Recent Advances In
Coresets for Clustering

Shaofeng Jiang

= ALHERZFEIGT RSSO

— Center on Frontiers of Computing Studies, Peking University




Sublinear Algorithms

Computational challenge of big data: even linear time/space doesn’t work!

Data created worldwide, in ZB

50 Years of Microprocessor Trend Data
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New plot and data collected for 2010-2021 by K. Rupp

Typical sublinear models: streaming, distributed computing, sublinear time

o(n) space o(n) communication o(n) query



Coreset: A Data Reduction Method

For sublinear algorithm design

’
Sublinear/efficient algorithm @ Solve only on the tiny proxy
A problem & defined on Coreset: Tiny proxy of
Algorithm 1 v X

F e at ures: Algori.thm 2 X v

* Data/problem driven design of sublinear algorithms  Algerithm driven design of sublinear

algorithms

» EXisting (non-big-data) algorithms can be readily applied



Clustering

k-median: dataset D C R?, find center set C C R%s.. | C'| < k to minimize

cost(D, C) := Z dist(x, C)

x&eD dist(x, C) := min dist(x, c¢), dist = £,

ceC

Related problem: k-means, cost(D, C) := Z dist’(x, C)

xeD Notice the square
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Coreset for Clustering

e-Coreset is a weighted subset § C D s.t. Har-peied-Mazumdar, sToc 04

VCCRYL|Cl<k  cost(S,C) € (1=xe)-cost(D,C)

Why wei ghted’? There can be infinitely many such C’s!
O
O
e .‘ 0‘ O = &
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Performance measure: # of distinct elements | .|



Coreset -> Sublinear Algorithms

Merge-and-reduce method

Given e-coreset Alg. &/, one can turn & into sublinear algorithms, e.g.,
streaming/distributed/dynamic algorithms, in a black-box way!

« Key property — composable: coreset(X) U coreset(Y) is a coreset(X U Y)

Follows from definition:

 Merge-and-reduce VCCRL|Cl<k  cost(S,C) € (1 £e)-cost(D,C)

The final coreset

(O
( ): :( )< Internal: merge two coresets, compute coreset

Leaf: buckets of data points




Results

Size independent of »

d

Most studied: vanilla k-clustering in | Obtaining tight degree of poly is still open

. Upper bound (for k-median): O(min{k*°¢ =2, ke, ke ~*d})

e Lower bound: Q(ke_z)

There’s an even larger gap in the degree of poly

Extensions: size poly(ke™ )
* Other metric space: doubling metrics, planar graphs etc.

» Variants: fair clustering, capacitated clustering, clustering w/ outliers etc.



Natural Idea: Sampling

Uniform sampling? Doesn’t work:

Needs to do non-uniform sampling
* Generic framework: sensitivity sampling

 More specific to clustering: hierarchical uniform sampling



Sensitivity Sampling Method



Warmup: Importance Sampling

Suppose ay, ...,a, > 0
Want to estimate 2 a., but can access a; only through random samples

l

Question: How well does uniform sampling work?

» Bad example: a; = 1, butfori > 1,a;, =0

requires £2(n) samples to see a; even once
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Algorithm

Importance Sampling

For some O < A4 < 1, suppose we have a distribution on ID j € [n] s.t.

>/1 alz

]
l

Claim: Let Z := aj/pj. Then

(7] =

Unbiased

0; i= 4, / Z a; is called “importance score”

Low variance!

a, Var[Z] < 0(A7Y) -

2[Z]

Hence, aggregate O(1/¢?) i.i.d. samples yields (1 + €)-approximation
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Proof

Let W := 2 a;. Recallp; > 4 - a;/W, Z = a;/ p;

[Z] = Zpi°ai/pi= Zal-= 14

l

=(7%) = Zpi (a;/p;)* = Z a’lp; < /I_IWZ a, = A"1W?

l

Var(Z) = E[ZY] - E2[Z] < 07N - B[ Z]
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Generalization: Sensitivity Sampling

Our case: forx € D, let /. (C) := dist(x, C), then cost(D, C) = Z]ﬂc(C)

xeD

Interpretation: sum of functions {f, } .-p on the same variable C

Exactly a coreset!

Goal: draw a sample of D that approximates this sum for all C simutaneously

Compare to importance samp.: sum of numbers vs sum of functions

13



Sensitivity Sampling

Sensitivity o,: analogue to importance score

SC)
Forxe D,o.:= sup ————

Claim: The contribution of x over any possible center set
(i.e., parameter of f))
Givenp,. > 1 - 6., sample x € D w.p. p,, set its weight w(x) := 1/p,
Then YC, E[£.(C)] = cost(D, C) and Var[ f.(C)] < O(A~ 12 G) -

Z o, Is called “total sensitivity”

X

14
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Sensitivity Sampling

Hence: If A and Z o, bounded, let § be 0(6_2 log 1/0) i.i.d. samples, then

X

VC, Prcost(S,C) € (1 £¢€)-cost(D,C)] > 1 -6

Notice: only for one C

To make it a coreset, one still needs a union bound on all C

» But C is infinitely many, even in 1D and k = 1 (i.e., 1-median on real line)!

e We need “clever” discretization: Sauer-Shelah-like, via VC-dimension

15



VC/Shattering Dimension

For R%, one can show that sdim is O(d)
Consider metric space . (V, dist)

For x € V, define a metric ball B(x,r) := {y € V: dist(x,y) < r}

Measure the complexity of .#/’s metric balls

Shattering dimension, denoted as sdim(.Z ):

Up to log factor to VC-dim
« Smallest integer t, s.t. forevery H C Vwith |H| > 2 of metric ball system

[ {Bx,)NnH:xeV,r>0}| <|H|

In 1D, a ball is an interval;

m points can form O(m?) intervals, so t = 2

16



Conclusion: Coresets via Sensitivity Samp.

There’s an efficient way to compute such
p.’s with 4 = (1)

Sensitivity sampling: Given p. > 4 - o,

Sample x € D w.p. p,, set its weight by w(x) := 1/p,

Theorem: poly(e ™' - 2 o, - sdim) i.i.d. sensitivity samples is e-coreset w.h.p.

[Feldman-Langberg, STOC 11]

For k-clustering, total sensitivity is O(k)
[Varadarajan-Xiao, FSTTCS 12]

d

Corollary: O(kde™?) i.i.d. sensitivity samples is e-coreset for k-median in [

[Feldman-Langberg, STOC 11]
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Other Metrics

For clustering: given metric .Z(V, dist), we allow
dataset D C V, centerset C C V

For metrics other than R, poly(ke ™) size coreset exists if sdim is bounded

. Doubling metrics [Huang-J-Li-Wu, FOCS 18]

* The shortest-path metric of graphs
e plan ar/excluded-minor [Bousquet-Thomassé, Discret. Math. 15] [Braverman-J-Krauthgamer-Wu, SODA 21]
e bounded treewidth [Baker-Braverman-Huang-J-Krauthgamer-Wu, ICML 20}

e Polygonal curves under Fréchet distance

[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]
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How to Remove Dependence on d for R%?

Simple approach: iterative size reduction

Informal argument:
Need a terminal embedding version of JL [Narayanan-Nelson, STOC 19]

» First do JL: reduce to d = log n, leading to a coreset of size O(log n)

e lteratively running this, we have n — logn — loglogn...

Run for log™ n times, error can accumulate

e See [Braverman-J-Krauthgamer-Wu, SODA 21]

To avoid log™ 7 in error bound, one needs to
set € carefully in each iteration

* Note: first dimension-independent results were obtained in [Sohler-Woodruff, FOCS 18; Feldman-Schmidt-Sohler, SICOMP 20]
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Good and Bad of Sensitivity Sampling

Suitable for various problems (non-exhaustive examples):

° PrOJeCt|Ve C|uster|ng/m|SS|ng Value [Feldman-Schmidt-Sohler, SICOMP 20;

Braverman-J-Krauthgamer-Wu, NeurlPS 21]

® GaUSS|an m|Xture mOdel [Lucic-Faulkner-Krause-Feldman, JMLR 17]
o LOQlSth reg reSS|On [Munteanu-Schwiegelshohn-Sohler-Woodruff, NeurlPS 18]
® DeCISIOn tree [Jubran-Shayda-Newman-Feldman, NeurlPS 21]

What’s not so good:
For example capacity constraints

* Not effective to deal with constraints; sub-optimal size

More structured sampling can do better
20



Hierarchical Uniform Sampling
Method




Hierarchical Uniform Sampling
[Chen, SICOMP 09]

A more geometric way to construct coreset
ring(c, r,2r) := B(c,2r)\B(c, r)

First, consider ring dataset R C ring(c, r,2r)

Intuition: points in the ring have similar “importance scores”

e So uniform sampling should work ﬁ
@

22



Uniform Sampling on Ring Dataset

np is the number of points in R

Draw m uniform samples § C R, set w(x) := np/m forx € §

Unbiased: E[cost(S, C)] = cost(R, C)

Hoeffding inequality implies w.h.p., | cost(S, C) — cost(D, C) | < enp - 1

Bounded terms: Vx,y € D, A ¢
dist(x, C) — dist(y, C) < dist(x,y) < O(r) °
21
\
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Is the Addive Error en,r Good?

Charging en,r to OPT, via ring decomposition

(O(1), O(1))-bicriteria solution also works!
Find optimal center set C* = {c*, ..., c]f}

Partition/clustering the dataset D w.r.t. C*

For each cluster Cl.*, partition into rings of radius r = D!

For each ring R of radius r: “‘

« Each x € R contributes O(r) to OPT

So enpr is € to OPT!

» In total contribute OJ(n,r) since the ring has 7, points

24



Further development

which translates to O(log n)-size coreset

Naive decomposition may introduce O(log n) rings

Improved way: group several rings together, and create only log 1/¢€ rings

. [Cohen-Addad-Saulpic-Schwiegelshohn, STOC 21;
® Lead 'to State_of-the-art COreset Sl|Ze Cohen-Addad-Larsen-Saulpic-Schwiegelshohn, STOC 22;

Cohen-Addad-Larsen-Saulpic-Schwiegelshohn-Sheikh-Omar, NeurlPS 22]

* Also extends to constrained clustering

[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]

e Clustering with outliers

[Huang-J-Lou-Wu, ICLR 23]

» Fair clustering, capacitated clustering etc. “‘

25



Some Experiment Results

Coresets for clustering with outliers
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SS = sensitivity
sampling

 Based on hierarchical uniform sampling; works better than SS in practice
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We also observe similar results in many other coreset papers
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Speed up Approximation Algorithms

Table 2: Running time and costs for LL and LS with/without coresets. T’x and 7's are the running time with-
out/with the coreset, respectively. Similarly, cost and cost’ are the clustering costs without/with the coreset.
Tc 1s coreset construction time. This entire experiment is repeated 10 times and the average is reported.

dataset algorithm cost cost’ Tc (s) Ts (s) Tx (s)
Adult LL 3.790 x 10 3.922 x 10*®> 0.4657 0.06385 16.51
LS 1.100 x 10°  1.107 x 10° 0.5300  1.147 204.8

Bank LL 4.444 x 10®  4.652 x 10°  0.4399 0.05900 11.40
LS 4.717 x 10°  4.721 x 10° 0.4953  1.220 186.6

Twitter LL 3.218 x 10”7  3.236 x 10" 0.9493 0.08289 11.27
LS 1.476 x 10°  1.451 x 10° 1.064 2.135 460.2

Census1990 LL 1.189 x 10"  1.208 x 10"  3.673  0.4809  40.54
LS 1.165 x 10°  1.163 x 10°  4.079 24.83 2405

We also observe similar results in many other coreset papers
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Conclusion

Importance sampling

* Wider applicability, but may not be the end-game solution for clustering
Hierarchical uniform sampling

o Simpler, better suited (but very specific) to clustering

» Can handle constrained clustering

28



Future Directions

Coresets for clustering: tight bounds, i.e., tight degree of poly of €, k

Beyond coreset/what’s coreset cannot do for clustering:
 Size lower bound of €2(k) for coreset — Severe limitation when £ is large!

« Streaming and MPC algorithms that have o(k) space usage?
_ A popular distributed computing model motivated by MapReduce
Beyond clustering:

e Coreset/sampling x other tasks in ML?
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Thanks!



