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Many problems in static program analysis can be modeled as the context-free language (CFL) reachability

problem on directed labeled graphs. The CFL reachability problem can be generally solved in time 𝑂 (𝑛3),
where 𝑛 is the number of vertices in the graph, with some specific cases that can be solved faster. In this

work, we ask the following question: given a specific CFL, what is the exact exponent in the monomial of the

running time? In other words, for which cases do we have linear, quadratic or cubic algorithms, and are there

problems with intermediate runtimes? This question is inspired by recent efforts to classify classic problems

in terms of their exact polynomial complexity, known as fine-grained complexity. Although recent efforts have

shown some conditional lower bounds (mostly for the class of combinatorial algorithms), a general picture of

the fine-grained complexity landscape for CFL reachability is missing.

Our main contribution is lower bound results that pinpoint the exact running time of several classes of CFLs

or specific CFLs under widely believed lower bound conjectures (e.g., Boolean Matrix Multiplication, 𝑘-Clique,

APSP, 3SUM). We particularly focus on the family of Dyck-𝑘 languages (which are strings with well-matched

parentheses), a fundamental class of CFL reachability problems. Remarkably, we are able to show a Ω(𝑛2.5)
lower bound for Dyck-2 reachability, which to the best of our knowledge is the first super-quadratic lower

bound that applies to all algorithms, and shows that CFL reachability is strictly harder that Boolean Matrix

Multiplication. We also present new lower bounds for the case of sparse input graphs where the number of

edges𝑚 is the input parameter, a common setting in the database literature. For this setting, we show a cubic

lower bound for Andersen’s Pointer Analysis which significantly strengthens prior known results.
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1 INTRODUCTION
Static analysis is the problem of approximating the run-time behaviors that a program may exhibit.

It is of paramount importance in detecting bugs [Bessey et al. 2010; Olivo et al. 2015], detecting

security violations and malware [Christodorescu and Jha 2003; Livshits and Lam 2005], and enabling

compiler transformations and optimizations. Techniques for static analysis do not run programs

on specific inputs, but instead analyze the program behavior by considering all possible inputs

and executions. Since for most programs it is impossible to go through all possible executions, it is

common to use instead various approximation methods.
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59:2 Paraschos Koutris and Shaleen Deep

A standard way to express many static analysis problems is via a generalization of graph

reachability called language reachability. In this setting, a directed graph 𝐺 = (𝑉 , 𝐸) with labelled

edges from a fixed alphabet is constructed from the program code. Then, given a language L over

the same alphabet, we seek to find pairs of nodes 𝑠, 𝑡 for which there is a directed path from 𝑠 to

𝑡 in 𝐺 such that the word formed by concatenating the labels along the path belongs to L. An
important case of language reachability, which is going to be the main subject in this work, is CFL

reachability, where L is a context-free language [Reps 1998; Yannakakis 1990]. The CFL reachability

problem has applications to a wide range of static analysis problems, including interprocedural

data-flow analysis [Reps et al. 1995], shape analysis [Reps 1995], type-based flow analysis [Rehof

and Fähndrich 2001], and points-to analysis [Shang et al. 2012; Zheng and Rugina 2008]. CFL

reachability is also an important problem in database theory, since it is equivalent to a class of

Datalog programs called chain Datalog programs [Reps 1998; Smaragdakis and Balatsouras 2015],

where the bodies of the recursive rules form a chain of binary predicates.

The Complexity of CFL reachability. It was shown by Yannakakis [Yannakakis 1990] that

the general CFL reachability problem can be solved in 𝑂 (𝑛3) time on general graphs for a fixed

language, where 𝑛 is the number of vertices in the input graph. This runtime has only been slightly

improved by a logarithmic factor to 𝑂 (𝑛3/log𝑛) [Chaudhuri 2008] for the general case. Some

improvements exist for more restricted languages: for example, regular languages admit an 𝑂 (𝑛𝜔 )
algorithm [Fischer and Meyer 1971], where 𝜔 is the matrix multiplication exponent (the current

best known value is 𝜔 ≈ 2.37). In fact, a simple algorithm (with a slightly worse running time)

can be obtained as follows. A graph can be encoded as a square matrix 𝐴(𝑖, 𝑗) and using the

observation that 𝐴2
encodes the number of walks from vertex 𝑖 to 𝑗 of length 2, one can perform a

logarithmic number of iterated multiplications to double the walk path length in each step and

obtain an 𝑂 (𝑛𝜔 log𝑛) algorithm. However, algorithms based on fast matrix multiplication are

not desirable practically since they hide large constants in the big-𝑂 running time. Currently all

known truly sub-cubic algorithms use matrix multiplication. This lack of progress has lead to a

conjecture that no better algorithm exists for CFL reachability, that is, a 𝑂 (𝑛3−𝜖 ) runtime is not

possible for any constant 𝜖 > 0. This conjecture has been (conditionally) proven but only for

the class of combinatorial algorithms [Abboud et al. 2018; Chatterjee et al. 2018]. Combinatorial

algorithms are algorithms with a small constant in the big-𝑂 that can be implemented efficiently in

practice. In contrast, non-combinatorial algorithms can use algebraic methods such as fast matrix

multiplication, which potentially obtain a faster theoretical runtime but are not practical.

However, these results do not tell us how efficiently we can evaluate CFL reachability for a

specific language L. This motivates us to take a different approach. Given a CFL (or a context-free

grammar – CFG), we ask to identify the exact expression of the running time as a function of the input

size. For example, which languages run in linear time, and for which programs do we need quadratic

or cubic time? Answering such a question is important since CFL reachability can naturally capture

several fundamental computational problems that are in P. We consider two variants of the CFL

reachability problem: in the All-Pairs problem, we produce all pairs that are reachable, while in

the On-Demand problem we check reachability for a given pair of vertices.

Fine-grained Complexity. The research direction of pinpointing the exact running time of the

problems as a function of their input size is related to the area of fine-grained complexity [Williams

and Williams 2018]. Since obtaining unconditional lower bounds for polynomial running times

is not within our reach, the goal of fine-grained complexity is to reduce a given problem in P to

one of a small set of problems that are widely believed to have an optimal algorithm (e.g., 3-SUM,

Boolean Matrix Multiplication (BMM, for short), 𝑘-Clique). Our goal in this paper follows the same
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general direction: we seek to show that the complexity for a given language is optimal conditional

to one of these conjectures.

The Case of Sparse Graphs. In the CFL reachability problem, the most common parameter used

as input size is the number of vertices 𝑛 = |𝑉 |. In this case, the lower bounds usually construct

instances that are dense (in the sense that the number of edges is super-linear or even quadratic

with respect to 𝑛). However, in many practical instances the graph 𝐺 constructed is sparse, and

thus it is meaningful to use as input size the number of edges𝑚 = |𝐸 |. This is also the case when

we view CFL reachability from a database lens, since𝑚 translates to the size of the database (i.e.,

the number of tuples across all relations). In this work, we will state our fine-grained complexity

results using both parameters.

1.1 Our Contributions

Dyck Reachability and a New Lower Bound for CFL reachability. We first study the fine-

grained complexity of a fundamental class of CFL reachability problems, called Dyck reachability

(Section 3). The Dyck-𝑘 grammar produces words of well-matched parentheses of 𝑘 different types.

When we restrict to combinatorial algorithms, it is known that a conditional cubic lower bound

exists for the On-Demand problem for Dyck-𝑘 for any 𝑘 ≥ 1 [Chatterjee et al. 2018; Hansen et al.

2021; Zhang 2020]. We show that there is no algorithm that solves All-Pairs Dyck-2 reachability

that requires 𝑂 (𝑛2.5−𝜖 ) time for any 𝜖 > 0 (Theorem 3.2). This lower bound uses a reduction from

the APSP or 3SUM hypothesis and thus applies to all algorithms, even non-combinatorial ones.

Since matrix multiplication is done in time 𝑂 (𝑛𝜔 ) and 𝜔 < 2.5, this shows that the general CFL

reachability problem is likely strictly harder than Boolean Matrix Multiplication. To the best of our

knowledge, this is the first result that shows a super-quadratic lower bound for CFL reachability

that applies to all algorithms.

All-Pairs CFL Reachability. Our next set of results looks at general context-free grammars

(Section 4). We identify a syntactic condition that is checkable in polynomial time w.r.t. the size

of the grammar, such that any CFG that satisfies this condition is as hard as BMM; otherwise, it

can be solved in time 𝑂 (𝑚). Since the combinatorial BMM hypothesis says that BMM cannot be

done faster than 𝑂 (𝑛3−𝜖 ), this implies a surprising classification result in the combinatorial setting

(Theorem 4.5): we can say exactly for which CFGs the all-pairs CFL Reachability problem can be

solved in optimal time 𝑂 (𝑛3), and for which in optimal time 𝑂 (𝑛2). In other words, there exists

a sharp dichotomy in the runtime, with no in-between exponents in the polynomial. In the non-

combinatorial setting this dichotomy disappears, and we can identify problems with intermediate

running times of 𝑂 (𝑛𝜔 ) (when CFG is regular), and 𝑂 (𝑛 (3+𝜔 )/2). We also show that identifying for

a given language its exact exponent is actually an undecidable problem (although this does not

exclude a possible dichotomy result with an undecidable syntactic condition).

On-Demand CFL Reachability. Next we turn our attention to the easier problem of on-demand

CFL Reachability (Section 5). We sketch the fine-grained complexity landscape for both dense

and sparse graphs, and provide new conditional lower bounds for several interesting CFGs. A

summary of our results can be shown in Table 2. Interestingly, all runtimes we have identified for

combinatorial algorithms are either linear, quadratic, or cubic to the input size, so it is an intriguing

question whether other intermediate exponents are possible.

Andersen’s Pointer Analysis. Finally, we look at the fine-grained complexity for the Andersen’s

Pointer Analysis (APA), a fundamental type of points-to analysis (Section 6). Although APA is not

captured directly as a CFL reachability problem, we can slightly rewrite the program so that it

behaves as one. In this way, we can use our techniques to show a lower bound of 𝑂 (𝑚3−𝜖 ) for any
𝜖 > 0 under the combinatorial 𝑘-Clique hypothesis, even applying to the on-demand setting. So far
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a cubic lower bound was only known with respect to 𝑛 [Mathiasen and Pavlogiannis 2021], so this

is a significant strengthening of the lower bound to sparse inputs.

2 PRELIMINARIES

Context-Free Grammars. A context-free grammar (CFG) G can be described by a tuple (𝑉 , Σ, 𝑅, 𝑆),
where: 𝑉 is a finite set of variables (which are non-terminal), Σ is a finite set (disjoint from 𝑉 ) of

terminal symbols, 𝑅 is a set of production rules where each production rule maps a variable to a

string ∈ (𝑉 ∪ Σ)∗, and 𝑆 is a start symbol from 𝑉 . For example, the grammar {𝑆 ← 𝜖, 𝑆 ← 𝑎𝑆𝑏} is
a CFG that describes all strings of the form 𝑎𝑖𝑏𝑖 for some 𝑖 ≥ 0. A context-free language (CFL) is a

language that is produced by some CFG. We will denote by 𝐿(G) the language produced by G.
A CFG is right-regular if all productions rules are of the form 𝑆 ← 𝜖, 𝑆 ← 𝑎 or 𝑆 ← 𝑎𝐵. We can

similarly define a left-regular CFG. Right-regular (or left-regular) grammars generate exactly all

regular languages. A CFG is linear if every production rule contains at most one non-terminal

symbol in its body. For example, the grammar {𝑆 ← 𝜖, 𝑆 ← 𝑎𝑆𝑏} is linear.
Dyck-𝑘 Grammars. Of particular interest to us will be the family of Dyck-𝑘 grammars, which are

not regular and linear. The Dyck-𝑘 grammarD𝑘 captures the language of strings with well-matched

parentheses of 𝑘 different types.

𝑆 ← 𝜖 | 𝑎1𝑆𝑎1 | 𝑎2𝑆𝑎2 | · · · | 𝑎𝑘𝑆𝑎𝑘

CFL Reachability. The CFL reachability problem takes as an input a directed graph 𝐺 = (𝑉 , 𝐸)
whose edges are labelled by an alphabet Σ, and a CFG G defined over the same alphabet Σ. We say

that a vertex 𝑣 ∈ 𝑉 is 𝐿-reachable from a vertex 𝑢 ∈ 𝑉 if there is a path from 𝑢 to 𝑣 in 𝐺 such that

the labels of the edges form a string that belongs in the language 𝐿. We consider two variants of

the CFL reachability problem:

• All-Pairs: output all pairs of vertices 𝑢, 𝑣 such that 𝑣 is 𝐿(G)-reachable from 𝑢 in 𝐺 .

• On-Demand: given a pair of vertices 𝑢, 𝑣 , check whether 𝑣 is 𝐿(G)-reachable from 𝑢 in 𝐺 .

Complexity Problems. In this paper, we will consider the grammar G as being fixed (i.e., of

constant size), and we will be interested in the complexity of CFL reachability with input the graph

𝐺 . Following this, we define as CFL
ap (G) the All-Pairs problem for a fixed grammar G, and as

CFL
od (G) the On-Demand problem for a fixed grammar G. We then ask the following question:

how does the grammar G effect the computational complexity of CFL reachability problem? This

deviates from most previous approaches, which were interested in the computational complexity

across all possible CFGs.

Parameters. The input to both problems is a graph𝐺 = (𝑉 , 𝐸). To measure the complexity of CFL

reachability, we will use as parameters both the number of vertices 𝑛 = |𝑉 | and the number of

edges𝑚 = |𝐸 |. As we will see over the next sections, our results differ depending on the parameter

we focus on. To simplify our presentation, we will assume w.l.o.g. that𝐺 does not have any isolated

vertices (i.e., vertices without adjacent edges). Isolated vertices can only help to satisfy the empty

string (if the CFG accepts it), and hence can be handled in time𝑂 (𝑛) and then removed from𝐺 . This

will only add a linear term w.r.t. 𝑛 in the running time of any algorithm, which we will thus ignore

when we measure complexity w.r.t. 𝑚. Hence, we will use throughout the paper the following

inequality: 𝑛/2 ≤ 𝑚 ≤ 𝑛2
. We will also use the notation 𝑉𝐺 and 𝐸𝐺 to denote the vertex set 𝑉 and

edge set 𝐸 corresponding to the graph 𝐺 .

Computational Model. We will consider the word-RAM model with 𝑂 (log𝑛) bit words. This is a
RAM machine that can read from memory, write to memory and perform operations on 𝑂 (log𝑛)
bit blocks of data in constant time.
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Combinatorial Algorithms. In this work, we will often restrict our attention to combinatorial

algorithms [Williams and Williams 2018]. This notion is not precisely defined, but informally, it

means that the algorithm is discrete, graph-theoretic, and with a runtime has a small constant in

the big-𝑂 . This requirement disallows the use of fast matrix multiplication, including Strassen’s

algorithm [Strassen et al. 1969]. The notion of combinatorial algorithms is used to distinguish them

from algebraic algorithms, the most common example of these being the subcubic algorithms that

multiply two boolean 𝑛 × 𝑛 matrices in time 𝑂 (𝑛𝜔 ) with 𝜔 < 3.

2.1 Fine-Grained Complexity
Fine-grained complexity is a powerful tool to reason about lower bounds for problems solvable in

polynomial time. Consider a problem 𝐴 with input size 𝑛. If 𝐴 can be solved in polynomial time,

our goal is to find the smallest constant 𝑐 > 0 such that 𝐴 can be solved in time 𝑂 (𝑛𝑐 )
Let us consider one of the simplest problems that have widespread use in fine-grained complexity.

The 3SUM problem asks whether, given 𝑛 integers, three integers exist that sum to 0. There exists a

straightforward algorithm that solves 3SUM in quadratic time. However, despite decades of research,

it remains unknown if there exists a sub-quadratic time algorithm, i.e., is there an algorithm that

takes time𝑂 (𝑛2−𝜖 ) for some constant 𝜖 > 0. The first step in fine-grained complexity is establishing

reasonable conjectures about the running times for well-studied computational problems. In this

paper, we will use the following well-established conjectures to prove our conditional lower bounds:

3SUM hypothesis [Gajentaan and Overmars 1995]: There is no 𝑂 (𝑛2−𝜖 ) time algorithm for

3SUM, for any constant 𝜖 > 0. The 3SUM problem takes as input 𝑛 integers in {−𝑛𝑐 , . . . , 𝑛𝑐 }
for a constant 𝑐 , and asks whether any three of the integers sum to 0.

APSP hypothesis [Williams and Williams 2018]: There is no 𝑂 (𝑛3−𝜖 ) time algorithm for the

All-Pairs Shortest Path problem, for any constant 𝜖 > 0.

Combinatorial BMM hypothesis: There is no combinatorial algorithm that can solve Boolean

Matrix Multiplication on boolean matrices of dimensions 𝑛 × 𝑛 with running time 𝑂 (𝑛3−𝜖 )
for any constant 𝜖 > 0.

Combinatorial 𝑘-Clique hypothesis: For any 𝑘 ≥ 3, there is no combinatorial algorithm that

detects a 𝑘-Clique in a graph with 𝑛 nodes in time 𝑂 (𝑛𝑘−𝜖 ) for any constant 𝜖 > 0.

The Combinatorial 𝑘-Clique hypothesis is a generalization of the Combinatorial BMM hy-

pothesis, since combinatorial BMM is equivalent to combinatorial triangle (clique with 𝑘 = 3)

detection [Williams and Williams 2018].

The second step in fine-grained complexity is to reason about fine-grained reductions. Suppose

we have a problem 𝐴 with running time 𝑎(𝑛) and a problem 𝐵 with running time 𝑏 (𝑛). Given an

oracle that can solve problem 𝐵 in time 𝑂 (𝑏 (𝑛)1−𝜖 ) for some 𝜖 > 0, we would like to somehow use

this oracle to obtain an algorithm for problem 𝐴 with running time 𝑂 (𝑎(𝑛)1−𝜖 ′ ) for some 𝜖′ > 0.

The transformation of instances of 𝐴 to instances of 𝐵 (aka a reduction) requires some special

properties. It is not enough to have a polynomial time reduction from 𝐴 to 𝐵. Instead, we want to

ensure that the reduction runs in time faster than 𝑎(𝑛). Further, we also want the ability to make

multiple calls to the oracle for 𝐵 (aka a Turing-style reduction).

Fine-grained complexity based lower bounds have been a useful yardstick to understand the

hardness for many problems solvable in polynomial time where progress has been stalled for several

years (and in some cases, decades). This is not limited to static problems. Seminal work [Henzinger

et al. 2015] has also proposed fundamental conjectures for dynamic problems that have been used

to reason about the optimality of algorithms in the dynamic setting.
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3 DYCK REACHABILITY
In this section, we study the running time of the All-Pairs and On-Demand CFL reachability

problems for the family of Dyck-𝑘 grammars. We focus on this family of grammars for two reasons.

First, Dyck reachability is a fundamental problem at the heart of static analysis. Second, Dyck-2

is in some sense the "hardest" CFG [Greibach 1973], so its complexity will be informative of the

behavior of other CFGs. Here, we should note here that any Dyck-𝑘 problem for 𝑘 ≥ 2 is equivalent

(w.r.t. running time) to Dyck-2.
1

We begin by recalling a result for the On-Demand problem on D𝑘 . This result was proven in a

non peer-reviewed publication [Zhang 2020] and [Hansen et al. 2021].

Theorem 3.1. [Hansen et al. 2021; Zhang 2020] Under the combinatorial BMM hypothesis, there is

no combinatorial algorithm that evaluates CFL
od (D𝑘 ) for 𝑘 ≥ 1 in 𝑂 (𝑛3−𝜖 ) for any constant 𝜖 > 0.

Using fast matrix multiplication, [Mathiasen and Pavlogiannis 2021] showed that CFL
ap (D1) can

actually be evaluated in𝑂 (𝑛𝜔 log
2 𝑛). This result may lead the reader to ask whether truly sub-cubic

evaluation is possible for all D𝑘 for 𝑘 ≥ 2. We answer this question negatively. In particular,

when we consider any algorithm, including non-combinatorial algorithms that can use fast matrix

multiplication, it is still possible to show an 𝑂 (𝑛2.5) conditional lower bound. This implies that it is

unlikely that we can construct a fast (or at least quadratic) algorithm for Dyck-𝑘 grammars.

Theorem 3.2. Under the APSP or 3SUM hypothesis, CFL
ap (D𝑘 ) for 𝑘 ≥ 2 does not admit an

𝑂 (𝑛2.5−𝜖 ) algorithm for any constant 𝜖 > 0.

Proof. We show a reduction from the All-Edges Monochromatic Triangle problem (AE-MonoΔ).
In this problem, we are given an 𝑛-node graph 𝐻 = (𝑉 , 𝐸), where each edge 𝑒 ∈ 𝐸 has a color 𝑐 (𝑒).
We ask to determine for every edge 𝑒 , whether it appears in a monochromatic triangle in 𝐻 , i.e., all

edges of the triangle have the same color. We will use the fact that AE-MonoΔ does not admit an

𝑂 (𝑛2.5−𝜖 ) algorithm unless both the APSP and 3SUM hypotheses fail [Williams and Xu 2020].

The key idea in the reduction is that Dyck-2 (and hence Dyck-𝑘 for 𝑘 ≥ 2) can encode numbers.

We associate with each edge in the graph an integer in {1, . . . ,𝑚}, and with each color an integer

𝑚 + 1, . . . ,𝑚 +𝐶 , where 𝐶 is the number of distinct colors. Let 𝑒 denote the binary encoding of an

edge 𝑒 , and 𝑒𝑅 denote the reverse sequence of 𝑒 . Similarly, we use 𝑐 and 𝑐𝑅 for the binary encoding

of colors. We will assume that the length of the binary encoding is exactly 𝑁 = log(𝑚 +𝐶) (we
can always pad with 0’s). Since we will construct a Dyck-2 instance, bits 0, 1 in 𝑒, 𝑐 will be encoded

using symbols [ and ( respectively and the bits in 𝑒𝑅, 𝑐𝑅 will be encoded using ] and ) instead of 0

and 1 respectively. The numbers will be encoded as directed line graphs with 𝑁 edges
2
. The label

of the 𝑖th edge in the line graph corresponds to the 𝑖th bit in the encoding. For example, if 𝑒 = 0011,

then we encode 𝑒 as:

𝐿(𝑒) = ■ [−→ □ [−→ □
(

−→ □
(

−→ ■

and 𝑒𝑅 = 1100 as:

𝐿𝑅 (𝑒) = ■
)

−→ □
)

−→ □ ]−→ □ ]−→ ■
We denote by 𝐿1 ◦ 𝐿2 the stitching of the two line graphs, where the end node of 𝐿1 becomes the

start node of 𝐿2. For example, 𝐿(𝑒) ◦ 𝐿𝑅 (𝑒) = ■ [−→ □ [−→ □
(

−→ □
(

−→ ■
)

−→ □
)

−→ □ ]−→ □ ]−→ ■ for edge 𝑒

with 𝑒 = 0011.

1
One can encode 𝑘 types of parentheses with 2 types using a simple binary encoding.

2
Recall that a graph𝐺 = (𝑉 , 𝐸 ) is a line graph if the vertices𝑉 can be arranged into a sequence 𝑣1, . . . , 𝑣|𝑉 | such that all

edges 𝑒 ∈ 𝐸 are of the form (𝑣𝑖 , 𝑣𝑖+1 ) .
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We now construct the input graph𝐺 as follows. We start by creating five copies of the vertex set

of𝑉𝐻 :𝐴, 𝐵,𝐶, 𝐷, 𝐸. We use 𝑣𝐴, 𝑣𝐵, 𝑣𝐶 , 𝑣𝐷 , 𝑣𝐸 to denote the copy of vertex 𝑣 in𝐴, 𝐵,𝐶, 𝐷, 𝐸 respectively.

For every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸𝐻 , we then do the following:

• connect 𝑢𝐴 to 𝑣𝐵 with 𝐿(𝑒) ◦ 𝐿(𝑐 (𝑒));
• connect 𝑢𝐵 to 𝑣𝐶 with 𝐿𝑅 (𝑐 (𝑒)) ◦ 𝐿(𝑐 (𝑒));
• connect 𝑢𝐶 to 𝑣𝐷 with 𝐿𝑅 (𝑐 (𝑒)); and
• connect 𝑢𝐷 to 𝑣𝐸 with 𝐿𝑅 (𝑒).

We now execute CFL
ap (D2) on 𝐺 , which has 𝑂 (𝑛 log𝑛) vertices. To obtain a solution to AE-

MonoΔ, we simply filter the pairs (𝑢, 𝑣) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐸: this can be done in time 𝑂 (𝑛2).
Let 𝑃 be the resulting set. It remains to argue that the reduction is correct.

Suppose that (𝑢𝐴, 𝑣𝐸) ∈ 𝑃 . Then, there is a path from 𝑢𝐴 to 𝑣𝐸 in 𝐺 of the following form:

𝑢𝐴
𝑒◦𝑐1−−−→ 𝑤𝐵

𝑐2

𝑅◦𝑐2−−−−−→ 𝑡𝐶
𝑐3

𝑅

−−→ 𝑧𝐷
𝑒′𝑅−−→ 𝑣𝐸

Since the labels of this path are recognized by Dyck-2, we must have that 𝑐1 = 𝑐2, 𝑐2 = 𝑐3, and

𝑒 = 𝑒′. But 𝑒 = (𝑢,𝑤) and 𝑒′ = (𝑧, 𝑣). Thus, 𝑢 = 𝑧 and 𝑣 = 𝑤 . This implies that we have a triangle in

𝐻 that is formed by the nodes 𝑢, 𝑣, 𝑡 . Moreover, the edges all have the same color, and hence the

triangle is monochromatic.

For the other direction, suppose that we have an edge (𝑢, 𝑣) that forms a monochromatic triangle

𝑢, 𝑣, 𝑡 . It is easy to see by the above argument that (𝑢𝐴, 𝑣𝐸) will then appear in 𝑃 . □

Finally, we consider the case of sparse graphs, where we are only interested in the number of

edges𝑚 as the input parameter. We can show the following result.

Theorem 3.3. Under the combinatorial 𝑘-Clique hypothesis, CFLod (D𝑘 ) (and thus CFLap (D𝑘 ))
for 𝑘 ≥ 2 cannot be solved by a combinatorial algorithm in time 𝑂 (𝑚3−𝜖 ) for any constant 𝜖 > 0.

Compared to Theorem 3.1, the above lower bound is stronger, but it is based on a weaker hy-

pothesis, since combinatorial BMM is equivalent to combinatorial 3-Clique. Moreover, Theorem 3.3

does not apply to Dyck-1; we do not know whether Dyck-1 admits a faster algorithm on sparse

inputs. We should note that this lower bound was also shown in [Schepper 2018], but indirectly via

a reduction from a problem in pushdown automata. Our simplified construction allows us to reuse

the same gadgets for proving the lower bounds for Andersen’s Pointer Analysis in Section 6. We

present the proof next.

3.1 Proof of Theorem 3.3
The reduction uses the same core idea as the one used in [Abboud et al. 2018]. The construction is

based on the following idea: If there is a 3𝑘-clique, then there are 3 disjoint 𝑘-cliques. Moreover, if

every pair of these 3 cliques forms a 2𝑘-clique, then there is a 3k-clique in the graph. To reduce the

3𝑘-Clique problem, we will take as input a graph 𝐺 with 𝑛 nodes and transform it to an instance

for Dyck-2 with 𝑂 (𝑛𝑘+1 log𝑛) edges. This transformation will be done in time 𝑂 (𝑛𝑘+1 log𝑛) time.

We obtain the desired bound by letting 𝑘 grow depending on the constant 𝜖 .

Notation. We associate with each node in the graph an integer in {1, . . . , 𝑛}. Let 𝑣 denote the
binary encoding of a node 𝑣 and let 𝑣𝑅 denote the reverse sequence of 𝑣 . We will assume that the

length of the binary encoding 𝑣 is exactly 𝑁 = log𝑛 (we can always pad with 0’s). Since we will

construct a Dyck-2 instance, bits 0, 1 in 𝑣 will be encoded using symbols [ and ( respectively and

the bits in 𝑣𝑅 will be encoded using ] and ) instead of 0 and 1 respectively.

The numbers 𝑣, 𝑣𝑅 will be encoded as directed line graphs with 𝑁 edges. The label of the 𝑖th edge

in the line graph corresponds to the 𝑖th bit in 𝑣 (resp. 𝑣𝑅). We call this process vertex expansion (VE).
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■ ■ . . . ■
𝑣1 𝑣2

𝐶𝐿1 (𝑡1)

...

■ ■ . . . ■
𝑢1 𝑢2

𝐶𝐿1 (𝑡 | C𝑘 | )

𝐶𝑁𝐺1 (𝑡1)

𝐶𝑁𝐺1 (𝑡 | C𝑘 | )

𝑝

■
𝑣𝑘

𝑥1

𝑥2

𝑥ℓ

■ ■ ■

𝑥1
. . . 𝑥1

𝑥2
. . . 𝑥2

𝑥ℓ . . . 𝑥ℓ

...
...

...
...

𝐴

■
𝑢𝑘

𝑥′
1

𝑥′
2

...

𝑥′ℓ

■ ■ ■...
...

...

𝑥′
1

. . . 𝑥′
1

𝑥′
2

. . . 𝑥′
2

𝑥′ℓ . . . 𝑥′ℓ

𝐵

■ . . . ■
𝑣𝑅
𝑘−1

𝑣𝑅
1

𝑣𝑅
𝑘

𝐶𝐿2 (𝑡1) 𝐶𝑁𝐺2 (𝑡1)

. . .

...

■ . . . ■
𝑢𝑅
𝑘−1

𝑢𝑅
1

𝑢𝑅
𝑘

𝐶𝐿2 (𝑡 | C𝑘 | ) 𝐶𝑁𝐺2 (𝑡 | C𝑘 | )

. . .

□ . . . ■
𝑣𝑅
𝑘−1

𝑣𝑅
1

𝑣𝑅
𝑘

𝐶𝐿3 (𝑡1) 𝐶𝑁𝐺3 (𝑡1)

. . .

... 𝑞

□ . . . ■
𝑢𝑅
𝑘−1

𝑢𝑅
1

𝑢𝑅
𝑘

𝐶𝐿3 (𝑡 | C𝑘 | ) 𝐶𝑁𝐺3 (𝑡 | C𝑘 | )

. . .

Fig. 1. The input graph constructed for the On-Demand Dyck-2. We are checking whether (𝑝, 𝑞) is in the

output. For the clique 𝑡1, 𝑁𝑡1
= {𝑥1, . . . , 𝑥ℓ } and 𝐶𝑁𝐺1 (𝑡1) uses 𝑘 copies of 𝑁𝑡1

.

Gadgets. Similar to the reduction in [Abboud et al. 2018], we begin by constructing the set C𝑘 of

all cliques of size 𝑘 in𝐺 . This takes time𝑂 (𝑛𝑘 ). For each clique 𝑡 ∈ C𝑘 , we assume that the vertices

forming 𝑡 = {𝑣1, . . . , 𝑣𝑘 } are sorted in lexicographic order. We define two types of gadgets.

The first gadget is the clique list (CL). Consider a 𝑘-clique 𝑡 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 }. To create the

gadget 𝐶𝐿(𝑡), we take the line graphs 𝐿(𝑣1), 𝐿(𝑣2), . . . , 𝐿(𝑣𝑘 ) and stitch them together to form a

line graph with 𝑘 · 𝑁 edges. In particular, the last node of 𝐿(𝑣𝑖 ) is the first node of 𝐿(𝑣𝑖+1) for
every 𝑖 = 1, . . . , 𝑘 − 1. For simplicity of presentation, we will directly use the vertex instead of its

expansion as shown in Figure 1. We also define the reverse of a clique list 𝐶𝐿(𝑡). Here, we take the
line graphs 𝐿𝑅 (𝑣1), 𝐿𝑅 (𝑣2), . . . , 𝐿𝑅 (𝑣𝑘 ) and stitch them in reverse order, i.e. the last node of 𝐿𝑅 (𝑣𝑖 )
is the first node of 𝐿𝑅 (𝑣𝑖−1) for every 𝑖 = 2, . . . , 𝑘 . The clique list construction does not repeat any

vertex, unlike the reduction in [Abboud et al. 2018] that repeats each vertex 𝑘 times.

The second gadget is the clique neighbor gadget (CNG). For a given clique 𝑡 , consider the set of

all vertices 𝑁𝑡 = {𝑤1, . . . ,𝑤ℓ } (sorted in lexicographic order), such that for every vertex 𝑢 ∈ 𝑁𝑡

forms an edge with every vertex in 𝑡 . Note that 𝑡 ∩ 𝑁𝑡 = ∅. These sets can be computed in time

𝑂 (𝑛𝑘+1) as follows. For a given clique𝑡 of size 𝑘 , we iterate over all the vertices 𝑣 ∈ 𝑉 in the graph

and check in constant time whether 𝑣 connects to all 𝑘 vertices of 𝑡 . Therefore, each clique requires

𝑂 (𝑛) time to be processed. As there are

(
𝑛
𝑘

)
cliques of size exactly 𝑘 (these can be generated in time

𝑂 (𝑛𝑘 ) straightforwardly), the total processing time is 𝑂 (𝑛𝑘 · 𝑛) = 𝑂 (𝑛𝑘+1).
Then, 𝐶𝑁𝐺 (𝑡) is a directed graph that is constructed as follows. First, for every 𝑤𝑖 we create

a line graph with 𝑘 · 𝑁 edges by stitching together 𝑘 copies of 𝐿(𝑤𝑖 ). Then, we stitch these line

graphs together by making the first node of the first copy be the same for all𝑤𝑖 , the first node of the

second copy be the same, etc. The last node of the last copy is also the same (see Figure 1). Similar

to clique list, we also define 𝐶𝑁𝐺 (𝑡) where the gadget uses 𝐿𝑅 (𝑤𝑖 ) for every vertex𝑤𝑖 ∈ 𝑁𝑡 .

Graph Construction. The instance for the On-Demand Dyck-2 language is constructed as follows.

For each clique 𝑡 , we stitch 𝐶𝐿1 (𝑡) with 𝐶𝑁𝐺1 (𝑡) such that the last node of 𝐶𝐿1 (𝑡) is the same as
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the first node of 𝐶𝑁𝐺1 (𝑡). All 𝐶𝑁𝐺1 (𝑡) flow into a common connector vertex 𝐴 (shown in black

in Figure 1 right after 𝐶𝑁𝐺1 (𝑡𝑖 )). Then, we construct 𝐶𝐿2 (𝑡) for each clique, make 𝐴 to be the

start vertex of all 𝐶𝐿2 (𝑡), and connect it to 𝐶𝑁𝐺2 (𝑡), which flows into another common connector

vertex. Finally, we perform the same process but for 𝐶𝐿3 (𝑡) and 𝐶𝑁𝐺3 (𝑡). The first vertex of every
𝐶𝐿1 (𝑡) and last vertex of every 𝐶𝑁𝐺3 (𝑡) connect to vertices 𝑝 and 𝑞 respectively. We label the

outgoing edges from 𝑝 with [ and the incoming edges to 𝑞 with ]. We now use this instance as the

extensional input for the On-Demand problem over Dyck-2 and ask whether 𝑇 (𝑝, 𝑞) is true or not.
Before proving the result, we state a simple but useful observation that follows from the con-

struction.

Observation 3.4. Consider the gadget 𝐶𝐿(𝑡) (resp. 𝐶𝐿(𝑡)) that is immediately followed by 𝐶𝑁𝐺 (𝑡)
(resp. 𝐶𝑁𝐺 (𝑡)). Then, the set of vertices traversed by any path in 𝐶𝑁𝐺 (𝑡) (resp. 𝐶𝑁𝐺 (𝑡)) has no
vertex in common with 𝑡 .

Claim 3.5. If the On-Demand problem on Dyck-2 returns true, then there exists a 3𝑘-clique in the

input graph.

Proof. Let 𝑡1 be the clique chosen by the vertices in 𝐶𝐿1 (𝑡) and let 𝑉 be the set of vertices

traversed in 𝐶𝑁𝐺1 (𝑡) by the grammar. Since 𝐶𝑁𝐺1 (𝑡) is followed by 𝐶𝐿2 (𝑡), a valid Dyck-2 can

be formed only if 𝑉 corresponds to some clique 𝑡2 ∈ C𝑘 . Indeed, if this was not the case, then
the word will not be well-formed. For instance, if 𝐶𝐿2 (𝑡) corresponds to the reverse of 𝑡1, then

we will have a set of open brackets between a set of balanced brackets which is not a valid word

in Dyck-2. Further, Observation 3.4 guarantees that there is no common vertex between 𝑡1and 𝑡2.

Thus, it holds that 𝑡1 ∪ 𝑡2 is a 2𝑘-clique. Next, suppose𝑉 ′ is the set of vertices traversed in𝐶𝑁𝐺2 (𝑡).
We need to argue that 𝑉 ′ corresponds to a clique 𝑡3 with no common vertices with 𝑡1 ∪ 𝑡2. This
claim follows from the observation that since the remaining two gadgets are 𝐶𝐿3 (𝑡) and 𝐶𝑁𝐺3 (𝑡),
the Dyck-2 word can be valid only if the last 𝐶𝑁𝐺3 (𝑡) uses the vertex set of 𝑡1. Similar to our

previous argument, if this was not the case, and 𝐶𝐿3 (𝑡) uses vertices from (say) 𝑡1, the word is not

balanced because 𝑉 ′ contains open brackets within the word where 𝑡1 is balanced. Thus, 𝐶𝑁𝐺3 (𝑡)
must correspond to 𝑡1. Observation 3.4 tells us that 𝐶𝐿3 (𝑡) cannot have any common vertices with

𝐶𝑁𝐺3 (𝑡1). Applying Observation 3.4 again, we see that 𝑉 ′ also cannot have any common vertex

with 𝐶𝐿2 (𝑡2). Thus, 𝑡3 ∪ 𝑡2 and 𝑡3 ∪ 𝑡1 are both 2𝑘-cliques. This completes the proof. □

Claim 3.6. If there exists a 3𝑘-clique in the input graph, then the On-Demand problem on Dyck-2

returns true.

Proof. Let 𝑡1, 𝑡2, 𝑡3 ∈ C𝑘 be three disjoint 𝑘-cliques. We will show that there exists a path from 𝑢

to 𝑣 that forms a valid Dyck-2 word. Consider the path formed by the vertices

𝐶𝐿(𝑡1),𝐶𝑁𝐺2 (𝑡2),𝐶𝐿2 (𝑡2),𝐶𝑁𝐺2 (𝑡3),𝐶𝐿3 (𝑡3),𝐶𝑁𝐺3 (𝑡1).

The brackets on the outgoing and incoming edges from 𝑝, 𝑞 and all connector vertices are also

balanced. It is also straightforward to see that 𝑡2 and 𝑡3 are balanced within the Dyck word formed

by the balanced brackets of 𝑡1. □

Given an instance of 3k-Clique graph 𝐺 = (𝑉 , 𝐸), we construct the instance as described above

and solve the On-Demand problem over the Dyck-2 language. By Claims 3.5 and 3.6, the On-

Demand problem returns true iff the graph 𝐺 contains a 3𝑘-clique.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 59. Publication date: January 2023.



59:10 Paraschos Koutris and Shaleen Deep

4 THE ALL-PAIRS PROBLEM
In this section, we will study the all-pairs problem for CFL reachability. We recall here the following

known facts about this problem:

• For every grammar G, CFLap (G) can be solved by a combinatorial algorithm in time 𝑂 (𝑛3).
• If 𝐿(G) is regular, then CFL

ap (G) can be solved in 𝑂 (𝑛𝜔 ) time via fast matrix multiplication.

• If G is a linear grammar, then CFL
ap (G) can be solved by a combinatorial algorithm in

𝑂 (𝑚 · 𝑛) time.

4.1 A Reduction to BMM
It is known that for some grammar G, there exists a fine-grained reduction to BMM. The first

question we answer is: for which CFGs can we reduce CFL reachability to BMM, in the sense that a

faster running time for CFL
ap (G) implies a faster running time for BMM?

To answer this question, we first need the following definition:

Definition 4.1 (Join-Inducing CFG). Let G be a context-free grammar. We say that G is join-

inducing if it produces at least one string of length ≥ 2. Otherwise, we say that G is join-free.

It turns out that we can check whether this property is satisfied efficiently.

Lemma 4.2. Let G be a CFG. Then, in polynomial time (w.r.t. the size of G) we can check whether G
is join-inducing, and if so, output a string of length ≥ 2 produced by G in polynomial time (w.r.t. the

size of G).

Proof. We say that a grammar is proper if: (𝑖) it has no rules of the form 𝑋 ← 𝜖 (with the

exception of one rule of the form 𝑆 ← 𝜖 if G produces the empty string), (𝑖𝑖) it has no cycles

(meaning that a non-terminal symbol cannot derive itself), (𝑖𝑖𝑖) all non-terminal symbols are

productive (i.e. they can derive a word with terminal symbols), and (𝑖𝑣) all non-terminal symbols

are reachable from the start symbol 𝑆 . We can always transform G into a weakly equivalent
3

grammar G′ that is proper, and we can do this in polynomial time in the size of the grammar. We

can then transform G′ into a weakly equivalent grammar G′′ that is in Chomsky Normal Form: this

means that every production rule is of the form 𝐴← 𝐵𝐶 or 𝐴← 𝛼 , where 𝐴, 𝐵,𝐶 are non-terminal

symbols and 𝛼 is a terminal symbol. This can also be done in polynomial time. Note that G′′ is also
proper after this transformation.

Claim: G is join-inducing if and only if G′′ has a rule of the form 𝐴← 𝐵𝐶 .

Indeed, if every rule in G′′ has one terminal symbol on the right hand side, then G can generate

only strings of length one, hence it is join-free. Otherwise, since G′′ is proper and in Chomsky

Normal Form, it must have a rule of the form 𝑆 ← 𝐴𝐵. Since 𝐴, 𝐵 are non-terminal symbols, they

must each derive a string with at least one terminal symbol. Hence, the grammar G′′ (and thus

G) can produce a string of at least length 2. Note that the string can be computed in polynomial

time. In fact, once G′′ has been produced, generating the output takes 𝑂 ( |G′′ |) time: a linear pass

beginning from the rule with the start symbol is sufficient to find a string of length ≥ 2. □

We can now prove the following conditional lower bound.

Lemma 4.3. Let G be a join-inducing CFG. Suppose that CFL
ap (G) can be computed in time

𝑇 (𝑛) = Ω(𝑛2). Then, BMM can be solved in time 𝑂 (𝑇 (𝑛)).

Proof. By Lemma 4.2, we can find a string of length at least 2 that is produced by G (note that

|G| is a constant). Let this string be 𝑟1𝑟2 . . . 𝑟𝑘 where 𝑘 ≥ 2.

3
Weakly equivalent means that𝐺 and𝐺 ′ produce the same language.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 59. Publication date: January 2023.



The Fine-Grained Complexity of CFL Reachability 59:11

Now, suppose we want to multiply two 𝑛 ×𝑛 Boolean matrices 𝐴, 𝐵. We encode the matrices as a

directed (𝑘 + 1)-partite graph 𝐻 with vertex sets 𝑉0, . . . ,𝑉𝑘 of size 𝑛. Let 𝑉ℓ = {𝑣 (ℓ )
1

, . . . , 𝑣
(ℓ )
𝑛 }. We

only add edges between two consecutive vertex sets 𝑉ℓ ,𝑉ℓ+1, where ℓ = 0, . . . , 𝑘 − 1 as follows:

𝐸1 = {(𝑣 (0)𝑖
, 𝑣
(1)
𝑗
) | 𝐴[𝑖] [ 𝑗] = 1, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛]}

𝐸𝑖 = {(𝑣 (𝑖−1)
𝑗

, 𝑣
(𝑖 )
𝑗
) | 𝑗 ∈ {1, . . . , 𝑛}} for 𝑖 ∈ {2, . . . , 𝑘 − 1}

𝐸𝑘 = {(𝑣 (𝑘−1)
𝑖

, 𝑣
(𝑘 )
𝑗
) | 𝐵 [𝑖] [ 𝑗] = 1, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛]}

Finally, we label the edges of 𝐻 such that if (𝑢, 𝑣) ∈ 𝐸𝑖 , then we assign label 𝑟𝑖 .

Now, consider the set the pairs 𝑃 produced if we run CFL
ap (G) on 𝐻 . We take the result and

filter it such that the first column has values from 𝑉0 and the second from 𝑉𝑘 ; more specifically, we

compute 𝑃 ′ = 𝑃 ∩ (𝑉0 ×𝑉𝑘 ). Since |𝑉0 | · |𝑉𝑘 | = 𝑛2
, this computation can run in time𝑂 (𝑛2). Observe

that the input graph has Θ(𝑛) vertices, hence the total running time is 𝑂 (𝑇 (𝑛) + 𝑛2) = 𝑂 (𝑇 (𝑛)).
We now claim that 𝑃 ′ computes 𝐶 = 𝐴 × 𝐵, i.e., 𝐶 [𝑖] [ 𝑗] = 1 if and only if (𝑣 (0)

𝑖
, 𝑣
(𝑘 )
𝑗
) ∈ 𝑃 ′.

⇒ For the one direction, suppose that𝐶 [𝑖] [ 𝑗] = 1. Then, there exists some 𝑘 ∈ {1, . . . , 𝑛} such that

𝐴[𝑖] [𝑘] = 𝐵 [𝑘] [ 𝑗] = 1. Now, consider the following directed path in 𝐻 :

(𝑣 (0)
𝑖

, 𝑣
(1)
𝑘
), (𝑣 (1)

𝑘
, 𝑣
(2)
𝑘
), . . . , (𝑣 (𝑘−1)

𝑘
, 𝑣
(𝑘 )
𝑗
)

First, notice that 𝑣
(0)
𝑖
∈ 𝑉0 and 𝑣

(𝑘 )
𝑗
∈ 𝑉𝑘 . Second, the word along the path is labeled 𝑟1 . . . 𝑟𝑘 , hence

it is accepted by G. From these two facts, we obtain that (𝑣 (0)
𝑖

, 𝑣
(𝑘 )
𝑗
) ∈ 𝑃 ′.

⇐ For the other direction, consider some (𝑣 (0)
𝑖

, 𝑣
(𝑘 )
𝑗
) ∈ 𝑃 ′. Since𝐻 is a directed (𝑘 +1)-partite graph,

any string that produces a result in 𝑃 ′ will be a substring of 𝑟1𝑟2 . . . 𝑟𝑘 . However, the intersection

with the cartesian product 𝑉0 ×𝑉𝑘 keeps only the strings that start from 𝑉0 and end at 𝑉𝑘 , so these

will be exactly 𝑟1𝑟2 . . . 𝑟𝑘 . Hence, there is a path (𝑣 (0)𝑖
, 𝑣
(1)
𝑘
), (𝑣 (1)

𝑘
, 𝑣
(2)
𝑘
), . . . , (𝑣 (𝑘−1)

𝑘
, 𝑣
(𝑘 )
𝑗
) for some

𝑘 ∈ {1, . . . , 𝑛}, which means that 𝐴[𝑖] [𝑘] = 𝐵 [𝑘] [ 𝑗] = 1 and consequently 𝐶 [𝑖] [ 𝑗] = 1. □

The above lemma tells us that solving CFL
ap (G) is at least as hard as BMM if G is join-inducing.

On the other hand, the problem becomes trivial for join-free CFGs.

Lemma 4.4. Let G be a join-free CFG. Then, CFL
ap (G) can be evaluated in time 𝑂 (𝑚 + 𝑛).

Proof. Since G is not join-inducing, the language 𝐿(G) can be described as a set 𝐴 of strings of

length one (plus possibly the empty string). Hence, we can simply return the edges in the graph

with labels from 𝐴, a task that can be done in time linear to the number of edges and nodes in the

graph. □

4.2 The Landscape for Combinatorial Algorithms
Combining the results of the previous section, we can obtain the following dichotomy theorem

that characterizes the complexity of the problem when we restrict to combinatorial algorithms.

Theorem 4.5. Let G be a context-free grammar.

• If G is join-inducing, then CFL
ap (G) can be evaluated in time 𝑂 (𝑛3) by a combinatorial algo-

rithm. Moreover, under the combinatorial BMM hypothesis, there is no combinatorial algorithm

that evaluates CFL
ap (G) in time 𝑂 (𝑛3−𝜖 ) for any constant 𝜖 > 0.

• If G is join-free, CFL
ap (G) can be evaluated in time Θ(𝑚 + 𝑛) = Θ(𝑛2).

Moreover, we can decide which of the two cases holds in time polynomial to the size of G.
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The above dichotomy theorem shows a sharp behavior of the running time with respect to 𝑛.

Indeed, the exponent of 𝑛 can be either 2 or 3, with nothing in between. Surprisingly, it is even

decidable (in polynomial time) in which of two classes each grammar belongs.

4.3 The Landscape for All Algorithms
If we allow for any type of algorithm (including ones that use fast matrix multiplication), then the

complexity landscape changes considerably. Indeed, we already know that regular grammars admit

a subcubic algorithm. Using Lemma 4.3 we can characterize the complexity within the class of

CFGs that describe regular languages.

Theorem 4.6. Let G be a CFG such that 𝐿(G) is regular and join-inducing. Then, CFLap (G) can
be solved in time 𝑂 (𝑛𝜔 ). Moreover, there is no algorithm that evaluates CFL

ap (G) in time 𝑂 (𝑛𝜔−𝜖 )
for any constant 𝜖 > 0.

We next consider CFGs that describe non-regular languages. Is it the case that all such CFGs

require cubic time even with non-combinatorial tools? [Mathiasen and Pavlogiannis 2021] already

showed that CFL
ap (D1) can be solved in time 𝑂 (𝑛𝜔 log

2 𝑛). We present next another example of a

natural non-regular CFG that can be solved in subcubic time. The running time for this CFG has a

different exponent, which means that it possibly captures a different class of problems.

Consider the following non-regular language: L≥ = {𝑎𝑖𝑏 𝑗 | 𝑖 ≥ 𝑗}. This language can be

expressed by the following CFG G≥ :
𝑆 ← 𝑇1𝑇2 𝑇1 ← 𝜖 | 𝑎𝑇1 𝑇2 ← 𝜖 | 𝑎𝑇2𝑏.

Lemma 4.7. CFL
ap (G≥) can be solved in time 𝑂 (𝑛 (3+𝜔 )/2).

Proof. The algorithm works in three steps. In the first step, we compute the all-pairs shortest

paths in the graph 𝐺𝑎 where we keep only edges with label 𝑎 with weight −1, and remove any

edges with label 𝑏. This can be done in time𝑂 (𝑛 (3+𝜔 )/2) [Alon et al. 1997]. A shortest path between

𝑖 and 𝑗 in 𝐺𝑎 means a longest path of 𝑎-edges in 𝐺 . Let𝑀𝑎 be the matrix such that𝑀𝑎 [𝑖] [ 𝑗] is the
length of the longest 𝑎-path between 𝑖 and 𝑗 .

In the second step, we compute the all-pairs shortest paths in the graph𝐺𝑏 where we keep only

edges with label 𝑏 with weight +1, and remove any edges with label 𝑎. A shortest path here means

a shortest path of 𝑏-edges in𝐺 . This can also be done in time𝑂 (𝑛 (3+𝜔 )/2) [Alon et al. 1997]. Let𝑀𝑏

be the matrix such that𝑀𝑏 [𝑖] [ 𝑗] is the length of the shortest 𝑏-path between 𝑖 and 𝑗 .

In the final step, we compute the existence-dominance product of the two matrices𝑀𝑎, 𝑀𝑏 . The

existence-dominance product of two integer matrices 𝐴 and 𝐵 is the Boolean matrix 𝐶 such that

𝐶 [𝑖] [ 𝑗] = 0 iff there exists a 𝑘 such that 𝐴[𝑖] [𝑘] ≥ 𝐵 [𝑘] [ 𝑗] . We can solve the existence-dominance

product problem also in time 𝑂 (𝑛 (3+𝜔 )/2) [Matousek 1991].

We finally claim that the algorithm is correct. Indeed, if the resulting existence-dominance

product matrix 𝐶 has 𝐶 [𝑖] [ 𝑗] = 1, this means that there exists an 𝑎-path from 𝑖 to some 𝑘 that is at

least as long as another 𝑏-path from 𝑘 to 𝑗 . The concatenation of these two paths forms a path with

labels thats satisfies G≥ . On the other hand, if𝐶 [𝑖] [ 𝑗] = 0, for any intermediate node 𝑘 , the longest

𝑎-path from 𝑖 to 𝑘 is strictly shorter that the shortest 𝑏-path from 𝑘 to 𝑗 , hence no path from 𝑖 to 𝑗

satisfies the CFG. □

What is the best possible lower bound we can get for a non-regular CFG? Recall that in the

previous section we showed that CFL reachability for Dyck-2 admits a 𝑂 (𝑛2.5) conditional lower
bound. This implies that solving CFL reachability for Dyck-2 (and thus in general) is likely strictly

harder than BMM. However, it is an open problem if the lower bound can be improved, or if there

exists a faster non-combinatorial algorithm.
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An Undecidability Result. We will show next that it is not possible to determine whether a

given CFG can be evaluated in time 𝑂 (𝑛𝜔 ) or not. In other words, even if a characterization of the

complexity exists for different CFGs, this characterization will not be decidable. The undecidability

result is based on Greibach’s theorem. First, we need the following definition.

Definition 4.8 (Right Quotient). If L is a language and 𝛼 is a single symbol, we define the language

L/𝛼 = {𝑤 | 𝑤𝛼 ∈ L} to be the right quotient of L with respect to 𝛼 .

Theorem 4.9 (Greibach [Greibach 1968]). Let 𝐶 be any non-trivial property for the class of

CFLs that is true for all regular languages and that is preserved under the right quotient with a single

symbol. Then 𝐶 is undecidable for the class of CFLs.

We now state the theorem formally.

Theorem 4.10. Suppose the APSP or 3SUM hypothesis holds. Then, for any constant 𝑐 ∈ [𝜔, 2.5), it
is undecidable whether for a given CFG G, CFLap (G) can be evaluated in time 𝑂 (𝑛𝑐 ).

Proof. Fix a constant 𝑐 ∈ [𝜔, 2.5). To prove undecidability, we apply Greibach’s theorem.

Consider the following property 𝐶 for a CFL: the All-Pairs CFL reachability problem for any CFG

that produces the language can be evaluated in time 𝑂 (𝑛𝑐 ). As we have seen, 𝐶 is satisfied by all

regular languages since 𝑐 ≥ 𝜔 . It is also non-trivial, since under the APSP or 3SUM hypothesis,

Dyck-2 cannot be evaluated in time 𝑂 (𝑛2.5−𝜖 ) for any constant 𝜖 > 0, hence it does not admit an

𝑂 (𝑛𝑐 ) algorithm. It remains to show that 𝐶 is closed under the right quotient by a single symbol.

Indeed, take a CFL L and a CFG G that produces it. Consider the language L/𝛼 for a single

symbol 𝛼 . We now want to evaluate the CFG G𝛼 that corresponds to the language L/𝛼 . To do this,

we extend the input graph 𝐺 as follows: for each vertex 𝑣 ∈ 𝑉 , we add an edge (𝑣, 𝑡𝑣) with label 𝛼 ,

where 𝑡𝑣 is a fresh distinct vertex. Let𝐺
′
be the resulting graph. Note that |𝑉 (𝐺 ′) | = 2|𝑉 (𝐺) | = 𝑂 (𝑛).

Then, we run the algorithm for CFL
ap (G) on the new graph 𝐺 ′, which runs in time 𝑂 (𝑛𝑐 ). Finally,

we can see that by construction, (𝑢, 𝑣) is an output pair for G𝛼 if and only if (𝑢, 𝑡𝑣) is an output pair

for G. Hence, to obtain the output for G𝛼 it remains to do the following: for every pair of the form

(𝑢, 𝑡𝑣) for G, output (𝑢, 𝑣). This is doable in time𝑂 (𝑛2) by iterating over all output pairs for G. □

4.4 All-Pairs on Sparse Graphs
Finally, we turn our attention to the case where we interested in running time as a function of the

number of edges in the graph𝑚 (instead of the number of nodes). This is particularly helpful when

the input graph to the CFL reachability is sparse. We summarize our results in Table 1.

As we proved in the previous subsection, a CFG that is join-free can be evaluated in time 𝑂 (𝑚),
which is optimal. On the other hand, we can show the following unconditional lower bound for

join-inducing grammars. This result uses the fact that for any join-inducing grammar, we can

construct a worst-case input instance that produces an output of size Ω(𝑚2).

Lemma 4.11. Let G be a join-inducing CFG. Then, any algorithm that computes CFL
ap (G) needs

time Ω(𝑚2).

Proof. We follow the same construction as in the proof of Lemma 4.3. In particular, since G is

join-inducing, it can produce a string 𝑟1𝑟2 . . . 𝑟𝑘 with 𝑘 ≥ 2.

Consider the following family of (𝑘 + 1)-partite graphs with vertex sets 𝑉0, . . . ,𝑉𝑘 of size 𝑛. Let

𝑉𝑖 = {𝑣 (𝑖 )
1
, . . . , 𝑣

(𝑖 )
𝑛 }. We only add edges between two consecutive vertex sets 𝑉𝑖 ,𝑉𝑖+1 as follows (fix
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CFG upper bound lower bound

join-free 𝑂 (𝑚) Ω(𝑚) unconditional

join-inducing 𝑂 (𝑚3) Ω(𝑚2) unconditional [Thm 4.11]

join-inducing + linear 𝑂 (𝑚𝑛) = 𝑂 (𝑚2) Ω(𝑚2) unconditional [Thm 4.11]

Dyck-1 𝑂 (𝑚3) Ω(𝑚2) unconditional [Thm 4.11]

Dyck-𝑘 , 𝑘 ≥ 2 𝑂 (𝑚3) Ω(𝑚3−𝜖 ) under comb. 𝑘-Clique [Thm 3.3]

Table 1. Upper and lower bounds for the all-pairs CFL reachability problem.

some 𝑗★ ∈ {1, . . . , 𝑛}):

𝐸1 = {(𝑣 (0)𝑖
, 𝑣
(1)
𝑗★
) | 𝑖 ∈ {1, . . . , 𝑛}}

𝐸𝑖 = {(𝑣 (𝑖−1)
𝑗

, 𝑣
(𝑖 )
𝑗
) | 𝑗 ∈ {1, . . . , 𝑛}} 𝑖 ∈ {2, . . . , 𝑘 − 1}

𝐸𝑘 = {(𝑣 (𝑘−1)
𝑗★

, 𝑣
(𝑘 )
𝑖
) | 𝑖 ∈ {1, . . . , 𝑛}}

Finally, we assign label 𝑟𝑖 to any edge in 𝐸𝑖 . It is easy to see that the input size is𝑚 = 𝑘 · 𝑛, while
the output size is 𝑛2 = Ω(𝑚2). Since any algorithm must produce this output, the desired lower

bound is obtained. □

In terms of upper bounds, the problem CFL
ap (G) can always be evaluated in time 𝑂 (𝑛3) =

𝑂 (𝑚3). Hence, every join-inducing CFG can be evaluated in time 𝑂 (𝑚𝑐 ) for some exponent 𝑐 ∈
[2, 3]. Additionally, for linear CFGs Yannakakis [Yannakakis 1990] showed that if G is linear, then

CFL
ap (G) can be evaluated in time𝑂 (𝑚𝑛). Thus, we have proved the following dichotomy theorem.

Theorem 4.12. Let G be a linear CFG. Then:

• If G is join-inducing, then CFL
ap (G) can be evaluated in time 𝑂 (𝑚2) by a combinatorial

algorithm. Moreover, every algorithm that evaluates CFL
ap (G) needs time Ω(𝑚2).

• If G is join-free, CFL
ap (G) can be evaluated in (optimal) linear time 𝑂 (𝑚).

Moreover, we can decide which of the two cases holds in time polynomial to the size of the grammar.

Unfortunately, the landscape becomes murkier for non-linear CFGs. Indeed, the𝑂 (𝑚𝑛) algorithm
is not applicable in this case, hence we do not know whether the 𝑂 (𝑚2) upper bound holds. As we

showed in Theorem 3.3, Dyck-𝑘 for 𝑘 ≥ 2 has an Ω(𝑚3−𝜖 ) lower bound under the combinatorial

𝑘-Clique hypothesis. It is an open problem whether there exists any CFGs with intermediate

complexity that can be evaluated in time Θ(𝑚𝑐 ) for 𝑐 ∈ (2, 3).
Can we determine whether a given CFG can be evaluated in 𝑂 (𝑚2) time, or in general in time

𝑂 (𝑚𝑐 ) for some constant 𝑐 strictly smaller than 3? We answer this question negatively.

Theorem 4.13. Suppose the combinatorial 𝑘-Clique hypothesis holds. Then, for any constant

𝑐 ∈ [2, 3), it is undecidable whether CFLap (G) can be evaluated by a combinatorial algorithm that

runs in time 𝑂 (𝑚𝑐 ).

5 THE ON-DEMAND PROBLEM
For every CFG that corresponds to a regular grammar, we can solve the On-Demand problem in

time 𝑂 (𝑚) = 𝑂 (𝑛2), which is optimal (we can always construct an input with size 𝑛2
). Hence, the

CFGs of interest are the non-regular grammars. In Section 3, we saw that CFL
od (D𝑘 ) for 𝑘 ≥ 1 is

BMM-hard. We can use the same reduction to show BMM-hardness for other non-regular CFGs:
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CFG upper bound lower bound

𝑛

any 𝑂 (𝑛3) Ω(𝑛2) unconditional

regular 𝑂 (𝑛2) Ω(𝑛2) unconditional

{𝑎𝑖𝑏𝑖 | 𝑖 ≥ 0} 𝑂 (𝑛3) Ω(𝑛3−𝜖 ) under comb. BMM [Thm 5.1]

palindromes with ≥ 2 symbols 𝑂 (𝑛3) Ω(𝑛3−𝜖 ) under comb. BMM [Thm 5.1]

Dyck-𝑘 , 𝑘 ≥ 1 𝑂 (𝑛3) Ω(𝑛3−𝜖 ) under comb. BMM [Thm 3.1]

𝑚

any 𝑂 (𝑚3) Ω(𝑚) unconditional

regular 𝑂 (𝑚) Ω(𝑚) unconditional

linear CFG 𝑂 (𝑚2) ?

{𝑎𝑖𝑏𝑖 | 𝑖 ≥ 0} 𝑂 (𝑚2) Ω(𝑚2−𝜖 ) under comb. 𝑘-Clique [Thm 5.4]

palindromes with ≥ 2 symbols 𝑂 (𝑚2) Ω(𝑚2−𝜖 ) under comb. 𝑘-Clique [Thm 5.4]

Dyck-1 ? Ω(𝑚2−𝜖 ) under comb. 𝑘-Clique [Thm 5.4]

Dyck-𝑘 , 𝑘 ≥ 2 𝑂 (𝑚3) Ω(𝑚3−𝜖 ) under comb. 𝑘-Clique [Thm 3.3]

Table 2. Upper and lower bounds of combinatorial algorithms for the on-demand problem.

Theorem 5.1. The On-Demand CFL reachability problem is BMM-hard for the (non-regular) CFGs

that produce the following CFLs:

(1) The language {𝑎𝑖𝑠𝑏𝑖 | 𝑖 ≥ 0} where 𝑠 can be any string, including the empty one;

(2) Strings over {𝑎, 𝑏} where the number of 𝑎’s is equal to the 𝑏’s;

(3) Palindrome strings of even (odd) length over an alphabet with at least 2 symbols.

The above theorem implies that the 𝑂 (𝑛3) algorithm we used for the All-Pairs problem is

optimal for the On-Demand problem of all the above grammars if we restrict to combinatorial

algorithms (under the combinatorial BMM hypothesis).

The readermay now ask: is it true that every non-regular CFG has a cubic lower bound conditional

to the combinatorial BMMhypothesis?We answer this question in the negative. Indeed, consider the

following non-regular grammar G≥ we defined in the previous section, that encodes the language

{𝑎𝑖𝑏 𝑗 | 𝑖 ≥ 𝑗}. As we show with the next lemma, the On-Demand problem can be answered in

time 𝑂 (𝑚) = 𝑂 (𝑛2).
Lemma 5.2. CFL

od (G≥) can be solved by a combinatorial algorithm in time 𝑂 (𝑚).
Proof. Let (𝑠, 𝑡) be the input pair of constants and 𝐺 be the input labeled graph (with labels

in {𝑎, 𝑏}). We will do the following: for each vertex 𝑣 , we will first compute the length ℓ𝑎 [𝑣] of
the longest path from 𝑠 to 𝑣 that uses only 𝑎’s (we allow this length to be +∞ in the case that we

can make this path infinitely long, and −∞ if 𝑣 is unreachable from 𝑠). We claim that we can do

this in time 𝑂 (𝑚). To do this, we first construct the graph𝐺𝑎 that contains only the edges labeled

with 𝑎, which can be done in linear time. Then, we perform a depth-first search starting from the

vertex 𝑢 that produces as an output the strongly connected components (SCCs) of𝐺𝑎 , along with a

topological sort of the SCCs. This step can also be performed in linear time. Let𝐶1,𝐶2, . . . ,𝐶𝑡 be the

SCCs in the topological order. W.l.o.g., assume that 𝑠 ∈ 𝐶1. We let ℓ𝑎 [𝐶1] = 0 if |𝐶1 | = 1, otherwise

ℓ𝑎 [𝐶1] = +∞. Then, we iterate over all SCCs following the topological order: for 𝐶𝑖 , if |𝐶𝑖 | > 1 we

assign ℓ𝑎 [𝐶𝑖 ] = +∞; otherwise, ℓ𝑎 [𝐶𝑖 ] = max𝑗 ℓ𝑎 [𝐶 𝑗 ] + 1, where 𝑗 iterates over all SCCs 𝐶 𝑗 such

that there is an edge from 𝐶 𝑗 to 𝐶𝑖 (if there is no such edge, we let ℓ𝑎 [𝐶𝑖 ] = −∞). Finally, we let
ℓ𝑎 [𝑣] = ℓ𝑎 [𝐶𝑖 ], where 𝑣 ∈ 𝐶𝑖 .

Similarly, for each vertex 𝑣 we compute the length ℓ𝑏 [𝑣] of the shortest path from 𝑣 to 𝑡 that

uses only 𝑏′𝑠 (the distance can be +∞ if there is no such path). We can also do this in time 𝑂 (𝑚).
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Indeed, we first construct the graph 𝐺𝑏 that contains only the edges labeled with 𝑏. Then, we solve

a single-target shortest path problem in an unweighted graph, where the target is 𝑡 ; this can be

done in linear time using breadth-first search.

Finally, we iterate over every node 𝑣 ∈ 𝑉 (𝐺) \{𝑠, 𝑡}. If there exists such a node where ℓ𝑎 [𝑣] ≠ −∞,
ℓ𝑏 [𝑣] ≠ +∞ and ℓ𝑎 [𝑣] > ℓ𝑏 [𝑣] then we claim that the desired path between 𝑠, 𝑡 exists; otherwise

not. The final step can be done in time 𝑂 (𝑛). □

Finally, we can show an analogous undecidability result to the one in Theorem 4.13.

Theorem 5.3. Suppose the combinatorial BMM hypothesis holds. Then, for any constant 𝑐 ∈ [2, 3),
it is undecidable whether the On-Demand CFL reachability problem for a given CFG can be evaluated

by an 𝑂 (𝑛𝑐 ) combinatorial algorithm.

5.1 On-demand on Sparse Graphs
Finally, we study the On-Demand problem with respect to the input size𝑚. We identify CFGs that

can be evaluated in linear, quadratic, and cubic time (see Table 2).

The On-Demand problem for a program that corresponds to a regular CFG is in time𝑂 (𝑚) [Yan-
nakakis 1990], while there are non-regular programs that are also in linear time. On the other hand,

there are several non-regular (and even linear) programs that have a quadratic lower bound. To

show this lower bound, we use the fact that, under the combinatorial 𝑘-Clique hypothesis, for any

constant 𝜖 > 0, for any 𝑘 > 2/𝜖 , finding whether a graph contains a 𝑘-cycle can be detected in time

Ω(𝑚2−𝜖 ) [Lincoln and Vyas 2020].

Theorem 5.4. Under the combinatorial 𝑘-Clique hypothesis, the On-Demand problem for following

cases cannot be solved by a combinatorial algorithm in time 𝑂 (𝑚2−𝜖 ) for any constant 𝜖 > 0.

(1) Dyck-𝑘 , for any 𝑘 ≥ 1;

(2) The language {𝑎𝑖𝑠𝑏𝑖 | 𝑖 ≥ 0} where 𝑠 can be any string, including the empty one;

(3) Strings over {𝑎, 𝑏} where the number of 𝑎’s is equal to the 𝑏’s;

(4) Palindrome strings of even (odd) length over an alphabet with at least 2 symbols.

We can prove lower bounds for other CFGs using inverse homomorphisms. A homomorphism ℎ

on an alphabet Σ is a function that gives a word (in a possibly different alphabet) for every symbol

in Σ. We can extend ℎ naturally to map a word to another word. If ℎ is a homomorphism and 𝐿 a

language whose alphabet is the output language of ℎ, then we define the inverse homomorphism

as ℎ−1 (𝐿) = {𝑤 | ℎ(𝑤) ∈ 𝐿}. CFLs are known to be closed under inverse homomorphisms.

Lemma 5.5. Suppose the CFG that corresponds to a CFL 𝐿 admits an 𝑂 (𝑚𝑐 ) algorithm for the

All-Pairs (resp. On-Demand) problem for some constant 𝑐 ≥ 1. Then, the CFG that corresponds to

ℎ−1 (𝐿) also admits an 𝑂 (𝑚𝑐 ) algorithm for the All-Pairs (resp. On-Demand) problem.

Example 5.6. To show how to apply Lemma 5.5 to obtain further lower bounds, consider the CFL

𝐿1 = {(𝑎𝑑)𝑖𝑐𝑏𝑖 | 𝑖 ≥ 0}. Now, take the CFL 𝐿0 = {𝑎𝑖𝑐𝑏𝑖 | 𝑖 ≥ 0}. Consider the homomorphism ℎ

with ℎ(𝑎) = 𝑎𝑑, ℎ(𝑏) = 𝑏, and ℎ(𝑐) = 𝑐 . It is easy to see that 𝐿0 = ℎ−1 (𝐿1). Lemma 5.5 now tells us

that the Ω(𝑚2−𝜖 ) lower bound for the On-Demand version of 𝐿1 holds for 𝐿0 as well.

Some CFGs, even under sparse inputs, do not admit a truly subcubic combinatorial algorithm.

Abboud et. al [Abboud et al. 2018] constructed a (fairly complex) CFG for which parsing is not

truly subcubic. Since parsing corresponds to running CFL reachability over a graph that is a path

(and hence𝑚 = 𝑛 − 1), this construction already finds a grammar with the desired lower bound.

But as we showed in Section 3, Dyck-2 already achieves this lower bound.

We end this section with another undecidability result, which shows that we cannot even hope

to determine for which programs the On-Demand problem can be evaluated in linear time.
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Fig. 2. Input graph constructed for Andersen’s analysis.

Theorem 5.7. Suppose the combinatorial 𝑘-Clique hypothesis holds. Then, for any constant 𝑐 ∈
[1, 3), it is undecidable whether the On-Demand problem for a CFG can be evaluated by an 𝑂 (𝑚𝑐 )
combinatorial algorithm.

6 A LOWER BOUND FOR ANDERSEN’S POINTER ANALYSIS
In this section, we show a conditional lower bound for the On-Demand problem for Andersen’s

Pointer analysis (APA). Andersen’s analysis is a fundamental points-to analysis that produces an

over-approximation of the memory locations that each pointer may point-to at runtime. It will

be convenient for our purposes to define APA as a Datalog program that computes the inverse

points-to relation 𝑇 (𝑥,𝑦): this means that variable 𝑦 points to variable 𝑥 .

𝑇 (𝑥,𝑦) :- 𝛼 (𝑥,𝑦). (1)

𝑇 (𝑥,𝑦) :- 𝑇 (𝑥, 𝑧), 𝑒 (𝑧,𝑦). (2)

𝑇 (𝑤,𝑦) :- 𝑇 (𝑤, 𝑧),𝑇 (𝑧, 𝑥), 𝛽 (𝑥,𝑦). (3)

𝑇 (𝑤, 𝑧) :- 𝑇 (𝑤, 𝑥), 𝛾 (𝑥,𝑦),𝑇 (𝑧,𝑦). (4)

This is not a chain Datalog program, and hence APA cannot be expressed as a CFL reachability

problem directly. However, following a technique from [Reps 1998], we can define 𝑇 as the inverse

of𝑇 , i.e.𝑇 (𝑥,𝑦) = 𝑇 (𝑦, 𝑥). With this, we can think of the program above as the following grammar:

𝑇 ← 𝛼 | 𝑇𝑒 | 𝑇𝑇𝛽 | 𝑇𝛾𝑇 .

In recent work [Mathiasen and Pavlogiannis 2021], it was shown that the On-Demand problem

for APA has a 𝑂 (𝑛3) combinatorial lower bound under the combinatorial 𝑘-Clique hypothesis. We

strengthen this result by showing that the same cubic lower bound holds even on sparse graphs.

Theorem 6.1. Under the combinatorial 𝑘-Clique hypothesis, the On-Demand problem for APA

cannot be solved by a combinatorial algorithm in time 𝑂 (𝑚3−𝜖 ) for any constant 𝜖 > 0.
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In the remaining section, we provide a proof of the above theorem. The proof uses the same

construction as the lower bound for Dyck-2. In particular, we will start with a graph𝐺 and attempt

to find a 3𝑘-clique. The only difference is how the numbers are encoded. For the lower bound we will

need only rules 1,3 and 4; hence we can ignore the label 𝑒 in the constructed instance and we will

ignore rule 2 completely. In other words, it suffices to consider the grammar 𝑇 ← 𝛼 | 𝑇𝑇𝛽 | 𝑇𝛾𝑇 . It
will be convenient to think that the labels of a path from 𝑢 to 𝑣 that is recognized by the program

form a word with forward and backward edges. We will write a backward edge with label ℓ as a

forward edge labeled ℓ̄ . For example, if we have a path of the form 𝛼 (𝑢,𝑤), 𝛾 (𝑤, 𝑧), 𝛼 (𝑣, 𝑧), we will
think of it as 𝛼𝛾𝛼 . We will also use the notation ℓ𝑖 to denote 𝑖 repetitions of the label ℓ .

Notation. We associate with each vertex an integer in {1, . . . , 𝑛}. As with the construction for

Dyck-2, we will create two line graphs for a vertex 𝑣 , 𝐿(𝑣) and 𝐿𝑅 (𝑣). The line graph 𝐿(𝑣) has 𝑣
edges labeled 𝛼 followed by two edges with labels 𝛼𝛾 (so it forms the string 𝛼𝑣𝛼𝛾 ). The line graph

𝐿𝑅 (𝑣) has two edges with labels 𝛾𝛼 followed by 𝑣 edges labeled 𝛽 (so it forms the string 𝛾𝛼𝛽𝑣).

Graph Construction. The construction follows the one for Dyck-2, with the only difference that

we need a few additional edges as shown in Figure 2. We now ask whether 𝑇 (𝑝, 𝑞) is true or not.

Correctness. We show in Appendix C that the On-Demand problem on APA returns true if and

only if there exists a 3𝑘-Clique in the constructed graph. The resulting graph has 𝑂 (𝑛𝑘+2) edges
and can be constructed in the same amount of time. To obtain the desired bound, we then let 𝑘

grow depending on the constant 𝜖 .

7 RELATEDWORK

Static Program Analysis. The connection between CFL reachability and program analysis has

been observed since a long time [Melski and Reps 2000; Reps 1998; Smaragdakis and Bravenboer

2010; Whaley et al. 2005]. Cubic time complexity is a common feature of algorithms proposed in

several of these works. Prior work [Heintze and McAllester 1997] has also explained the sub-cubic

barrier by showing that several data-flow reachability problems are 2NPDA-hard, a complexity

class that does not admit sub-cubic algorithm for problems lying in this class. The related problem

of certifying whether an instance of CFL reachability has a small and efficiently checkable certificate

was studied in [Chistikov et al. 2022]. Their main result shows that succint certificates of size𝑂 (𝑛2)
can be checked in sub-cubic time using matrix multiplication.

Several variants of Andersen’s analysis [Andersen 1994] have been developed over the years that

incorporate different features such as flow and field-sensitivity [Hirzel et al. 2004; Lyde et al. 2015;

Pearce et al. 2004; Whaley and Lam 2002]. However, the study of the precise complexity is a rela-

tively recent effort. In this direction, the authors in [Mathiasen and Pavlogiannis 2021] explored the

fine-grained complexity of Andersen’s analysis. The complexity of the Dyck Reachability problem,

which can be captured as a Context-Free grammar, has also been studied previously [Chatterjee

et al. 2018]. Many program analysis tasks can also be expressed by Interleaved Dyck, which is

the intersection of multiple Dyck languages based on an interleaving operator. Several recent

works have also established the precise combined complexity [Li et al. 2020, 2021] and fine-grained

complexity [Kjelstrøm and Pavlogiannis 2022] of this problem. Fine-grained complexity and param-

eterized complexity based lower bounds have also found great success for other related problems

such as finding violations in concurrent programs and checking program consistency [Chini et al.

2017; Chini and Saivasan 2020] and safety verification [Chini et al. 2018, 2020]. We refer the reader

to [Chini 2022] for more details on application of fine-grained complexity for program verification.

Datalog. CFL reachability is essentially equivalent to a class of Datalog programs called chain

Datalog programs. The seminal work of Yannakakis [Yannakakis 1990] established a tight upper
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bound for evaluation of chain Datalog programs for regular and linear languages. This raises the

question of when we can rewrite a non-linear Datalog program into a linear program, which has

been studied extensively [Afrati et al. 1996, 2003; Afrati and Toni 1997; Dong 1992; Ullman and

Van Gelder 1988]. When we restrict CFL reachability to regular languages, then the problem is

equivalent to the evaluation of Regular Path Queries (RPQs) [Baeza 2013]. In particular, [Martens

and Trautner 2018] studied the parameterized complexity of RPQ evaluation over graphs. Bagan et

al. [Bagan et al. 2013] characterized the class of regular languages that are tractable for RPQs. More

recently, [Casel and Schmid 2021] studied the fine-grained static and dynamic complexity of RPQ

evaluation, enumeration, and counting problems. This is similar to our effort in this paper with the

difference that we study the data complexity of a fixed RPQ.

Fine-grained Complexity. The area of fine-grained complexity attempts to prove the optimality

of several well-known algorithms by constructing reductions to problems with widely believed

lower bound conjectures. Such problems are BMM, the 3-SUM problem (and 𝑘-SUMmore generally),

all-pairs shortest paths, cycle detection, and finding orthogonal vectors [Williams 2018]. This line

of work has conditionally proved cubic or quadratic lower bounds for sparse and dense variants of

problems such as CFG parsing [Abboud et al. 2018], finding subgraphs in graphs [Williams and Xu

2020], variations of path-related problems [Lincoln et al. 2018], and dynamic problems [Abboud and

Williams 2014]. The development of these conjectures has led to widespread activity in establishing

lower bounds for problems such as join query processing [Berkholz et al. 2017, 2018; Carmeli and

Kröll 2021; Keppeler 2020], concurrency analysis [Kulkarni et al. 2021; Mathur et al. 2020], and

cryptography [Golovnev et al. 2020; LaVigne et al. 2019] to name a few.

8 CONCLUSION
In this work, we take the first step towards studying the fine-grained complexity landscape for the

CFL reachability problem. We identify the precise polynomial running time (under widely believed

lower bound conjectures) for several fundamental grammars. Despite the significant progress we

made, there are many exciting questions that we have left open.

The running time for Dyck-1. Prior work has established that Dyck-1 has a combinatorial cubic

lower bound w.r.t. 𝑛, but its running time w.r.t.𝑚 remains open. We were not able to find whether

the running time is cubic, quadratic, or somewhere in between. In general, we do not even know

whether there exists a grammar with running time 𝑂 (𝑚𝑐 ) for some constant 𝑐 ∈ (2, 3).
The lower bound for Dyck-2. Even though we have established the complexity of Dyck-2 in the

combinatorial setting, the general running time remains open. It is still possible that a cubic lower

bound exists, but it is also an intriguing possibility that a truly sub-cubic algorithm that uses fast

matrix multiplication exists.

Faster Algorithms for Restricted Inputs. Our algorithmic techniques are designed to work for

worst-case inputs. However, restricting the instances we consider (e.g., instances with bounded

treewidth) can potentially lead to faster algorithms. It may also possible to obtain better bounds if

we take the output size into account.
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A MISSING PROOFS
Theorem 5.1. The On-Demand CFL reachability problem is BMM-hard for the (non-regular) CFGs

that produce the following CFLs:

(1) The language {𝑎𝑖𝑠𝑏𝑖 | 𝑖 ≥ 0} where 𝑠 can be any string, including the empty one;

(2) Strings over {𝑎, 𝑏} where the number of 𝑎’s is equal to the 𝑏’s;

(3) Palindrome strings of even (odd) length over an alphabet with at least 2 symbols.

Proof. For the language {𝑎𝑖𝑠𝑏𝑖 | 𝑖 ≥ 0}, we follow the same construction as Theorem 3.1, with

the only difference that (𝑖) each edge of the form (𝑏𝑖 , 𝑐 𝑗 ) is replaced by a (fresh and unique) path of

length |𝑠 | with labels from 𝑠 , and (𝑖𝑖) the on-demand pair is (𝑎1, 𝑎
′
1
). If 𝑠 = ∅, we simply use 𝑠 = 𝑎𝑏.

The language with equal number of 𝑎’s and 𝑏’s is captured by the following CFG:

𝑆 ← 𝑎𝑆𝑏𝑆 | 𝑏𝑆𝑎𝑆 | 𝑎𝑏 | 𝑏𝑎 | 𝑎𝑎𝑏𝑏 | 𝑎𝑏𝑎𝑏 | 𝑎𝑏𝑏𝑎 | 𝑏𝑎𝑎𝑏 | 𝑏𝑎𝑏𝑎 | 𝑏𝑏𝑎𝑎

It is easy to see that the construction we used for Dyck-1 can be used for this CFG.

Finally, palindrome words of odd length are captured by the following CFG:

𝑆 ← 𝛼1 | · · · | 𝛼𝑘 | 𝛼1𝑆𝛼1 | · · · | 𝛼𝑘𝑆𝛼𝑘
To do this construction, we keep the vertex set as the one in Theorem 3.1 plus one more vertex 𝑣 ,

but the edge set becomes:

{(𝑢, 𝑎1), (𝑎1, 𝑎2), (𝑎2, 𝑎3), . . . , (𝑎𝑛−1, 𝑎𝑛)} with label 𝛼1

{(𝑎𝑖 , 𝑏 𝑗 ) | (𝑎𝑖 , 𝑏 𝑗 ) ∈ 𝐸} with label 𝛼2

{(𝑏𝑖 , 𝑐 𝑗 ) | (𝑏𝑖 , 𝑐 𝑗 ) ∈ 𝐸} with label 𝛼2

{(𝑐𝑖 , 𝑎′𝑗 ) | (𝑐𝑖 , 𝑎 𝑗 ) ∈ 𝐸} with label 𝛼2

{(𝑎′𝑛, 𝑎′𝑛−1
), (𝑎′𝑛−1

, 𝑎′𝑛−2
), . . . , (𝑎′

2
, 𝑎′

1
), (𝑎′

1
, 𝑣)} with label 𝛼1

Hence, every path from 𝑢 to 𝑣 will have labels that form a word of the form 𝛼1 . . . 𝛼1𝛼2𝛼2𝛼2𝛼1 . . . 𝛼1.

It is easy to see that a triangle exists in 𝐺 if and only if the word is a palindrome (in particular, the

number of 𝛼1 in the beginning and the end must be the same). For palindromes of even length the

construction is similar. □
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Theorem 5.4. Under the combinatorial 𝑘-Clique hypothesis, the On-Demand problem for following

cases cannot be solved by a combinatorial algorithm in time 𝑂 (𝑚2−𝜖 ) for any constant 𝜖 > 0.

(1) Dyck-𝑘 , for any 𝑘 ≥ 1;

(2) The language {𝑎𝑖𝑠𝑏𝑖 | 𝑖 ≥ 0} where 𝑠 can be any string, including the empty one;

(3) Strings over {𝑎, 𝑏} where the number of 𝑎’s is equal to the 𝑏’s;

(4) Palindrome strings of even (odd) length over an alphabet with at least 2 symbols.

Proof. We will use the fact that, under the combinatorial 𝑘-Clique hypothesis, for any constant

𝜖 > 0, for any 𝑘 > 2/𝜖 , finding whether a (𝑘-partite) directed graph contains a 𝑘-cycle can be

detected in time Ω(𝑚2−𝜖 ) [Lincoln and Vyas 2020].

We will prove the statement only for Dyck-1, since the construction is similar for the other cases.

We apply the same construction as in the proof of Theorem 3.1, with the only difference that what

connects the vertices in 𝐴 and their copies in 𝐴′ is now a path of length 𝑘 (instead of a path of

length 3, as in the case of triangles). Without any loss of generality, we can pick 𝑘 to be an odd

number. Then, the first ⌊𝑘/2⌋ edges in the path will have label (, followed by 𝑘 − ⌊𝑘/2⌋ edges with
label ). It is easy to see that, following the same argument as before, (𝑢, 𝑎′

1
) is a correct pair if and

only if the graph𝐺 has a 𝑘-cycle. Since the number of edges we added are𝑂 (𝑛) = 𝑂 (𝑚), the desired
result follows. □

Lemma 5.5. Suppose the CFG that corresponds to a CFL 𝐿 admits an 𝑂 (𝑚𝑐 ) algorithm for the

All-Pairs (resp. On-Demand) problem for some constant 𝑐 ≥ 1. Then, the CFG that corresponds to

ℎ−1 (𝐿) also admits an 𝑂 (𝑚𝑐 ) algorithm for the All-Pairs (resp. On-Demand) problem.

Proof. Let G be the CFG for 𝐿, and G′ be the CFG for 𝐿′ = ℎ−1 (𝐿) = {𝑤 | ℎ(𝑤) ∈ 𝐿}. Consider
an input graph 𝐺 for G. We construct an input 𝐺 ′ for G′ as follows.

For a symbol 𝛼 in the alphabet of 𝐿, let ℎ(𝑎) = 𝛽1 . . . 𝛽ℓ where ℓ ≥ 1. Then, for any edge (𝑢, 𝑣) ∈ 𝐺
with label 𝛼 , we introduce in 𝐺 the following path:

𝑢
𝛽1−→ 𝑤1

𝛽2−→ 𝑤2 . . .𝑤ℓ−1

𝛽ℓ−→ 𝑣 .

Here,𝑤1, . . . ,𝑤ℓ−1 are fresh distinct vertices. If ℎ(𝛼) is the empty word, we simply merge the nodes

𝑢, 𝑣 in 𝐺 ′. The new instance 𝐺 ′ has input size 𝑂 (𝑚). We claim the following two statements:

Claim 1: if (𝑢, 𝑣) is an output pair for G,𝐺 then (𝑢, 𝑣) is an output pair for G′,𝐺 ′. Indeed, assume

that (𝑢, 𝑣) is in the output of 𝐺 . Then, there is a path from 𝑢 to 𝑣 in 𝐺 with labels that form some

word𝑤 ∈ 𝐿. From our construction, 𝐺 ′ contains a path from 𝑢 to 𝑣 with labels that form the word

ℎ(𝑤). Hence, (𝑢, 𝑣) is in the output of 𝐺 ′.

Claim 2: if (𝑢, 𝑣) is an output pair for G′,𝐺 ′ and 𝑢, 𝑣 occur in𝐺 , then (𝑢, 𝑣) is an output pair for G,𝐺 .

Indeed, assume that (𝑢, 𝑣) is in the output of 𝐺 ′. Then, there is a path from 𝑢 to 𝑣 in 𝐺 ′ with labels

that form a word𝑤 ′ ∈ ℎ−1 (𝐿). Since 𝑢, 𝑣 are vertices in𝐺 , by our construction there must be a path

in 𝐺 from 𝑢 to 𝑣 with labels that form a word𝑤 such that𝑤 ′ = ℎ(𝑤). But then, for𝑤 we have the

property that ℎ(𝑤) ∈ ℎ−1 (𝐿), and thus𝑤 ∈ 𝐿.
Now, the algorithm for the On-Demand problem with input 𝑢, 𝑣 creates the instance𝐺 ′ and then

runs G′ on 𝐺 ′ to check whether (𝑢, 𝑣) is true. This has running time 𝑂 (𝑚𝑐 ).
For the All-Pairs problem, we also create the instance 𝐺 ′ and then run G′ on 𝐺 ′. This takes

time 𝑂 (𝑚𝑐 ). Then, we need to filter out the outputs that have constants not in 𝐺 , which takes time

linear in the size of the output. Since the output is of size at most 𝑂 (𝑚𝑐 ), the claim follows. □

B UNDECIDABILITY PROOFS
In this section, we prove the results on the undecidability of classifying CFGs in terms of their data

complexity using Greibach’s theorem. All proofs use the same technique with small variations.
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Theorem 4.13. Suppose the combinatorial 𝑘-Clique hypothesis holds. Then, for any constant

𝑐 ∈ [2, 3), it is undecidable whether CFLap (G) can be evaluated by a combinatorial algorithm that

runs in time 𝑂 (𝑚𝑐 ).

Proof. Fix a constant 𝑐 ∈ [2, 3). To prove undecidability, we apply Greibach’s theorem. Consider

the following property 𝐶 for a CFL: any CFG that produces the language can be evaluated in time

𝑂 (𝑚𝑐 ) by a combinatorial algorithm. As we have seen, 𝐶 is satisfied by all regular languages (since

every regular language can be produced by a linear CFG, and a linear CFG can be evaluated in time

𝑂 (𝑚2) = 𝑂 (𝑚𝑐 )). It is also non-trivial, since under the combinatorial 𝑘-Clique hypothesis, Dyck-𝑘

cannot be evaluated in time𝑂 (𝑚3−𝜖 ) for any constant 𝜖 > 0 by a combinatorial algorithm, hence it

does not admit an 𝑂 (𝑚𝑐 ) combinatorial algorithm. It remains to show that 𝐶 is closed under the

right quotient by a single symbol.

Indeed, take a CFL L and a corresponding CFG G. Consider the language L/𝛼 for a single

symbol 𝛼 . We now want to evaluate the CFG G𝛼 that corresponds to the language L/𝛼 . To do

this, we extend the input graph 𝐺 (𝑚 = |𝐸 |) as follows: for each possible vertex 𝑣 , we add an edge

(𝑣, 𝑡𝑣) with label 𝛼 , where 𝑡𝑣 is a fresh distinct vertex. Let 𝐺 ′ be the resulting graph. Note that

|𝐸′ | = |𝐸 | + 𝑛 = 𝑂 (𝑚). Then, we run the algorithm for G on the new instance 𝐺 ′, which runs in

time 𝑂 (𝑚𝑐 ). Finally, we can see that by construction, (𝑢, 𝑣) is an output pair for G𝛼 if and only if

(𝑢, 𝑡𝑣) is an output tuple for G. Hence, to obtain the output for G𝛼 it remains to do the following:

for every pair of the form (𝑢, 𝑡𝑣), output (𝑢, 𝑣). This can be done in time𝑂 (𝑛2) = 𝑂 (𝑚2) by iterating
over all output pairs. □

Theorem 5.3. Suppose the combinatorial BMM hypothesis holds. Then, for any constant 𝑐 ∈ [2, 3),
it is undecidable whether the On-Demand CFL reachability problem for a given CFG can be evaluated

by an 𝑂 (𝑛𝑐 ) combinatorial algorithm.

Proof. Fix a constant 𝑐 ∈ [2, 3). To prove undecidability, we apply again Greibach’s theorem.

Consider the following property 𝐶 for a CFL: the On-Demand problem for any CFG that produces

the language can be evaluated in time 𝑂 (𝑛𝑐 ) by a combinatorial algorithm. As we have seen, 𝐶

is satisfied by all regular languages. It is also non-trivial, since under the combinatorial BMM

hypothesis, {𝑎𝑖𝑏𝑖 | 𝑖 ≥ 0} cannot be evaluated in time 𝑂 (𝑛3−𝜖 ) for any constant 𝜖 > 0 by a

combinatorial algorithm, hence it does not admit an 𝑂 (𝑛𝑐 ) combinatorial algorithm. It remains to

show that 𝐶 is closed under the right quotient by a single symbol.

Indeed, take a CFL L and a corresponding a corresponding CFG G. Consider the language L/𝛼
for a single symbol 𝛼 . We now want to evaluate the On-Demand problem for a CFG G𝛼 that

produces the language L/𝛼 . Let (𝑠, 𝑡) be the input pair. To do this, we extend the input graph 𝐺 as

follows: we add an edge 𝛼 (𝑡, 𝑡 ′) to the instance, where 𝑡 ′ is a fresh distinct vertex. Let 𝐺 ′ be the
resulting instance. Then, we run the algorithm for G on the new instance 𝐺 ′, which runs in time

𝑂 ((𝑛 + 1)𝑐 ) = 𝑂 (𝑛𝑐 ). Finally, we can see that by construction, (𝑠, 𝑡) is an output tuple for G𝛼 if and

only if (𝑠, 𝑡 ′) is an output tuple for G. □

Theorem 5.7. Suppose the combinatorial 𝑘-Clique hypothesis holds. Then, for any constant 𝑐 ∈
[1, 3), it is undecidable whether the On-Demand problem for a CFG can be evaluated by an 𝑂 (𝑚𝑐 )
combinatorial algorithm.

Proof. Fix a constant 𝑐 ∈ [1, 3). To prove undecidability, we apply again Greibach’s theorem.

Consider the following property 𝐶 for a CFL: the On-Demand problem for any CFG that produces

the language can be evaluated in time 𝑂 (𝑚𝑐 ) by a combinatorial algorithm. As we have seen, 𝐶 is

satisfied by all regular languages, since the on-demand problem can be evaluated in linear time.

It is also non-trivial, since under the 𝑘-Clique hypothesis, Dyck-2 cannot be evaluated in time
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𝑂 (𝑚3−𝜖 ) for any constant 𝜖 > 0 by a combinatorial algorithm, hence it does not admit an 𝑂 (𝑚𝑐 )
combinatorial algorithm. It remains to show that 𝐶 is closed under the right quotient by a single

symbol.

Indeed, take a CFL L and a corresponding CFG G. Consider the language L/𝛼 for a single

symbol 𝛼 . We now want to evaluate the On-Demand problem for the CFG G𝛼 that produces the

language L/𝛼 . Let (𝑠, 𝑡) be the input pair. To do this, we extend the input instance 𝐼 as follows: we

add an edge 𝛼 (𝑡, 𝑡 ′) to the instance, where 𝑡 ′ is a fresh distinct value. Let𝐺 ′ be the resulting instance.
Then, we run the algorithm for G on the new instance𝐺 ′, which runs in time𝑂 ((𝑚 + 1)𝑐 ) = 𝑂 (𝑚𝑐 ).
Finally, we can see that by construction, (𝑠, 𝑡) is an output tuple for G𝛼 if and only if (𝑠, 𝑡 ′) is an
output tuple for G. □

C REMAINING PROOF FOR APA LOWER BOUND
We start with the following simple observations.

Proposition C.1. Every valid word starts with 𝛼 . Moreover, every word with length at least 2 ends

with either 𝛽 or 𝛼 .

Proposition C.2. The following productions are valid:

• 𝑇 ← 𝛼𝛾𝑇𝛾𝛼

• 𝑇 ← 𝑇𝛾𝑇𝛾𝛼

Note that 𝛼 is the only word (of length 1) that ends with a symbol that is not 𝛽, 𝛼 .

Claim C.3. If the On-Demand problem on Andersen’s analysis returns true, then there exists a

3𝑘-clique in the input graph.

Proof. Let𝑤 be the word that forms on the path from 𝑝 to 𝑞. In particular,𝑤 is of the form:

𝑤 = 𝛼{𝐿(𝑣1) . . . 𝐿(𝑣𝑘 )}{𝐿(𝑤1) . . . 𝐿(𝑤𝑘 )}𝛼{𝐿𝑅 (𝑤 ′𝑘 ) . . . 𝐿
𝑅 (𝑤 ′

1
)}

𝛾{𝐿(𝑧1) . . . 𝐿(𝑧𝑘 )}𝛼{𝐿𝑅 (𝑧′𝑘 ) . . . 𝐿
𝑅 (𝑧′

1
)}𝛾𝛼{𝐿𝑅 (𝑣 ′

𝑘
) . . . 𝐿𝑅 (𝑣 ′

1
)}𝛽

= 𝛼{𝛼𝑣1𝛼𝛾 . . . 𝛼𝑣𝑘𝛼𝛾}{𝛼𝑤1𝛼𝛾 . . . 𝛼𝑤𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑤′𝑘 . . . 𝛾𝛼𝛽𝑤′1 }
𝛾{𝛼𝑧1𝛼𝛾 . . . 𝛼𝑧𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑧′𝑘 . . . 𝛾𝛼𝛽𝑧′1 }𝛾𝛼{𝛾𝛼𝛽𝑣′𝑘 . . . 𝛾𝛼𝛽𝑣′1 }𝛽

First, note that 𝑤 ends with 𝛽 . This means that 𝑤 was generated by the rule 𝑇 ← 𝑇𝑇𝛽 . From

Proposition C.1 and our construction, the first 𝑇 can only match the first 𝛼 of this word. Thus, the

following word is also valid:

{𝛼𝑣1𝛼𝛾 . . . 𝛼𝑣𝑘𝛼𝛾}{𝛼𝑤1𝛼𝛾 . . . 𝛼𝑤𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑤′𝑘 . . . 𝛾𝛼𝛽𝑤′1 }
𝛾{𝛼𝑧1𝛼𝛾 . . . 𝛼𝑧𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑧′𝑘 . . . 𝛾𝛼𝛽𝑧′1 }𝛾𝛼{𝛾𝛼𝛽𝑣′𝑘 . . . 𝛾𝛼𝛽𝑣′1 }

We repeat this process 𝑣 ′
1
more times. Observe that if 𝑣 ′

1
> 𝑣1, the first𝑇 would not be able to match,

since the word would start with 𝛾 , which is not valid. Hence, 𝑣 ′
1
≤ 𝑣1. We are now left with the

following word:

{𝛼𝑣1−𝑣′
1𝛼𝛾 . . . 𝛼𝑣𝑘𝛼𝛾}{𝛼𝑤1𝛼𝛾 . . . 𝛼𝑤𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑤′𝑘 . . . 𝛾𝛼𝛽𝑤′1 }
𝛾{𝛼𝑧1𝛼𝛾 . . . 𝛼𝑧𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑧′𝑘 . . . 𝛾𝛼𝛽𝑧′1 }𝛾𝛼{𝛾𝛼𝛽𝑣′𝑘 . . . 𝛾𝛼} (5)

Since the above word ends with 𝛼 , it must have been generated by the rule𝑇 ← 𝑇𝛾𝑇 . We will refer

to the central 𝛾 in Equation 5 as 𝛾★. First, note that no 𝛾 to the left of 𝛾★ (other than the very first

𝛾 ) can act as the separator for another application of the rule 𝑇 ← 𝑇𝛾𝑇 . This is because every 𝛾 is

preceded by an 𝛼 , which would lead𝑇 to end with an 𝛼 and thus violates Proposition C.1. Similarly,
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no 𝛾 to the right of 𝛾★ can also lead to valid parsing. We now argue that 𝛾★ is also an invalid choice.

Consider the following 𝑇 :

𝑇 = {𝛼𝑧1𝛼𝛾 . . . 𝛼𝑧𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑧′𝑘 . . . 𝛾𝛼𝛽𝑧′1 }𝛾𝛼{𝛾𝛼𝛽𝑣′𝑘 . . . 𝛾𝛼𝛽𝑣′1 }

The inverse of this string can only be parsed by 𝑇 ← 𝑇𝑇𝛽 (since there is no valid choice of 𝛾 as

every 𝛾 is preceded by an 𝛼), and the parsing forces 𝑧1 = 𝑣 ′
1
, 𝑧2 = 𝑣 ′

2
and so on. Eventually, we will

need to parse 𝑇 that starts with 𝛾𝛼 which violates Proposition C.1. We have now established that

the only choice of 𝛾 is the very first one in Equation 5 which implies that 𝑇 is equal to 𝛼𝑣1−𝑣′
1𝛼 . But

this word is valid only if it is of length one, hence it must be that 𝑣 ′
1
= 𝑣1. Now, we are left with the

following word that is in 𝑇 :

{𝛼𝑣2𝛼𝛾 . . . 𝛼𝑣𝑘𝛼𝛾}{𝛼𝑤1𝛼𝛾 . . . 𝛼𝑤𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑤′𝑘 . . . 𝛾𝛼𝛽𝑤′1 }
𝛾{𝛼𝑧1𝛼𝛾 . . . 𝛼𝑧𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑧′𝑘 . . . 𝛾𝛼𝛽𝑧′1 }𝛾𝛼{𝛾𝛼𝛽𝑣′𝑘 . . . 𝛾𝛼}

Since the inverse of this word ends in 𝛾𝛼 , the only way to generate it is by 𝑇 → 𝑇𝛾𝑇 → 𝑇𝛾𝛼 . This

leaves us with the following word in 𝑇 :

{𝛼𝑣2𝛼𝛾 . . . 𝛼𝑣𝑘𝛼𝛾}{𝛼𝑤1𝛼𝛾 . . . 𝛼𝑤𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑤′𝑘 . . . 𝛾𝛼𝛽𝑤′1 }
𝛾{𝛼𝑧1𝛼𝛾 . . . 𝛼𝑧𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑧′𝑘 . . . 𝛾𝛼𝛽𝑧′1 }𝛾𝛼{𝛾𝛼𝛽𝑣′𝑘 . . . 𝛾𝛼𝛽𝑣′2 }

We now repeat the same logic (𝑘 − 1) more times and obtain that 𝑣2 = 𝑣 ′
2
, . . . , 𝑣𝑘 = 𝑣 ′

𝑘
. At this point,

we are left with the following word that is in 𝑇 :

{𝛼𝑤1𝛼𝛾 . . . 𝛼𝑤𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑤′𝑘 . . . 𝛾𝛼𝛽𝑤′1 }𝛾{𝛼𝑧1𝛼𝛾 . . . 𝛼𝑧𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑧′𝑘 . . . 𝛾𝛼𝛽𝑧′1 }𝛾𝛼

Since this word ends with 𝛼 , it must be generated by the rule 𝑇 ← 𝑇𝛾𝑇 . The only valid way to do

this production is that 𝛾 corresponds to 𝛾★ (the central 𝛾 ) by following the derivation shown above.

This means that the following word is recognized by the grammar:

{𝛼𝑤1𝛼𝛾 . . . 𝛼𝑤𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑤′𝑘 . . . 𝛾𝛼𝛽𝑤′1 }

For this case, we can use the same logic as above to show that𝑤1 = 𝑤 ′
1
, . . . ,𝑤𝑘 = 𝑤 ′

𝑘
. Also, we have

the inverse of the following word is recognized by the grammar:

{𝛼𝑧1𝛼𝛾 . . . 𝛼𝑧𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑧′𝑘 . . . 𝛾𝛼𝛽𝑧′1 }𝛾𝛼

For this to happen, the following word must be in 𝑇 :

{𝛼𝑧1𝛼𝛾 . . . 𝛼𝑧𝑘𝛼𝛾}𝛼{𝛾𝛼𝛽𝑧′𝑘 . . . 𝛾𝛼𝛽𝑧′1 }

This implies that 𝑧1 = 𝑧′
1
, . . . , 𝑧𝑘 = 𝑧′

𝑘
. We have now established that there exist 𝑣1, . . . , 𝑣𝑘 ,𝑤1, . . .𝑤𝑘 ,

𝑧1, . . . 𝑧𝑘 that satisfy the grammar. From the gadget construction, these vertices correspond to

three 𝑘-cliques. Using the same argument from the hardness proof of Dyck-2 in conjunction with

Observation 3.4, it is now straightforward to establish that the three 𝑘-cliques are also disjoint. □

Claim C.4. If there exists a 3𝑘-clique in the input graph, then the On-Demand problem on Andersen’s

analysis returns true.

Proof. Let 𝑡1, 𝑡2, 𝑡3 ∈ C𝑘 be three disjoint 𝑘-cliques. We will show that there exists a path from 𝑢

to 𝑣 that forms a valid word. Consider the path formed by the vertices 𝐶𝐿(𝑡1),𝐶𝑁𝐺2 (𝑡2),𝐶𝐿2 (𝑡2),
𝐶𝑁𝐺2 (𝑡3),𝐶𝐿3 (𝑡3),𝐶𝑁𝐺3 (𝑡1). Let 𝑡1 = {𝑣1, . . . , 𝑣𝑘 }, 𝑡2 = {𝑤1, . . . ,𝑤𝑘 } and 𝑡3 = {𝑧1, . . . , 𝑧𝑘 }. By
applying the rule 𝑇 ← 𝑇𝑇𝛽 (𝑣1 + 1) times, we obtain 𝑇 𝑣1+1𝑇𝛽𝑣1+1

. Now, we apply 𝑇 ← 𝛼 to the

first (𝑣1 + 1) occurrences of 𝑇 to obtain 𝛼𝛼𝑣1𝑇𝛽𝑣1𝛽 . By Proposition C.2, we obtain 𝛼𝛼𝑣1𝛼𝛾𝑇𝛾𝛼𝛽𝑣1𝛽 .
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Since 𝐿(𝑣1) = 𝛼𝑣1𝛼𝛾 and 𝐿𝑅 (𝑣1) = 𝛾𝛼𝛽𝑣 , we have so far generated 𝛼𝐿(𝑣1)𝑇𝐿𝑅 (𝑣1)𝛽 . We now repeat

this process 𝑘 − 1 more times for 𝑇 to generate the following word:

𝛼𝐿(𝑣1)𝐿(𝑣2) . . . 𝐿(𝑣𝑘 )𝑇𝐿𝑅 (𝑣𝑘 ) . . . 𝐿𝑅 (𝑣2)𝐿𝑅 (𝑣1)𝛽
Now, from Proposition C.2 we obtain:

𝛼𝐿(𝑣1)𝐿(𝑣2) . . . 𝐿(𝑣𝑘 )𝑇𝛾𝑇𝛾𝛼𝐿𝑅 (𝑣𝑘 ) . . . 𝐿𝑅 (𝑣2)𝐿𝑅 (𝑣1)𝛽
Finally, we use the same construction as above for each of the two 𝑇 ’s to generate the following

final word:

𝛼{𝐿(𝑣1) . . . 𝐿(𝑣𝑘 )}{𝐿(𝑤1) . . . 𝐿(𝑤𝑘 )}𝛼{𝐿𝑅 (𝑤𝑘 ) . . . 𝐿𝑅 (𝑤1)}
𝛾{𝐿(𝑧1) . . . 𝐿(𝑧𝑘 )}𝛼{𝐿𝑅 (𝑧𝑘 ) . . . 𝐿𝑅 (𝑧1)}𝛾𝛼{𝐿𝑅 (𝑣𝑘 ) . . . 𝐿𝑅 (𝑣1)}𝛽

One can observe that this word matches the labels of the path we considered in the beginning. □
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