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Background of Research
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1) Graph Matching
2) Generality
3) Robustness

4) Graph Application



Classical Solution to Graph Matching Problem

« NP-hard GM Problem:
e-node similarity
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Learning GM by Graph Embedding Model ICCV19/TPAMI20

« Classical GM Pipeline:

[assical
compute class .
SIFT feature node, edge algorithm matching
extractor o approximate result
similarity <olution

(limited representation (limited capacity due (limited performance of
capability of SIFT) to fixed similarity) classical algorithm)
« Deep Graph Embedding GM Pipeline:

CNN intra-+cross- - .
feature graph GHN ety Slmkhfhm — et
extractor embedding similarity a 90” m
E n 28 Rrim
relud_1 ClNrm
- (learning == .. . | GitHub repo
WEIghted QR Code
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solution)
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[1] Combinatorial Learning of Robust Deep Graph Matching: an Embedding based Approach, TPAMI 2020
[2] Learning Combinatorial Embedding Networks for Deep Graph Matching, ICCV 2019




Learning GM by Graph Embedding Model ICCV19/TPAMI20

- Sinkhorn: differentiable, exact linear assignment algorithm

Sum Sum
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« How to invoke: pip install pygmtools
(already support numpy, pytorch, paddle, jittor; will support
tensorflow, mindspore)

>>> import torch . >>> x = pygm.sinkhorn(s_2d)

§ >>> X tensor([[0©.1888, 0.2499, 0.1920, 0.1603, 0.2089],

| [0.1895, ©.1724, ©.2335, 0.2219, 0.1827],
[0.2371, ©.2043, 0.1827, 0.2311, 0.1447],
[0.1173, ©.1230, ©.2382, 0.1996, 0.3219],
[0.2673, 0.2504, 0.1536, 0.1869, 0.1418]])

PSS print('row_sum:"', x.sum(1l), 'col sum:', x.sum(®@))

[0.7917, 0.5289, ©.5680, 0.9256, ©.0710], 3 row_sum: tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000])

[6.6871, ©.0202, ©.8326, ©.7782, ©.87@0], | 1 oun. tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000])
[0.9786, ©.7992, 0.4615, 0.7805, ©.1183]])

>>> import pygmtools as pygm

>>> pygm.BACKEND = 'pytorch’

>>> np.random.seed(©) # 2-dimensional (non-batched) input

>>> s_2d = torch.from_numpy(np.random.rand(5, 5))

>>> s_2d tensor([[0.5488, 0.7152, 0.6028, 0.5449, 0.4237],
[0.6459, ©.4376, 0.8918, 0.9637, 0.3834],



Learning GM by Graph Embedding Model ICCV19/TPAMI20

« Permutation Loss: The matching problem can be considered as
a binary classification problem for each element

)

cross-entro
0.2|0.1/0.6|0.1 Y 1o lol1lo
0.1 03(/0.1)0.5

0 0 0 | 1.
prediction § ground truth §9°

1 _
Lperm = NZ _Sg't lOgSij + (1 - Sg't) log(]‘ o Sij)]
ij

« Compared with the regression
based offset loss used in the
past, the permutation loss
better portrays the combina-
torial optimization nature of
graph matching




Learning GM by Graph Embedding Model ICCV19/TPAMI20

« Matching results on PascalVOC:
Permutation Loss>Offset Loss, Intra-+Cross-graph GNN>Intra-graph GNN>Classical GM

GMN

GMN-PL

VGG16

VGG16

PIA-GM-OL VGG16

PIA-GM
PCA-GM

VGG16
VGG16

Classical GM (Zanfir et al.

CVPR 2018)

Classical GM (Zanfir et al.

CVPR 2018)

Intra-graph GNN
Intra-graph GNN
Intra-+Cross-graph GNN

Offs Loss

55.3

Perm Loss 57.9

Offs Loss

61.6

Perm Loss 63.0
Perm Loss 63.8

« The model has the capability to transfer across categories:
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Improvement on Graph Embedding and Loss Function ICLR20

Learning deep graph matching with channel-independent embedding and Hungarian attention, ICLR 2020

 Improve Graph Embed- Split over Edge embedding as
. . — channel-wise adjacency
ding Module: Simulate chanmels \ e
multi-head attention, pr-
opose a Channel Indep- Edge
P , P Embedding (N xN) x C X . C
endent Embedding (CIE) N x Nx C
method Spllt over P
New Node Embedding
. channels N x C
« Experiment: Under control w
lates; CIE outperforms  empedding (N) x C
other GNN structures —%
method|aero bike bird boat bottle bus car cat chair daw Yabis dog horse mbike person plant sheep sofa train tv

GMN-D[31.9 47.2 51.9 40.8 68.7 72.2 53.6 52.8 34.6 48. Vﬁ U 548 51(} 38.6 75.1 495 45.0 83.0 86.3
GMN-P31.1 462582459 706 764612617 355537 41 775 57,1 536832 886
GAT-P

-P|46.4 60.5 60.9 51.8 79.0 70.9 62.7 70.1 39.7 63.9 66.2 6§ 5.8 62.3 39.5 82.0 66.9 50.1 78.5 90.3|63.
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Improvement on Graph Embedding and Loss Function ICLR20

similarity matrix doubly-stochastic matrix
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Learning GM Solvers TPAMI22

« GM is equivalent to node classification on an association graph:

Association Graph Graph Matching Problem

« Node 1 matches hodea =) 1a=1 on association graph
« Therefore, GM solvers==node classifier on association graph

- Naturally, GNN that excel in node classification can serve as
graph matching solvers!



Learning GM Solvers TPAMI2

ac

Extend to Multi-graph Matching % Multi-graph Matching
Adopt permutation synchronization technique

Pachauriy et al., S.olving the multi-way matching'problem by permutation synchronization, in NIPS 2013 | IEZ(TIE;tﬁ
| - | eigenvectors
J /: |
Extend to Hyper Graph Matching(; | (N=3)
Neural Graph Neural Hyper |
Matching E) Graph Matching : permutation
(NGM) GM (NHGM) HGM . synchronization
1/2 order features & high-order features MGM Test Dataset
association graph Ly association hypergraph NGMv2 (2GM)
update features along edges |:> update features along hyperedges NHGMvZ2 (HGM)
matching acc 80.1 ) matching acc 80.7 NMGMv2 (MGM)

----
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"' '
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[
.

(a) association graph (b) graph matching (c) association hypergraph

2

g

joint matching
matrix
Matching Acc
97.5
97.8
98.2



Learning GM Solvers

TPAMI21

Neural Graph Matching Network: Learning Lawler’ s Quadratic Assignment Problem with Extensions to Hypergraph

and Multi-graph matching, TPAMI 2021

it
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\.L R X
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o

score
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0.01

QAP Double
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Proposed Learning Algorithm
TPAMI22

o Running Time(log scale) cale)

Sinkhorn-base algorithm
SIAM J. Imaging Sci. 2019
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Self-Supervised Learning for GM ECCV22

Self-supervised Learning of Visual Graph Matching, ECCV 2022

K (Leordeanu & Hebert, 2005)

d |

/® //

\ & b\c/"

node-node similarity ﬁ
T +
m)%x VeC( X ) K vec( X ) edge-edge similarity 5 ) 4

Generally referred to as
Lawler’ s Quadratic Assignment Problem

5x4
s.t. X €{0,1}°% (Lawler’ s QAP) -
X1<1, XT1i—1 NP-hard GitHub repo
< QR code

Code available at “https://github.com/Thinklab-SJTU/ThinkMatch-SCGM" | @



Self-Supervised Learning for GM ECCV22

Lawler's QAP
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. Rolinek, Michal, et al. "Deep graph matching via blackbox differentiation of combinatorial solvers." ECCV. Springer, Cham, 2020.



Self-Supervised Learning for GM ECCV22

* Self-supervised Learning for Graph Matching (SCGM)
* Two-stage Data Augmentation
* Contrastive Learning on Node Layers
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Solving Graph Edit Distance and Edit Path CVPR21

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021

Graph Edit Distance(GED):

edge deletion edge deletion node deletion
61 G2
cost=1 cost=1 cost=1

GED(G1,G2) =3

Classical A* Algorithm——g(p) and h(p):

g(p) cost of matched parts (exact value)

GitHub repo




Solving Graph Edit Distance and Edit Path CVPR21

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021

v
select solution acquire update partial
input from priority complete partial solution and
queue olution solution add to queue
Yes ( output A
> complete
—solution

matched

parts in

graph 1 exactly
compute

matched 9@)

graph 1

partin

Classical A* Algorithm

Integratable ML Madule

unmatched

graph 2 partsin [=p = 3
graph 1 G = similarity .

Z f;bl_ prediction |[=p p;le(d')Ct
unmatched < g network p

partin [ >
graph 2




Solving Graph Edit Distance and Edit Path CVPR21

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021
Accuracy Metrics for GED on 3 Real-world Datasets

Method Edit . AIDS ] IL[NUX W?]]OW—C:]I‘S ]
Path | mse (x10~7) p p@l10 | mse (x1077) P p@10 | mse (x1077) P) p@10
SimGNN [7] X 1.189 0.843 0.421 1.509 0.939 0.942 - -
GMN [20] X 1.886 0.751 0.401 1.027 0.933  0.833 - -
GraphSim [] X 0.787 0.874 0.534 0.058 0.981 0.992 - -
GENN (ours) X 1.618 0.901 0.880 0.438 0.955 0.527 - -
Beam Search [20] v 12.090 0.609  0.481 9.268 0.827 0.973 1.820 0.815 0.725
Hungarian [ 1] v 25.296 0.510  0.360 29.805 0.638 0913 29.936 0.553  0.650
VI[:] i 29157 0517 0310 03,863 0581 0287 45 78] 0438 0512
GENN-A* (ours) v 0.635 0.959 0.871 0.324 0.991 0.962 0.928
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10 12
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Achieve high efficiency with machine learning algorithm

GENMN-A* Hungarian-A®
n+n:=20
(c) Willow-Cars dataset




Solving Combi

natorial Optimization over Graphs by a

General Bi-level ML Framework NeurlPS21

A Bi-level Framework for Learning

to Solve Combinatorial Optimization over Graphs, NeurlPS 2021

For CO problems over graphs, current formulation is

) st [hi(x,G) <0, fori=1..]]

min[f(x

3

Decision Variable

Existing papers use G
reinforcement learning

Objective Function R :
Constraints

& 0

modeling:  Action Sequence Reward Action Feasible Domain

However *© Larger scale,

longer action sequence mm) Sparse reward, hard to converge

» Assume adequate model capacity to learn §—x ‘ NP-hard problem,

hard to devi

se model

Resort to the classic idea: Modifying the original problem to aid problem solving

Adding cutting planes for integer programming

® ® ©  This paper:
odeid | Resource Runtime MOdifying
> 2 @ ® ® graph GitHub repo

o | *9 structure
6.0 Shortest First: 21.0 QR code

> L ¥ Add edges

0.5 5.0

n|mlo|ln| | »|2
(=]
w

0.5 5.0

® ® ©
Total Resource Limit: 1.0 @’ ‘G’ ‘o

[ 5 e [m]

; - -l
[E13540

Shortest first: 16.0



Solving Combinatorial Optimization over Graphs by a
General Bi-level ML Framework NeurlPS21

Propose a Bi-level Optimization Formulation:
Upper-level: Adopt a reinforcement learning agent to adaptively modify the graphs
gl
|H,11(_.I71! f'G) st H;(G,G)<0(forj=1..J
x" elarg min { f(x'|G) : hi(x',G") < 0,fori = 1....£/

Lower-level: Optimize decision variables by heuristics

Bi-level Framework: When the upper-level RL modifies graph structure, the lower-
level heuristic is invoked

|
] I I
E O = @, :
p 2 3
s select an 2 O select an 7id
Q2 action QllE action Q|2
215 —> N —> 2|2
<} (del edge) g (del edge) e
= O = O O =
LB O L 2] L=
input graph action probabilities optimized graph 1 action probabilities optimized graph 2

heuristic  |C> solution 0 heuristic |C>> solution 1 heuristic |- solution 2




Solving Combinatorial Optimization over Graphs by a
General Bi-level ML Framework NeurlPS21

A General Framework for Different Graph Theory Problems
(a) DAG Scheduling (b) GED Problem (c) Hamiltonian Cycle

z%%&mﬁmaw&‘ﬁg

original graph after action 1 (add edge) original graphs after action 1 (del edge) original graphs
Ak (e -: =
1 < 1 1 1
Critical Path Critical Path IPFP IPFP LKH-fast LKH-fast
Heuristic Heuristic Heuristic Heuristic Heuristic Heuristic
A 1V " _ < g . 24
x?  « scheduling orders —»  x* x° + edit paths — x! ¥ <« travelingtours — x!
reward = f(x°|§) — f(x}|G) reward = f(x°|G) — £(x*|G) reward = f(x%|G) — f(x!|G)
DAG Sche Time | Custo- | Gen- Improv- || GED Custo- | Gen- | Improv- Har:ultonlan Custo- | Gen- |Improv-
TPC-H Dataset | mized | eral ements || AIDS Dataset | mized | eral ements Cyc ccuracy mized | eral |ements

50 DAGs 9821 | 8906 |9.3% [BAUERMEEEM 37.4 | 29.1 | 22.2%  [ESRE 20 25 | 25%

nodes

USLEEER 16914 | 15193 | 10.2% (CSECMEEEN 70.4 | 61.1 | 13.2%

ORI 04429 | 22371 | 8.4%  (ELEREEEN 1019 | 77 | 24.4%




Appearance and Structure Aware Robust Deep Visual
Graph Matching CVPR22

Appearance and structure aware robust deep visual graph matching: Attack, defense and beyond, CVPR 2022
B Research Problem: Robust Decision for Deep Visual GM in Adversarial Attack Contexts

B Deep Visual GM Pipeline (Wang, TPAMI 2021, Rolinek, ECCV 2020):

kiypoints multi-graph GM
eature construction solver
extractor
VGG16 with Delaunay GNN or Blackbox
L _ SplineConv Triangulation Solvers R OVer \
= Z \J
Multi-graph with keypoints Similarity between multi-graphs

B Challenge 1: Existing adversarial attack algorithms for graph structures are not feasible for MGM
« Adding or deleting nodes will degrade matching accuracy
« Adding or deleting edges will be reverted in multi-graph construction

B Challenge 2: Existing adversarial defense algorithms on a single graph are not feasible |GitHub repo
for MGM
« Learn discriminative features between nodes on a single graph
« Learn correspondences between multiple graphs for MGM

Github Code: https://github.com/Thinklab-SJTU/robustMatch




Appearance and Structure Aware Robust Deep Visual
Graph Matching CVPR22

B Attack Strategy: Locality attack by perturbing keypoint localities and pixel attack by
perturbing image pixel values
« Bi-level Constrained Optimization Problem:
O ¢, z refers to keypoint localities, features, respectively

O €., ¢, refers to perturbation budget, unavailable to attack
max max L(f(c',z',G"),y)
C,Z

s.t.d(c’,c) <€,,d(2',2) <€
C Z

« Impact of Keypoint Locality Attack on Models:
O Influence the extraction of keypoint features in the graph
O Determine the connectivity between keypoints (edge addition or

deletion)
Before Attack Multi-graph Pixel Attack After Attack

Attack Direction

— Newly Added Edges
= = Deleted Edges

N
a b &
_’,nc <\ \ i - N
/R N\ \
. W K N

Matched: 9/11 Hrti-graph Locality aCkMatched: 2/11



Appearance and Structure Aware Robust Deep Visual
Graph Matching CVPR22

B Defense Strategy: Vulnerability of appearance-similar keypoints in embedding
space and explicit constraints

« Appearance-similar keypoints are vulnerable to attack
O Similar shape, similar texture, symmetrical structure

‘‘‘‘‘‘‘

 Actively attack to discover appearance-similar keypoints during training
and expand their distances in embedding space
Gl

« Combined with adversarial training, the adversarial samples

received as input to further improve the robustness [EIEEIEES
matching
matrix

generated by the attack are

Appearance
Aware Regularizer

adversarial
samples 4 p

~—— deep GM module -~
generation ground
truth

Cross Entropy Loss



Graph Matching Based Model Fusion ICML22

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning, ICML22

Input Model Alignment Model

Output Model

\
fusion
Ve

GitHub repo
QR code

Code available at “https://github.com/Thinklab-SJITU/GAMF”



Graph Matching Based Model Fusion ICML22

1. Model Ensemble

— Prediction-based Model Ensemble: Need to maintain all individual models

— Fusion-based Model Ensemble: Need to maintain only one model

2. Federated Learning

®

Global Server

®

— FL Pipeline:
1) Global server sends the global model to

each local client

2) Each client train the local model with their
own datasets

3) Local clients send the local model back to
global server

4) Global server gathers all local models and

merge them into a shared global model

' Cient1 :

— Efficiently aggregate local models by Model Fusion

Li, Q. He, B, and Song, D. Model-contrastive federated learning. CVPR, 2021.




Graph Matching Based Model Fusion ICML22

Similarity

______________ Output layer

I Neural 1 1

Granb (fixed nodes)

idden layer 3"
atched nodd

idden layer
atched node

Input layer
fixed nodes)

To be

Matched

Edge Model 1 Model 2

Similarity

Challenge: Problem Scale

« Model Fusion: Large scale of common NN,
with up to 1024 channels each layer and a
total number of channels exceeding 10000

« Graph Matching: Less than 100 keypoints in

a graph in commonly used dataset, which
differs significantly from the requirements of

Model Fusion



Graph Matching Based Model Fusion ICML22

Structure of

Output layer
(fixed nodes)

Hidden layer 2
(matched node

Hidden layer
(matched node

Input layer
(fixed nodes)

Model 1 Model 2

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Graduated Assignment

« Select 3 adjacent layers
at a time

« Fix front and back layers

« Update the permutation
matrix of the middle layer

- lterate until convergence




Graph Optimization Problem of Placement and Routing

Explore solving Placement and Routing via Machine Learning, as an
alternative to classical algorithms

On Joint Learning for Solving Placement and Routing in Chip Design, NeurlPS21

Prgpo;.e Go gle RL |glace reward | cl-af]sicall
a Cyclic > . — —» algorithm place
l'latlll'e macros function standard cells
R“C,)Il;tc;:? DeepPR RL |:‘>'Iace DL place RL combined with reward
(NeurlPS21) - » classical algorithm |—> ;
macros standard cells route function

o ISPD2005-Adaptec2-255K cells-HPWL 123.26 . 1SPD2005-Adaptec4-496K cells-HPWL 236.39 o ISPD2005-BigBluel-278K cells-HPWL 140.43
2000
2005
5000 1
4000 1
4000
6000
Dataset
8000 6000

wire-
|ength

10000 15000 4
8000 A

20000 1 10000 4

14000

S%l 0 2000 4000 6000 8000 1000012000 14000 0 5000 10000 15000 20000 25000 0 2000 4000 6000 800D 10000




Graph Optimization Problem of Placement and Routing

The Policy-gradient Placement and Generative Routing Neural Networks

for Chip Design, NeurlPS21

Formulation of Mixed-size Placement

The key elements of the Markov Decision Processes (MDPs) for mixed-
size placement are defined as follows:

State s : the state representation consists of two part, global image /
portrayed the layout and netlist graph H which contains detailed
position of placed macros. The initial state I,,, = 1if (x, y) has already
been occupied before placement

Action a : position (x,, y,) is available if all poihnts p in the region R
satisfy I, = 0, where R = {(x,y)|lx — %o| < 2,1y = 35| < 3},
Reward r : to further control the overlap in the final placement, the
reward at the end of episode is a negative weighted sum of wirelength,
routing congestion and overlapping area: Rg = —Ly,; — Ay * L¢g —

A * Loy

Architecture of Generative Routing Model

Input-size-Adapting Generator Bi-Discriminator

) Connectivity Realness
Gase (for grid graphs < 64 x64)

Standard Layout Standard Route

- - Residual
] ] [~ Blocks Decony [+ Decoder [

i

sidua
ocks
I Conv | |

5
Conv
N~

|
I
I
|
I
I
I
|
I
I
I
I
Glarge (for grid graphs > 64 x64) 1 |
Feature Map :
I
I
I
I
I
I
I
I
I
I
I
I

Layout Route

Neural Macro Placement and Routing

(3) generative model for routing are trained using
placement result from mixed-size agent

initial state placement solygien imigrmediate result routing solution

Pipeline
DEE
[ ! ot
O
9] mm&

_
(1) mixed-size agent places one macro
in each step

generative router

jDDD IZID m‘?ﬁ%
Em

(2) net ordering agent decides which

net to be routed next

— (o)

(4) placement and net ordering model are optimized jointly in a whole RL framework

Combining the RL-based model for learning mixed-size macro

placement with one-shot generative routing network to

perform routing as we introduce above, we propose a pure

neural pipeline for macro placement and routing.

Inspired by EM algorithm, we first update the generative router

using placement result from mixed-size agent (similar to E step),

then placement and net order agents are learned jointly in a

whole reinforcement learning framework to minimize

wirelength calculated by trained generative model

(corresponding to M step)

= The generator is composed of a basic generator for the input size of 64
X 64 or below and an extension for the input size of larger than 64 X

Residual L pecony | Decoder | . . . . . . . .
Blocks l — j 64. The discriminator consists of two sub-discriminators to estimate
[ 1} .y
Earger Lyt routes from validity and realness.



Graph Optimization Problem of Placement and Routing

The Policy-gradient Placement and Generative Routing Neural Networks

for Chip Design, NeurlPS21

Results on Mixed-size Placement

With only a slight increase of the total wirelength (within 1.3%
difference on average), our mixed-size macro placer achieves
approximately 4x reduction over DeepPlace on the overlapping area,
stressing the importance of modeling macro’s shape in state space.

Mixed-size technique (ours) DeepPlace [1]

Circuit ~ #Cells # Mov.
Wirelength | Overlap Areal Wirelength | Overlap Areal
adaptecl 211K S14 82783826 12606828 80117232 66608273
adaptec2 255K 542 123307824 19485631 123265964 47085963
adaptec3 451K 710 232373680 58588016 241072304 140272759
adaplecd 496K 1309 234008876 73075220 236391936 169853555
bigbluel 278K 551 141020208 2041890 140435296 3519755
bigblue2 558K 948 144803296 70702107 140465488 103663199
bigblue3  1097K 1227 468632064 39664931 450633360 574956948
bigblued 2177K 659 1001315712 67794270 051984128 87630042
ratio 1.000 1.0 0.987 39

Results on Routing

We compare the full version with ResNet-based cGAN, as well
as the pure ResNet generator. The ResNet generator outdoes
the cGAN, but the bi-discriminator significantly improves the
generator. Moreover, the enhanced loss improves the
wirelength at the marginal expense of correctness.

Results on Overall Placement and Routing

variants of our PRNet adaptecl adaptec3
WL| RCJ| WL| RCJ
RL-based Placer (i.e. DeepPlace [1]) 6149  10.565 30154 62.751
RL-based Placer + GR 5940  10.464 29711  73.324
RL-based Placer + GR + NOL (full version of PRNet) 5787  9.386 29462 43.207

We compare our PRNet with DeepPlace, along with an ablation
study to verify the impact of net order learning. For all test cases,
our neural placement and routing pipeline outperforms the other
two methods in terms of both wirelength (WL) and routing
congestion (RC). The significant difference in routing congestion
without net order learning indicates that net order agent is able
to arrange the sequence of routing efficiently.

Route-small-4 Route-small

our router w/ different generative models

CrrtRT WLR| CrrR? WLR|
CVAE*(CNN) [9] 04140020 11790033 0.397+0.008  1.042+0.006
CVAE#*-¢GAN(CNN) 0.557 +00es  1.292+40.108 0.439+40021  1.31540015
CVAE®-becGAN(CNN) 047440048 1.525+0029 0.488+0007  1.241x0012
U-Net* [39] - 0.724 10001 3.306L0266 0.52440005  1.23210016
c¢GAN(U-Net*) [29] 0.602+0000  1.028+0.001 0.532+0011  1.286+0.022
beGAN(U-Net*) 0.721+0012 1134400355 0.552+40007  1.10440.054
ResNet [40] 0.783+0002  1.023+0.003 0.594+0.004  1.030+0.007
cGAN(ResNet) 0.698+0010  1.073 L0011 0.568+0.020  1.320+0.151
beGAN(ResNet) 0.804-+0021  1.035+0013 0.738+0.005  1.036+0.002
beGAN(ResNe)+EL (full version of our router)  0.814-+o0001  L.010+0.000 0.735+0010  LO18+0.004

éSPDZUUS-BigBluel-Z?SK cells-HPWL 140.43 o ISPD2005-BigBluel-278K cells-HPWL 140.43

2000 2000 -

4000 4 4000

6000 5000

8000 - 8000 1

10000 - 10000 4

2000 4000 6000 8000 10000

Our Mixed-size Placer

4000 6000 8000 10000 0

DeepPlace

0 2000



1. Background of Research
2. Recent Work

3. Summary and Outlook



Some Thoughts on Typical Paradigms

Paradigm1: Front-end » Machine |—{ Perception » Machine —» Back-end
Differentiaiole Perception | Learning |«——| Results |« | Learning | Decision
learning to ¥ 5
improve overall =
front- and back- use
end agility End-to-end, .
I I Classical
Differentiable |Jasscal
Paraqlng: Generator Hard
Multi-task Optimization Example |
distributed self- Mining ]
supervised Inout Output
i np Solver
!earnmg to Solver L
'mprove Solver | 4

generalizability Optimization




Thanks and Q&A

¢ Awesome Machine Learning for Combinatorial
Optimization Resources

We would like to maintain a list of resources that utilize machine learning technologies to solve combinatorial

optimization problems.
We mark work contributed by Thinklab with +4-.

Maintained by members in SJTU-Thinklab: Chang Liu, Runzhong Wang, Jiayi Zhang, Zelin Zhao, Haoyu Geng, Tianzhe
Wang, Wenxuan Guo, Wenjie Wu and Juncht Yan. We also thank all contributers from the community!

We are looking for post-docs interested in machine learning especially for learning combinatorial solvers, dynamic

graphs, and reinforcement learning. Please send your up-to-date resume via yanjunchi AT sjtu.edu.cn.

https://github.com/Thinklab-SJTU/awesome-ml4co



