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Abstract
Abstract Syntax Notation One (ASN.1) is a language for struc-
tured data exchange between computers, standardized by
both ITU-T and ISO/IEC since 1984. The Distinguished En-
coding Rules (DER) specify its non-malleable binary for-
mat: for a given ASN.1 data type, every value has a distinct,
unique binary representation. ASN.1 DER is used in many
security-critical interfaces for telecommunications and net-
working, such as the X.509 public key infrastructure, where
non-malleability is essential. However, due to the expressive-
ness and flexibility of the general-purpose ASN.1 language,
correctly parsing ASN.1 DER data formats is still considered
a serious security challenge in practice.
We present ASN1★, the first formalization of ASN.1 DER

with a mechanized proof of non-malleability. Our devel-
opment provides a shallow embedding of ASN.1 in the F★
proof assistant and formalizes its DER semantics within the
EverParse parser generator framework. It guarantees that
any ASN.1 data encoded using our DER semantics is non-
malleable. It yields verified code that parses valid binary
representations into values of the corresponding ASN.1 data
type while rejecting invalid ones.

We empirically confirm that our semantics models ASN.1
DER usage in practice by evaluating ASN1★ parsers extracted
to OCaml on both positive and negative test cases involving
X.509 certificates and Certificate Revocation Lists (CRLs).

1 Introduction
Abstract Syntax Notation One (ASN.1) is a data type declara-
tion language standardized by both ITU-T and ISO/IEC since
1984.1 It is used for exchanging structured data between
platforms in a variety of settings, notably in the X.509 [11]
standard for public-key certificates. The latter forms the cor-
nerstone of digital identities and secure communication on
the Internet and, as such, the ASN.1 and X.509 standards and
their implementations are security critical components of
societal infrastructure.
The ASN.1 language supports describing structured data

of many varieties, including a wide collection of base types,

1https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx

products, sums, sequences, and sets. For example, we give be-
low an ASN.1 declaration for two-dimensional points, where
the base type INTEGER denotes integers of arbitrary size.
Point2D ::= SEQUENCE { x INTEGER, y INTEGER }

ASN.1 declarations can be grouped into ASN.1 modules.
For example, the format of X.509 certificates is one such
ASN.1 module. We give below its top-level declaration, a
triple of fields:
Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING }

where tbsCertificate is the certificate contents ‘to be
signed’ using signatureAlgorithm, and signature is the
resulting signature value.
ASN.1 decouples data type declarations from their for-

mats. It provides several classes of encoding rules that gov-
ern the wire format of data types, one of which known as
the distinguished encoding rules or DER, following the gen-
eral tag-length-contents encoding pattern. For example, the
point (0, 0) is encoded into the 8-byte string "30 06 02 01 00
02 01 00" where 30 is the tag locally assigned to points in
their ASN.1 module, 02 is the primitive tag of integers, and
06, 01, 01 encode their content lengths.
DER are designed to ensure that every value of a given

ASN.1 type has a distinct, canonical wire format representa-
tion. That is, DER formats are intended to be unambiguous
and non-malleable, in the sense that given a bit string 𝑏 that
encodes a value 𝑣 , every parser will yield back 𝑣 , whereas
changing any bit in 𝑏 either produces an invalid represen-
tation or yields a distinct value 𝑣 ′ ≠ 𝑣 . These properties are
particularly important in security applications, inasmuch as
they depend on values 𝑣 but apply cryptographic protection
only on binary formats 𝑏. In particular, the X.509 standard2
requires that certificates be formatted using DER, to pre-
vent any ambiguity between the claims signed by the issuer
in tbsCertificate and their interpretation by the relying
party after verifying the signature.
Despite the maturity of the standard and the presence of

libraries in several languages that support their use, ASN.1

2https://www.rfc-editor.org/rfc/rfc5280
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and DER have a reputation for being difficult to master. Im-
plementations have suffered from parsing bugs that have
led to critical vulnerabilities. For example, Marlinspike [21]
discovered that Microsoft’s CryptoAPI component would
incorrectly parse a string containing a null character in a
domain name in the subject’s Common Name (CN) field of
an X.509 certificate, e.g., parsing the string "a.com\0b.com"
as "a.com" thereby misinterpreting the certificate issuer’s
intent and enabling an attacker to spoof a certificate to carry
out a man-in-the-middle attack. This is a classic example of
security vulnerability due to the use of a malleable parser—
the parser simply ignores the content of the string after the
null character. We discuss other security vulnerabilities re-
lated to X.509 parsing in §4. Of course, many vulnerabilities
discovered in implementations of X.509 and related stan-
dards involve software flaws beyond parsing (e.g., in certifi-
cate chain validation [5])—however, ensuring that parsing is
correct and non-malleable is a necessary basic requirement.

ASN1★: A formalization of ASN.1 DER. Our long-term
ambition is to provide high-assurance implementations of
tools to parse and serialize data to and from ASN.1 DER,
and to build provably correct cryptographic applications
upon such tools. This paper presents a first milestone to-
wards that long-term goal, namely ASN1★, a mathematical
formalization of ASN.1 DER, deeply embedding its syntax
and providing several related denotational semantics within
the F★ proof assistant [29]. It provides a precise, mathemati-
cal basis on which to understand and further study a widely
used Internet standard that has, to date, only been specified
in several voluminous natural-language documents.
We formalize the syntax of ASN.1 DER as a family of

mutually inductive indexed types, the primary one being
declaration : set id_t→ Type, the type of a single ASN.1 dec-
laration. For example, Point2D and Certificate are repre-
sented in F★ as instances of declaration. The index on declaration
enforces a well-formedness property on ASN.1 DER specifi-
cations, a form of static discipline discussed in §2.
We provide two related denotational semantics. First, a

type denotation asn1_as_type : declaration s→ Type that inter-
prets every well-formed ASN.1 DER declaration as a type in
the meta-language, i.e., F★. For example, the type denotation
of Point2D is an F★ pair of mathematical integers, int & int.
Second, a parser denotation that interprets every declaration
as a pure function from a sequence of bytes (a DER wire
format) to either a value of its type denotation or an error.
Our main theorem, outlined below

val asn1_as_parser : (d:declaration s)→ parser (asn1_as_type d)

establishes that our parser denotation can be typed as a
parser, the type of correct, non-malleable parsers defined
in the EverParse framework [25], applied to our type deno-
tation. (§A provides background on F★ and EverParse.) That
is, we show that every well-formed ASN.1 DER declaration

can be interpreted both as an F★ type and a non-malleable
parser from a sequence of bytes to that type.
A key technical contribution of our development is that

it yields a compositional semantics of ASN.1 DER where,
despite complications of the standard such as optional ele-
ments, default elements, and local retagging, (which require
careful custom treatment) our top-level theorem still offers
a clear, canonical correctness and non-malleability result in
terms of EverParse’s parser abstraction. To this end, we also
contribute new parser combinators, notably for sequence,
choice, and state-machine-based parsers, together with their
proofs of correctness and non-malleability.

Validating ASN1★. To validate that our formalization cor-
responds to the practice of ASN.1 DER in existing standards
and interfaces, we use F★’s extraction mechanism to pro-
duce, for selected ASN.1 declarations expressed as instances
of v : declaration s, functions in OCaml that parses a sequence
of bytes. We wrote ASN1★ format declarations for X.509
version 3 certificates, covering its most popular extensions,
and tested our extracted OCaml parser on a corpus of more
than 10,000 certificates, including both positive and nega-
tive test cases, confirming that we correctly handle them all.
We also tested on a further ∼2,000 (mostly ill-formed) cer-
tificates dataset produced by fuzzing, and again confirmed
that we correctly handle them all. We also wrote a ASN1★
format declarations for Certificate Revocation Lists (CRLs)
and evaluated our parsers on ∼4,000 CRLs found in the wild.

Extensions and Limitations. Our formalization aims to
cover a practical version of ASN.1 DER, sufficient to express
many formats used in the wild. We support features that
are not core to ASN.1 but are commonly used in informal
side conditions. For example, many specifications prescribe
additional formatting constraints in natural language, e.g.,
X.509 has a notion of expansion lists, which our formalization
does cover. On the other hand, we do not support a form of
set that is seldom used with DER and does not occur in our
case studies (see §3.1.2).

Although our formalization offers executable OCaml code
for parsing, we have not attempted to optimize this code at all,
andmake no claims about its efficiency. Indeed, as mentioned
earlier, we see our work as “merely” the formal foundation
towards producing in the future high-performance, provably
correct, low-level implementations of ASN.1 DER parsers
and serializers, and cryptographic applications to be built
using them, including certificate chain and policy validation.

In summary, our contributions include:

1. The first formalization of ASN.1 DER, providing a
basis on which to understand long-standing, widely
used natural language standards. Our main theorem
proves that all well-formed ASN.1 DER specifications
induce non-malleable parsers.
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2. New correct- and non-malleable-by-construction parser
combinators for sequences, choice, and state-machine-
based parsers.

3. An experimental validation of our formalization by
evaluating the parsers from our semantics on a corpus
of ASN.1 DER formatted data in the wild, including
for X.509 and CRL, confirming that our semantics is
faithful to the intent of the official standard.

The anonymized supplementary materials include our formal
development and experimental datasets.

2 A Brief Primer on ASN.1 and DER
Figure 1 presents an informal summary of the concrete syn-
tax of ASN.1, distilled from the ITU’s X.680 standard [17].
Figure 2 shows an actual snippet of ASN.1 declaring the
type of X.509 to-be-signed certificate contents introduced
in §1. We use them to establish some basic concepts and
intuitions, and to convey some of the challenges involved in
their formalization, presented next in §3.
An ASN.1 module declares a collection of data types, in-

cluding finite sums, dependent and non-dependent prod-
ucts, variable-length sets and lists over a collection of base
types. Each module is a list of declarations; each declara-
tion associates a name with either a constant value (such as
an object identifier) or a data type, and may refer to prior
declarations by name. In Figure 2, for example, Version and
AlgorithmIdentifier refer to prior declarations in scope.

A data type is either a terminal, such as an integer, or a type
constructed frommore basic types: a SEQUENCE is the prod-
uct of a given list of field names 𝑓𝑖 and decorated declarations,
where the decorations can marks a field as optional, provide
a default value when the field is omitted, and modify its
tag—we discuss this in detail shortly; a SEQUENCE OF is a
list of an arbitrary number of 𝑡-typed elements; the CHOICE
constructor is the sum of a given list of data types. ASN.1
also offers SET and SET OF constructors that are unordered
analogs of SEQUENCE and SEQUENCE OF.
A design goal of ASN.1 is to decouple type declarations

from their binary formats. To this end, ASN.1 settles on an
encoding scheme where all data type values are encoded in
binary as identifier-length-content (ILC) tuples—the precise
form of these tuples varies between the different encoding
rules that ASN.1 provides, DER, our focus, being among
them. The identifier, or tag, mainly serves as an indicator for
the type of the value, for example, to distinguish between
different cases of sum. The length specifies the length of
the content field in bytes and eliminates ambiguity when a
binary string can be fragmented in different ways. Although
the identifier and the length fields are not always necessary,
they usually do not cause much overhead, and they enable
applications to skip over contents in binaries.

Primitive ASN.1 types have their own built-in identifiers.
For example, the type INTEGER has identifier 02 (in hex),

𝑐 ::= INTEGER | BITSTRING | . . . Terminals
𝑡 ::= 𝑐 | SEQUENCE {𝑓1 𝜏1, . . . , 𝑓𝑛 𝜏𝑛} Declarations

| CHOICE {𝑓1 𝜏1, . . . , 𝑓𝑛 𝜏𝑛}
| SEQUENCE OF 𝑡 | SET OF 𝑡 | . . .

𝜏 ::= 𝑡 | 𝜏 OPTIONAL | 𝜏 DEFAULT 𝑣 Decorated decls
| [𝑛] EXPLICIT 𝜏 | [𝑛] IMPLICIT 𝜏

Figure 1. Informal syntax of ASN.1

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT Uid OPTIONAL,
subjectUniqueID [2] IMPLICIT Uid OPTIONAL,
extensions [3] EXPLICIT Extensions OPTIONAL }

Figure 2. An ASN.1 declaration from X.509

so 0 is in ASN.1 DER as 02 01 00, where the first byte is the
identifier for integers, the second is the length of the content
(1 byte); and 00 is the content itself.

ASN.1 allows users to override the (otherwise decoupled)
binary encoding of identifiers for their declarations. For ex-
ample, one can declareMYINT ::= [1] IMPLICIT INTEGER, and
the encoding of 0 as aMYINT becomes 81 01 00. The identifier
byte 81 expanded in binary digits is 10 0 00001, where the first
two bits indicate that this is a context-specific user-defined
identifier, the next bit indicates that the data type is primitive,
and the last 5 bits encode the user-chosen constant 1.
Identifier formats are actually variable-length. For exam-

ple, a long identifier such as [128] IMPLICIT takes 3 bytes: the
first byte is 10 0 11111, where the first 3 bits are as before, but
the last five signal a long-form identifier. The next two bytes
are 1 0000001 and 0 0000000, where the leading bit of the first
byte signals that more bytes are to follow, and the leading
bit of the third byte signals that this is the final byte of the
identifier, overall representing 8 bits spread across the last
two bytes. Note that a correct parser must reject unnecessary
long forms, as they would break non-malleability.
ASN.1 also allows to wrap an encoding within a custom

ILC tuple. For example, the encoding of 0 as aWRAPPED_INT
::= [1] EXPLICIT INTEGER is A1 03 02 01 00, where the leading
A0 in binary is 10 1 00001, representing a constructed user-
defined short identifier; the length of the wrapped contents
is 3; and the content itself is the built-in encoding of 0.
ASN.1 has further decorations to mark certain fields in

sequence as optional, or optional with default values. For
example, in a TBSCertificate the Version field may be omitted
in binary format, which must be interpreted as the constant
v1 (a value in scope), and any of the last three fields may

3
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also be omitted. This complicates parsing, and motivates
the use of IMPLICIT and EXPLICIT identifiers to prevent any
ambiguity. For example, when parsing the optional field Uid,
if the next byte encodes the identifier for [1] IMPLICIT, then
the content must be a Uid, but if it encodes the identifier for
[3] EXPLICIT, then both Uid fields are absent, and one should
start parsing the extensions. (Binary encodings of Extensions
may start with any identifier, hence the need to wrap them.)

To ensure that a declaration can be unambiguously parsed
there are various well-formedness conditions, e.g. all the
fields in a consecutive block of OPTIONAL and DEFAULT
fields, and the plain field that immediately follows them
(if any) must have distinct identifiers. As such, not every
syntactic instance of an ASN.1 declaration is admissible.

3 ASN1★

Figure 3 summarizes our formalization of ASN.1. In §3.1,
we present an intrinsically typed syntax for ASN.1, whose
typing constraints ensure the well-formedness of ASN.1 dec-
larations. We offer some syntactic conveniences to help tran-
scribe ASN.1 concrete syntax into our formal ASN1★ nota-
tion, though the correspondence is only established empiri-
cally. In §3.2, we show that every well-formed ASN1★ term
can be denoted as an F★ type. This part of our semantics is
independent of the binary format, in keeping with the ASN.1
view that the type declarations and binary representations
are to be decoupled. §3.3 contains the main formal result of
the paper, namely that every ASN1★ term has a denotation as
a non-malleable parser for values of the type denotation. Our
parser semantics yields OCaml code for parsing ASN.1 DER
formatted data, and in §4 we test our code against concrete
ASN.1 DER binary formatted data to confirm empirically
that our semantics is faithful to the ASN.1 DER standard.

3.1 Syntax and Well-formedness of ASN.1
Figure 4 shows the formal syntax and well-formedness rules
of ASN1★. We omit the definition of terminal_k, the lan-
guage of terminal types, and their interpretation as F★ types,
terminal_t : terminal_k→ Type. The content type is the core
syntax of taggable content, while the declaration type asso-
ciates an identifier with a content term—we leave the length
out of the specification, since it is a dynamically computed
value. The d_declaration type associates a decoration with
an declaration value, and decorated and decorateds are just ab-
breviations. For compactness, we adopt a convention where
free names are universally bound as implicit parameters at
the top of the type of each constructor.

3.1.1 Identifiers. The type id_t below models identifiers,
explained in §2. For example, the identifier [2] IMPLICIT en-
coded as byte 10 0 00010 has class CONTEXT_SPECIFIC, flag
PRIMITIVE, and value 2. We bound identifier values to 32 bits,
though we could have also chosen to use unbounded integers
in F★—identifiers longer 32 bits are very uncommon.

Figure 3. Architecture of our development

type id_class_t = | UNIVERSAL | APPLICATION | PRIVATE
| CONTEXT_SPECIFIC

type id_flag_t = | PRIMITIVE | CONSTRUCTED
type id_t = {class:id_class_t; flag:id_flag_t; value:U32.t}

3.1.2 The content type. The TERMINAL constructor sup-
ports a form of decidable refinement. For example, to rep-
resent the type of natural numbers less than 4, one can
write TERMINAL INTEGER (𝜆v→ 0 ≤ v && v < 4). While this is
not strictly part of ASN.1, many common specifications ex-
press side conditions in natural language, so we include
them in our formal language. SEQUENCE, SEQUENCE_OF,
and SET_OF are just like their informal analogs in Figure 1.

PREFIXED models the wrapping of data types using EX-
PLICIT, e.g., ILC id (PREFIXED t) require that the inner type
be wrapped with identifier id.

ANY_DEFINED_BY is the most complex content type. For
example, the X.509 specification has a type for (mathemati-
cal) fields of characteristic two for some elliptic curves, given
below in ASN.1 concrete syntax.

Characteristic−two ::= SEQUENCE {
m INTEGER, - Field size 2^m
basis OBJECT IDENTIFIER,
parameters ANY DEFINED BY basis }

This declares a record of an integer m, followed by an object
identifier basis, and then some parameters whose legal values
are determined by the value of basis. The specification also
includes (in natural language text) the basis/parameters pairs
that are supported. In the constructor ANY_DEFINED_BY,
the prefix represents fields (such as m) that precede the
keys and values. The fields id and key are the identifier and
type of the keys, which must be a terminal type (such as
OBJECT IDENTIFIER). The field kvs represents the supported
key-value pairs. The field def is an optional default value,
which some specifications use to represent a default case
not included in kvs. The final field is a proof obligation to

4
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1 type decorator = | PLAIN | OPTION | DEFAULT
2 type content : Type =
3 | TERMINAL :
4 k:terminal_k→
5 is_valid:(terminal_t k→ bool) →
6 content
7 | SEQUENCE : decorateds→ content
8 | SEQUENCE_OF : declaration s→ content
9 | SET_OF : declaration s→ content
10 | PREFIXED : declaration s→ content
11 | ANY_DEFINED_BY :
12 prefix:list decorated→
13 id:id_t → key:terminal_k→
14 kvs:list (terminal_t key & decorateds) →
15 def:option decorateds→
16 squash (wf_any prefix id kvs) →
17 content
18
19 and declaration : set id_t → Type =
20 | ILC : id:id_t→ content→ declaration (singleton id)
21 | CHOICE_ILC :
22 choices:list (id_t & content) →
23 squash (no_repeats (map fst choices)) →
24 declaration (as_set (map fst choices))
25 | ANY_ILC : declaration (complement empty)
26
27 and d_declaration : set id_t → decorator → Type =
28 | PLAIN_ILC : k:declaration s→ d_declaration s PLAIN
29 | OPTION_ILC : k:declaration s→ d_declaration s OPTION
30 | DEFAULT_TERMINAL :
31 id:id_t→
32 is_valid:(terminal_t k→ bool) →
33 defaultv:terminal_t k →
34 squash (is_valid defaultv) →
35 d_declaration (singleton id) DEFAULT
36
37 and decorated = s:set id_t & d:decorator & d_declaration s d
38 and decorateds = items : list decorated &
39 squash (sequence_k_wf (map proj12 items))

Figure 4. Formal syntax and well-formedness
exclude repeats in the kvs list and its encodings. (squash p is
the F★ type of proof-irrelevant proofs of p.)
Although ASN.1 includes a SET constructor, ASN1★ does

not support it. Much like SEQUENCE, SET is used to declare
a record, but with the intent that the ordering of its fields
is unimportant. This is at odds with DER, which requires
that binary representations of elements of SET and SET_OF
be strictly sorted. We decided to fully support SET_OF but to
ignore SET, since it does not occur in any of our case studies;
it can usually be replaced with a SEQUENCE with the same
fields and a simpler format; and it would require parsers for
corner cases such as

SET { [2] IMPLICIT INTEGER,

CHOICE { [1] IMPLICIT INTEGER,
[3] IMPLICIT INTEGER }}

which declares a pair of integers, but insists their binary
format order them by tags: either 1,2 or 2,3. (By contrast,
SET OF declares sets where all elements have the same type,
so we check their representations are strictly ordered but
need not consider re-orderings.)

3.1.3 The declaration type. The declaration s type asso-
ciates an identifier with a content type, where the index s
represents the set of valid first identifiers that may be encoun-
tered in the binary format of the type—this is used below
in the well-formedness of decorated types. The CHOICE_ILC
is for a sum and associates a distinct identifier with every
content type in the sum. Finally, the ANY_ILC is used to rep-
resent any identifier-length-content tuple.

3.1.4 The decorated type. The type d_declaration asso-
ciates a decoration with an declaration type. The DEFAULT
case supports refined terminals and requires a proof that
the default value satisfies the refinement. Rather than us-
ing d_declaration, we use its packaged variants decorated and
decorateds. The latter type enforces that all the fields in a
consecutive block of OPTION and DEFAULT fields, and the
PLAIN field that immediately follows them (if any) have
distinct identifiers.

3.1.5 Smart constructors. Writing a value of type declaration
directly from its constructors can be tedious, especially due
to the proof obligations on several of the constructors. To as-
sist with this, we introduce a layer of smart constructors that
internalize some of the proof obligations and provide tactics
for them. These constructors enable writing specifications in
our embedded declaration language in a style relatively close
to the concrete ASN.1 syntax, while also formally captur-
ing constraints that are typically left to natural language in
concrete specifications. For example, we give below the spec-
ification in ASN1★ of the Characteristic-two declaration
presented earlier, with an asn1_integer m as prefix, followed
by the key name basis, and a choice between the three le-
gal key-value pairs—the proof obligations are dispatched by
seq_tac and choice_tac, tactics we developed for ASN1★.

let characteristic_two = asn1_any_oid_prefix
["m" ∗^ (PLAIN ^: asn1_integer)]
"basis"

[(gnBasis_oid, gnBasis_parameters);
(tpBasis_oid, tpBasis_parameters);
(ppBasis_oid, ppBasis_parameters)]
(_ by (seq_tac())) (_ by (choice_tac()))

In the future, we may leverage user-defined syntax exten-
sions proposed for F★ to streamline this further.

3.2 Denoting ASN1★ Declarations as F★ Types

5
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1 let rec content_t (k:content) : Type = match k with
2 | TERMINAL t is_valid → x:terminal_t t { is_valid x }
3 | SEQUENCE ds → decorateds_t ds
4 | SEQUENCE_OF k→ list (asn1_as_type k)
5 | SET_OF k→ list (asn1_as_type k)
6 | PREFIXED k→ asn1_as_type k
7 | ANY_DEFINED_BY prefix _ _ kv def _ →
8 sequence_t prefix (choice_t (any_t kv) (def_t def))
9
10 and asn1_as_type (k:declaration s) : Tot Type (decreases k) =
11 match k with
12 | ILC id k → content_t k
13 | CHOICE_ILC lc _ → choice_t (cases_t lc) ⊥
14 | ANY_ILC → id_t & octetstring_t
15
16 and decorated_t (d:decorated) : Type =
17 let (| _, _, dk |) = d in
18 match dk with
19 | PLAIN_ILC k → asn1_as_type k
20 | OPTION_ILC k→ option (asn1_as_type k)
21 | DEFAULT_TERMINAL id is_valid defv→ default_tv defv
22
23 and decorateds_t (| l, _|) = sequence_t l unit
24
25 and def_t d = match d with
26 | None→⊥
27 | Some ds → decorateds_t ds
28
29 and any_t (ls:list (t & decorateds)) : Tot _ (decreases ls) =
30 match ls with
31 | [] → []
32 | (x, ds) :: tl → (x, decorateds_t ds) :: any_t tl
33
34 and choice_t (lc:list (key & Type)) (def:Type) = k:key & assoc k lc def
35
36 and cases_t (lc:list (id_t & content)) : list (id_t & Type) =
37 match lc with
38 | [] → []
39 | (x,y) :: t→ (x, content_t y) :: cases_t t
40
41 and sequence_t (items:list decorated) (suffix_t:Type) : Type =
42 match items with
43 | [] → suffix_t
44 | hd :: tl → decorated_t hd & sequence_t tl suffix_t

Figure 5. Denoting ASN.1 definitions as F★ types

Figure 5 shows our interpretation of ASN1★ syntax as F★
types, following the structure of the inductive type defini-
tions in Figure 4. In the spirit of ASN.1, this first denotational
semantics is independent of the binary representation.

3.2.1 Denoting content. TERMINAL t v is interpreted as an
F★ refinement of the denotation of t. SEQUENCE ds is inter-
preted as an n-ary tuple, where n is the length of ds, followed

by a trailing unit (left here for simplicity, but optimized away
in our implementation). SEQUENCE_OF and SET_OF are both
denoted as lists. In principle, the latter could be quotiented
by a relation that equates lists up to permutation, though F★
lacks native support for quotient types. PREFIXED only affects
the binary format and has no effect on the type denotation.
ANY_DEFINED_BY is represented as a tuple beginning with
prefix followed by a sum defined by the kv association-list,
with an optional default case.

3.2.2 Denoting declaration. In an ILC id k, the identifier
id concerns only the binary format. The CHOICE_ILC lc case
maps the content_t interpretation over the list of cases, and
then forms a (strong) sum type, aka a dependent pair, where
the type is uninhabited in the case of an unexpected iden-
tifier. Finally, ANY_ILC is just a pair of an identifier and a
string of bytes. Although we could have written helper func-
tions like any_t and cases_t using combinators like map, F★’s
termination checking rules make it much easier to write
explicit, mutually recursive definitions in place. Additionally,
the termination checker needs a couple of hints in the form
of decreases annotations to accept this definition.

3.2.3 Denoting decorated types. The denotation of deco-
rated types is straightforward, with PLAIN having no impact;
OPTION denoted as an option; and DEFAULT_TERMINAL de-
noted as default_tv defaultv, a refined form of option with
constructors Default and Nondefault of (v:_ { v ≠ defaultv }).

3.2.4 Terminals. Our semantics of terminals formally cap-
ture the properties of manyASN.1 types previously described
only in natural language. We omit the details, and only dis-
cuss the UTF8String terminal, loosely defined in the standard
as any byte string tagged with a special identifier, followed
by 13 pages of English text for the actual specification. The
intended usage is to first parse its contents for as a byte se-
quence, then to separately check that it is a valid UTF8String.
Instead, we encode those constraints directly with F★ propo-
sitions and inductive types, and we prove that our parser,
described next, only accepts values of this more precise type.

3.3 A Constructive Formalization of DER
The main formal result of this paper, summarized in this sec-
tion, is that every ASN1★ type definition t : declaration s can
be interpreted as a parser asn1_as_parser t of a byte sequence
representation of asn1_as_type t. The specific format accepted
by our parsers is intended to represent ASN.1 DER. We prove
that the parser asn1_as_parser t is injective, i.e., for every
v:asn1_as_type t there exists at most one valid binary repre-
sentation.3 We conclude that ASN.1 DER is a non-malleable
format.

3The converse property, that every v:asn1_as_type t has at least one valid
binary representation is not guaranteed by our proofs, though we test the
non-triviality of the generated parsers empirically.
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Injectivity of parsers is a relational property or a hyper-
property [10]. Proofs of hyperproperties are known to be
challenging, with many special- and general-purpose logics
proposed for various classes of hyperproperties [2–4, 16].
For the specific scenario of proving injectivity properties of
parsers, the EverParse [25] library offers a family of injective-
by-construction parser combinators. The library is structured
around a type called parser k t, outlined below.
let parser (k:parser_kind) (t:Type) =
p:(b:bytes → option (t & n:nat { n ≤ length b }) {
has_kind k p ∧
(∀ b0 b1. match p b0, p b1 with

| Some (v0, l0), Some (v1, l1)→
v0 == v1 =⇒ slice b0 l0 = slice b1 l1

| _→⊤) }

In addition to injectivity, EverParse provides a language
of parser kinds that characterize various other properties. For
our purposes, we are interested in only two parser kinds,
strong and weak, where strong parsers are insensitive to in-
put extension. That is, appending any bytes to the input
does not change the return value of a strong parser. We
write weak_parser and strong_parser instead of parser weak
and parser strong. Kinds are combined according to a small
algebra, but we refer the reader to prior work on EverParse
for the details.

EverParse provides several basic parsers and combinators
to compose parsers, e.g., parse_u8 to parse a single byte, or
nondep_then to parse two values in sequence while returning
them as a pair. The type of combinators like nondep_then
encodes a proof rule which ensures that the sequential com-
position of injective parsers is injective.
val parse_u8 : parser u8_kind U8.t
val nondep_then (p0:parser k0 t0) (p1:parser k0 t1)
: parser (and_then_kind k0 k1) (t0 & t1)

In giving a parser denotation to ASN.1, the main chal-
lenge was to define a compositional semantics so that both
their type-correctness (that they parse well-typed values
according to the type denotation) and their injectivity fol-
low structurally. In the process, we also extended EverParse
with new general-purpose, injective-by-construction parser
combinators, notably a combinator parameterized by a state
machine, which should be of interest and applicability be-
yond the context of ASN.1 and DER.

3.3.1 Main theorem. Figure 6 shows a few selected pieces
from the parser denotation of ASN1★. The type of asn1_as_parser
(reproduced below for clarity) is our main theorem: every
ASN1★ declaration k:declaration s can be interpreted as a
strong injective-by-construction parser returning a value of
type asn1_as_type k, the type denotation of ASN1★. Since a
parser is a total function, this proof is also constructive in
the sense that it yields executable code for a parser for any
ASN1★ type definition.

1 let dlc_parser t = lc:(id_t→ strong_parser t) {cases_injective lc}
2 let twin_t t = strong_parser t & dlc_parser t
3 type twin = { d: decorated; ps:twin_t (undec_d_t d) }
4 let twins ds = lp : list twin_d{map (𝜆 x → x.d) lp == ds}
5
6 let rec content_as_parser (k:content) : weak_parser (content_t k) =
7 match k with
8 | TERMINAL k v→weaken ((terminal_as_parser k) `filter` v)
9 | SEQUENCE (| ds, _ |)→mk_seq_parser (seq_as_twins ds)
10 . . .

11 and asn1_as_parser (k : declaration s) : strong_parser (asn1_as_type k) =
12 match k with
13 | ILC id k' → parse_ILC id (content_as_parser k')
14 . . .

15 and seq_as_twins (ds : decorateds) : twins ds
16 match ds with
17 | [] → []
18 | hd :: tl→ decorated_as_twin hd :: seq_as_twin tl
19 . . .

20 and decorated_as_twin (d:decorated) : (tw:twin {tw.d == d}) =
21 let (| _, _, dk |) = d in
22 match dk with
23 | PLAIN_ILC k | OPTION_ILC k→ { d; ps=asn1_as_twin k }
24 | . . .
25 and asn1_as_twin (k : declaration s) : twin_t (asn1_as_type k) =
26 match k with
27 | ILC id k' →
28 let p = content_as_parser k' in
29 ilc_twin_case_injective id p; (∗ lemma ∗)
30 parse_ILC id p, parse_ILC_twin id p
31 | CHOICE_ILC lc pf→
32 let lp = cases_as_parser lc in
33 choice_twin_cases_injective lc pf k lp; (∗ lemma ∗)
34 make_choice_parser lc pf k lp,
35 make_choice_parser_twin lc pf k lp
36 . . .

Figure 6. The parser denotation of ASN1★ (fragments)

val asn1_as_parser (#s:set id_t) (k : declaration s) :
parser strong (asn1_as_type k)

The proof of this theorem is the bulk of our development,
comprising about 6,000 lines of F★ code. Next, we summarize
a few of the main ideas behind the proof.

3.3.2 Content, LC, and ILC Parsers. At the top-level of
our semantics (Figure 6 line 6) content_as_parser interprets a
k:content as a weak_parser (content_t k). A bare content parser
is not a strong parser—for example, a sequence parser would
accept additional elements appended at the end of its input—
but it can be strengthened by first parsing a length and then
requiring that the content consume exactly the specified
number of bytes. We thus define strong length-content (LC)
parsers, using length field parsers and a combinator that
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invokes the content parser on the input byte sequence trun-
cated to a specific length. We obtain an ILC parsers (line 13)
by first parsing a leading identifier. The identifier parser it-
self involves a non-trivial, automata-like logic; it is based on
a combinator described in §3.4.
For a given ASN.1 declaration, some identifiers may be

fully determined by the context, and may thus be omitted.
Some more compact ASN.1 encodings, e.g., the Packed En-
coding Rules, include optimizations to eliminate redundant
identifiers, but they are not widely adopted due to their in-
creased complexity and marginal benefits. The DER does not
include such optimizations.

3.3.3 Sequence parsers. Sequences would be simple to
parse if all their fields were always present, but this is not the
case with fields decorated with OPTION or DEFAULT. More
generally, the well-formedness constraints on SEQUENCE
ensure that any consecutive block of omittable fields and
the plain field (if any) that immediately follows must have
distinct identifiers, so one can use the next identifier value
to tell which field comes next and which ones should take
their default value. However, this breaks the one-to-one cor-
respondence between identifier and ILC tuple, hence a first
challenge for parsing sequences is handling dangling iden-
tifier, that is, single identifiers that determine the values of
multiple fields. A second challenge is to handle omittable suf-
fixes, since, for example, an empty string is a valid encoding
of a sequence whose fields are all optional or default.

3.3.4 Dependent LC and twin parsers. To tackle the
resolution of dangling identifiers, we introduce an alternate
form of LC-parsers that depend on a previously-parsed iden-
tifier. That is, a p:dlc_parser t (Figure 6 line 1) expects an
identifier i and ensures that p i is a strong_parser t, while guar-
anteeing that p i is injective in i—different values of i must
return parsers that accept different values. By decoupling
the parsing of identifiers and the length-content, we can
construct sequence parsers while accounting for optional
and default fields. When a block of omittable fields is en-
countered, our sequence combinator first parses an identifier
and tries to match it against the set of identifiers for each
field. If the identifier matches, the dlc_parser for the (undec-
orated) field is invoked, using the identifier that was just
parsed. If the identifier does not match, the omittable field
is filled with the default value and the dangling identifier is
passed to the next field. In some cases it is useful to interpret
a decorated type (line 20) both as a standard ILC parser as
well as a dlc_parser for its underlying undecorated form—we
call these twin parsers (line 3).

3.3.5 Defaultable parsers. We solve the problem of omit-
table suffixes with a new parser combinator called defaultable,
which overrides the behavior of an existing parser when an
empty string is encountered by returning a pre-determined

value. To maintain injectivity, it requires the underlying
parser to never return the default value.

3.3.6 Choice parsers. As we’ve seen, the type denotation
of a CHOICE_ILC is a dependent pair. As such, if two dif-
ferent cases have the same underlying type, they are still
distinguishable, since the identifier of the cases differs. The
well-formedness condition on ASN1★ definitions ensures
that the identifiers for all the cases must be distinct. We
implemented the ASN.1 choice combinator with a generic
tagged union combinator provided by EverParse, which first
reads the identifier value, then looks it up in the list of cases.
Once a match is found, the parser for the corresponding
element is invoked to handle the rest of the input.

3.3.7 Any-defined-by parsers. AlthoughANY_DEFINED_BY
also roughly assembles a tagged union, it differs fromCHOICE
in that it uses an explicit field (usually an object identifier)
in the context of a sequence instead of a tag. Furthermore,
its payload is a list of decorated sequence fields, instead of
a single piece of content. We implemented a generic parser
for ANY_DEFINED_BY by combining the techniques we used
for choice and sequence parsers. First, a potential prefix of
decorated fields is parsed (which may leave a dangling iden-
tifier), then the key field is parsed, its value is compared to
the list of known values and, if a match is found, the cor-
responding continuation is invoked, otherwise the fallback
parser is invoked.

3.4 Automata-Based Parser Combinator
While EverParse offers a variety of generic parser combina-
tors, building multi-step parsers with branches and loops
can be burdensome because relational proofs of parser kinds
and injectivity must be provided for the continuation of each
step before the combinators can be assembled. We devel-
oped a new parser combinator for generic, automata-based
parsers that simplifies the construction of such proofs, and
used this combinator to build parsers for several terminal
types, including, notably, UTF-8 code points, which we use
to illustrate the design of our automata parser combinator.

TheASN.1 specification requires handling the UTF8STRING
terminal type, which is a sequence of valid Unicode code
points, up to 21-bit values, each encoded in UTF-8, which
takes between one and four bytes (see Table 1). A code point
may have more than one representation, by using more bytes
than necessary and filling the highest bits with 0s. To main-
tain non-malleability, the standard thus requires that each
code point be encoded with the minimal number of bytes.

It is natural to structure a parser for UTF-8 code points as
an automaton that reads one byte at a time and, whenever it
accepts a code point, emits its value as an integer in 0..221−1.
For this, it is convenient to maintain auxiliary state that
keeps track of the bit prefix of the code point parsed, rather
than encoding this memory in the states of the automaton
itself—we refer to this auxiliary state as a "buffer".
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Range Byte 1 Byte 2 Byte 3 Byte 4
≤ U+007F 0xxxxxxx
≤ U+07FF 110xxxxx 10xxxxxx
≤ U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
≥ U+10000 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 1. Encoding Unicode points to UTF-8

Bit Pattern Action
0xxxxxxx Accept, return the byte value
10xxxxxx Reject: invalid first byte
1100000x Reject: not using minimum number of bytes
110xxxxx Transit to 𝑆1 with buffer xxxxx
11100000 Transit to 𝑆 ′2 for extra checks
1110xxxx Transit to 𝑆2 with buffer xxxx
11110000 Transit to 𝑆 ′3 for extra checks
11110xxx Transit to 𝑆3 with buffer xxx
11111xxx Reject: invalid first byte

Table 2. Transition table for Init

For example, Table 2 gives the transitions from the initial
state, depending on the value of the first byte. Similarly, the
other states have different transitions depending on the byte
they read. They all check that their input is of form 10xxxxxx,
then 𝑆1 adds bits to the buffer and returns the content; 𝑆2
and 𝑆3 add bits to the buffer; 𝑆 ′2 and 𝑆 ′3 check the encoding is
minimal and initialize the buffer with the correct bits. The
transitions to 𝑆2′ and 𝑆3′ mention extra checks needed to
ensure the uniqueness of representations, e.g., the 2 byte
encoding allows representing code points encoded in 8–11
bits, while 3 bytes must only be used to encode values that
require 12–16 bits.

Our automata combinator supports defining parsers with a
“control plane” and a “data plane.” The control plane contains
the states, the alphabet (a single byte in this case), and the
conditions for rejecting, accepting, and transitioning for each
state. The data plane describes the behavior of the buffer.
For example, the control plane of Table 2 is captured by
three functions below, whereas the data plane for UTF-8
uses bitwise operations to reassemble the code points.
let reject_init (ch : byte) : bool
= (0b10000000 ≤ ch && ch ≤ 0b11000001) || 0b11111000 ≤ ch

let accept_init (ch : byte {reject_init ch = false}) : bool
= ch ≤ 0b01111111

let transit_init (ch:byte {reject_init ch = false && accept_init ch = false})
: state
= if (ch < 0b11100000) then S1
else if (ch = 0b11100000) then S2'
else if (ch < 0b11110000) then S2
else if (ch = 0b11110000) then S3'
else (∗ ch < 0b11111000 ∗) S3

Given the description of the automata and a parser for
the alphabet (just a byte parser for UTF-8), the automata

combinator assembles a parser that follows the specification
of the state machine.
The main novelty is the way in which our combinator

structures relational proofs of strong parser kinds and injec-
tivity. The strong parser kind property directly follows from
the byte parser having this property. Injectivity is proven
by structural induction on the transitions of the automata.
This induction is performed automatically by the automata
combinator and reduces the goal to proving, for each state
of the automata, the injectivity of the suffix that it parses.
For UTF-8 code points, the initial state has three cases:
(1) If the initial state accepts both bytes 𝑏1 and 𝑏2, and

returns the same value, then 𝑏1 = 𝑏2. This is trivial because
the initial state returns the byte value.

(2) If the initial state accepts 𝑏1 but transits to another state
on 𝑏2, the final output will be different. This holds because
the initial state’s return value is less than 27 while all other
states eventually returns larger values (since they correctly
reject over-long forms).

(3) If the initial state transits to other states that return the
same output values, then 𝑏1 = 𝑏2. If the next states differ, then
the return values differ because they have different number
of bits. If the next states are the same, then the control bits
in 𝑏1 and 𝑏2 are the same. The induction hypothesis that the
suffix parser is injective shows the buffer contents must be
the same, and thus 𝑏1 = 𝑏2.

Importantly, these proof goals are only propositions about
the control and data plane, separate from the low-level pars-
ing actions. In our implementation, all cases are automati-
cally verified by the SMT solver backend of F★.

Our key insight of the automata combinator is the mono-
tonicity innate to multi-step parsers. Each step parses some
prefix of the input and “consumes” it such that the later
steps can no longer depend on those bytes directly, but only
through the control state and the partial output buffer. A
necessary condition for injectivity is that each step must
preserve enough information about the prefix parsed so far
which also implies the information encoded in the control
state and the output buffer must grow monotonically. This
is what enables the use of structural induction and to de-
compose the goal into smaller goals about individual states.
The manual proofs for each state verifies that the amount of
information added in each step is equivalent to that in the
prefix consumed.

4 Experimental Evaluation
We experimentally evaluate the precision and completeness
of our model by writing in ASN1★ some of the most com-
monly used ASN.1 formats, and by executing our formally-
verified parsers on large corpuses of inputs collected from
real world internet usage, as well as synthetic invalid inputs
created for security testing via systematic fuzzing.
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The parsers we use in the experiments are extracted from
the specification-level parsers derived from ASN.1 declara-
tions (with as_parser) using the OCaml backend of F★, and
thus, they are much less efficient than low-level in-place C
validators available for some other combinators in the Ever-
Parse library. We leave the extraction of optimized C code
to future work. All experiments are conducted on an Apple
Macbook laptop from 2021.

4.1 X.509 Certificates
Amajor use case of ASN.1 from its conception is to represent
cryptographic identities and credentials for internet com-
munication. Like ASN.1, X.509 is a standard created by the
International Telecommunication Union (ITU) in 1988 and
used to this day to encode digital certificates, which asso-
ciate entities to public keys and capture trust relations. X.509
certificates are critical to internet security: most websites,
and many individuals, are issued certificates to authenti-
cate themselves, for instance when creating a secure HTTP
connection (indicated by a padlock icon in many browsers).
There are certificate transparency logs that record the is-
suance of new certificates; at the time of writing (2022),
they collect an average of 5 million new entries every day.
Moreover, there is a long history of vulnerabilities in ASN.1
parsers causing major exploits in X.509 validation library.
Surprisingly, although the format of certificates has not sig-
nificantly evolved in the past 30 years, new vulnerabilities
are routinely found in well-established ASN.1 parsers. For in-
stance, looking at the history of documented attacks against
OpenSSL, the most popular secure channel and cryptography
library commonly used to validate certificates, new ASN.1
exploits4 were found in 2003 (4 occurences), 2006, 2012, 2015
(6 occurences), 2016 (4 occurences), 2018 and 2021. Interest-
ingly, the ASN.1 vulnerabilities are diverse: CVE-2021-3712
is a buffer overrun caused by functions wrongly assuming
ASN.1-encoded strings are NULL-terminated (a problem sim-
ilar to a famous exploit by Eliot Phillips at Black Hat 2009
that allows an attacker to impersonate any website using
NULL bytes in the middle of domain names); CVE-2018-0739
results from recursive parsers causing stack overflows; CVE-
2016-2108 is an interesting combination of vulnerabilities
in the INTEGER parser (which can overflow when dealing
with the incorrect negative encoding of 0) and the ASN.1
tag parser (which could misinterpret a large universal tag
as a negative zero); CVE-2006-4339 is a famous attack by
Bleichenbacher that relies on the ASN.1 parser accepting
non-canonical serializations to forge RSA signatures. The
same trend is observed when looking at MITRE’s Common
Vulnerabilities and Exposures (CVE) database, which lists
ASN.1 vulnerabilities in the past 5 years in most operating
systems (Linux, iOS, tvOS, macOS) and cryptographic li-
braries (OpenSSL, NSS, MatrixSSL, worlfSSL, RSA BSAFE,

4https://www.openssl.org/news/vulnerabilities.html

axTLS). Most are memory safety and functional correctness
issues that could be prevented by formally verified parsers.

Format Declaration. Figure 7 shows the top-level ASN1★
declaration for X.509 certificates, translated from the ASN.1
declaration in RFC 5280 shown in Figure 2. We make a few
adaptations compared to the reference declaration; most no-
tably, we try to capture data dependencies in a more precise
way. The format of extensions and public keys depend on
tags (typically object identifiers) whose possible values are
not fully specified in the declaration (to leave the ability to
define new ones in future revisions). For instance, extensions
use an identifier to indicate their type, a boolean flag to indi-
cate if the extension is critical, and an OCTET STRING that
will contain the ASN.1 serialization of the extension payload,
which depends on the extension type. An application is sup-
posed to go over the list of extension, and further parse the
payload using the right parser for this extension’s type. If it
encounters an extension with an unrecognized identifier, and
the extension is marked critical, it must reject the certificate.
It is useful to perform some of these application-level checks
in the parser itself, thus limiting the chance that the checks
are mishandled or omitted in the application. For example,
we extend ANY DEFINED BYwith a default definition, in case
the identifier’s value is not one of the specified ones. In this
case, the fallback representation is the same as the generic
definition, but requires the critical flag to be false:
(∗ Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING ∗)

let extension_fallback = mk_gen_items [
"critical" ∗^ (DEFAULT ^: critical_field_MUST_false);
"extnValue" ∗^ (PLAIN ^: asn1_octetstring)]
(_ by (seq_tac ()))

let extension = asn1_any_oid_with_fallback
"extnId" supported_extensions extension_fallback
(_ by (seq_tac ())) (_ by (choice_tac ()))

The altered definition parses all supported extensions in a
single pass and guarantees critical unknown extensions are
rejected during parsing. Overall, our X.509 module consists
of 143 intermediate declarations in 608 lines of F★ code, and
can be found in ASN1.X509.fst.

Datasets. To evaluate our X.509 module, we use one public
dataset from the Electronic Frontier Foundation (EFF) con-
sisting of certificates collected from the wild by scanning the
IPv4 address space, and a second synthetic dataset of certifi-
cates that have been systematically altered to introduce DER
and ASN.1 violations, and is used as part of the OpenSSL
build tests to check for regressions.

The EFF dataset was created as part of the SSL Observatory
effort in August 2010 by trying to initiate a TLS handshake
with all reachable IPv4 addresses on port 443 (typically used
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let x509_TBSCertificate= asn1_sequence [
"version" ∗^ (PLAIN ^: (mk_prefixed (mk_custom_id

CONTEXT_SPECIFIC CONSTRUCTED 0) version));
"serialNumber" ∗^ (PLAIN ^: certificateSerialNumber);
"signature" ∗^ (PLAIN ^: algorithmIdentifier);
"issuer" ∗^ (PLAIN ^: name);
"validity" ∗^ (PLAIN ^: validity);
"subject" ∗^ (PLAIN ^: name);
"subjectPublicKeyInfo" ∗^ (PLAIN ^: subjectPublicKeyInfo);
"issuerUniqueID" ∗^ (OPTION ^: (mk_retagged

(mk_custom_id CONTEXT_SPECIFIC PRIMITIVE 1) uId));
"subjectUniqueID" ∗^ (OPTION ^: (mk_retagged

(mk_custom_id CONTEXT_SPECIFIC PRIMITIVE 2) uId));
"extensions" ∗^ (PLAIN ^: (mk_prefixed

(mk_custom_id CONTEXT_SPECIFIC CONSTRUCTED 3)
extensions))]

(_ by (seq_tac ()))

let x509_certificate = asn1_sequence [
"tbsCertificate" ∗^ (PLAIN ^: tBSCertificate);
"signatureAlgorithm" ∗^ (PLAIN ^: algorithmIdentifier);
"signatureValue" ∗^ (PLAIN ^: bitString)]
(_ by (seq_tac ()))

Figure 7. Representing X.509 in ASN1★

Dataset Total Accept Reject Fail Time
EFF 10138 9131 1007 0 198s
OpenSSL 2242 61 2181 0 30s
EFF CRL 4109 3388 703 18 68s
OpenSSL CRL 2063 15 2048 0 30s

Table 3. Results of running extracted X.509 and CRL parsers

for HTTPS), and capturing the collected certificate chains.
The scan only captures objects that are at least recognized
by OpenSSL at the time of processing as a certificate, which
doesn’t mean that it is valid or well-formed. Indeed, many
of these certificates use undefined X.509 version numbers.
The dataset is not labelled so we must manually inspect
the rejected certificate to understand the cause of failure.
Due to the large number of certificates in the dataset, we
only carry this process on 10, 138 of their X.509 version 3
certificates, (arbitrarily) selected by IP addresses that range
from 108.0.100.238 to 109.95.49.5.
The OpenSSL dataset is used to check for regressions us-

ing libfuzzer each time the library is built. It cointains a
corpus that captures all the known ASN.1 vulnerabilities
found in previous versions, and many variants produced by
fuzzing. By construction, all certificates in this dataset are
invalid; however, in some cases the error doesn’t appear dur-
ing parsing but during signature validation instead. Since we
only implement parsing, we do not detect errors introduced
after RSA encryption, e.g. in the payload of signatures.

Analysis of results. The top part of Table 3 shows the re-
sults of running the X.509 module on the 2 datasets. For
the EFF dataset, we manually inspect each of the 1007 re-
jected cert to determine what is the first error. We manage
to attribute all failures to one of the following classes:

Default Field Identifier Terminal Type Empty Sequence
710 196 65 36

Default field means that an optional field contains its
default value, which is prohibited by the DER. This error
appears either in the basic constraints extension, which is
used to indicate if a certificate can sign other certificates
or not, or in the parameters of RSA public key algorithm,
which must be NULL. Identifier means the identifier don’t
match those stated in the standard. Again, these cases are
often found inside an ANY structure. Issuer/subject fields of
the certificate are prone to this kind of error. A typical case
is that the standard requires a more restrictive string type,
for instance the printable string, but the certificate uses a
general one, for instance an ASCII string. Terminal Type
is a class that includes all cases where a certain terminal
type, such as boolean and integer, is not encoded correctly.
A representative case is that of UTCTime, which require the
letter Z to be used at the end of the representation to denote
the Greenwich time instead of +/-0000 for non-malleability.
For another example, a peculiar certificate encoded a very
large integer but did not use least number of bytes for it.
These kinds of errors are hard to detect for conventional
parsers because they are niche cases for the implementation
of a particular terminal parser while the tests are usually
for the whole datatype. Empty Sequence occurs in certain
sequence of structures that cannot be empty. We found this
kind of error frequently shows up in extensions as well.
In summary, all 1007 rejected certificates are indeed in-

valid. Conversely, we cannot manually confirm the 9,131
accepted certificates are indeed valid. Instead, we rely on our
results from the OpenSSL regression test. 97% of their cer-
tificates are indeed correctly rejected; we manually inspect
each of the accepted certificates and confirmed that either
the error only appears in the signature (which we cannot
detect) or in an extension that we do not implement.

4.2 Certificate Revocation Lists
Format Declaration. Our CRL module consists of 8 decla-
rations in 69 lines of F★ and can be found in ASN1.CRL.fst.

Datasets. We did not find any large public corpus of revoca-
tions lists, so we wrote a script that extracts the URLs where
the certification authority publishes their CRL from the "CRL
distribution endpoint" certificate extension. We managed to
collect 4,109 samples with this method.

The OpenSSL regression tests also includes tests for CRLs,
which we use for negative testing. It contains 2,063 samples.
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Analysis of results. The bottom part of Table 3 shows the
results of running the CRL module on the 2 datasets. It is
worth noting that CRLs can be much larger than certifi-
cates if a CA has revoked many certificates. This triggers a
limitation in our OCaml extraction: since our byte buffers
are modelled using F★ sequences, they extract to non-flat
OCaml lists, which means some linear operations on flat
buffers may be extracted to quadratic algorithms. Hence, in
18 cases we fail to execute our parsers. This can be fixed
by using a flat memory representation for buffers, however
extracting efficient OCaml parsers is not our goal and we
would rather invest effort on extraction to C. The findings
are very much aligned with the X.509 dataset: failures align
with the 4 classes of errors in the EFF dataset. Similarly, the
only OpenSSL samples that we do accept have errors in their
signature or in extensions that we did not specify.

5 Related work and Conclusions
Formally verified parsers. While our work focuses on
non-malleability of ASN.1 DER, formally verified parsers
have covered various binary data formats and provided vari-
ous properties on those formats and their implementations.
Narcissus [12] is a library of parsing and serialization com-
binators verified in Coq and extracted to OCaml focused
on the correctness of encoders with respect to decoders; it
has been used to harden the network stack (TCP, UDP, IPv4,
ARPv4, Ethernet) of the Mirage OS kernel [20]. Narcissus
has also been used for Protocol Buffers [34]. EverParse [25]
provides not only encoder correctness proofs, but also non-
malleability, and extracts to C instead of OCaml, giving rise
to efficient zero-copy C implementations proven memory
safe and functionally correct with respect to the data for-
mat specifications. While EverParse was initially designed
to support TLS handshake messages, our work is based on
EverParse and extends it with ASN.1 parsing combinators
with non-malleability proofs. Other extensions of EverParse
such as EverParse3D for network virtualization packet for-
mats [30] prove additional properties such as absence of
double fetches to ensure secure efficient parsing on volatile
input buffers where two reads from a given byte cannot be
guaranteed to return the same value.

Formal studies of ASN.1. While ASN.1 predates many
modern verification tools, there have been some early at-
tempts to gain confidence in its security properties. Rinderknecht
[26] proved properties of ASN.1 on paper such as non-malleability
of a subset of “well-labeled” ASN.1 format descriptions, but
without clearly relating this subset to DER. Conversely, Steck-
ler [28] wrote an executable semantics of ASN.1 in Haskell
but no associated formal proofs. DICE* [31] is an imple-
mentation of secure measured boot for IoT formally veri-
fied in F★ and extracted to C code to be run as part of the
boot firmware of micro-controllers. As one of its main com-
ponents, it includes a formal semantics of a small subset

of ASN.1 used to create the unique certificate of a device.
This subset cannot capture general purpose certificate as
it lacks several important constructors such as CHOICE or
ANY DEFINED BY. Tullsen et al. [32] formally verify C imple-
mentations of ASN.1 decoders and encoders for a vehicle-to-
vehicle (V2V) messaging system, using the annotation-based
SAW verification framework [13] turning annotated C pro-
grams into first-order formulae to be checked by SMT solvers.
While their work provides both non-malleability and encoder
correctness, their proofs focus on the C implementations for
the purpose of the security of the enclosing V2V system,
rather than a full formal specification of ASN.1 per se. In
other words, they have not proven the functional correct-
ness of their C encoders or decoders against any formal data
format specification. Moreover, they do not support CHOICE.
Pona and Zaliva [24] describe verification methodology chal-
lenges to verify an existing ASN.1 description compiler for
C, ASN1C [33], by first formalizing the corresponding subset
of ASN.1 in Coq, and then separately proving the functional
correctness of ASN1C with respect to their specification us-
ing Appel’s Verified Software Toolchain [1]. However, we
are not aware of any completed results from their effort yet.

Security of ASN.1 parsers. Because of the security-critical
nature of the remaining applications of ASN.1 such as X.509
and the PKCS standards for encryption, signature, and wrap-
ping, many techniques have been applied to find vulnerabili-
ties in ASN.1 applications. Frankencert [5], Mucert [8] and
Coveringcerts [18] are three domain-specific fuzzing tools
to evaluate the security of real-world parsers and use vari-
ous techniques to guarantee coverage and ensure that alter-
ations pass through cryptographic integrity checks; general-
purpose tools such as Nezha [23] and SAGE [15] have also
been specialized for this purpose. Other papers such as Chen
et al. [9] and Symcerts [7] attempt to detect non-compliance
by discovering discrepancies between implementations, ei-
ther by testing or by symbolic execution. Attacks that exploit
the malleability of ASN.1 parsers to forge signatures have
also been found in PGP [14], NSS [6], GnuTLS [22], Bouncy
Castle [19], or even in the Nintendo 3DS boot ROM [27].

Conclusion. We have presented the first formalization of
the semantics of ASN.1 and its Distinguished Encoding Rules,
yielding parsers for binary formatted ASN.1 data that are
type correct and non-malleable. Through testing, we have
confidence that our formalized semantics matches the us-
age of ASN.1 in the wild, notably on X.509 certificates and
certificate revocation lists. We aim to continue testing our se-
mantics on more applications to further increase trust in our
formalization. Additionally, we strive to use our semantics
as a basis on which to build high-assurance cryptographic
applications such as X.509 certificate chain validation.
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A Background on F★ and EverParse
F★ is a programming language and proof assistant based on
a dependent type theory (like Coq, Agda, or Lean). F★ also
offers an effect system, extensible with user-defined effects,
and makes use of SMT solving to automate some proofs. F★
syntax is roughly modeled on OCaml (val, let, match etc.)
with differences to account for the additional typing features.
Binding occurrences b of variables take the form x:t, declar-
ing a variable x at type t; or #x:t indicating that the binding
is for an implicit argument. The syntax 𝜆(b1) ... (b𝑛) → t intro-
duces a lambda abstraction, whereas b1 → ... → b𝑛 → c is the
shape of a curried function type. Refinement types are writ-
ten b{t}, e.g., x:int{x≥ 0} is the type of non-negative integers
(i.e., nat). As usual, a bound variable is in scope to the right
of its binding; we omit the type in a binding when it can be
inferred; and for non-dependent function types, we omit the
variable name. The c to the right of an arrow is a computa-
tion type. An example of a computation type is Tot bool, the
type of total computations returning a boolean. By default,
function arrows have Tot co-domains, so, rather than deco-
rating the right-hand side of every arrow with a Tot, the type
of, say, the pure append function on vectors can be written
#a:Type→ #m:nat → #n:nat → vec a m→ vec a n→ vec a (m + n),
with the two explicit arguments and the return type depend-
ing on the three implicit arguments markedwith ‘#’. We often
omit implicit binders and treat all unbound names as implic-
itly bound at the top, e.g., vec a m→ vec a n → vec a (m + n)

F★ programs are not executable per se. Instead, F★ extracts
OCaml code from F★ code. To this end, F★ distinguishes be-
tween pure computations, which extract to OCaml, and ghost
computations for proof purposes only (where use of axioms
such as excluded middle or indefinite description is allowed),
erased at extraction. (F★ also supports effectful code, and
extraction to C via Low*, a fragment of F★ shallowly em-
bedding a subset of C, but this is out of the scope of this
paper.)

EverParse. EverParse is a formally verified library and toolchain
to build verified parsers and serializers for binary data for-
mats such as TLS or network virtualization protocols. For-
mal guarantees supported by EverParse include proofs of
unique binary representation, a.k.a. non-malleability, for
the purpose of secure authentication and hashing; proofs
that serializer and parser are (partial) inverse of each other;
bounds on the size of the byte representation. (EverParse
also allows generating executable C code for such parsers,
via the Low* fragment of F★, allowing some performance
optimizations, for which EverParse proves memory safety,
arithmetic safety, functional correctness with respect to the
original parser specification.) To establish such guarantees,
EverParse builds on its core component, called LowParse,
a library of monadic parser and serializer combinators for-
mally verified in F★. Such parser combinators supported by
LowParse include dependent pairs (a.k.a. tagged unions), fil-
ter refinements, rewriters, lists, and data prefixed with its
size in bytes. Such combinators were initially tailored to sup-
port formats such as TLS handshake messages. On top of
LowParse, EverParse provides several front-ends: Quacky-
Ducky [25] targeting TLS handshake messages, and 3D [30]
targeting network virtualization packets. With those front-
ends, EverParse allows users to define their data formats in
a high-level descriptive language, and to push a button to
automatically generate formally verified parser and serializer
code for their formats, by assembling LowParse combinators,
with zero user proof effort. Thus, EverParse as a toolchain
is similar in spirit to recent efforts in automatic parser gen-
eration for binary data formats such as Protocol Buffers or
Cap’n Proto, except that, contrary to EverParse, those two
toolchains come with their own classes of supported data
formats, excluding existing network protocol formats (one
cannot, say, define the TLS handshake message formats in
Protocol Buffers.) Moreover, EverParse distinguishes itself
by generating formally verified code.
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