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PRICING AND INVENTORY CONTROL

« Coordination of pricing and inventory control: two fundamental problems

1n operations management

 Pricing: the task of balance revenue and demand

v" The higher the price, the higher the revenue but also lower the expected
demand: E[d;|p;] = Do(p¢)

» Inventory management: the question of re-ordering inventory stocks.

v" Need to balance ordering cost, holding cost and out-of-inventory cost (e.g.,
backlogging).



THE DECISION PROCESSES

« Step 1: inventory decisions.

At the beginning of time ¢,
inventory level is x;

Order-up-to level y; = x;

i e I

Ordering cost = kX1|y; > x¢] + c(yy — x¢)

fixed cost variable cost



THE DECISION PROCESSES

« Step 2: pricing decisions. Order-up-to level y; = x;

Price py¢, leading to realized demand d;
The “additive” noisy demand model: d; = Do(p¢) + B¢

R emaining inventory: X¢4q = V¢ — dy¢
Sales revenue: p¢ (V¢ — X¢41)

“Censored” demand setting:
Xt+1 = max{0, yy — d¢}



THE DECISION PROCESSES

« Step 3: holding/backlogging/lost-sales cost

N NI

v' x:+1 > 0: holding cost
v x:+1 < 0: backlogging/loss-of-good-will cost
v" We use h(-) function to represent both costs.

R emaining inventory: X¢yq = Y — d¢
“Censored” demand setting:

Xey1 = max{0,y; — d¢}




THE DECISION PROCESSES

« Summary of the decision process:
v’ State: x;, the inventory level at the beginning of time ¢t
v' Decisions: y; (the order-up-to level), p; (the price).
v' State transition — backlogged: x;,; = y; — d; = y; — Do(p;) — B¢
v' State transition — censored: x;,; = max(0,y; — d;)

Learning-while-Doing problem:
« Immediate reward: Dy, B¢ ~ P are unknown
v' Backlogging:
—kX1{y: > x¢} — c(ye — x¢) + pe(Do(Pe) + Be) — h(ye — Do(pt) — Be)
v' Censored demand:

—kXxU{y: > x¢} — c(ye — x¢) + pe min(ys, Do(pe) + Be) — h(ye — Do(pt) — Be)



[1] Chen et al, 20, https://papers.ssrn.com/sol3/papers.ctm?abstract id=3632475
[2] Chen et al./21, https://papers.ssrn.com/sol3/papers.ctm?abstract 1d=3750413

COMPARISON WITH EXISTING RESULTS

V' indicates optimal regret (up to poly-logarithmic terms)

k > 0? | Pricing model Censored Concavity? Regret
demand?

Yuan et al’21 Implied O(NT) v
[1] Yes GLM No No O(NT) v
Huh & No N/A Yes Implied O(logT)

R usmevichientong’ 09 4
Chen et al’19 No Non-param. No Implied O(NT) V4
Chen et al/21 No Non-param. Yes Assumed T2+o(1)

- ~ 3
[2] No Non-param. Yes No 0(T5)


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413

PART 1 (FIXED ORDERING COSTS)

[1] Chen et al, 20, https://papers.ssrn.com/sol3/papers.ctm?abstract id=3632475

« Model primitives:
v' Backlogging obs: o, = d; = Dy(p;) + B
v' Fixed cost: k > 0
v' V-shaped costs: h(-) = hmax(0,) — b min(0,")
v' Linear demand: D,(p) = (¢(p), 6) (can be extended to GLM)

—kxU{y; > xt} — c(ye — xt) + pr(Do(pe) + Bt) — h(y: — Do(pr) — Be)


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475

FULL-INFORMATION SOLUTION

+ [Chen and Simchi-Levi 2004a, 2004b] In the long run, the optimal policy 1s an

(s,S,p)-policy

v' S: the order-up-to level
v s: the inventory threshold below (or at) which ordering is initiated
v p: a pricing functions that maps x; to p;

Inventory
level ¢

A

Price decision p; = p(y¢)

[nventory decision: yp <« S if xp < §

Time



FULL-INFORMATION SOLUTION

+ [Chen and Simchi-Levi 2004a, 2004b] In the long run, the optimal policy 1s an
(s, S, p)-policy. Given (s,5), the optimal p can be computed using DP:

« Let ¢(x,7) = sup{E[X{=1(r: — )]} given initial inventory level x

p
« Recursion formula:
sup{Ho(x,p) — 7 + Eg[¢p(x — Do(p) — B; 1}, Xz
dpx;r)=4 »
—k, x <S

v' Immediate reward Hy(x,p) = —Eg[h(x — Do(p) — )] + (p — c)Do(p)
 Binary search of r: maximum 1 is the optimal per-period reward.

- Optimal p must satisfy ¢(x,r) = 0, where ris the per-period reward of p



FULL-INFORMATION SOLUTION

+ [Chen and Simchi-Levi 2004a, 2004b] The optimal policy is an (s, S, p)-policy

» Question: can we learn about the demand rate, and adopt near-optimal
pricing + inventory control, at the same time?

v Also known as the “Learning-While-Doing” question.

v' Has seen surging research interests in operations management recently.



EXISTING APPROACHES

« Explore-then-exploit: [Chen et al.,; 2019, 2020] and more
v' Completely separates learning and optimization.

v" Only successful with strong convexity/concavity structures; otherwise
leading to sub-optimal 0(T?/3) regret.

» Stochastic gradient descent: [Yuan et al., 2021], [Ban, 2020], and more
v' Using (noisy) optimization methods to find good policies
v Also require convexity/concavity structures.

v Very difficult to handle infinite-dimensional objects, such as the price
function p:[s,S] - R*




1., assuming B ~ P is known.

JOINT LEARNING AND OPTIMIZING

» Divide 7 periods into (variable-length) epochs

Inventory t

level S

Time

« Epochs start with order-up-to $ and ends with x; <'s

- Update (s,S,p) at the end of each epoch



1., assuming B ~ P is known.

JOINT LEARNING AND OPTIMIZING

4  The history Dat
UCB for Dy during epoch b&: IlI:: :’:llm% ----- L ..
Dy(p) = (p(p), 6p) + Ap(p) ES
R e Carry out the updated policy
OLS with LinUCB: Time

v Op = argmgn21<t|dr — (¢(pr):6>|2 + ”9”%

v By(p) = C [(ITAT D), where Ay = 1+ 5o, @GP0
v Satisfies D, (p) = Do(p) = Dy, (p) — 20, (p)




1., assuming B ~ P is known.

JOINT LEARNING AND OPTIMIZING

4 The history Data

: I t
UCB for Dy during epoch b&: lI:: :I:ll 0.%

Dp(p) = (¢p(p), Bp) + Ap(P) :

1S

Carry out the updated policy

Use Dy (p) to calculate the DP ¢ (x, 7‘):‘.
sup{ﬁb(x,p) —r+Eﬁ[q§(x—5b(p) —,B;r)]}, X =S
¢(x;1) =

Time

%
—k, x<S

Estimated immediate reward Hy, (p) = —Eglh(x — D, (p) — B)1 + (p — c)D,, (p)

Key technical challenge: prove that
Eﬁ[ZtEEb Th — rt] = 0(1)XEﬁ[ZtEEbAb (Pt)]



1., assuming B ~ P is known.

JOINT LEARNING AND OPTIMIZING

» Objective: prove E[ZtEEb Tp — ’I‘t] < 0(1)XE[ZtEEbAb (Pt)]

- Plan: unroll the trajectory under Dy and D, and compare them.

 Challenge:

Inventory Le

%el price: p(x1)

Vo lxg = xz| < A(xq)
v |p(x,) — p(x3)| unbounded st Do(p() 4, prlijceifpgicz))\
v' |x3 — x5| unbobunded X, =S o(P(X2)) x4

- Solution: stability ot ¢(-;1,D)

price: p(x3
D(p(x3))




1., assuming B ~ P is known.

JOINT LEARNING AND OPTIMIZING

» Objective: prove E[ZtEEb Tp — Tt] < 0(1)XE[ZtEEbAb (Pt)]

» For any pricing function p(-) and demand function D, define

| _JHG,p(x); D) —r + Eglyp(x — D(p(x) — B;7, D, p)], xX=s
Y0ir,Dp) = {—k, x<S

v' Easy to verify that ¢ (x;r,D) = Y(x;r,D,p*) where p* solves ¢
- Key stability lemma: for p which solves ¢ (+; 7, D),

[Y(x;r,D,p) —Y(x;7,D,p)| < 0(1)XEp [z A(p(xt))]
t=1

v" Implies the objective, because Y (x;7,D,p) = 0 and Y (x; 7, Dy, p) =
E[ZtEEb ry — 77]



ESTIMATION OF NOISE DISTRIBUTION

 Use the empirical distribution to estimate ¢ ~ P

» Two technical challenges:
v' Error propagation: estimation quality of P also depends on estimation
quality of D,
v' Data correlation: the {#;}; samples are actually not independent and
identically distributed.



ESTIMATION OF NOISE DISTRIBUTION

» Error propagation: estimation quality of P also depends on estimation
quality of Dy
v" How to obtain samples of noises? B, = d; — (¢(pe), 0;)
v’ The quality of 5, depends on the quality of 8,
v' The estimation is not accurate on all prices

ID(p) — Do(P)| < 2A(p) < 2C/p(P)TA19(p)

» Solution. Only use those periods with accurate demand predictions.

Ecpy={t € By U-UB,_1:Apy(pe) < 1c/Vb)



ESTIMATION OF NOISE DISTRIBUTION

« Data correlation: the {f;}; samples are actually not independent and
identically distributed.

v' B; depends on the (s, S, p) policy used during that time period
v’ The (s, S, p) policy further depends on noises from previous periods.

o Solution. Uniform concentration via Wassersteins distance:

wy(P,P) = : inf flx — y|d&(x,y)

eZ(P,P)

v" For any function fthat is L-Lipschitz continuous,
|Ep[f ()] — Ep[f (x)]| < Wy (P, P)



Do(p) = 18 — 15p, h(x) = 0.05 max{z,0} — min{x,0}, k = 10
NUMERICAL RESULTS

. Summary: O (\VT) regret, which is optimal
» Numerical results: compare with Explore-Then-Commit baseline:

Average regret for different horizons

—e—Qur algorithm
111 05! ~—Exp-Exp with T =T"
——Exp-Exp with T =T%°
o 1 047
= ()
209 =03+
o . )
z = =Oracle solution =

=e—Qur algorithm 02+
~—Exp-Exp with T =T"2

0.7 —— Exp-Exp with T =T%° 0.1f

0.6 ‘ ' ' ' ‘ ‘ 0 ‘ ‘ ' ‘ ‘

9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17
log,, (n)

log,, (n)
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COMPARISON WITH EXISTING RESULTS
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https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475
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PART 2 (CENSORED DEMANDS)

[2] Chen et al.21, https://papers.ssrn.com/sol3/papers.ctm?abstract 1id=3750413

« Model primitives:
v' Censored demands: o; = min{y;,d;} = min{y;, Dy(p:) + B¢}
v" No fixed cost: k = 0
v' V-shaped costs: h(-) = hmax(0,) — b min(0,")
v Nonparametric demand: D,(p) is strictly monotonically decreasing and
twice continuously differentiable

—kx1{y; > x¢} — c(yr — x¢) + pr min{y;, Do(pe) + B} — h(ye — Do(pt) — Br)


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413

FULL-INFORMATION SOLUTION

+ [Sobel 1981] In the long run, the optimal policy is stationary and myopic
v' Define r(p) = (p — ¢)D(p) and

Q(p,y) =1({)— (b +p)E[(Dy(p) + B —y)"] —hE[(y — Do(p) — )]

v Value of the optimal policy < Tx max Q(p, y)
.y

v Static policy committing to p*,y* = argmax Q(p, y) has 0(\T) regret.
D,y

Learning-while-Doing problem:
Dy, B¢ ~ P are unknown



HIGH-LEVEL IDEA

- Fix p, finding y*(p) = argmax Q(p, y) is easy:
Yy
v Q(p,") is concave in y, and E[0,,Q(p,y)| = (b + p)1{d = y} — h1{d < y}

v' Can use either SGD [Huh & Rusmevichientong’ 09] or bisection search.

- Discretize into TY2 prices and run Multi-Armed bandit
v’ Strong smoothness of Q(:,-) implies an 0(T%®) regret

« Where’s the catch?

Qp,y)
= E[(p — ¢) min{y, Do(p) + B3}] — hE[(y — Do(p) — )]
— bE[(Do(p) + B — )]



COMPARISON OF ORACLES

Let r(a) be the expected immediate reward with action a:
v’ Oth-order oracle: E[s|a] = r(a)
v 1st-order oracle: E[s|a] = r'(a)

Pricing? Inventory h_order 15'-order
replemshment’ omcle ? oracle?
Yes

Huh et al’09

Wang et al’10 Yes No Yes No

This paper Yes Yes No No



PAIRWISE COMPARISON ORACLE

+ Let G(p) = maxQ(p,y)
« Forp < p’,let y*(p),y*(p") be the y’s that maximize Q, which are easy
to obtain as explained in the previous slides.

 Can we estimate “pairwise comparison” objective G(p') — G(p), using
censored demands?



MAB WITH PATRWISE COMPARISON

+ For any p,p’, we can estimate A(p,p’) = G(p') — G(p) with error
decaying at ~ 1/4/n, where n is the # of samples involved

« How to use this “pairwise comparison” oracle to do MAB?

e Solution. Tournament + elimination

V7 2 ) Dy = D2 Uses the winner of the tournament p,, = p,
| A, =0.2
% Price p1: Ag (ﬁy,pl) =-04 <-4, X
Vv,l

¢ Price p3: Ag (ﬁy,p3) =-03 <-4, X

% Price psy:Ag(Py,ps) = —015=> -4,

o @@ 0@
Update: S, 11 « {p2,ps}

Ac(P1,p2) 20 Ac(p3,ps) <0




*LOWER BOUND

« How to prove lower bounds for noise distributions P that are
v' Bounded a.s. with pdf > ¢, > 0 uniformly;
v" Do not change with actions.

« The classical arguments based on KL-divergence doesn’t work
v' Supports of observables shift with different actions.
v' The KL-divergence would be infinity!

» Solution. Generalized square Hellinger’s distance (s=2: std Hellinger)
+oo 1 1
H2(P,Q) =1- | p()'Sg()sdx

v' Behaves “like” KL with s — jI.?oo in MAB type environments
11
1-=,_ 2
HZ(Po, P; ) < {Eo|T;|} $Tsx sup HZ(Po(- Ip), P;(: p))
p



NUMERICAL RESULTS

Overall Comparison

~ 90 .
- Summary: O (T %) regret, which : ——our algorithm: average
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1S optlmal \ —O- our algorithm: worst case
70F | —0G~ CCS: worst case
. . \
» Numerical results: comparison S 6ol |
. . (o)) \
with an Explore-Then-Commit asol |
o
(ETC) baseline 8
£
X

0 Il 1
100 500 1000



FUTURE DIRECTIONS

» Open question 1. Fixed ordering cost + censored demand

v' The parametric case is already difficult. Censored generalized linear
models.

v How do we estimate the noise distribution is also a challenge. Unlikely the
algorithm/analysis in the no-fixed-cost setting can be applied, because the
optimal solution is not myopic and there is no easy characterization of the p
function.



FUTURE DIRECTIONS

« Open question 2. Multiplicative demand noises.

d; = a;Dy(pe) + b, Ela] =1LE[B:] =0

v' Parametric setting with fixed ordering costs: (s, S, p) still optimal
asymptotically, but difficult to reproduce Y (x; r, D, p) stability analysis.

v" Nonparametric setting with censored costs: difficult to reproduce the
pairwise comparison estimator. The observables are not shifts of the

same distributions any more.



Thank you! Questions?
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