
Recent Advances in
Coresets for Clustering

Shaofeng Jiang

Sublinear Algorithms

Computational challenge of big data: even linear time/space doesn’t work!

Typical sublinear models: streaming, distributed computing, sublinear time

2

2 5 6.5 9 12.5 15.5 18 26 33 41
59

74
94

118

149

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

o(n) space o(n) communication o(n) query

Coreset: A Data Reduction Method
For sublinear algorithm design

Features:

• Data/problem driven design of sublinear algorithms

• Existing (non-big-data) algorithms can be readily applied

3

A problem defined on
big data

𝒫 Coreset: Tiny proxy of
dataset

Classic Alg. 𝒜
Sublinear/efficient algorithm Solve only on the tiny proxy

Algorithm driven design of sublinear
algorithms

Clustering

k-median: dataset , find center set s.t. to minimize

Related problem: k-means,

D ⊂ ℝd C ⊂ ℝd |C | ≤ k

cost(D, C) := ∑
x∈D

dist(x, C)

cost(D, C) := ∑
x∈D

dist2(x, C)

4

, dist(x, C) := min
c∈C

dist(x, c) dist = ℓ2

Notice the square

5

-Coreset is a weighted subset s.t.

Why weighted?

Performance measure: # of distinct elements

ϵ S ⊆ D

∀C ⊂ ℝd, |C | ≤ k cost(S, C) ∈ (1 ± ϵ) ⋅ cost(D, C)

|S |

Coreset for Clustering

⇒

There can be infinitely many such ’s!C

[Har-Peled-Mazumdar, STOC 04]

Coreset -> Sublinear Algorithms
Merge-and-reduce method

Given -coreset Alg. , one can turn into sublinear algorithms, e.g.,
streaming/distributed/dynamic algorithms, in a black-box way!

• Key property — composable: coreset coreset is a coreset

• Merge-and-reduce

ϵ 𝒜 𝒜

(X) ∪ (Y) (X ∪ Y)

6

Leaf: buckets of data points

Internal: merge two coresets, compute coreset

The final coreset
Follows from definition:

∀C ⊂ ℝd, |C | ≤ k cost(S, C) ∈ (1 ± ϵ) ⋅ cost(D, C)

Results
Size independent of n

Most studied: vanilla k-clustering in

• Upper bound (for k-median):

• Lower bound:

Extensions: size

• Other metric space: doubling metrics, planar graphs etc.

• Variants: fair clustering, capacitated clustering, clustering w/ outliers etc.

ℝd

O(min{k4/3ϵ−2, kϵ−3, kϵ−2d})

Ω(kϵ−2)

poly(kϵ−1)

7

There’s an even larger gap in the degree of poly

Obtaining tight degree of poly is still open

Natural Idea: Sampling

Uniform sampling? Doesn’t work:

Needs to do non-uniform sampling

• Generic framework: sensitivity sampling

• More specific to clustering: hierarchical uniform sampling

8

Sensitivity Sampling Method

Warmup: Importance Sampling

Suppose

Want to estimate , but can access only through random samples

Question: How well does uniform sampling work?

• Bad example: , but for ,

a1, …, an > 0

∑
i

ai ai

a1 = 1 i > 1 ai = 0

10

requires samples to see even onceΩ(n) a1

Importance Sampling
Algorithm

For some , suppose we have a distribution on ID s.t.

Claim: Let . Then ,

Hence, aggregate i.i.d. samples yields -approximation

0 < λ ≤ 1 j ∈ [n]

pj ≥ λ ⋅ aj/∑
i

ai

̂Z := aj/pj 𝔼[̂Z] = ∑
i

ai Var[̂Z] ≤ O(λ−1) ⋅ 𝔼2[̂Z]

O(1/ϵ2) (1 + ϵ)

11

 is called “importance score”σj := aj /∑
i

ai

Low variance!

Unbiased

Proof

Let . Recall ,

W := ∑
i

ai pj ≥ λ ⋅ aj/W ̂Z := aj/pj

𝔼[̂Z] = ∑
i

pi ⋅ ai/pi = ∑
i

ai = W

𝔼(̂Z2) = ∑
i

pi ⋅ (ai/pi)2 = ∑
i

a2
i /pi ≤ λ−1W∑

i

ai = λ−1W2

Var(̂Z) = 𝔼[̂Z2] − 𝔼2[̂Z] ≤ O(λ−1) ⋅ 𝔼2[̂Z]

12

Generalization: Sensitivity Sampling

Our case: for , let , then

Interpretation: sum of functions on the same variable C

Goal: draw a sample of that approximates this sum for all C simutaneously

Compare to importance samp.: sum of numbers vs sum of functions

x ∈ D fx(C) := dist(x, C) cost(D, C) = ∑
x∈D

fx(C)

{fx}x∈D

D

13

Exactly a coreset!

Sensitivity Sampling

Sensitivity : analogue to importance score

For ,

Claim:

Given , sample w.p. , set its weight

Then , and

σx

x ∈ D σx := sup
C⊂ℝd,|C|≤k

fx(C)
cost(D, C)

px ≥ λ ⋅ σx x ∈ D px w(x) := 1/px

∀C 𝔼[fx(C)] = cost(D, C) Var[fx(C)] ≤ O(λ−1 ∑
x

σx) ⋅ 𝔼2[fx(C)]

14

The contribution of over any possible center set
(i.e., parameter of)

x
fx

 is called “total sensitivity”∑
x

σx

Sensitivity Sampling

Hence: If and bounded, let be i.i.d. samples, then

,

To make it a coreset, one still needs a union bound on all

• But is infinitely many, even in 1D and (i.e., 1-median on real line)!

• We need “clever” discretization: Sauer-Shelah-like, via VC-dimension

λ ∑
x

σx S O(ϵ−2 log 1/δ)

∀C Pr[cost(S, C) ∈ (1 ± ϵ) ⋅ cost(D, C)] ≥ 1 − δ

C

C k = 1

15

Notice: only for one C

VC/Shattering Dimension

Consider metric space

For , define a metric ball

Shattering dimension, denoted as :

• Smallest integer t, s.t. for every with

ℳ(V, dist)

x ∈ V B(x, r) := {y ∈ V : dist(x, y) ≤ r}

sdim(ℳ)

H ⊆ V |H | ≥ 2

|{B(x, r) ∩ H : x ∈ V, r ≥ 0} | ≤ |H |t

16

In 1D, a ball is an interval;
 points can form intervals, so m O(m2) t = 2

For , one can show that sdim is ℝd O(d)

Measure the complexity of ’s metric ballsℳ

Up to log factor to VC-dim
of metric ball system

Conclusion: Coresets via Sensitivity Samp.

Theorem: i.i.d. sensitivity samples is -coreset w.h.p.

Corollary: i.i.d. sensitivity samples is -coreset for k-median in

poly(ϵ−1 ⋅ ∑
x

σx ⋅ sdim) ϵ

O(kdϵ−2) ϵ ℝd

17

Sensitivity sampling: Given

Sample w.p. , set its weight by

px ≥ λ ⋅ σx

x ∈ D px w(x) := 1/px

There’s an efficient way to compute such
’s with px λ = Ω(1)

For k-clustering, total sensitivity is
[Varadarajan-Xiao, FSTTCS 12]

O(k)
[Feldman-Langberg, STOC 11]

[Feldman-Langberg, STOC 11]

Other Metrics

For metrics other than , size coreset exists if is bounded

• Doubling metrics

• The shortest-path metric of graphs

• planar/excluded-minor

• bounded treewidth

• Polygonal curves under Fréchet distance

ℝd poly(kϵ−1) sdim

18

For clustering: given metric , we allow
dataset , center set

ℳ(V, dist)
D ⊆ V C ⊆ V

[Bousquet-Thomassé, Discret. Math. 15] [Braverman-J-Krauthgamer-Wu, SODA 21]

[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]

[Baker-Braverman-Huang-J-Krauthgamer-Wu, ICML 20]

[Huang-J-Li-Wu, FOCS 18]

How to Remove Dependence on for ?d ℝd

Simple approach: iterative size reduction

Informal argument:

• First do JL: reduce to , leading to a coreset of size

• Iteratively running this, we have

• See [Braverman-J-Krauthgamer-Wu, SODA 21]

d = log n O(log n)

n → log n → log log n…

19

Need a terminal embedding version of JL [Narayanan-Nelson, STOC 19]

Run for times, error can accumulatelog* n

To avoid in error bound, one needs to
set carefully in each iteration

log* n
ϵ

* Note: first dimension-independent results were obtained in [Sohler-Woodruff, FOCS 18; Feldman-Schmidt-Sohler, SICOMP 20]

Good and Bad of Sensitivity Sampling

Suitable for various problems (non-exhaustive examples):

• Projective clustering/missing value

• Gaussian mixture model

• Logistic regression

• Decision tree

What’s not so good:

• Not effective to deal with constraints; sub-optimal size

20

[Munteanu-Schwiegelshohn-Sohler-Woodruff, NeurIPS 18]

[Feldman-Schmidt-Sohler, SICOMP 20;
Braverman-J-Krauthgamer-Wu, NeurIPS 21]

[Lucic-Faulkner-Krause-Feldman, JMLR 17]

[Jubran-Shayda-Newman-Feldman, NeurIPS 21]

For example capacity constraints

More structured sampling can do better

Hierarchical Uniform Sampling
Method

22

A more geometric way to construct coreset

First, consider ring dataset

Intuition: points in the ring have similar “importance scores”

• So uniform sampling should work

R ⊆ ring(c, r,2r)

Hierarchical Uniform Sampling
[Chen, SICOMP 09]

ring(c, r,2r) := B(c,2r)∖B(c, r)

Uniform Sampling on Ring Dataset

Draw uniform samples , set for

Unbiased:

Hoeffding inequality implies w.h.p.,

m S ⊆ R w(x) := nR/m x ∈ S

𝔼[cost(S, C)] = cost(R, C)

|cost(S, C) − cost(D, C) | ≤ ϵnR ⋅ r

23

Bounded terms: , ∀x, y ∈ D
dist(x, C) − dist(y, C) ≤ dist(x, y) ≤ O(r)

 is the number of points in nR R

Is the Addive Error Good?ϵnRr
Charging to OPT, via ring decompositionϵnRr

Find optimal center set

Partition/clustering the dataset w.r.t.

For each cluster , partition into rings of radius

For each ring of radius :

• Each contributes to OPT

• In total contribute since the ring has points

C* = {c*1 , …, c*k }

D C*

C*i r = 2i

R r

x ∈ R O(r)

O(nRr) nR

24

-bicriteria solution also works!(O(1), O(1))

So is to OPT!ϵnRr ϵ

Further development

Naive decomposition may introduce rings

Improved way: group several rings together, and create only rings

• Lead to state-of-the-art coreset size

• Also extends to constrained clustering

• Fair clustering, capacitated clustering etc.

• Clustering with outliers

O(log n)

log 1/ϵ

25

which translates to -size coresetO(log n)

[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]

[Huang-J-Lou-Wu, ICLR 23]

[Cohen-Addad-Saulpic-Schwiegelshohn, STOC 21;
Cohen-Addad-Larsen-Saulpic-Schwiegelshohn, STOC 22;
Cohen-Addad-Larsen-Saulpic-Schwiegelshohn-Sheikh-Omar, NeurIPS 22]

Some Experiment Results

Coresets for clustering with outliers

• Based on hierarchical uniform sampling; works better than SS in practice

26

n = 50000, d = 6 n = 40000, d = 10 n = 20000000, d = 2 n = 2000000, d = 68

[Huang-J-Lou-Wu, ICLR 23]

We also observe similar results in many other coreset papers

SS = sensitivity
sampling

Speed up Approximation Algorithms

27

We also observe similar results in many other coreset papers

Conclusion

Importance sampling

• Wider applicability, but may not be the end-game solution for clustering

Hierarchical uniform sampling

• Simpler, better suited (but very specific) to clustering

• Can handle constrained clustering

28

Future Directions

Coresets for clustering: tight bounds, i.e., tight degree of poly of

Beyond coreset/what’s coreset cannot do for clustering:

• Size lower bound of for coreset — Severe limitation when is large!

• Streaming and MPC algorithms that have space usage?

Beyond clustering:

• Coreset/sampling x other tasks in ML?

ϵ, k

Ω(k) k

o(k)

29

A popular distributed computing model motivated by MapReduce

Thanks!

