JOINT PRICING + INVENTORY MANAGEMENT WITH DEMAND LEARNING

Yuan Zhou, YMSC, Tsinghua University

Joint work with Beryl Chen, David
Simchi-Levi & Yining Wang

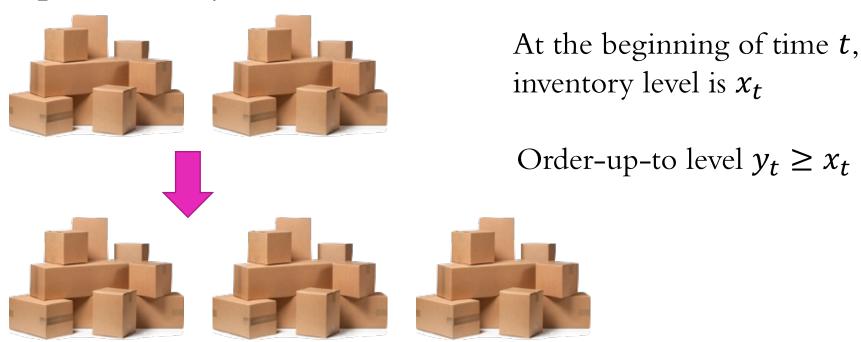
PRICING AND INVENTORY CONTROL

• Coordination of *pricing* and *inventory control*: two fundamental problems in operations management

- Pricing: the task of balance revenue and demand
 - ✓ The higher the price, the higher the revenue but also lower the expected demand: $E[d_t|p_t] = D_0(p_t)$

- Inventory management: the question of re-ordering inventory stocks.
 - ✓ Need to balance ordering cost, holding cost and out-of-inventory cost (e.g., backlogging).

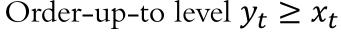
• Step 1: inventory decisions.

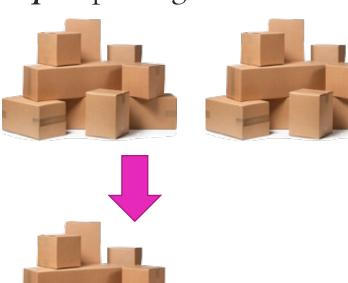


Ordering cost =
$$k \times 1[y_t > x_t] + c(y_t - x_t)$$

fixed cost variable cost

• Step 2: pricing decisions.





Price p_t , leading to realized demand d_t The "additive" noisy demand model: $d_t = D_0(p_t) + \beta_t$

Remaining inventory: $x_{t+1} = y_t - d_t$ Sales revenue: $p_t(y_t - x_{t+1})$

> "Censored" demand setting: $x_{t+1} = \max\{0, y_t - d_t\}$

• Step 3: holding/backlogging/lost-sales cost


```
Remaining inventory: x_{t+1} = y_t - d_t "Censored" demand setting: x_{t+1} = \max\{0, y_t - d_t\}
```

- $\checkmark x_{t+1} > 0$: holding cost
- $\checkmark x_{t+1} < 0$: backlogging/loss-of-good-will cost
- ✓ We use $h(\cdot)$ function to represent **both** costs.

- Summary of the decision process:
 - ✓ **State**: x_t , the inventory level at the beginning of time t
 - ✓ **Decisions**: y_t (the order-up-to level), p_t (the price).
 - ✓ State transition backlogged: $x_{t+1} = y_t d_t = y_t D_0(p_t) \beta_t$
 - ✓ State transition censored: $x_{t+1} = \max(0, y_t d_t)$

Learning-while-Doing problem:

• Immediate reward:

 $D_0, \beta_t \sim P$ are unknown

✓ Backlogging:

$$-k \times 1\{y_t > x_t\} - c(y_t - x_t) + p_t(D_0(p_t) + \beta_t) - h(y_t - D_0(p_t) - \beta_t)$$

✓ Censored demand:

$$-k \times 1\{y_t > x_t\} - c(y_t - x_t) + p_t \min(y_t, D_0(p_t) + \beta_t) - h(y_t - D_0(p_t) - \beta_t)$$

- [1] Chen et al. 20, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475
- [2] Chen et al. 21, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413

COMPARISON WITH EXISTING RESULTS

✓ indicates optimal regret (up to poly-logarithmic terms)

	k > 0?	Pricing model	Censored demand?	Concavity?	Regret
Yuan et al.'21	Yes	N/A	Yes	Implied	$\tilde{O}(\sqrt{T})$
[1]	Yes	GLM	No	No	$\widetilde{O}(\sqrt{T})$
Huh & Rusmevichientong' 09	No	N/A	Yes	Implied	$O(\log T)$
Chen et al.'19	No	Non-param.	No	Implied	$\tilde{O}(\sqrt{T})$ \checkmark
Chen et al.'21	No	Non-param.	Yes	Assumed	$T^{\frac{1}{2}+o(1)}$
[2]	No	Non-param.	Yes	No	$\widetilde{O}(T^{\frac{3}{5}})$

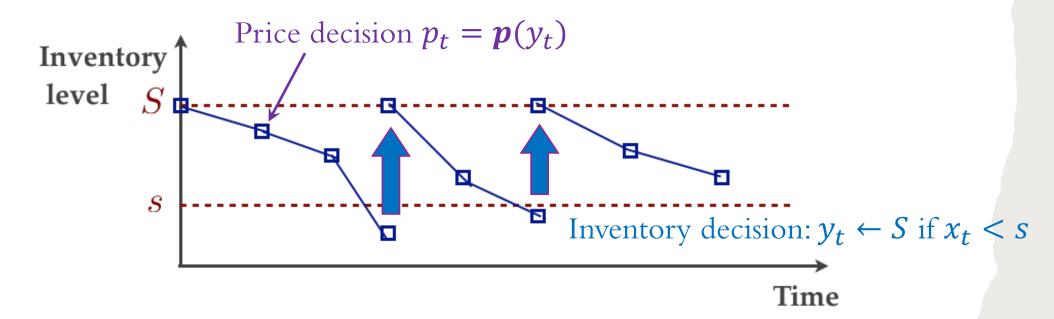
PART 1 (FIXED ORDERING COSTS)

[1] Chen et al. 20, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475

- Model primitives:
 - ✓ Backlogging obs: $o_t = d_t = D_0(p_t) + \beta_t$
 - ✓ Fixed cost: k > 0
 - ✓ V-shaped costs: $h(\cdot) = h \max(0, \cdot) b \min(0, \cdot)$
 - ✓ **Linear demand:** $D_0(p) = \langle \phi(p), \theta \rangle$ (can be extended to GLM)

$$-k \times 1\{y_t > x_t\} - c(y_t - x_t) + p_t(D_0(p_t) + \beta_t) - h(y_t - D_0(p_t) - \beta_t)$$

- [Chen and Simchi-Levi 2004a, 2004b] In the long run, the optimal policy is an (s, S, p)-policy
 - \checkmark S: the order-up-to level
 - \checkmark s: the inventory threshold below (or at) which ordering is initiated
 - \checkmark **p**: a pricing functions that maps x_t to p_t



- [Chen and Simchi-Levi 2004a, 2004b] In the long run, the optimal policy is an (s, S, p)-policy. Given (s, S), the optimal p can be computed using DP:
- Let $\phi(x,r) = \sup_{p} \{ \mathbb{E}[\sum_{t=1}^{\tau} (r_t r)] \}$ given initial inventory level x
- Recursion formula:

$$\phi(x;r) = \begin{cases} \sup_{p} \{ H_0(x,p) - r + E_{\beta}[\phi(x - D_0(p) - \beta;r)] \}, & x \ge s \\ -k, & x < s \end{cases}$$

- ✓ Immediate reward $H_0(x, p) = -E_{\beta}[h(x D_0(p) \beta)] + (p c)D_0(p)$
- Binary search of r: maximum r is the optimal per-period reward.
- Optimal p must satisfy $\phi(x,r) = 0$, where r is the per-period reward of p

- [Chen and Simchi-Levi 2004a, 2004b] The optimal policy is an (s, S, p)-policy
- Question: can we learn about the demand rate, and adopt near-optimal pricing + inventory control, at the same time?
 - ✓ Also known as the "Learning-While-Doing" question.
 - ✓ Has seen surging research interests in operations management recently.

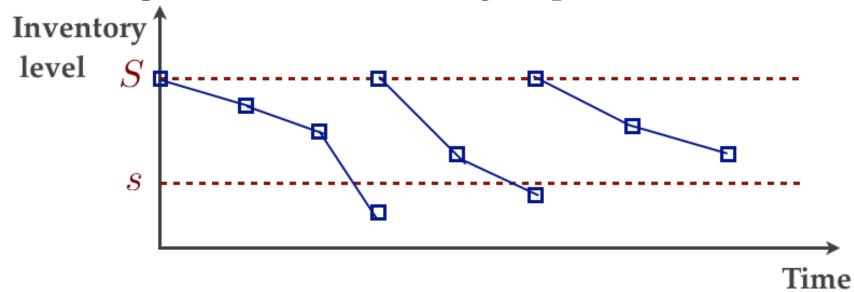
EXISTING APPROACHES

- Explore-then-exploit: [Chen et al., 2019, 2020] and more
 - ✓ Completely separates learning and optimization.
 - ✓ Only successful with strong *convexity/concavity* structures; otherwise leading to sub-optimal $O(T^{2/3})$ regret.

- Stochastic gradient descent: [Yuan et al., 2021], [Ban, 2020], and more
 - ✓ Using (noisy) optimization methods to find good policies
 - ✓ Also require convexity/concavity structures.
 - ✓ Very difficult to handle <u>infinite-dimensional</u> objects, such as the price function $p: [s, S] \to \mathbb{R}^+$

1., assuming $\beta_t \sim P$ is **known**. JOINT LEARNING AND OPTIMIZING

• Divide T periods into (variable-length) epochs

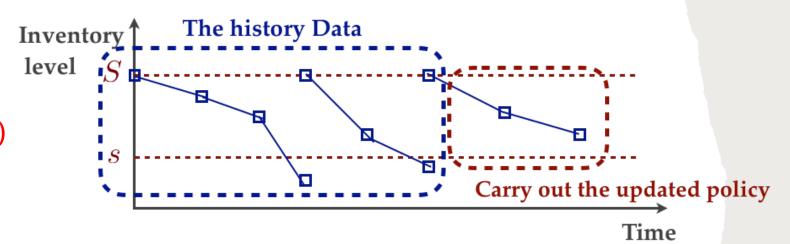


- Epochs start with order-up-to S and ends with $x_t < s$
- Update (s, S, p) at the end of each epoch

JOINT LEARNING AND OPTIMIZING

UCB for D_0 during epoch b:

$$\overline{D}_b(p) = \langle \phi(p), \widehat{\theta}_b \rangle + \Delta_b(p)$$



OLS with LinUCB:

$$\checkmark \hat{\theta}_b = \arg\min_{\theta} \sum_{\tau < t} |d_{\tau} - \langle \phi(p_{\tau}), \theta \rangle|^2 + ||\theta||_2^2$$

$$\checkmark \Delta_b(p) = C \sqrt{\phi(p)^T \Lambda_b^{-1} \phi(p)}$$
, where $\Lambda_b = I + \sum_{\tau < t} \phi(p_\tau) \phi(p_\tau)^T$

$$\checkmark$$
 Satisfies $\bar{D}_b(p) \ge D_0(p) \ge \bar{D}_b(p) - 2\Delta_b(p)$

JOINT LEARNING AND OPTIMIZING

UCB for D_0 during epoch b:

$$\overline{D}_b(p) = \langle \phi(p), \hat{\theta}_b \rangle + \Delta_b(p)$$

Inventory The history Data level SCarry out the updated policy Time

Use $\overline{D}_b(p)$ to calculate the DP $\phi(x,r)$:

$$\phi(x;r) = \begin{cases} \sup\{\overline{H}_b(x,p) - r + \mathrm{E}_{\beta}[\phi(x-\overline{D}_b(p)-\beta;r)]\}, & x \geq s \\ p \\ -k, & x < s \end{cases}$$

Estimated immediate reward $\bar{H}_b(p) = -E_{\beta}[h(x - \bar{D}_b(p) - \beta)] + (p - c)\bar{D}_b(p)$

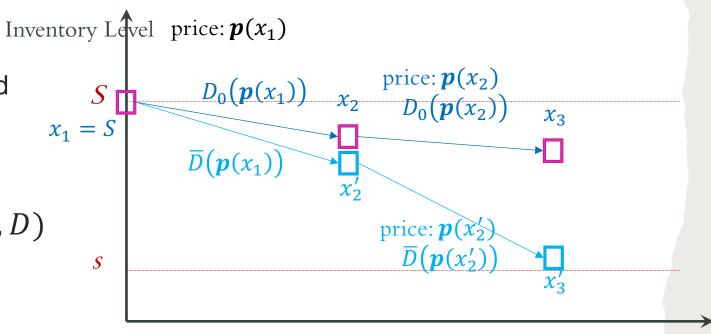
Key technical challenge: prove that

$$E^{\widehat{\pi}} \big[\Sigma_{t \in E_b} \, \bar{r}_b - r_t \big] \le O(1) \times E^{\widehat{\pi}} \big[\Sigma_{t \in E_b} \Delta_b(p_t) \big]$$

JOINT LEARNING AND OPTIMIZING

- Objective: prove $E\left[\Sigma_{t\in E_b} \bar{r}_b r_t\right] \leq O(1) \times E\left[\Sigma_{t\in E_b} \Delta_b(p_t)\right]$
- Plan: unroll the trajectory under D_0 and \overline{D} , and compare them.
- Challenge:
 - $\checkmark |x_2 x_2'| \le \Delta(x_1)$
 - $\checkmark |p(x_2) p(x_2')|$ unbounded
 - $\checkmark |x_3 x_3'|$ unbobunded

• Solution: *stability* of $\phi(\cdot; r, D)$



Time

JOINT LEARNING AND OPTIMIZING

- Objective: prove $E\left[\Sigma_{t\in E_b} \bar{r}_b r_t\right] \leq O(1) \times E\left[\Sigma_{t\in E_b} \Delta_b(p_t)\right]$
- For any pricing function $p(\cdot)$ and demand function D, define $\psi(x;r,D,p) = \begin{cases} H(x,p(x);D) r + E_{\beta}[\psi(x-D(p(x)-\beta;r,D,p)], & x \geq s \\ -k. & x < s \end{cases}$
 - \checkmark Easy to verify that $\phi(x; r, D) = \psi(x; r, D, p^*)$ where p^* solves ϕ
- Key stability lemma: for p which solves $\phi(\cdot; \bar{r}, \bar{D})$,

$$|\psi(x; r, \overline{D}, \boldsymbol{p}) - \psi(x; r, D, \boldsymbol{p})| \le O(1) \times \mathbb{E}_{D} \left[\sum_{t=1}^{\tau} \Delta(\boldsymbol{p}(x_{t})) \right]$$

✓ Implies the objective, because $\psi(x; \bar{r}, \bar{D}, \mathbf{p}) = 0$ and $\psi(x; \bar{r}, D_0, \mathbf{p}) = E\left[\sum_{t \in E_b} r_t - \bar{r}\right]$

ESTIMATION OF NOISE DISTRIBUTION

- Use the empirical distribution to estimate $\beta_t \sim P$
- Two technical challenges:
 - ✓ **Error propagation**: estimation quality of P also depends on estimation quality of D_0
 - ✓ **Data correlation**: the $\{\beta_t\}_t$ samples are actually *not* independent and identically distributed.

ESTIMATION OF NOISE DISTRIBUTION

- *Error propagation*: estimation quality of P also depends on estimation quality of D_0
 - \checkmark How to obtain samples of noises? $\hat{\beta}_t = d_t \langle \phi(p_t), \hat{\theta}_t \rangle$
 - \checkmark The quality of $\hat{\beta}_t$ depends on the quality of $\hat{\theta}_t$
 - ✓ The estimation is **not** accurate on *all* prices

$$|\overline{D}(p) - D_0(p)| \le 2\Delta(p) \le 2C\sqrt{\phi(p)^T\Lambda^{-1}\phi(p)}$$

• Solution. Only use those periods with accurate demand predictions.

$$\tilde{E}_{\leq b} = \left\{ t \in B_1 \cup \dots \cup B_{b-1} : \Delta_{b(t)}(p_t) \leq \kappa / \sqrt{b} \right\}$$

ESTIMATION OF NOISE DISTRIBUTION

- **Data correlation**: the $\{\beta_t\}_t$ samples are actually *not* independent and identically distributed.
 - \checkmark β_t depends on the (s, S, p) policy used during that time period
 - ✓ The (s, S, p) policy further depends on noises from previous periods.
- Solution. Uniform concentration via Wasserstein's distance:

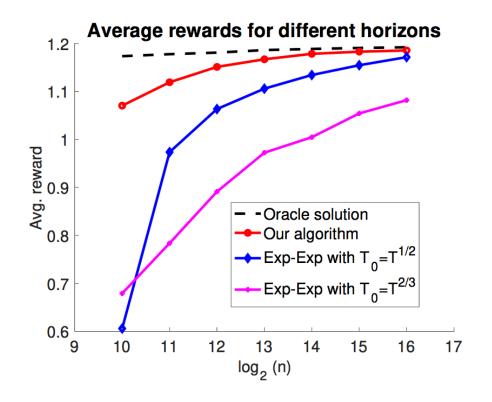
$$W_1(P, \hat{P}) = \inf_{\xi \in \Xi(P, \hat{P})} \int |x - y| d\xi(x, y)$$

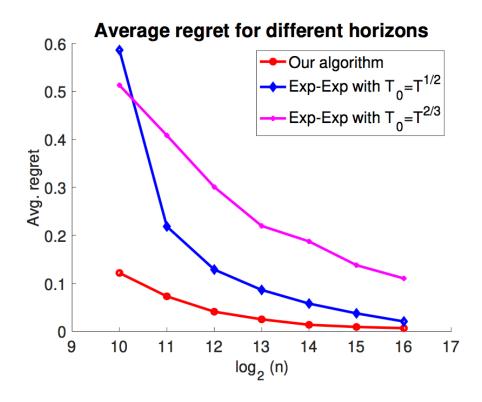
✓ For **any** function f that is L-Lipschitz continuous,

$$|E_P[f(x)] - E_{\hat{P}}[f(x)]| \le W_1(P, \hat{P})$$

$D_0(p) = 18 - 15p, h(x) = 0.05 \max\{x, 0\} - \min\{x, 0\}, k = 10$ NUMERICAL RESULTS

- Summary: $\tilde{O}(\sqrt{T})$ regret, which is optimal
- Numerical results: compare with Explore-Then-Commit baseline:





- [1] Chen et al. 20, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475
- [2] Chen et al. 21, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413

COMPARISON WITH EXISTING RESULTS

✓ indicates optimal regret (up to poly-logarithmic terms)

	k > 0?	Pricing model	Censored demand?	Concavity?	Regret
Yuan et al.'21	Yes	N/A	Yes	Implied	$\tilde{O}(\sqrt{T})$
[1]	Yes	GLM	No	No	$\widetilde{O}(\sqrt{T})$
Huh & Rusmevichientong' 09	No	N/A	Yes	Implied	$O(\log T)$
Chen et al.'19	No	Non-param.	No	Implied	$\tilde{O}(\sqrt{T})$ \checkmark
Chen et al.'21	No	Non-param.	Yes	Assumed	$T^{\frac{1}{2}+o(1)}$
[2]	No	Non-param.	Yes	No	$\widetilde{O}(T^{\frac{3}{5}})$

PART 2 (CENSORED DEMANDS)

[2] Chen et al. 21, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413

- Model primitives:
 - ✓ Censored demands: $o_t = \min\{y_t, d_t\} = \min\{y_t, D_0(p_t) + \beta_t\}$
 - ✓ No fixed cost: k = 0
 - ✓ V-shaped costs: $h(\cdot) = h \max(0, \cdot) b \min(0, \cdot)$
 - ✓ **Nonparametric demand:** $D_0(p)$ is strictly monotonically decreasing and twice continuously differentiable

$$-k \times 1\{y_t > x_t\} - c(y_t - x_t) + p_t \min\{y_t, D_0(p_t) + \beta_t\} - h(y_t - D_0(p_t) - \beta_t)$$

- [Sobel 1981] In the long run, the optimal policy is *stationary* and *myopic*
 - ✓ Define r(p) = (p c)D(p) and

$$Q(p,y) := r(p) - (b+p)E[(D_0(p) + \beta - y)^+] - hE[(y - D_0(p) - \beta)^+]$$

- ✓ Value of the optimal policy $\leq T \times \max_{p,y} Q(p,y)$
- ✓ Static policy committing to p^* , $y^* = \arg \max_{p,y} Q(p,y)$ has $O(\sqrt{T})$ regret.

Learning-while-Doing problem:

 $D_0, \beta_t \sim P$ are unknown

HIGH-LEVEL IDEA

- Fix p, finding $y^*(p) = \arg \max_{y} Q(p, y)$ is easy:
 - $\checkmark Q(p,\cdot)$ is concave in y, and $E[\partial_y Q(p,y)] = (b+p)\mathbf{1}\{d \ge y\} h\mathbf{1}\{d < y\}$
 - ✓ Can use either SGD [Huh & Rusmevichientong' 09] or bisection search.
- Discretize into $T^{0.2}$ prices and run Multi-Armed bandit
 - ✓ Strong smoothness of $Q(\cdot,\cdot)$ implies an $\tilde{O}(T^{0.6})$ regret
- Where's the catch?

$$Q(p,y) = E[(p-c)\min\{y, D_0(p) + \beta\}] - hE[(y-D_0(p) - \beta)^+] - bE[(D_0(p) + \beta - y)^+]$$

COMPARISON OF ORACLES

Let r(a) be the expected immediate reward with action a:

✓ **0**th-order oracle: E[s|a] = r(a)

✓ 1st-order oracle: E[s|a] = r'(a)

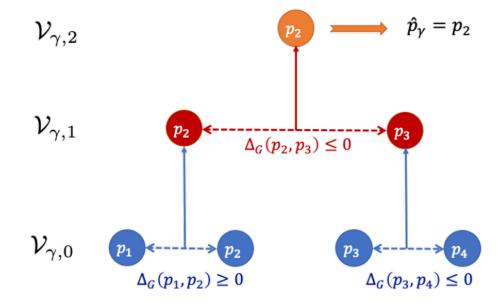
	Pricing?	Inventory replenishment?	0 th -order oracle?	1 st -order oracle?
Huh et al.'09	No	Yes	No	Yes
Wang et al.'10	Yes	No	Yes	No
This paper	Yes	Yes	No	No

PAIRWISE COMPARISON ORACLE

- Let $G(p) = \max_{y} Q(p, y)$
- For p < p', let $y^*(p)$, $y^*(p')$ be the y's that maximize Q, which are easy to obtain as explained in the previous slides.
- Can we estimate "pairwise comparison" objective G(p') G(p), using censored demands?

MAB WITH PAIRWISE COMPARISON

- For any p, p', we can estimate $\Delta(p, p') = G(p') G(p)$ with error decaying at $\sim 1/\sqrt{n}$, where n is the # of samples involved
- How to use this "pairwise comparison" oracle to do MAB?
- Solution. Tournament + elimination



Uses the winner of the tournament $\hat{p}_{\gamma}=p_2$ $\Delta_{
u}=0.2$

• Price
$$p_1$$
: $\Delta_G(\hat{p}_{\gamma}, p_1) = -0.4 < -\Delta_{\gamma}$

• Price
$$p_3$$
: $\Delta_G(\hat{p}_{\gamma}, p_3) = -0.3 < -\Delta_{\gamma}$

• Price
$$p_4$$
: $\Delta_G(\hat{p}_{\gamma}, p_4) = -0.15 \ge -\Delta_{\gamma}$

Update: $S_{\gamma+1} \leftarrow \{p_2, p_4\}$

*LOWER BOUND

- How to prove lower bounds for noise distributions P that are
 - ✓ Bounded a.s. with pdf $\geq c_0 > 0$ uniformly;
 - ✓ Do not change with actions.
- The classical arguments based on KL-divergence doesn't work
 - ✓ Supports of observables shift with different actions.
 - ✓ The KL-divergence would be infinity!
- Solution. Generalized square Hellinger's distance (s=2: std Hellinger)

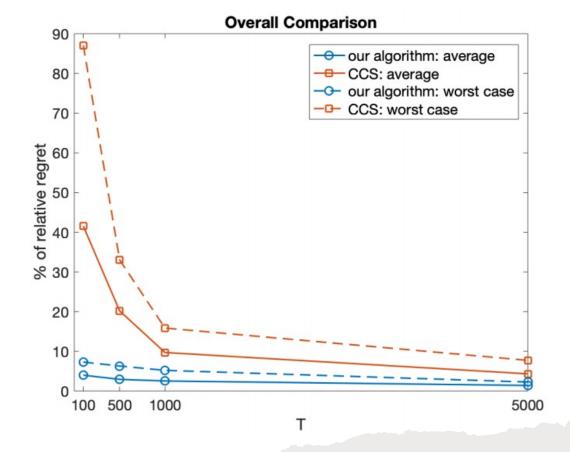
$$H_S^2(P,Q) := 1 - \int_{-\infty}^{+\infty} p(x)^{1 - \frac{1}{s}} q(x)^{\frac{1}{s}} dx$$

✓ Behaves "like" KL with $s \to +\infty$ in MAB type environments

$$H_s^2(P_0, P_j) \le \{E_0[T_j]\}^{1-\frac{1}{s}} T^{\frac{1}{s}} \times \sup_p H_s^2(P_0(\cdot | p), P_j(\cdot | p))$$

NUMERICAL RESULTS

- Summary: $\tilde{O}(T^{0.6})$ regret, which is optimal
- Numerical results: comparison with an Explore-Then-Commit (ETC) baseline



FUTURE DIRECTIONS

• Open question 1. Fixed ordering cost + censored demand

- ✓ The parametric case is already difficult. Censored generalized linear models.
- ✓ How do we estimate the noise distribution is also a challenge. Unlikely the algorithm/analysis in the no-fixed-cost setting can be applied, because the optimal solution is not myopic and there is no easy characterization of the p function.

FUTURE DIRECTIONS

• Open question 2. Multiplicative demand noises.

$$d_t = \alpha_t D_0(p_t) + \beta_t, \qquad E[\alpha_t] = 1, E[\beta_t] = 0$$

- ✓ Parametric setting with fixed ordering costs: (s, S, p) still optimal asymptotically, but difficult to reproduce $\psi(x; r, D, p)$ stability analysis.
- ✓ Nonparametric setting with censored costs: difficult to reproduce the pairwise comparison estimator. The observables are not shifts of the same distributions any more.

Thank you! Questions?

References:

Dynamic Pricing and Inventory Control with Fixed Ordering Cost and Incomplete Demand Information Boxiao Chen, David Simchi-Levi, Yining Wang, Yuan Zhou

Management Science

Optimal Policies for Dynamic Pricing and Inventory Control with Nonparametric Censored Demands
Boxiao Chen, Yining Wang, Yuan Zhou
Management Science, to appear