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Intelligent Online Systems

Ranking function  that ranks items for context x.
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What is the ideal ranking?
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Maximizing Utility to Users

Probability Ranking Principle [Robertson, 1977]:
* Sort documents by probability of relevance Rank Item P(relevant)
—> Optimal ranking y* A 60.99

58.98

* For most common measures U of ranking 53.97

quality

51.00

U(y*|x) = max, [U(y|x)] 49.99
46.98

42.97




Dynamics of Utility Maximization

Conventional Rankings:

e Unfair allocation of opportunity
e Suboptimal social welfare

* Amplification of existing biases
* Reduced supplier pool

* Polarization

Utility maximization for users
—+

Long-term sustainability of platform




Sustainable Platforms

1. Unbiased Estimation of Relevance
2. Fair Treatment of all Platform Participants

3. Steerable Control of Platform Dynamics



Learning-to-Rank from Clicks

y

Learning
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Evaluating Rankings

Manually Labeled




Evaluation with Missing Judgments

Loss: A(x, y|rel)
— Relevance labels rel; € {0,1}
— This talk: rank of relevant documents

A(x,y|rel) = Z rank(d|y) - rel,
d
Assume:

— Click implies observed and relevant:
(cg=1)e(0g =1)A (reld = 1)

Problem:

— No click can mean not relevant OR not observed
(cqg =0)e(0g =0)V (rel; =0)

- Understand observation mechanism

e

[Wang et al., 2016] [Joachims et al., 2017]



Inverse Propensity Score Estimator

* Observation Propensities Q(o4 = 1|x,y,rel)

— Random variable o4 € {0,1} indicates whether —

relevance label rel; for is observed

e Inverse Propensity Score (IPS) Estimator:
rank(d|y)

A(x,y|rel,0) =

I d:cdle(Od = 1|x, y,rel)

* Unbiasedness: E, [Z(X,y | rel, 0)] = A(x, y|rel)

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009] [Wang et al., 2016] [Joachims et al., 2017]



ERM for Partial-Information LTR

* Unbiased Empirical Risk:
" 1 rank(d|m(x))
CCE DD
res () N Qog = 1|x,¥,rel)

(x,a,c)eS d:cg=1

* ERM Learning:
s e
T

* Questions:
— How do we optimize this empirical risk in a practical learning algorithm?
— How do we define and estimate the propensity model Q(o; = 1|x,y,rel)?

[Joachims et al., 2017]



Propensity-Weighted SVM Rank

Data: D = (xj» dj» Dj» qf)n

[ R —

Training QP:

Loss Bound: Vw:rank(d,sort(w - ¢(x,d)) < 2 E 41

Analogous method with Deep Nets [Agarwall et al., 2019b]

[Herbrich at al., 1999] [Joachims et al., 2002] [Joachims et al., 2017]



Position-Based Propensity Model

e Model:

P (cd = 1|rely ,rank(dly)) =
Drank(d|y) [rely = 1]

* Assumptions
— Examination only depends on rank
— Click reveals relevance if rank is examined
* Estimation
— Estimate q4, ..., qx via small intervention experiments

— See [Joachims et al., 2017] [Agarwal et al., 2019a] [Fang et
al., 2019] [Chandar & Carterette, 2018]

[Richardson et al., 2007] [Chuklin et al., 2015] [Wang et al., 2016]



Ranking Accuracy vs. Training Data

Deployed Ranker ------
e D SYNRENK
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[Joachims et al., 2017]



Sustainable Platforms

1. Unbiased Estimation of Relevance

- Selection bias correction through IPS [Joachims et al. 2017]
Unbiased learning of deep ranking policies [Agarwal et al. 2019]

2. Fair Treatment of all Platform Participants

3. Steerable Control of Platform Dynamics



Dynamics of Utility Maximization

Conventional Rankings:
e Unfair allocation of opportunity ltem P(interview
e Suboptimal social welfare Adam

* Amplification of existing biases Bob

* Reduced supplier pool Charlie

e Polarization

Alice

Utility maximization for users Dl
—+

Long-term sustainability of platform

Claire




Position-Based Exposure Model

Definition:

Exposure e; is the probability a users observes item
[ at position j of ranking .

expo(ilx,y) = e

Definition:
Exposure of group G of items

expo(Glx,y) = z e

j€G

Note: Same as propensity model used earlier.

[Craswell et al. 2008] [Singh & Joachims 2018]



Merit-Based Fairness Constraints

exposure = f(relevance)

* Disparate Exposure:

— Expected exposure proportional to the expected relevance of the
group
* Disparate Impact:

— Expected revenue (e.g. clicks) proportional to the expected relevance
of the group

* @Group parity:
— Expected exposure equal for all groups

[Biega et al. 2018] [Singh & Joachims 2018]



Disparate Exposure Constraint

Group Exposure and Merit

expo(Glx,m) = z expo(i]|x,y) rel(G|x) = z rel(i]x)
LEG lEG

Group Fairness Constraint

expo(Golx,y) _ expo(Gy|x, y)
rel(Gylx) rel(G1|x)

- Make exposure proportional to relevance

[Singh & Joachims 2018 1



Computing the Best Fair Ranking

Goal: Maximize ranking quality while fair to items.

y = argmax, [DCG(y|x)]

expo(Golx,y) _ expo(Ga|x, y)
rel(Gylx) rel(Gy|x)

S.t.

- Computationally hard and typically infeasible!

[Singh & Joachims 2018]



Probabilistic Ranking Policies m(y|x)

Exposure and Quality for w(y|x)
expo(ilx,m) = Z P; ; e

J
1T
DCG(TC'X) = z z ej IP)i,j reli
A |

[P; ; = Prob that item i is ranked at position j G

B
C
A
G

F
E
D
ej = exposure at position j 0.52 0.23 0.20 0.05

[Singh & Joachims 2018]



Marginal Rank Distribution P

G

0.52 0.23 0.20 0.

O > O W

J O m T

5

P12 34567

Jal

0.72

0.23

0.05

0

0

0

0.28

0.52

0.20

0

0

0

MmO ™

[Singh & Joachims 2018]



Computing the Best Fair Policy

* Optimal P* is solution of linear program

argmaxip [relTPe|

s. t. 1'P =1
P1 =1

0<P<Z
rel,giPe = rel,g. Pe

P*

"



- 3 3
Computing " from [P
Birkhoff-von Neumann decomposition
IP)* —_ Hlpl + -+ Hkpk

where P; ... P, are permutation matrices and 6; = 0 with ),; 6; = 1.

0, if y="r)

—> Ranking policy m*(y|x) = 0 else

[Singh & Joachims 2018]



Nt

Summary of Method

Estimate relevances r for query x
Define (merit-based) fairness constraint
Solve linear program for marginal rank matrix
P* = argmaxp [relTPq]
s.t. 1TP=1
I R |
0<P<1
Pis fair
Compute ranking policy =™ from P via Birkhoff-von Neumann
Sample ranking y from rt*

[Singh & Joachims 2018]



Example

* Six items, two groups
* Relevances: rel(G;) = {82%, 81%, 80%},rel(G,) = {79%, 78%, 77%}

Conventional Ranking Fair Ranking

Position
1.0 1

0.8
6

e
=
-
-
=
=]
@
=
=)
=
=
o
e

1.2 3 4 5 6 2 3 5 6 N, B O 12 3 4 5 6 A2 3
(a) DCG=3.8193, : G=3.8044, (¢) DOG=3.7972, ) (e) 7959,
DTR=1.7483 DTR=1.0000 =0.817¢ DTR=0.787

[Singh & Joachims 2018]



Sustainable Platforms

1. Unbiased Estimation of Relevance

- Selection bias correction through IPS [Joachims et al. 2017]
Unbiased learning of deep ranking policies [Agarwal et al. 2019]

2. Fair Treatment of all Platform Participants

- Item fairness through fairness of exposure [Singh & Joachims, 2018]
Fair ranking through Nash-fair division [Saito & Joachims 2022]
Fair policy learning [Singh & Joachims, 2019] [Yadav et al. 2021]

3. Steerable Control of Platform Dynamics



Macroeconomic Control of Al Platforn
Long-term Sustainability of the Platform

Macro-Metrics: user satisfaction, supplier pool, polarization, ¢
Macro-Interventions: exposure allocation, diversification, novelty, e

>

Micro-Metrics: engagement through clicks, purchases, like
Micro-Interventions: ranking, artwork, push-notification 8¢




Towards Steerable Dynamics

Macroeconomic Control of Al Platforms
Long-term Sustainability of the Platform

Macro-Metrics: user satisfaction, supplier pool size, polarization, discrimination, ...
Macro-Interventions: exposure allocation, diversification, novelty, external regulations, ...

,‘ Macro-Interventions .‘

Micro/Macro Abstraction and Interface

v.v Optimal micro-interventions consistent with macro-interventions v‘

Microeconomic Optimization of Al Platforms
Short-term Utility Maximization of Participants

Micro-Metrics: engagement through clicks, purchases, likes, streams, ...
Micro-Interventions: ranking, artwork, push-notifications, upsell, ...




Translating Macro to Micro

Macroeconomic Control of Al Platforms

User: Show user TJ at least 61; new artists; do not send more than 3 push messages; ...
Item: Show new artist A to at least §4 users; give items from supplier B at least 65 exposure; ...

‘ Macro-Interventions ‘

Micro/Macro Abstraction and Interface

‘ Optimal micro-interventions consistent with macro-interventions ‘

Microeconomic Optimization of Al Platforms

Micro-Metrics: engagement through clicks, purchases, likes, streams, ...
Micro-Interventions: ranking, artwork, push-notifications, upsell, ...




Number of new
artists shown to TJ

Engagement

reduction

Reactive Controller

Macro Metric
and Intervention

Micro Metric
and Intervention

Th Fr Sa Su



P-Controller

* Group G:
All artists i that are novel to TJ
e Control Error:

err(G|t) = 5% — i, expo(Glx;, y;)
* Policy:

m(x) = argsort[rel(ilx) + A - 1[i € G] - err(G|t)]

l

[Morik et al, 2020]



Planning Controller
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Model Predictive Controller

* Group G:
All artists i that are novel to TJ
* Model:
Sample S = ((xl,rell), ) (xN,relN)) ~ P(S; 7) as model of which future queries
to expect.
«  Policy: Extensions
) * Multiple constraints
max rellPye _|_ — relkIPke * Soft constraints
Po, Py N ] « Computational efficiency
s.t. VIP;: IP; is doubly stochastic
t—1 N —
T t—T T
Z expo(G|x;,y;) + G; Pye +Tz G, Pre =6
=

2




Towards Steerable Dynamics

Macroeconomic Control of Al Platforms
Long-term Sustainability of the Platform

Macro-Metrics: user satisfaction, supplier pool size, polarization, discrimination, ...
Macro-Interventions: exposure allocation, diversification, novelty, external regulations, ...

‘ Macro-Interventions

Micro/Macro Abstraction and Interface

Optimal micro-interventions consistent with macro-interventions

p

Microeconomic Optimization of Al Platforms
Short-term Utility Maximization of Participants

Micro-Metrics: engagement through clicks, purchases, likes, streams, ...
Micro-Interventions: ranking, artwork, push-notifications, upsell, ...




Research for Sustainable Al Platforms

e Unbiased estimation

* Fairness
B o
e * Steerable long-term
dynamics
""" * Transparency
B * Privacy
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