1; 52], speech recognition, and in finance [17].

The problem of recovering the structure from observational data is particularly difficult in high-
dimensional settings, where the number of features may be larger than the number of observations.
We focus specifically on learning undirected models where the data is assumed to have been generated
from a multivariate Gaussian distribution [12; 3; 62; 60; 47]. In such cases, the goal is to estimate a
sparse inverse covariance matrix. Sparsity is typically enforced by the use of ℓ1 (lasso) regularization.

Assume we have a d-dimensional multivariate Gaussian random variable X = [X1, . . . , Xd]
⊤ with

m observations. The goal is to estimate its covariance matrix Σ∗ and precision matrix Θ∗ = (Σ∗)−1.
Θ∗ encodes conditional independence assumptions between variables: the ij-th component is zero
if and only if Xi and Xj are conditionally independent given the other variables {Xk}k ̸=i,j . This
problem is known as the sparse graph recovery problem and usually formulated (following [12]), as

1uGLAD code link: https://github.com/Harshs27/uGLAD

1

https://github.com/Harshs27/uGLAD

the ℓ1-regularized maximum likelihood estimation

Θ̂ = argminΘ∈Sd
++
− log(detΘ) + tr(Σ̂Θ) + ρ ∥Θ∥1,off , (1)

where Σ̂ is the empirical covariance matrix based on m samples, Sd++ is the space of d×d symmetric
positive definite matrices (SPD), and ∥Θ∥1,off =

∑
i ̸=j |Θij | is the off-diagonal ℓ1 regularizer with

regularization parameter ρ. The use of this estimator is justified even for non-Gaussian X , since it is
minimizing an ℓ1-penalized log-determinant Bregman divergence [39]. The problem in Eq. 1 is a
convex optimization problem. It can be solved by many algorithms, see Section 2 for examples.

However, classic approaches have their limitations in both the statistical aspect and computational
aspect. Statistically, the classic formulation uses a single regularization parameter ρ for all entries in
the precision matrix Θ, which may not be optimal. A recent theoretical work [55] validates the use
of adaptive parameters. [47] has proposed a model with multiple regularization parameters called
GLAD and has shown emprical evidence that such a model pushes the sample complexity limits.
Based on that evidence, we hypothesise that one may obtain better recovery results by allowing
the regularization parameters to vary across the entries in the precision matrix. However, it is hard
for traditional approaches to search over a large number of hyperparameters. Computationally, the
complexity of solving the optimization depends on the convexity of the objective, the step sizes of
the algorithm, the initialization, the design of the update steps, etc. Different problems may require
different designs of the algorithm to achieve a better efficiency. A unified design for all problems
may not be optimal.

In this work, we propose uGLAD (unsupervised-GLAD), which is a deep model that can recover sparse
graphs in an unsupervised manner. As the name suggests, it builds upon and extends the GLAD model,
which recovers sparse graphs under supervision. uGLAD uses the same objective function as GLAD .
Using an additional variable Z, the ℓ1-regularized maximum likelihood from Eq. 1 can be written as

Θ̂ = argminΘ∈Sd
++
− log(detΘ) + tr(Σ̂Θ) + ρ ∥Z∥1 , s.t. Z = Θ

Now, including the constraint as squared penalty term λ we obtain the reformulated objective as

Θ̂λ, Ẑλ = argminΘ,Z∈Sd
++
− log(detΘ) + tr(Σ̂Θ) + ρ ∥Z∥1 +

1
2λ ∥Z −Θ∥2F (2)

Note that introducing the variable Z helps in splitting the objective into 2 parts and those can be
optimized alternately using the Alternating Minimization algorithm. A Conditional Independence
(CI) graph can be obtained from this precision matrix by calculating the partial correlation matrix.
The CI graphs are very informative as they describe how the features in a domain interact with each
other. Furthermore, they can additionally capture negative partial correlations between features which
are usually not modeled by traditional graphs.

Key contributions of this work:

• Extending GLAD to unsupervised setting: The uGLAD doesn’t rely on availability of ground truth
to do graph recovery.

• Adaptive hyperparameters: The uGLAD architecture design enables the hyperparameters to opti-
mally adapt at each step of the unrolled Alternating Minimization (AM) algorithm [47] that leads
to its superior performance.

• Automatically decide optimum sparsity parameters: The sparsity of the recovered graph is highly
sensitive to the choice of the regularization hyperparameters. Instead, uGLAD models hyperparam-
eters within the neural network framework and they are directly optimized for the uGLAD objective
defined above. So, there is no need to separately optimize the sparsity hyperparameters which is
otherwise a computationally expensive process.

• Runtime efficiency: The uGLAD software can run on GPUs for higher time efficiency and scalability.
• Missing data handling: The uGLAD framework can also be used for multi-task learning. We

leverage this property further to develop a novel ‘consensus’ strategy to robustly handle missing
data.

2 RELATED WORK

We list some of the relevant related approaches to our model in this section. A more thorough analysis
of related methods can be found in [45].

2

Traditional algorithms for graphical lasso: These are primarily iterative methods for optimizing
the graphical lasso objective. Main methods developed for this problem in the last two decades are
detailed in this survey paper [58]. The variant of the Block Coordinate Descent (BCD) algorithm
by [12] is widely used to recover graphs using the graphical lasso method. This method is also
implemented in the popular python sklearn package. The G-ISTA algorithm by [15] is based on
the iterative shrinkage thresholding procedure. It is one of the prominent methods based on using the
proximal gradient descent approach. The Alternating Direction Method of Multipliers (ADMM) [9]
has also been successfully used in various graphical lasso based applications.

Deep Learning approaches for graph recovery: DeepGraph (DG) [3], is a supervised deep learning
method that takes in the input samples and outputs the corresponding adjacency matrix which shows
the connections between input features. DeepGraph architecture consists of many convolutional
layers followed by multi-layer perceptrons that finally decides whether an edge is present between
every combination of features. Another relevant DL method roughly based on modeling the input
data with a Variational Autoencoder for graph recovery is DAG-GNN [60]. These deep architectures
have very high number of learnable parameters, which is a significant drawback. Hence, we pursue a
different line of research (using inductive biases) which gives similar performance with significantly
reduced number of learnable parameters and brings more interpretability as shown in [47].

Samples

Λ��

Norm

ZkΣˆ Θ�

Θ�+1

���

Closed
Form

Zk+1 Θ�+1

Thresholding

Σˆ

Graphs

Figure 1: The recurrent
unit GLADcell. (Taken
from [47])

Deep learning models using inductive biases: Improved performance
often results from including domain knowledge in the design/initialization
of deep learning architectures. For instance, [44] presents a generic tech-
nique to use a probabilistic graphical model as a prior to design a deep
model. The authors were able to show enhanced performance on the docu-
ment classification task by leveraging the Latent Dirichlet Allocation prior.
Another way of including prior knowledge about the domain is using an
optimization algorithm for a related objective function as a template to
design the deep architecture. Unrolling the optimization algorithms and
parameterizing the step updates using neural networks have been fairly
successful for many tasks [27; 8; 43; 36; 52].

This work focuses on recovering undirected graphs, specifically based
on optimizing the graphical lasso objective function. Hence, we skipped
discussing the methods developed specifically to recover Directed Acyclic
Graphs (DAGs). The work most closely related to ours is the GLAD [47]
model. Since our algorithm builds upon GLAD’s architecture we are going
to describe it in detail in Section 3, while pointing out ways in which
uGLAD differs from GLAD.

3 THE UGLAD MODEL

Given input data X ∈ RM×D, with M samples with D features, the task
is to recover a sparse graph showing partial correlations between the D
features. Recovering the sparse graph (the adjacency matrix) corresponds
to obtaining the precision matrix Θ and the partial correlation matrix P of
the underlying multivariate Gaussian distribution.

3.1 UNDERSTANDING THE GLAD ARCHITECTURE

uGLAD uses the same architecture as GLAD . We have a function Θ = fnn(X), implemented as the
GLAD architecture [47], refer Fig. 1. The GLAD model uses the Alternating Minimization algorithm
updates, unrolled to some iterations, for the maximum likelihood objective as a template for its deep
architecture design. Penalty constants (ρ, λ) are replaced by problem dependent neural networks,
ρnn and Λnn. These neural networks are minimalist in terms of the number of parameters as the
input dimensions are mere {3, 2} for {ρnn,Λnn} and outputs a single value. This unrolled algorithm
with neural network augmentation can be viewed as a highly structured recurrent architecture, see
Fig. 1.

Note that the GLAD model has a low number of learnable parameters and maintains the permutation
invariance w.r.t. the input. The design prior of the AM algorithm enforces the positive definite

3

constraint of the precision matrix at every step of its optimization. One can see the state of the
recovered graph at each unrolled step of the AM optimization, thus giving insights about the learning
process. The AM algorithm converges linearly for the graphical lasso objective.

Figure 2: Minimalist neural network architec-
tures designed for GLAD and GLAD optimization
algorithm.

For the sake of completeness of understanding the
GLAD architecture, we graciously borrow the algo-
rithm (see Alg.2) and neural network design details
from [47] here. GLAD parameter settings details are:
ρnn was a 4 layer neural network and Λnn was a 2
layer neural network. Both used 3 hidden units in
each layer. The non-linearity used for hidden layers
was tanh, while the final layer had sigmoid (σ) as
the non-linearity for both, ρnn and Λnn (refer to Fig-
ure 2). The learnable offset parameter of initial Θ0

was set to t = 1. It was unrolled for L = 30 itera-
tions.The optimizer used was adam with the learning
rates were chosen between [0.001, 0.005]. The ar-
chitecture is described in more detail in the original
GLAD paper [47].

3.2 THE UGLAD LOSS FUNCTION

To learn the parameters in GLAD architecture, the au-
thors used supervision in form of the true underlying
graphs. They leveraged the interpretable nature of
the GLAD’s deep architecture to define the loss for
training. Specifically, each iteration of the model will
output a valid precision matrix estimation and this
allowed them to add auxiliary losses to regularize
the intermediate results of GLAD, guiding it to learn
parameters which can generate a smooth solution
trajectory.

The authors used Frobenius norm in their loss func-
tion:

LGLAD :=
1

n

n∑
i=1

K∑
k=1

γK−k
∥∥∥Θ(i)

k −Θ∗
∥∥∥2
F
, (3)

where (Θ
(i)
k , Z

(i)
k , λ

(i)
k) = GLADcellf (Σ̂

(i),Θ
(i)
k−1, Z

(i)
k−1, λ

(i)
k−1) is the output of the recurrent unit

GLADcell at k-th iteration, K is number of unrolled iterations, γ ≤ 1 is a discounting factor
and Θ∗ is the ground truth precision matrix. Then the stochastic gradient descent algorithm was used
to train the parameters f in the GLADcell.

In contrast to GLAD , uGLAD is designed to work without supervision, so it cannot take advantage of
the underlying true generating distribution in the form of the true covariance matrix. Thus, we need
to replace GLAD’s MSE loss from Equation 3 with a new loss. Given a function Θ = fnn(X), we
optimize the log likelihood function given by

LuGLAD(S,Θ) = − log|Θ|+ ⟨S,Θ⟩ (4)

LuGLAD(X) = − log|fnn(X)|+ ⟨cov(X), fnn(X)⟩ (5)

where S = cov(X) is the covariance matrix. We take the function fnn as the GLAD model and
substitute it in the uGLAD loss function.

Algorithm 1 gives the pseudo code for learning the uGLAD model for doing sparse graph recovery.

3.3 CONVERGENCE PROPERTIES OF GLAD AND UGLAD

The GLAD paper [47] evaluates convergence properties for the GLAD algorithm using normalized
mean square error (NMSE) and probability of success (PS) to evaluate the algorithm performance.

4

NMSE is log10(E ∥Θp −Θ∗∥2F /E ∥Θ∗∥2F) and PS is the probability of correct signed edge-set
recovery, i.e., P

[
sign(Θp

ij) = sign(Θ∗
ij),∀(i, j) ∈ E(Θ∗)

]
, where E(Θ∗) is the true edge set. Opti-

mization objective always converges. However, errors of recovering true precision matrices measured
by NMSE have very different behaviors given different regularity parameter ρ, which indicates the
necessity of directly optimizing NMSE and hyperparameter tuning. NMSE values are very sensitive
to both ρ and the quadratic penalty λ of ADMM method. In GLAD and uGLAD, ρ and λ are not fixed,
but are optimized together with the rest of network parameters, leading to smooth convergence.

In experiments evaluating edge recovery success, GLAD consistently outperforms traditional methods
in terms of sample complexity as it recovers the true edges with considerably fewer number of
samples. Since in uGLAD we are still using the AM minimization based GLAD architecture which is
also based on optimizing the Eq. 1, we expect the linear convergence properties of the AM algorithm
will hold for uGLAD as well. The synthetic experiments in Sec. 6 show the results obtained from
uGLAD are better or even surpass in comparison to block coordinate descent based approach.

3.4 OBTAINING CONDITIONAL INDEPENDENCE GRAPHS

The CI graph shows the partial correlations between the input features. A non-zero partial correlation
between 2 features (fA, fB) indicates a direct dependence. So, if all the other features are fixed,
a positive partial correlation will indicate that increasing value of fA will increase the value of
fB and vice-versa for the negative correlation. To obtain this CI graph, we calculate the partial
correlation matrix from the precision matrix. Each entry of the partial correlation matrix Pij shows
the correlation of the feature xi, xj given the values of the other features are observed. This helps us
obtain the direct dependence of the features, Pij = − Θij√

ΘiiΘjj

. We can then visualize the graphs and

study the positive & negative correlations, with edge weights corresponding to correlation strengths.

4 MULTI-TASK LEARNING FOR PRECISION MATRIX RECOVERY

Algorithm 1: Optimizing uGLAD

Input: Observations X ∈ RM×D

S = cov(X);
for e = 1, · · · , E do
Θ̂e = GLAD(S) unrolled for L
iterations;
Compute loss LuGLAD(S, Θ̂e);
Backprop to update GLAD params;

end for
return Θ̂E

Most of the work in learning Gaussian graphical mod-
els has focused on estimating a single model. In recent
years, the framework was extended to jointly fitting a
collection of such models, based on data that share the
same variables, with dependency structure varying with
some external category. For example, in NLP applica-
tion, we can encounter different styles, which induce
links between some concepts, even as the underlying
grammar and semantics of the language stay the same.

There have been extensive studies on the joint estima-
tion of multiple undirected Gaussian graphical mod-
els [53; 21; 16; 6; 31; 9; 25; 29; 34; 59; 14; 56]. Most
traditional algorithms construct a joint objective for multiple estimation tasks. This objective typi-
cally incorporates similarities among various tasks by adding group norms or other regularizations.
However, in many practical problems, we only know that multiple tasks are related, without knowing
how they are similar to each other quantitatively. Manually constructing the joint objective may not
best reflect the actual similarity.

In contrast to traditional algorithms, in uGLAD, we do not need to pre-assume the specific sim-
ilarity among different tasks. Instead, we use a single network uGLAD to solve multiple tasks.
Since the parameters in uGLAD are shared across different tasks, the similarity among the tasks
is automatically learned from data. More specifically, given samples from K different models,
XK = [X1, X2, · · · , XK], we optimize the following objective

LuGLAD-multitask(XK) =
1

K

K∑
k=1

LuGLAD(cov(Xk), fnn(Xk)) (6)

Alternatively, we can use the cross-validation split {XK
train,XK

val ← XK} for training.

5

AUPR
Method M=10 M=25 M=50

BCD 0.112±0.013 0.132±0.012 0.219±0.085
uGLAD 0.159±0.029 0.174±0.018 0.223±0.062

AUC
Method M=10 M=25 M=50

BCD 0.505±0.007 0.532±0.031 0.617±0.083
uGLAD 0.572±0.027 0.595±0.044 0.651±0.021

Table 1: Synthetic data: Gaussian. AUPR and AUC on 20 test graphs for number of features D = 25 and
varying number of samples M . Gaussian random graphs with sparsity p = 0.1 were chosen and edge values
were sampled from ∼ U(−1, 1). We can observe that uGLAD (CV mode) significantly outperforms the BCD
algorithm (sklearn’s graphicalLassoCV) for samples/features ratio « 1 and gives comparable performance as the
number of samples increases.

5 HANDLING MISSING VALUES

The missing data problem is ubiquitous in all data problems. uGLAD can easily be extended to handle
this problem. If we observe that some specific feature columns have missing values and we have
reasons to believe that these values are missing at random, we can run imputation algorithms for
those columns to predict the missing entries. Then, we will have the complete imputed input data
Ximp ∈ RM×D over which we can run the uGLAD model and obtain the underlying precision matrix.

It can often happen that there are technical errors or human mistakes in collecting samples, which can
often lead to missing values or noise seeping into the sample. Also, we assume that the samples are
independent and identically distributed (IID), so we cannot make use of the imputation techniques
discussed in the case above. For this case, we propose a novel multi-task learning technique based on
utilizing the uGLAD’s ability to optimize over a batch of input samples.

Consensus strategy: Multi-task learning over row-subsampled input

The key idea is to create a batch of row subsamples of the input data X ∈ RM×D. Since all of
these subsamples come from the same underlying distribution, we should ideally recover the same
precision matrix for the entire batch. Thus, if we have a model that can be jointly optimized over the
entire batch for the uGLAD objective, resulting in the recovered precision matrix being robust against
erroneous or noisy samples.

Steps for the multi-task learning approach to train the uGLAD model for handling missing data:

1. Statistical imputation for the input: Replace all the missing entries of the input data X with their
respective column mean (the mean is calculated ignoring the missing entries) X[i, c] = mean(X[:
, c]). Replacing by mean is usually a preferred approach as its contribution zeros out (X − µX)
while centering the data for the covariance matrix calculation.

2. Getting the batches: Perform stratified K-fold sampling to distribute the rows with missing values
evenly among different batches. Say, we have XK = [X1, X2, · · · , XK] batches with each
Xk ∈ RM∗(K−1

K)×D. Thus, the batch input for the uGLAD model is XK ∈ RK×M∗(K−1
K)×D.

3. Optimizing uGLAD: It becomes a multi-task learning setting as we are jointly optimizing over a
batch input XK. The uGLAD model takes in the batch input XK and outputs the corresponding
K precision matrices. Since, the entire batch of data is coming from the same underlying
distribution, we use the entire data X ∈ RM×D for the uGLAD loss to optimize the parameters of
the uGLAD model. Mathematically, we are minimizing the uGLAD loss over the batch as

LuGLAD-meta(XK) =
1

K

K∑
k=1

LuGLAD(cov(X), fnn(Xk)) (7)

4. Consensus among the batch to obtain the final precision matrix: After optimizing the uGLAD for
the batch input, we will obtain K different precision matrices ΘK ∈ RK×D×D. Ideally, all the
precision matrices should be the same but there will be some discrepancies as we are working
with missing values. Our ‘consensus’ strategy to obtain the final precision matrix Θf is to find the
common edges with their correlation type (positive or negative) from the batch precision matrices.

6

AUPR
Method M=20 M=100 M=1000

BCD 0.163±0.028 0.241±0.014 0.523±0.011
uGLAD 0.206±0.035 0.272±0.024 0.569±0.048

AUC
Method M=20 M=100 M=1000

BCD 0.670±0.013 0.718±0.014 0.839±0.006
uGLAD 0.774±0.037 0.812±0.049 0.909±0.040

Table 2: GRN data: non-Gaussian. AUPR and AUC on 20 test graphs for D = 100 nodes and varying
samples M . Graphs were sampled from the SERGIO simulator for the Gene Regulatory network recovery task.
We can observe that the uGLAD model is more adaptive in non-Gaussian settings. A post-hoc masking operation
was done to remove all the edges not containing a transcription factor. This was done for all the methods.

AUPR
Method M=10 M=25 M=50

BCD-avg 0.137±0.099 0.179±0.027 0.241±0.045
uGLAD-multi 0.186±0.028 0.204±0.044 0.279±0.027

AUC
Method M=10 M=25 M=50

BCD-avg 0.508±0.024 0.538±0.024 0.597±0.047
uGLAD-multi 0.552±0.048 0.573±0.047 0.626±0.022

Table 3: Multi-task learning. Average AUPR and AUC over K = 10 graphs coming from sparsity∼ [0.05, 0.2].
The number of nodes D = 25 with varying samples M = [10, 25, 50]. The BCD-avg considers each instance
of the batch as a separate task and reports the average results over the batch. uGLAD-multi is used to recover the
graphs jointly using a single model.

Mathematically, we can obtain each entry [i, j] of the final precision matrix as

Θf
i,j = max-countk=1,...,K(signΘk

i,j) min
k=1,...,K

|Θk
i,j | (8)

Here, the ‘max-count’ term determines whether the correlation among the batches for that entry is
positive or negative. The 2nd term chooses the minimum absolute value for that entry among the
batches as this facilitates sparsity and is conservative in terms of the strength of an edge.

6 EXPERIMENTS

Our software package is hosted on the GitHub website, details given in Sec. 10. Its function signature
is very much akin to the sklearn’s GraphicalLassoCV [33]. This was intended to make it easier for
the users to try out our method with minimal change to their existing code pipeline. Sec. 9 lists
some more potential applications of the uGLAD model. We believe that our model can be seamlessly
integrated with the existing pipeline for these applications and we are hopeful that it improves results
over state-of-the-art methods. Sec. 7 applies uGLAD to analyse the actual data collected for anaerobic
digestion and Sec. 8 to analyse data in the infant mortality domain.

AUPR
Method dp=0.25 dp=0.50 dp=0.75

BCD-mean 0.583±0.082 0.335±0.012 0.100±0.009
uGLAD-mean 0.605±0.103 0.357±0.034 0.113±0.016
uGLAD-missing 0.612±0.100 0.375±0.043 0.132±0.007

AUC
Method dp=0.25 dp=0.50 dp=0.75

BCD-mean 0.792±0.045 0.649±0.005 0.508±0.009
uGLAD-mean 0.806±0.019 0.691±0.025 0.527±0.011
uGLAD-missing 0.815±0.010 0.718±0.002 0.560±0.0.41

Table 4: Missing data: Gaussian. AUPR and AUC on 20 test graphs for D = 25 nodes and samples M = 500.
Gaussian random graphs were generated as described in Sec. 6.1. Increasing fraction of dropouts were introduced
to observe the robustness of handling missing data. We can observe that the uGLAD-missing model is more
robust, especially in high dropout settings.

7

AUPR
Method dp=0.50 dp=0.75 dp=0.90

BCD-mean 0.468±0.015 0.323±0.008 0.042±0.017
uGLAD-mean 0.503±0.011 0.346±0.021 0.090±0.069
uGLAD-missing 0.523±0.004 0.361±0.043 0.117±0.093

AUC
Method dp=0.50 dp=0.75 dp=0.90

BCD-mean 0.819±0.005 0.794±0.042 0.510±0.010
uGLAD-mean 0.897±0.009 0.821±0.019 0.598±0.079
uGLAD-missing 0.906±0.007 0.876±0.013 0.706±0.206

Table 5: Missing data: GRN. AUPR and AUC on 20 test graphs for D = 100 nodes and samples M = 1000.
Gene regulatory network data was used as described in Sec. 6.2. Increasing fraction of dropouts were introduced
to the observed samples of the microarray expression data. uGLAD-missing model is more robust for high dropout
settings. Such high dropout ratios are quite common in collecting samples for microarray gene expression data.

We use AUC (area under the ROC curve) and AUPR (area under the precision-recall curve) as primary
evaluation metrics. The sparsity of the graph leads to very few positive edges. These two metrics
account for such imbalance in the data. In addition, they have the advantage of working without
specifically setting a threshold for non-zero entries. Their values reported in this work have the mean
and the associated standard deviation values listed.

We primarily compare against the BCD algorithm. It has been shown that the other traditional
graphical lasso methods like ADMM and G-ISTA gave similar performance as BCD [47]. We are not
aware of any unsupervised deep learning approaches that optimize for the graphical lasso objective.

6.1 PERFORMANCE ON SYNTHETICALLY GENERATED GAUSSIAN SAMPLES

The synthetic data was generated based on the procedure similar to the one described in [15]. A
d-dimensional precision matrix Θ was generated by initializing a d× d matrix with its off-diagonal
entries sampled i.i.d. from a uniform distribution Θij ∼ U(−1, 1). These entries were then set to
zero based on the sparsity pattern of the corresponding Erdos-Renyi random graph with a certain
probability p. Finally, an appropriate multiple of the identity matrix was added to the current matrix,
so that the resulting matrix had the smallest eigenvalue of 1. In this way, Θ was ensured to be
a well-conditioned, sparse and positive definite matrix and was used in the multivariate Gaussian
distribution N (0,Θ−1), to obtain M i.i.d samples. Table 1 shows the results on this synthetic data.

6.2 RECOVERY OF GENE REGULATORY NETWORKS

We conducted an exploratory study to gauge the generalization ability of uGLAD to non-Gaussian
distributions. We chose the GRN inference task for this purpose. To this end, we use the SERGIO
simulator [11] which has been used by several other GRN recovery methods [51; 1]. The simulator
provides a list of parameters to simulate cells from different types of biological processes and gene-
expression levels with various amounts of intrinsic and technical noise. For evaluation purposes
in this work, we created random graphs (GRNs) that were used as input to SERGIO and will act
as ground truth for evaluation. First, we set the number of Transcription Factors (TFs) or master
regulators. Then, we randomly added edges between the TFs and the other genes based on sparsity
requirements. Also, we randomly added some edges between the TFs themselves but excluded
any self-regulation edges and maintained connectivity of the graph. When simulating data with no
technical noise (clean data), we set the following parameters: sampling-state= 15 (determines the
number of steps of simulations for each steady state); noise-param∼ U [0.1, 0.3] (controls the amount
of intrinsic noise); noise-type = ‘dpd’ (the type of intrinsic noise is dual production decay noise, which
is the most complex out of all types provided); we set genes decay parameter to 1. The parameters
required to decide the master regulators’ basal production cell rate for all cell types: low expression
range of production cell rate ∼ U [0.2, 0.5] and high expression range of cell rate ∼ U [0.7, 1]. We
chose K∼ U [1, 5], where K denotes the maximum interaction strength between master regulators and
target genes. Positive strength values indicate activating interactions and negative strength values
indicate repressive interactions and signs are randomly assigned. The parameters were configured
such that the statistical properties of these synthetic data (clean) set are comparable with the mouse

8

Figure 3: uGLAD recovered precision matrix compared to empirical covariance and precision matrix recovered
by the BCD algorithm for archaea at family level

Figure 4: uGLAD recovered precision matrix compared to empirical covariance and precision matrix recovered
by the BCD algorithm for archaea at species level

brain [61]. Table 2 shows the comparison of the different graph recovery methods on the simulated
data generated by SERGIO for cell types C = 5 and clean data setting.

6.3 MULTI-TASK LEARNING

This experiment verifies the ability of uGLAD to do multi-task learning. We chose a collection of
tasks as a set of data coming from graphs with varying sparsity. For K different tasks, our input data
is X ∈ RK×M×D. We run the uGLAD model in multi-task learning mode as described in Sec. 4
and recover K different precision matrices Θ ∈ RK×D×D that are optimized for the loss function
LuGLAD-multitask(XK) given by equation 6. Table 3 shows results from a single uGLAD model in multi-
task setting which is run on the synthetic data generated as described in Sec. 6.1. uGLAD recovers
multiple graphs with varying sparsity and shows promise for multitask learning problems.

6.4 ROBUSTNESS TESTING FOR MISSING DATA

We artificially introduced missing values or ‘dropouts’ in the input data X ∈ RM×D to create noisy
data. Our aim is to study the effectiveness of the ‘consensus’ strategy discussed in Sec. 5. We
compare it with the baseline statistical imputation technique that does column-wise (or feature-wise)
mean imputation as a preprocessing step. BCD-mean and uGLAD-mean, report the results of running
the corresponding methods on the column mean imputed data while the uGLAD-missing uses the
‘consensus’ strategy. Tables 4&5 show the robustness of the ‘consensus’ strategy introduced in this
work for synthetic Gaussian data as well as for the Gene regulatory networks recovery tasks.

7 CASE STUDY: ANAEROBIC DIGESTION

Our algorithm development was inspired by a practical problem of domain exploration in anaerobic
digestion. Anaerobic digestion is a growing field addressing waste management with both environ-
mental benefits (reduced odor and pathogens, improved soil health, reduction in methane emissions)
and economic value from use of captured methane gas. Despite numerous studies, the dynamics of
organisms’ growth in digesters, their dependence on conditions (temperature, pH, feedstock mix,
nitrogen to carbon ratio, etc.) and their impact on methane yield are not well understood.

We present findings based on a public dataset from a study of anaerobic digesters at Danish wastewater
plants [22]. Data is available at NCBI under bioproject accession number PRJNA637463.

9

Figure 5: uGLAD graph for archaea at family level. Edge color indicates the sign of the correlation: green -
positive, red - negative, edge weight corresponds to correlation’s strength.

Data comes from a 6-year study of 46 digesters located at 22 Danish treatment plants. We have
three types of digesters, operating at different temperatures (mesophilic, mesophilic with thermal
hydrolysis pretreatment, thermophilic). Digesters operate continuously with sludge retention rate
of 15.8 to 35.6 days. Samples were taken at 3-month and 6-month intervals, so they can be treated
as i.i.d. We have a total of 1,010 sludge samples, 418 used to sequence archaea and 592 bacteria,
performed using 16S rRNA gene amplicon sequencing. Analysis resulted in identification of 33,047
bacterial and 878 archaeal unique amplicon sequence variants (ASVs). 70% of genera and 93% of
the species were determined to be novel or previously unclassified. This presents problems for all
approaches attempting to utilize existing databases to determine organisms’ function for the purpose
of grouping and feature selection. In fact, one of the best ways to determine an organism’s function is
based on checking properties of organisms whose abundance numbers in the digester best correlate
with the given organism’s numbers.

Our algorithm works with any input, including: ASVs filtered by frequency, ASVs rolled up to higher
taxonomy levels (species, genus, family), ASVs abundance normalized in various ways [2]. We
calculate the partial correlation matrix from the precision matrix. Each entry of the partial correlation
matrix Pij shows the correlation of the feature xi, xj given the values of the other features are
observed. This helps us obtain the direct dependence of the features.

Pij = −
Θij√
ΘiiΘjj

(9)

We use networkx package to visualize the graphs, presenting positive correlations in green and
negative in red, with edge weights corresponding to the strength of the correlation.

Figures 4 and 3 present precision matrices recovered by our algorithm and BCD with empirical
covariance shown for comparison. Figures 5 and 6 show corresponding graphs for archaea at family
and species level.

Figures 8 and 7 show a result of multitask learning based on digester type: mesophilic (operating at
temperature 38◦C) and thermophilic (operated at temperature 53.6◦C). The two graphs’ edges are
filtered to show only edges common to both graphs, which is a small fraction of all edges. Note that
in some cases, the sign of the correlation (and the color of the edge) changes depending on digester’s
type.

Our model is being used by domain experts to gain insight into the domain of anaerobic digestion.
One use case is to understand properties of newly discovered bacteria and archaea by analyzing

10

Figure 6: uGLAD graph for archaea at species level. Edge color indicates the sign of the correlation: green -
positive, red - negative, edge weight corresponds to correlation’s strength.

Figure 7: Example of multitask learning applied to different digester types. uGLAD graph for bacteria at
genus level for thermophilic digesters showing only edges common to all digester types. Note that edge colors
(correlation signs) are different from the corresponding graph for mesophilic digesters. Edge color indicates the
sign of the correlation: green - positive, red - negative, edge weight corresponds to correlation’s strength.

11

Figure 8: Example of multitask learning applied to different digester types. uGLAD graph for bacteria at genus
level for mesophilic digesters showing only edges common to all digester types. Edge color indicates the sign of
the correlation: green - positive, red - negative, edge weight corresponds to correlation’s strength.

which known organisms their abundance in digester samples correlates with (positively or negatively).
That can lead to focusing attention on a smaller organism set. Another use case centers around
understanding the role of digester conditions and feedstock mix on organisms’ growth and methane
yield. The results presented in recovered graphs lead to new hypotheses and new experiments being
designed to test them.

8 CASE STUDY: INFANT MORTALITY

We used uGLAD to recover the graph for the domain of infant mortality. The dataset is based on CDC
Birth Cohort Linked Birth – Infant Death Data Files [30]. It describes pregnancy and birth variables
for all live births in the U.S. together with an indication of an infant’s death before the first birthday.
We used the data for 2015 (latest available), which includes information about 3,988,733 live births
in the US during 2015 calendar year.

We recovered the graph strucure of the dataset using uGLAD and using the Bayesian network package
bnlearn [40] with Tabu search and AIC score. The graphs are shown in Fig. 10 and 9 respectively.
Since bnlearn does not support networks containing both continuous and discrete variables, all
variables were converted to categorical for bnlearn structure learning and inference. In contrast,
uGLAD is equipped to work with mixed types of variables and was trained on the dataset prior to
conversion.

Both graphs show similar sets of clusters with high connectivity within each cluster:

• describing both parents’ race and ethnicity (mrace and frace variables),
• related to mother’s bmi, height (mhtr) and weight, both pre-pregnancy (pwgt_r) and at delivery

(dwgt_r),
• consisting of maternal morbidity variables marked with mm prefix (e.g., unplanned hysterectomy),
• showing pregnancy related complications such as hypertension and diabetes (variables prefixed

with rf and urf),
• consisting of variables related to parents’ STD infections (ip prefix),
• related to delivery complications and interventions (variables prefixed with ld),

12

Figure 9: The Bayesian network graph learned using score-based method for the Infant Mortality 2015 data.

Figure 10: The CI graph recovered by uGLAD for the Infant Mortality 2015 data.

• showing interventions after delivery (ab prefix) such as ventilation or neonatal ICU,
• describing congenital anomalies diagnosed in the infant at the time of birth (variables prefixed with
ca),

• related to infant’s death: age at death, place, autopsy, manner, etc.

13

Figure 11: Comparing the graphs recovered by uGLAD and Bayesian Network recovery package [40].

Apart from these clusters, there are a few highly connected variables in both graphs: gestational age
(combgest and oegest), delivery route (rdmeth_rec), Apgar score, type of insurance (pay),
parents’ ages (fage and mage variables), birth order (tbo and lbo), and prenatal care.

With all these similarities, however, the total number of edges varies greatly between the two graphs
and the number of edges unique to each graph outnumbers the number of edges the two graphs have
in common (see Figure 11). Obviously, the two graph recovery algorithms are very different in both
algorithmic approach and objective function. One additional reason for the differences lies in the
continuous-to-categorical conversion performed prior to Bayesian network structure discovery and
training.

New edges discovered by uGLAD and missed by bnlearn merit futher exploration, an example
being [46].

9 POTENTIAL OTHER APPLICATIONS OF THE UGLAD MODEL

Listing some more applications for the uGLAD model for which we feel that it can help improve the
current state-of-the-art performance.

• Protein Structure recovery: PSICOV [23] uses graphical lasso based approach to predict the
contact matrix, which then eventually gives the 3D protein structure. uGLAD can be substituted for
predicting the contact matrix from the input correlation matrix between the amino acid sequences.

• Finance & Healthcare: Finding correlations between stocks to see how companies compare [17].
Similarly systems for finding connection between important body vitals of ICU patients [50; 5].

14

• Class imbalance handling: We can potentially use uGLAD to find correlation between the features.
This correlation graph can be helpful in sampling down useful feature clusters. This will help
identify key features and in-turn improve performance in cases where there is less data or imbal-
anced data (more data points for one class over another). Some of the methods for class imbalance
handling on which uGLAD model can act as a preprocessing steps are [37; 49; 4].

• Gaussian processes & time series problems: uGLAD can be extended to this interesting work by [7]
on combining graphical lasso with Gaussian processes for learning gene regulatory networks. Simi-
larly, in a recent work on including negative datapairs for the Gaussian processes [42], uGLAD can
be used for narrowing down the relevant features for doing the GP regression. Such systems will
find applications in understanding climate forecasting, speech recognition, audio understanding
etc. [54; 48; 13; 24; 57] to list a few. The feature graph recovered by uGLAD can be potentially
explored as a prior to design the sparse weights of Recurrent Neural Networks [38].

• Video sequence predictions: uGLAD can be integrated into the pipeline for latest models used for
generating unseen future video frames [10; 41]. Specifically, the parameters of the uGLAD can be
learned to narrow down the potential future viable frames from the generated ones.

10 SOFTWARE DETAILS: OPTIMIZING MODES OF UGLAD

To optimize uGLAD for the uGLAD loss function, we have introduced 4 different modes of training.
In the software package, these modes can be switched from one to the other using an indicator flag.

Direct mode: The input to the uGLAD model is complete data X and the output precision matrix
Θ = fnn(X) is optimized to reduce the uGLAD loss LuGLAD(X), as defined in Eq. 4.

CV mode (recommended): In the k-fold cross validation mode, we split the input samples X =
(Xtrain, Xvalid). We use the Xtrain as input and optimize for the uGLAD loss LuGLAD(Xtrain). Then,
we select the best model that minimizes the LuGLAD(Xvalid) for the Xvalid samples.

Missing data mode: We give the entire data X as input with a ‘NaN’ indicator for the entries where
the values are missing. The software then follows the ‘consensus’ strategy for handling of missing
data given in Sec. 5 and outputs the final precision matrix Θf .

Multi-task mode: Given a batch of input data X ∈ RK×M×D, we jointly optimize them for the
uGLAD loss objective to obtain K different precision matrices ΘK ∈ RK×D×D, refer to Sec. 4.

11 CONCLUSIONS

We introduced a novel technique uGLAD to perform sparse graph recovery by optimizing a deep
unrolled network for the graphical lasso objective. This is an extension to the previous GLAD model
that was designed to use supervision. The key advantages of using our model over the state-of-the-art
algorithms for the graphical lasso problems are (1) Sparsity related hyperparameters are modeled
using neural networks which are automatically learned during the optimization. We thus address
the sensitivity issue of choosing the right sparsity parameters which is usually a tedious task and
often manually set for the other algorithms. (2) By design, neural networks of uGLAD enable the
sparsity regularization to be adaptive over the iterations of the optimization leading to superior
performance. (3) Our software implementation supports GPU based acceleration and thus can be
scaled efficiently to meet the runtime requirements. (4) The uGLAD framework can do efficient
multi-task learning. The proposed ‘consensus’ strategy based on leveraging this property works well
to robustly handle missing data. As our experience with anaerobic digestion and infant mortality
demonstrates, uGLAD can be successfully used as a tool for generating insight into domain structure
in many other applications. We hope that our model becomes one the widely used algorithms to solve
the graphical lasso objective.

REFERENCES

[1] Maneesha Aluru, Harsh Shrivastava, Sriram P Chockalingam, Shruti Shivakumar, and Srinivas
Aluru. EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene
regulatory networks. Bioinformatics, 2021.

15

[2] Michelle Badri, Zachary D. Kurtz, Richard Bonneau, and Christian L. Müller. Shrinkage
improves estimation of microbial associations under different normalization methods. bioRxiv,
2020.

[3] Eugene Belilovsky, Kyle Kastner, Gaël Varoquaux, and Matthew B Blaschko. Learning to
discover sparse graphical models. In International Conference on Machine Learning, pages
440–448. PMLR, 2017.

[4] Sakyajit Bhattacharya, Vaibhav Rajan, and Harsh Shrivastava. ICU mortality prediction: a
classification algorithm for imbalanced datasets. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

[5] Sakyajit Bhattacharya, Vaibhav Rajan, and Harsh Shrivastava. Methods and systems for
predicting mortality of a patient, November 5 2019. US Patent 10,463,312.

[6] Tony Cai, Weidong Liu, and Xi Luo. A constrained ℓ1 minimization approach to sparse precision
matrix estimation. Journal of the American Statistical Association, 106(494):594–607, 2011.

[7] H Chatrabgoun, AR Soltanian, H Mahjub, and F Bahreini. Learning gene regulatory net-
works using Gaussian process emulator and graphical lasso. Journal of Bioinformatics and
Computational Biology, page 2150007, 2021.

[8] Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao, and Le Song. RNA secondary structure
prediction by learning unrolled algorithms. arXiv preprint arXiv:2002.05810, 2020.

[9] Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso for inverse
covariance estimation across multiple classes. Journal of the Royal Statistical Society. Series B,
Statistical methodology, 76(2):373, 2014.

[10] Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In International
Conference on Machine Learning, pages 1174–1183. PMLR, 2018.

[11] Payam Dibaeinia and Saurabh Sinha. SERGIO: a single-cell expression simulator guided by
gene regulatory networks. Cell Systems, 11(3):252–271, 2020.

[12] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[13] Milica Gašić and Steve Young. Gaussian processes for pomdp-based dialogue manager opti-
mization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(1):28–40,
2013.

[14] André R Gonçalves, Fernando J Von Zuben, and Arindam Banerjee. Multi-task sparse structure
learning with Gaussian copula models. The Journal of Machine Learning Research, 17(1):1205–
1234, 2016.

[15] Dominique Guillot, Bala Rajaratnam, Benjamin T Rolfs, Arian Maleki, and Ian Wong. Iterative
thresholding algorithm for sparse inverse covariance estimation. arXiv preprint arXiv:1211.2532,
2012.

[16] Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu. Joint estimation of multiple
graphical models. Biometrika, 98(1):1–15, 2011.

[17] David Hallac, Youngsuk Park, Stephen Boyd, and Jure Leskovec. Network inference via
the time-varying graphical lasso. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 205–213, 2017.

[18] David Heckerman. A tutorial on learning with Bayesian networks. Technical Report MSR-TR-
95-06, March 1995.

[19] David Heckerman, Eric Horvitz, and Bharat N. Nathwani. Toward normative expert systems
part I. The Pathfinder project. Methods of Information in Medicine, 31:90–105, June 1992.

16

[20] David Heckerman and Bharat N. Nathwani. Toward normative expert systems part II. Probability-
based representations for efficient knowledge acquisition and inference. Methods of Information
in Medicine, 31:106–116, August 1992.

[21] Jean Honorio and Dimitris Samaras. Multi-task learning of Gaussian graphical models. In
ICML, 2010.

[22] Chenjing Jiang, Miriam Peces, Martin Hjorth Andersen, Sergey Kucheryavskiy, Marta
Nierychlo, Erika Yashiro, Kasper Skytte Andersen, Rasmus Hansen Kirkegaard, Liping Hao,
Jan Høgh, Aviaja Anna Hansen, Morten Simonsen Dueholm, and Per Halkjær Nielsen. Char-
acterizing the growing microorganisms at species level in 46 anaerobic digesters at Danish
wastewater treatment plants: A six-year survey on microbial community structure and key
drivers. Water Research, 193:116871, 2021.

[23] David T Jones, Daniel WA Buchan, Domenico Cozzetto, and Massimiliano Pontil. PSICOV:
precise structural contact prediction using sparse inverse covariance estimation on large multiple
sequence alignments. Bioinformatics, 28(2):184–190, 2012.

[24] Alexander Jung, Gabor Hannak, and Norbert Goertz. Graphical lasso based model selection for
time series. IEEE Signal Processing Letters, 22(10):1781–1785, 2015.

[25] Mladen Kolar, Le Song, Amr Ahmed, Eric P Xing, et al. Estimating time-varying networks.
Annals of Applied Statistics, 4(1):94–123, 2010.

[26] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques.
2009.

[27] Jialin Liu and Xiaohan Chen. ALISTA: Analytic weights are as good as learned weights in
LISTA. In International Conference on Learning Representations (ICLR), 2019.

[28] Thomas Moerman, Sara Aibar Santos, Carmen Bravo González-Blas, Jaak Simm, Yves Moreau,
Jan Aerts, and Stein Aerts. GRNBoost2 and Arboreto: efficient and scalable inference of gene
regulatory networks. Bioinformatics, 35(12):2159–2161, 2019.

[29] Karthik Mohan, Palma London, Maryam Fazel, Daniela Witten, and Su-In Lee. Node-based
learning of multiple Gaussian graphical models. The Journal of Machine Learning Research,
15(1):445–488, 2014.

[30] United States Department of Health, Centers of Disease Control Human Services (US DHHS),
and Division of Vital Statistics (DVS) Prevention (CDC), National Center for Health Statis-
tics (NCHS). Birth Cohort Linked Birth – Infant Death Data Files, 2004-2015. Compiled from
data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative
Program, on CDC WONDER On-line Database. Accessed at https://www.cdc.gov/
nchs/data_access/vitalstatsonline.htm.

[31] Diane Oyen and Terran Lane. Leveraging domain knowledge in multitask Bayesian network
structure learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26,
2012.

[32] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[34] Christine Peterson, Francesco C Stingo, and Marina Vannucci. Bayesian inference of multiple
Gaussian graphical models. Journal of the American Statistical Association, 110(509):159–174,
2015.

[35] Aditya Pratapa, Amogh P Jalihal, Jeffrey N Law, Aditya Bharadwaj, and TM Murali. Bench-
marking algorithms for gene regulatory network inference from single-cell transcriptomic data.
Nature methods, 17(2):147–154, 2020.

17

https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm
https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm

[36] Xingyue Pu, Tianyue Cao, Xiaoyun Zhang, Xiaowen Dong, and Siheng Chen. Learning to learn
graph topologies. Advances in Neural Information Processing Systems, 34, 2021.

[37] M Mostafizur Rahman and Darryl N Davis. Addressing the class imbalance problem in medical
datasets. International Journal of Machine Learning and Computing, 3(2):224, 2013.

[38] Samyam Rajbhandari, Harsh Shrivastava, and Yuxiong He. Antman: Sparse low-rank compres-
sion to accelerate rnn inference. arXiv preprint arXiv:1910.01740, 2019.

[39] Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, and Bin Yu. High-dimensional
covariance estimation by minimizing l1-penalized log-determinant divergence. Electronic
Journal of Statistics, 5:935–980, 2011.

[40] Marco Scutari. Learning bayesian networks with the bnlearn R package. Journal of Statistical
Software, 35(3):1–22, 2010.

[41] Gaurav Shrivastava and Abhinav Shrivastava. Diverse video generation using a Gaussian process
trigger. arXiv preprint arXiv:2107.04619, 2021.

[42] Gaurav Shrivastava, Harsh Shrivastava, and Abhinav Shrivastava. Learning what not to model:
Gaussian process regression with negative constraints. 2020.

[43] Harsh Shrivastava. On Using Inductive Biases for Designing Deep Learning Architectures. PhD
thesis, Georgia Institute of Technology, 2020.

[44] Harsh Shrivastava, Eugene Bart, Bob Price, Hanjun Dai, Bo Dai, and Srinivas Aluru. Co-
operative neural networks (CoNN): Exploiting prior independence structure for improved
classification. arXiv preprint arXiv:1906.00291, 2019.

[45] Harsh Shrivastava and Urszula Chajewska. Methods for recovering conditional independence
graphs: A survey. arXiv preprint arXiv:2211.06829, 2022.

[46] Harsh Shrivastava and Urszula Chajewska. Neural Graphical Models. arXiv preprint
arXiv:2210.00453, 2022.

[47] Harsh Shrivastava, Xinshi Chen, Binghong Chen, Guanghui Lan, Srinvas Aluru, Han Liu, and
Le Song. GLAD: Learning sparse graph recovery. arXiv preprint arXiv:1906.00271, 2019.

[48] Harsh Shrivastava, Ankush Garg, Yuan Cao, Yu Zhang, and Tara Sainath. Echo state speech
recognition. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5669–5673. IEEE, 2021.

[49] Harsh Shrivastava, Vijay Huddar, Sakyajit Bhattacharya, and Vaibhav Rajan. Classification
with imbalance: A similarity-based method for predicting respiratory failure. In 2015 IEEE
international conference on bioinformatics and biomedicine (BIBM), pages 707–714. IEEE,
2015.

[50] Harsh Shrivastava, Vijay Huddar, Sakyajit Bhattacharya, and Vaibhav Rajan. System and
method for predicting health condition of a patient, August 10 2021. US Patent 11,087,879.

[51] Harsh Shrivastava, Xiuwei Zhang, Srinivas Aluru, and Le Song. Grnular: Gene regulatory
network reconstruction using unrolled algorithm from single cell rna-sequencing data. bioRxiv,
2020.

[52] Harsh Shrivastava, Xiuwei Zhang, Le Song, and Srinivas Aluru. GRNUlar: A deep learning
framework for recovering single-cell gene regulatory networks. Journal of Computational
Biology, 29(1):27–44, 2022.

[53] Le Song, Mladen Kolar, and Eric P Xing. KELLER: estimating time-varying interactions
between genes. Bioinformatics, 25(12):i128–i136, 2009.

[54] Alexander Y Sun, Dingbao Wang, and Xianli Xu. Monthly streamflow forecasting using
gaussian process regression. Journal of Hydrology, 511:72–81, 2014.

18

[55] Qiang Sun, Kean Ming Tan, Han Liu, and Tong Zhang. Graphical nonconvex optimization
via an adaptive convex relaxation. In International Conference on Machine Learning, pages
4810–4817. PMLR, 2018.

[56] Burak Varici, Saurabh Sihag, and Ali Tajer. Learning shared subgraphs in Ising model pairs.
In International Conference on Artificial Intelligence and Statistics, pages 3952–3960. PMLR,
2021.

[57] W Wilkinson. Gaussian Process Modelling for Audio Signals. PhD thesis, Queen Mary
University of London, 2019.

[58] Daniela M Witten, Jerome H Friedman, and Noah Simon. New insights and faster computations
for the graphical lasso. Journal of Computational and Graphical Statistics, 20(4):892–900,
2011.

[59] Sen Yang, Zhaosong Lu, Xiaotong Shen, Peter Wonka, and Jieping Ye. Fused multiple graphical
lasso. SIAM Journal on Optimization, 25(2):916–943, 2015.

[60] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural
networks. In International Conference on Machine Learning, pages 7154–7163. PMLR, 2019.

[61] Amit Zeisel, Ana B Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg, Gioele La Manno,
Anna Juréus, Sueli Marques, Hermany Munguba, Liqun He, Christer Betsholtz, et al. Cell types
in the mouse cortex and hippocampus revealed by single-cell rna-seq. Science, 347(6226):1138–
1142, 2015.

[62] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with NO TEARS:
Continuous optimization for structure learning. Advances in Neural Information Processing
Systems, 31:9472–9483, 2018.

19

	Introduction
	Related work
	The uGLAD model
	Understanding the GLAD architecture
	The uGLAD loss function
	Convergence properties of GLAD and uGLAD
	Obtaining Conditional Independence graphs

	Multi-task learning for precision matrix recovery
	Handling missing values
	Experiments
	Performance on synthetically generated Gaussian samples
	Recovery of Gene Regulatory Networks
	Multi-task learning
	Robustness testing for missing data

	Case study: Anaerobic Digestion
	Case study: Infant Mortality
	Potential other applications of the uGLAD model
	Software details: Optimizing modes of uGLAD
	Conclusions

