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Intelligent Online Systems

Ranking function 𝜋𝜋 that ranks items for context x.



What is the ideal ranking?

1970 2022

©FastCompany
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Goal: Maximize 
utility of rankings 

to the users.
Goal: ???



Maximizing Utility to Users
Probability Ranking Principle [Robertson, 1977]: 
• Sort documents by probability of relevance 
 Optimal ranking 𝑦𝑦∗

• For most common measures U of ranking 
quality

U 𝑦𝑦∗ 𝑥𝑥 = max𝑦𝑦 U 𝑦𝑦|𝑥𝑥

Query x

Rank Item P(relevant)

1 A 60.99

2 B 58.98

3 C 53.97

4 D 51.00

5 E 49.99

6 F 46.98

7 G 42.97

… … …



Dynamics of Utility Maximization
Query: Software Engineer

Rank Item P(interview)

1 Adam 50.99

2 Bob 50.98

3 Charlie 50.97

… … …

100 Alice 49.99

101 Barbara 49.98

102 Claire 49.97

… … …

Exposure 
high

Exposure 
low

Recommended for TJ

Rank Item P(enjoy)

1 A1 50.99

2 A2 50.98

3 A3 50.97

… … …

100 A100 49.99

101 A101 49.98

102 A102 49.97

… … …

Top News Stories

Rank Item P(read)

1 Times 1 50.99

2 Times 2 50.98

3 Times 3 50.97

… … …

100 Review 1 49.99

101 Review 2 49.98

102 Review 3 49.97

… … …

Conventional Rankings:
• Unfair allocation of opportunity
• Suboptimal social welfare
• Amplification of existing biases
• Reduced supplier pool
• Polarization

Utility maximization for users
≠

Long-term sustainability of platform



Sustainable Platforms
1. Unbiased Estimation of Relevance

2. Fair Treatment of all Platform Participants

3. Steerable Control of Platform Dynamics



Learning-to-Rank from Clicks
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New Ranker 
𝜋𝜋(𝑥𝑥)

Learning 
Algorithm

Query Distribution
𝑥𝑥𝑖𝑖 ∼ 𝑷𝑷(𝑿𝑿)

Deployed Ranker 
�𝑦𝑦𝑖𝑖 = 𝝅𝝅𝟎𝟎(𝑥𝑥𝑖𝑖)

Should perform 
better than 
𝜋𝜋0(𝑥𝑥)



New 𝒚𝒚
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Deployed Ranker 
�𝑦𝑦 = 𝝅𝝅𝟎𝟎("𝑺𝑺𝑺𝑺𝑺𝑺𝑺)
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Evaluation with Missing Judgments
• Loss: Δ 𝑥𝑥, y|𝑟𝑟𝑟𝑟𝑟𝑟

– Relevance labels 𝑟𝑟el𝑑𝑑 ∈ {0,1}
– This talk: rank of relevant documents

Δ 𝑥𝑥,𝑦𝑦 𝑟𝑟𝑟𝑟𝑟𝑟 = �
d

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑 𝑦𝑦 ⋅ 𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑

• Assume:
– Click implies observed and relevant: 

𝑐𝑐𝑑𝑑 = 1 ↔ 𝑜𝑜𝑑𝑑 = 1 ∧ 𝑟𝑟el𝑑𝑑 = 1
• Problem: 

– No click can mean not relevant OR not observed 

𝑐𝑐𝑑𝑑 = 0 ↔ 𝑜𝑜𝑑𝑑 = 0 ∨ (𝑟𝑟el𝑑𝑑 = 0)
•  Understand observation mechanism

Presented �𝒚𝒚
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Click

[Wang et al., 2016] [Joachims et al., 2017]



Inverse Propensity Score Estimator
• Observation Propensities 𝑄𝑄 𝑜𝑜𝑑𝑑 = 1|𝑥𝑥, �𝑦𝑦, 𝑟𝑟𝑟𝑟𝑟𝑟

– Random variable 𝑜𝑜𝑑𝑑 ∈ {0,1} indicates whether 
relevance label 𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑 for is observed

• Inverse Propensity Score (IPS) Estimator:

• Unbiasedness: 𝐸𝐸𝑜𝑜 �Δ(x, y│𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜) = Δ 𝑥𝑥,𝑦𝑦 𝑟𝑟𝑟𝑟𝑟𝑟

�Δ 𝑥𝑥,𝑦𝑦 𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜 = �
𝑑𝑑:𝑐𝑐𝑑𝑑=1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑 𝑦𝑦
𝑄𝑄 𝑜𝑜𝑑𝑑 = 1|𝑥𝑥, �𝑦𝑦, 𝑟𝑟𝑟𝑟𝑟𝑟

Presented �𝒚𝒚 𝑄𝑄

A 1.0
B 0.8
C 0.5 
D 0.2
E 0.2
F 0.2
G 0.1

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009] [Wang et al., 2016] [Joachims et al., 2017]

New Ranking



ERM for Partial-Information LTR
• Unbiased Empirical Risk:

�𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 𝜋𝜋 =
1
𝑁𝑁

�
𝑥𝑥,𝑎𝑎,𝑐𝑐 ∈𝑆𝑆

�
d:𝑐𝑐𝑑𝑑=1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑 𝜋𝜋 𝑥𝑥
𝑄𝑄 𝑜𝑜𝑑𝑑 = 1|x, �𝑦𝑦, 𝑟𝑟𝑟𝑟𝑟𝑟

• ERM Learning:

• Questions:
– How do we optimize this empirical risk in a practical learning algorithm?
– How do we define and estimate the propensity model 𝑄𝑄 𝑜𝑜𝑑𝑑 = 1|𝑥𝑥, �𝑦𝑦, 𝑟𝑟𝑟𝑟𝑟𝑟 ?

�𝜋𝜋 = argmin
𝜋𝜋

�𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 𝜋𝜋

Consistent 
Estimator of 

True 
Performance

Consistent 
ERM 

Learning

[Joachims et al., 2017]



Propensity-Weighted SVM Rank
• Data:                D = 𝑥𝑥𝑗𝑗 ,𝑑𝑑𝑗𝑗 ,𝐷𝐷𝑗𝑗 , 𝑞𝑞𝑗𝑗

𝑛𝑛

• Training QP:

• Loss Bound: 

• Analogous method with Deep Nets [Agarwal et al., 2019b]

𝑤𝑤∗ = argmin
𝑤𝑤,𝜉𝜉≥0

1
2
𝑤𝑤 ⋅ 𝑤𝑤 +

𝐶𝐶
𝑛𝑛
�
𝑗𝑗

1
𝑞𝑞𝑗𝑗
�
𝑖𝑖

𝜉𝜉𝑗𝑗𝑖𝑖

∀𝑑̅𝑑𝑖𝑖 ∈ 𝐷𝐷1:𝑤𝑤 ⋅ 𝜙𝜙 𝑥𝑥1,𝑑𝑑1 − 𝜙𝜙 𝑥𝑥1, 𝑑̅𝑑𝑖𝑖 ≥ 1 − 𝜉𝜉1𝑖𝑖
⋮

∀𝑑̅𝑑𝑖𝑖 ∈ 𝐷𝐷𝑛𝑛:𝑤𝑤 ⋅ 𝜙𝜙 𝑥𝑥𝑛𝑛,𝑑𝑑𝑛𝑛 − 𝜙𝜙 𝑥𝑥𝑛𝑛, 𝑑̅𝑑𝑖𝑖 ≥ 1 − 𝜉𝜉𝑛𝑛𝑖𝑖

∀𝑤𝑤: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤 ⋅ 𝜙𝜙(𝑥𝑥,𝑑𝑑) ≤�
𝑖𝑖

𝜉𝜉𝑖𝑖 + 1

Query Clicked Others Propensity

Optimizes convex upper 
bound on unbiased IPS 

risk estimate!

[Herbrich at al., 1999] [Joachims et al., 2002] [Joachims et al., 2017]



Position-Based Propensity Model
• Model:

• Assumptions
– Examination only depends on rank 
– Click reveals relevance if rank is examined

• Estimation
– Estimate 𝑞𝑞1, … , 𝑞𝑞𝑘𝑘 via small intervention experiments
– See [Joachims et al., 2017] [Agarwal et al., 2019a] [Fang et 

al., 2019] [Chandar & Carterette, 2018]

𝑃𝑃 𝑐𝑐𝑑𝑑 = 1|𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑 �𝑦𝑦 =
𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑 �𝑦𝑦 ⋅ [𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑 = 1]

Presented �𝒚𝒚 𝑄𝑄

A 𝑞𝑞1
B 𝑞𝑞2
C 𝑞𝑞3
D 𝑞𝑞4
E 𝑞𝑞5
F 𝑞𝑞6
G 𝑞𝑞7

[Richardson et al., 2007] [Chuklin et al., 2015] [Wang et al., 2016]



Ranking Accuracy vs. Training Data
Deployed Ranker

[Joachims et al., 2017]



Sustainable Platforms
1. Unbiased Estimation of Relevance

 Selection bias correction through IPS [Joachims et al. 2017]
Unbiased learning of deep ranking policies [Agarwal et al. 2019] 

2. Fair Treatment of all Platform Participants

3. Steerable Control of Platform Dynamics



Dynamics of Utility Maximization
Query: Software Engineer

Rank Item P(interview)

1 Adam 50.99

2 Bob 50.98

3 Charlie 50.97

… … …

100 Alice 49.99

101 Barbara 49.98

102 Claire 49.97

… … …

Exposure 
high

Exposure 
low

Conventional Rankings:
• Unfair allocation of opportunity
• Suboptimal social welfare
• Amplification of existing biases
• Reduced supplier pool
• Polarization

Utility maximization for users
≠

Long-term sustainability of platform



Position-Based Exposure Model
Definition: 

Exposure 𝑒𝑒𝑗𝑗 is the probability a users observes item 
𝑖𝑖 at position 𝑗𝑗 of ranking 𝑦𝑦.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 𝑥𝑥,𝑦𝑦 = 𝑒𝑒𝑗𝑗

Definition: 
Exposure of group G of items

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺 𝑥𝑥,𝑦𝑦 = �
𝑗𝑗∈G

𝑒𝑒𝑗𝑗

Note: Same as propensity model used earlier.

Rank Exposure 
P(observe)

1 𝑒𝑒1
2 𝑒𝑒2
3 𝑒𝑒3
… …

100 𝑒𝑒100
101 𝑒𝑒101
102 𝑒𝑒102
… …

[Craswell et al. 2008] [Singh & Joachims 2018]



Merit-Based Fairness Constraints

• Disparate Exposure: 
– Expected exposure proportional to the expected relevance of the 

group
• Disparate Impact: 

– Expected revenue (e.g. clicks) proportional to the expected relevance 
of the group

• Group parity: 
– Expected exposure equal for all groups

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

[Biega et al. 2018] [Singh & Joachims 2018]



Disparate Exposure Constraint
Group Exposure and Merit

Group Fairness Constraint

Make exposure proportional to relevance

𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥(𝐺𝐺0|𝑥𝑥,𝑦𝑦)
𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺0|𝑥𝑥)

=
𝑒𝑒𝑥𝑥𝑥𝑥𝑜𝑜 𝐺𝐺1|𝑥𝑥,𝑦𝑦
𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺1|𝑥𝑥)

𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥 𝐺𝐺|𝑥𝑥,𝜋𝜋 = �
𝑖𝑖∈𝐺𝐺

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖|𝑥𝑥,𝑦𝑦) 𝑟𝑟𝑟𝑟𝑟𝑟 𝐺𝐺|𝑥𝑥 = �
𝑖𝑖∈𝐺𝐺

𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖|𝑥𝑥)

[Singh & Joachims 2018]



Computing the Best Fair Ranking
Goal: Maximize ranking quality while fair to items.

𝑦𝑦 = argmax𝑦𝑦 𝐷𝐷𝐷𝐷𝐷𝐷 𝑦𝑦|𝑥𝑥

𝑠𝑠. 𝑡𝑡.
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐺𝐺0|𝑥𝑥,𝑦𝑦)
𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺0|𝑥𝑥)

=
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺1|𝑥𝑥,𝑦𝑦
𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺1|𝑥𝑥)

 Computationally hard and typically infeasible!

[Singh & Joachims 2018]



Probabilistic Ranking Policies 𝜋𝜋 𝑦𝑦 𝑥𝑥)
Exposure and Quality for 𝜋𝜋 𝑦𝑦 𝑥𝑥)

ℙ𝑖𝑖,𝑗𝑗 = Prob that item 𝑖𝑖 is ranked at position 𝑗𝑗
𝑒𝑒𝑗𝑗 = exposure at position j

𝒚𝒚𝟏𝟏
A
B
C
D
E
F
G

0.52

𝒚𝒚𝟐𝟐
B
A
C
D
E
F
G

0.23

𝒚𝒚𝟑𝟑
A
C
B
D
E
F
G

0.20

𝒚𝒚𝟒𝟒
B
C
A
G
F
E
D

𝜋𝜋

e𝑥𝑥𝑥𝑥𝑥𝑥 𝑖𝑖|𝑥𝑥,𝜋𝜋 = �
𝑗𝑗

ℙ𝑖𝑖,𝑗𝑗 𝑒𝑒𝑗𝑗

𝐷𝐷𝐷𝐷𝐷𝐷(𝜋𝜋|𝑥𝑥) = �
𝑖𝑖

�
𝑗𝑗

𝑒𝑒𝑗𝑗 ℙ𝑖𝑖,𝑗𝑗 𝑟𝑟𝑒𝑒𝑒𝑒𝑖𝑖

0.05

[Singh & Joachims 2018]



Marginal Rank Distribution ℙ
𝒚𝒚𝟏𝟏
A
B
C
D
E
F
G

0.52

𝒚𝒚𝟐𝟐
B
A
D
C
E
F
G

0.23

𝒚𝒚𝟑𝟑
A
C
B
D
E
F
G

0.20

𝒚𝒚𝟒𝟒
B
C
A
G
F
E
D

𝜋𝜋 ℙ𝑖𝑖,𝑗𝑗

ℙ
A

C
B

E
D

G
F

1 2  3   4  5  6   7
0.72 0.23

0.05

0.05 0 0 0 0

0.28 0.52 0.20 0 0 0 0

…

[Singh & Joachims 2018]



Computing the Best Fair Policy
• Optimal ℙ∗ is solution of linear program

ℙ∗ = argmaxℙ 𝑟𝑟𝑒𝑒𝑒𝑒𝑇𝑇ℙ𝑒𝑒
𝑠𝑠. 𝑡𝑡. 1𝑇𝑇ℙ = 1

ℙ1 = 1
0 ≤ ℙ ≤ 1

𝑟𝑟𝑟𝑟𝑟𝑟2𝑔𝑔1𝑇𝑇ℙ𝑒𝑒 = 𝑟𝑟𝑟𝑟𝑟𝑟1𝑔𝑔2𝑇𝑇ℙ𝑒𝑒

DCG

P is doubly 
stochastic

Fairness

[Singh & Joachims 2018]



Computing 𝜋𝜋∗ from ℙ∗
Birkhoff-von Neumann decomposition

ℙ∗ = 𝜃𝜃1𝑃𝑃1 + ⋯+ 𝜃𝜃𝑘𝑘𝑃𝑃𝑘𝑘

where 𝑃𝑃1 …𝑃𝑃𝑘𝑘 are permutation matrices and 𝜃𝜃𝑖𝑖 ≥ 0 with ∑𝑖𝑖 𝜃𝜃𝑖𝑖 = 1. 

 Ranking policy 𝜋𝜋∗ 𝑦𝑦 𝑥𝑥 = �𝜃𝜃𝑖𝑖 𝑖𝑖𝑖𝑖
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(𝑦𝑦 = 𝑃𝑃𝑖𝑖)

[Singh & Joachims 2018]



Summary of Method
1. Estimate relevances 𝑟𝑟 for query 𝑥𝑥
2. Define (merit-based) fairness constraint
3. Solve linear program for marginal rank matrix

ℙ∗ = argmaxℙ 𝑟𝑟𝑒𝑒𝑒𝑒𝑇𝑇ℙ𝑞𝑞
𝑠𝑠. 𝑡𝑡. 1𝑇𝑇ℙ = 1

ℙ1 = 1
0 ≤ ℙ ≤ 1
ℙ 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

4. Compute ranking policy 𝜋𝜋∗ from ℙ∗ via Birkhoff-von Neumann
5. Sample ranking 𝑦𝑦 from 𝜋𝜋∗

[Singh & Joachims 2018]



Example
• Six items, two groups
• Relevances: rel G1 = 82%, 81%, 80% , rel 𝐺𝐺2 = {79%, 78%, 77%}

Conventional Ranking Fair Ranking

QualityRelative 
Unfairness

[Singh & Joachims 2018]



Sustainable Platforms
1. Unbiased Estimation of Relevance

 Selection bias correction through IPS [Joachims et al. 2017]
Unbiased learning of deep ranking policies [Agarwal et al. 2019] 

2. Fair Treatment of all Platform Participants
 Item fairness through fairness of exposure [Singh & Joachims, 2018] 

Fair ranking through Nash-fair division [Saito & Joachims 2022] 
Fair policy learning [Singh & Joachims, 2019] [Yadav et al. 2021]

3. Steerable Control of Platform Dynamics



Beyond Microeconomics
Macroeconomic Control of AI Platforms

Long-term Sustainability of the Platform
Macro-Metrics: user satisfaction, supplier pool, polarization, discrimination, …

Macro-Interventions: exposure allocation, diversification, novelty, external regulations,  … 

Microeconomic Optimization of AI Platforms
Short-term Utility Maximization of Participants

Micro-Metrics: engagement through clicks, purchases, likes, streams, …
Micro-Interventions: ranking, artwork, push-notifications, upsell, …

© Aapsky - Siemens 



Towards Steerable Dynamics

Micro/Macro Abstraction and Interface
Optimal micro-interventions consistent with macro-interventions

Macro-Interventions

Macroeconomic Control of AI Platforms
Long-term Sustainability of the Platform

Macro-Metrics: user satisfaction, supplier pool size, polarization, discrimination, …
Macro-Interventions: exposure allocation, diversification, novelty, external regulations,  … 

Microeconomic Optimization of AI Platforms
Short-term Utility Maximization of Participants

Micro-Metrics: engagement through clicks, purchases, likes, streams, …
Micro-Interventions: ranking, artwork, push-notifications, upsell, …



Translating Macro to Micro

Micro/Macro Abstraction and Interface
Optimal micro-interventions consistent with macro-interventions

Macro-Interventions

Macroeconomic Control of AI Platforms
Weekly/Monthly Metrics

User: Show user TJ at least 𝛿𝛿𝑇𝑇𝑇𝑇 new artists; do not send more than 3 push messages; …
Item: Show new artist A to at least 𝛿𝛿𝐴𝐴 users; give items from supplier B at least 𝛿𝛿𝐵𝐵 exposure; …

Microeconomic Optimization of AI Platforms
Session Metrics

Micro-Metrics: engagement through clicks, purchases, likes, streams, …
Micro-Interventions: ranking, artwork, push-notifications, upsell, …



Reactive Controller
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P-Controller
• Group G:

All artists 𝑖𝑖 that are novel to TJ
• Control Error:

𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺|𝑡𝑡 = 𝛿𝛿 𝑡𝑡
𝑇𝑇
− ∑𝑖𝑖=1𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐺𝐺|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

• Policy:

[Morik et al, 2020]

𝜋𝜋(𝑥𝑥) ≝ argsort
𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 𝑥𝑥 + 𝜆𝜆 ⋅ 1 𝑖𝑖 ∈ 𝐺𝐺 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒(𝐺𝐺|𝑡𝑡)

Relevance of 
item i

Control error 
for group 

target

Boost 
members of G 
by 𝜆𝜆 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒



Planning Controller
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Model Predictive Controller
• Group G:

All artists 𝑖𝑖 that are novel to TJ
• Model:

Sample 𝑆𝑆 = 𝑥𝑥1, 𝑟𝑟𝑟𝑟𝑙𝑙1 , … , 𝑥𝑥𝑁𝑁, 𝑟𝑟𝑟𝑟𝑙𝑙𝑁𝑁 ∼ 𝑃𝑃 𝑆𝑆𝑡𝑡…𝑇𝑇 as model of which future queries 
to expect.

• Policy:

max
ℙ0,ℙ1…ℙ𝑁𝑁

𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑇𝑇ℙ0𝑒𝑒 +
𝑡𝑡 − 𝑇𝑇
𝑁𝑁 �

𝑘𝑘=1

𝑁𝑁

𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑇𝑇ℙ𝑘𝑘𝑒𝑒

𝑠𝑠. 𝑡𝑡. ∀ℙ𝑖𝑖:ℙ𝑖𝑖 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�
𝑖𝑖=1

𝑡𝑡−1

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐺𝐺|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝐺𝐺𝑡𝑡𝑇𝑇ℙ0𝑒𝑒+
𝑡𝑡 − 𝑇𝑇
𝑁𝑁 �

𝑘𝑘=1

𝑁𝑁

𝐺𝐺𝑘𝑘𝑇𝑇ℙ𝑘𝑘𝑒𝑒 ≥ 𝛿𝛿

DCG of current ranking ℙ0 Expected Future DCG

Past Exposure Current Exposure Expected Future Exposure

Target Exposure

Extensions
• Multiple constraints
• Soft constraints
• Computational efficiency



Towards Steerable Dynamics

Micro/Macro Abstraction and Interface
Optimal micro-interventions consistent with macro-interventions

Macro-Interventions

Macroeconomic Control of AI Platforms
Long-term Sustainability of the Platform

Macro-Metrics: user satisfaction, supplier pool size, polarization, discrimination, …
Macro-Interventions: exposure allocation, diversification, novelty, external regulations,  … 

Microeconomic Optimization of AI Platforms
Short-term Utility Maximization of Participants

Micro-Metrics: engagement through clicks, purchases, likes, streams, …
Micro-Interventions: ranking, artwork, push-notifications, upsell, …

• Causal Modeling
• Connections to Social Sciences

• Regulatory Policy

Control 
Theory



Research for Sustainable AI Platforms
• Unbiased estimation
• Fairness
• Steerable long-term 

dynamics
• Transparency
• Privacy
… and many more.http://www.joachims.org

http://www.joachims.org/
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