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Background of Research

 CVPR’22 Best Paper: Learning to Solve Hard Minimal Problems

 EJOR’21 A Survey by Prof. Bengio: Machine Learning for CO

 NSF makes $20 million investment in Optimization-focused AI 

Research Institute
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1) Graph Matching

2) Generality

3) Robustness

4) Graph Application



Classical Solution to Graph Matching Problem

• NP-hard GM Problem: 

• Classical GM Pipeline: 

SIFT feature 
extractor

compute 
node, edge 
similarity

classical 
algorithm 

approximate 
solution

matching 
result

Fixed method, 
e.g. Gaussian 
Kernel Function

(limited representation 
capability of SIFT)

(limited capacity due 
to fixed similarity) (limited performance of 

classical algorithm)



Learning GM by Graph Embedding Model ICCV19/TPAMI20

• Classical GM Pipeline: 

SIFT feature 
extractor

compute 
node, edge 
similarity

classical 
algorithm 

approximate 
solution

matching 
result

• Deep Graph Embedding GM Pipeline: 

CNN 
feature 

extractor

intra-+cross-
graph GNN 
embedding

Sinkhorn
algorithm

matching 
result

learn node 
similarity

(robust to noise)

relu5_1

relu4_2

(embedding graph to node features, 
complexity reduced)

(learning 
weighted 
similarity) (differentiable exact 

solution)

[1] Combinatorial Learning of Robust Deep Graph Matching: an Embedding based Approach, TPAMI 2020
[2] Learning Combinatorial Embedding Networks for Deep Graph Matching, ICCV 2019

GitHub repo
QR code

(limited representation 
capability of SIFT)

(limited capacity due 
to fixed similarity)

(limited performance of 
classical algorithm)



• Sinkhorn: differentiable, exact linear assignment algorithm

• How to invoke: pip install pygmtools
(already support numpy, pytorch, paddle, jittor; will support 

tensorflow, mindspore)
>>> import torch

>>> import pygmtools as pygm

>>> pygm.BACKEND = 'pytorch’

>>> np.random.seed(0) # 2-dimensional (non-batched) input

>>> s_2d = torch.from_numpy(np.random.rand(5, 5)) 

>>> s_2d tensor([[0.5488, 0.7152, 0.6028, 0.5449, 0.4237],

[0.6459, 0.4376, 0.8918, 0.9637, 0.3834],

[0.7917, 0.5289, 0.5680, 0.9256, 0.0710],

[0.0871, 0.0202, 0.8326, 0.7782, 0.8700],

[0.9786, 0.7992, 0.4615, 0.7805, 0.1183]])

>>> x = pygm.sinkhorn(s_2d) 

>>> x tensor([[0.1888, 0.2499, 0.1920, 0.1603, 0.2089],

[0.1895, 0.1724, 0.2335, 0.2219, 0.1827],

[0.2371, 0.2043, 0.1827, 0.2311, 0.1447],

[0.1173, 0.1230, 0.2382, 0.1996, 0.3219],

[0.2673, 0.2504, 0.1536, 0.1869, 0.1418]])

>>> print('row_sum:', x.sum(1), 'col_sum:', x.sum(0)) 

row_sum: tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000]) 

col_sum: tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000])

Learning GM by Graph Embedding Model ICCV19/TPAMI20



• Permutation Loss: The matching problem can be considered as 
a binary classification problem for each element

𝐿𝑝𝑒𝑟𝑚 =
1

𝑁
෍

𝑖𝑗

𝑆𝑖𝑗
𝑔𝑡
log 𝑆𝑖𝑗 + 1 − 𝑆𝑖𝑗

𝑔𝑡
log 1 − 𝑆𝑖𝑗

• Compared with the regression 
based offset loss used in the 
past, the permutation loss 
better portrays the combina-
torial optimization nature of 
graph matching

Learning GM by Graph Embedding Model ICCV19/TPAMI20



Model CNN GM Formulation Loss Func Matching Acc

GMN VGG16 Classical GM（Zanfir et al. 
CVPR 2018）

Offs Loss 55.3

GMN-PL VGG16 Classical GM（Zanfir et al. 
CVPR 2018）

Perm Loss 57.9

PIA-GM-OL VGG16 Intra-graph GNN Offs Loss 61.6

PIA-GM VGG16 Intra-graph GNN Perm Loss 63.0

PCA-GM VGG16 Intra-+Cross-graph GNN Perm Loss 63.8

• Matching results on PascalVOC:
Permutation Loss>Offset Loss，Intra-+Cross-graph GNN>Intra-graph GNN>Classical GM

• The model has the capability to transfer across categories: 

Learning GM by Graph Embedding Model ICCV19/TPAMI20



Improvement on Graph Embedding and Loss Function ICLR20

• Improve Graph Embed-
ding Module: Simulate 
multi-head attention, pr-
opose a Channel Indep-
endent Embedding (CIE) 
method

• Experiment: Under control 
variates, CIE outperforms
other GNN structures

Learning deep graph matching with channel-independent embedding and Hungarian attention, ICLR 2020

Split over

channels

Node 
Embedding

N x C

Edge 
Embedding
N x N x C

Split over

channels

(N x N) x C

(N) x C

x x C

New Node Embedding
N x C

Edge embedding as 
channel-wise adjacency 
matrices



• Improve Loss Fun-

ction：Permutation 

loss requires the out-

put  to be 0/1, which 

may cause overfitting

• Propose Hungarian 

Attention, focusing 

on inconsistent ma-

tches after Hungarian

Training Acc Test Acc

Perm. Loss 88.2 63.8

Hung. Attn 78.7 68.9

• Experimental results: 
mitigating overfitting 
and improving test 
set performance

Improvement on Graph Embedding and Loss Function ICLR20
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• GM is equivalent to node classification on an association graph: 

Association Graph Graph Matching Problem

• Node 1 matches node a   1a=1 on association graph

• Therefore, GM solvers==node classifier on association graph

• Naturally, GNN that excel in node classification can serve as 
graph matching solvers!

Learning GM Solvers  TPAMI22



Compute 

leading N 

eigenvectors

(N=3)

Extend to Multi-graph Matching👉
Adopt permutation synchronization technique

Pachauriy et al., Solving the multi-way matching problem by permutation synchronization, in NIPS 2013

Extend to Hyper Graph Matching👇

Neural Graph 
Matching

(NGM) GM

Neural Hyper
Graph Matching
(NHGM) HGM

1/2 order features high-order features

association graph association hypergraph

update features along edges update features along hyperedges

matching acc 80.1 matching acc 80.7

MGM Test Dataset Matching Acc

NGMv2 (2GM) 97.5

NHGMv2 (HGM) 97.8

NMGMv2 (MGM) 98.2

1
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(a) association graph (b) graph matching (c) association hypergraph

Learning GM Solvers  TPAMI22



QAP
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x K x𝑇 GNN Node 
Classifier

Double 
Stochastic 
Iteration

Solu-
tion

Quadratic Assignment Problem (QAP) Test Dataset: https://www.opt.math.tugraz.at/qaplib/
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Compared with SOTA 
Sinkhorn-base algorithm
SIAM J. Imaging Sci. 2019

Annealing 
Algorithm
ECCV10Learning 

Algorithm 
CVPR18 Best 
Paper 
Honorable 
Mentions

Compared with Gurobi

Proposed Learning Algorithm
TPAMI22

GPU 
Computing

CPU 
Computing

1631x acceleration!

431x acceleration!

Intel(R) Xeon(R) W-
3175X CPU @ 3.10GHz

NVIDIA RTX8000 
(48G)

Running Time(log scale) Dataset: 

Neural Graph Matching Network: Learning Lawler’s Quadratic Assignment Problem with Extensions to Hypergraph
and Multi-graph matching, TPAMI 2021
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Learning GM Solvers  TPAMI21



(Leordeanu & Hebert, 2005)

node-node similarity

+
edge-edge similarity

NP-hard

𝐊

𝐊

Generally referred to as 
Lawler’s Quadratic Assignment Problem 
(Lawler’s QAP)

Self-supervised Learning of Visual Graph Matching, ECCV 2022

Code available at “https://github.com/Thinklab-SJTU/ThinkMatch-SCGM”

GitHub repo
QR code

Self-Supervised Learning for GM  ECCV22



• Rolínek, Michal, et al. "Deep graph matching via blackbox differentiation of combinatorial solvers." ECCV. Springer, Cham, 2020.

Lawler's QAP

CNN

images feature extractor affinity matrix association graph embeddings matching

Optional

Sinkhorn

Lawler's QAP

CNN

images feature extractor affinity matrix association graph embeddings matching

Optional

Sinkhorn

GNN

Label Prediction

Loss
Existing Deep GM Models: 

Require ground truth node 
correspondence as labels 
for supervised learning

Self-Supervised Learning for GM  ECCV22



• Self-supervised Learning for Graph Matching (SCGM)

• Two-stage Data Augmentation

• Contrastive Learning on Node Layers

Self-Supervised Learning for GM  ECCV22



Graph Edit Distance(GED):

Classical A* Algorithm——𝒈(𝒑) and 𝒉 𝒑 :

Solving Graph Edit Distance and Edit Path  CVPR21

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021

𝓖𝟐

GED(𝓖𝟏, 𝓖𝟐) = 3

edge deletion

cost=1

𝓖𝟏
edge deletion

cost=1 cost=1

node deletion

𝒈(𝒑)

𝒉(𝒑)

cost of matched parts (exact value)

cost of unmatched parts (predicted value)

GitHub repo
QR code



select solution 
from priority 

queue

acquire 
partial 

solution

update partial 
solution and 
add to queue

unmatched 
parts in 
graph 1

unmatched 
part in 
graph 2

G
N

N

A
tte

n
tio

n

similarity 
prediction 
network

predict
𝒉(𝒑)

matched 
parts in 
graph 1

matched 
part in 
graph 2

graph 1

graph 2

output 
complete 
solution

Yes

No
input

exactly 
compute 

𝒈(𝒑)

Integratable ML Module

Classical A* Algorithm

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021

Solving Graph Edit Distance and Edit Path  CVPR21

complete 
solution?



Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021

The integratable algorithm preserves the high accuracy of classical solvers

Achieve high efficiency with machine learning algorithm

Classical Algorithm vs Integratable Algorithm: Size of Search Trees

Accuracy Metrics for GED on 3 Real-world Datasets

Solving Graph Edit Distance and Edit Path  CVPR21



Solving Combinatorial Optimization over Graphs by a 
General Bi-level ML Framework  NeurIPS21

A Bi-level Framework for Learning to Solve Combinatorial Optimization over Graphs, NeurIPS 2021

Decision Variable Objective Function
Constraints

Action Sequence Reward Action Feasible Domain

For CO problems over graphs, current formulation is 

Existing papers use 
reinforcement learning 
modeling :

However • Larger scale，longer action sequence Sparse reward, hard to converge
• Assume adequate model capacity to learn NP-hard problem，

hard to devise model

Adding cutting planes for integer programming

Resort to the classic idea: Modifying the original problem to aid problem solving

This paper: 
Modifying 
graph 
structure

Add edges

GitHub repo
QR code



Upper-level: Adopt a reinforcement learning agent to adaptively modify the graphs

Lower-level: Optimize decision variables by heuristics

Propose a Bi-level Optimization Formulation:

Bi-level Framework: When the upper-level RL modifies graph structure, the lower-
level heuristic is invoked

Upper-level Optimizer: RL action network(trained by PPO)

Lower-level Optimizer：Heuristic algorithms

Solving Combinatorial Optimization over Graphs by a 
General Bi-level ML Framework  NeurIPS21



✔ ❌

A General Framework for Different Graph Theory Problems

(a) DAG Scheduling (b) GED Problem (c) Hamiltonian Cycle

DAG Sche Time 
TPC-H Dataset

Custo-
mized

Gen-
eral

Improv-
ements

50 DAGs 9821 8906 9.3%

100 DAGs 16914 15193 10.2%

150 DAGs 24429 22371 8.4%

Custo-

mized

Gen-
eral

500-600 

nodes
20 25 25%

GED
AIDS Dataset

Custo-
mized

Gen-
eral

Improv-
ements

20-30 nodes 37.4 29.1 22.2%

30-50 nodes 70.4 61.1 13.2%

50+ nodes 101.9 77 24.4%

Solving Combinatorial Optimization over Graphs by a 
General Bi-level ML Framework  NeurIPS21

Improv-
ements

Hamiltonian 
Cycle Accuracy
FHCP Dataset



keypoints
feature 

extractor

Multi-graph with keypoints Similarity between multi-graphs

VGG16 with 
SplineConv

multi-graph 
construction

Delaunay 
Triangulation

GM
solver

GNN or Blackbox 
Solvers

◼ Research Problem: Robust Decision for Deep Visual GM in Adversarial Attack Contexts

◼ Deep Visual GM Pipeline (Wang, TPAMI 2021, Rolinek, ECCV 2020): 

◼ Challenge 1: Existing adversarial attack algorithms for graph structures are not feasible for MGM

• Adding or deleting nodes will degrade matching accuracy
• Adding or deleting edges will be reverted in multi-graph construction

◼ Challenge 2: Existing adversarial defense algorithms on a single graph are not feasible 
for MGM

• Learn discriminative features between nodes on a single graph
• Learn correspondences between multiple graphs for MGM

GitHub repo
QR code

Github Code: https://github.com/Thinklab-SJTU/robustMatch

Appearance and Structure Aware Robust Deep Visual 
Graph Matching  CVPR22

Appearance and structure aware robust deep visual graph matching: Attack, defense and beyond, CVPR 2022



◼ Attack Strategy: Locality attack by perturbing keypoint localities and pixel attack by 
perturbing image pixel values
• Bi-level Constrained Optimization Problem: 

 𝑐, 𝑧 refers to keypoint localities, features, respectively
 𝜖𝑐 , 𝜖𝑧 refers to perturbation budget, unavailable to attack

• Impact of Keypoint Locality Attack on Models: 
 Influence the extraction of keypoint features in the graph
 Determine the connectivity between keypoints (edge addition or 

deletion)

Cat: 9 / 11 Cat: 2 / 11locality attack (epsilon= 8)

Pixel attack (epsilon= 8/255)

Attack Direction
Newly Added Edges
Deleted Edges

Multi-graph Pixel Attack

Multi-graph Locality Attack
Matched: 9/11 Matched: 2/11

Before Attack After Attack

max
c′,z′

max
G′

L(f(c′, z′, G′), y)

𝑠. 𝑡. d∞ 𝑐′, 𝑐 ≤ 𝜖𝑐 , d∞ 𝑧′, 𝑧 ≤ 𝜖𝑧

Appearance and Structure Aware Robust Deep Visual 
Graph Matching  CVPR22



◼ Defense Strategy: Vulnerability of appearance-similar keypoints in embedding 
space and explicit constraints
• Appearance-similar keypoints are vulnerable to attack

 Similar shape, similar texture, symmetrical structure

• Actively attack to discover appearance-similar keypoints during training 
and expand their distances in embedding space

• Combined with adversarial training, the adversarial samples generated by the attack are 
received as input to further improve the robustness

Cat: 9 / 11 Cat: 2 / 11locality attack (epsilon= 4)

Pixel attack (epsilon= 8/255)

Cat: 9 / 11 Cat: 2 / 11locality attack (epsilon= 4)

Pixel attack (epsilon= 8/255)
𝐺1 𝐺2

After attack

adversarial 
samples 

generation
deep GM module

predicted 
matching 

matrix

predicted 
matching 

matrix

ground 
truth

ground 
truth

Appearance 
Aware Regularizer

Appearance 
Aware Regularizer

Cross Entropy LossCross Entropy Loss

Appearance and Structure Aware Robust Deep Visual 
Graph Matching  CVPR22



Graph Matching Based Model Fusion  ICML22

Input Model Alignment Model

fusion

Output Model

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning, ICML22

Code available at “https://github.com/Thinklab-SJTU/GAMF”

GitHub repo
QR code



1. Model Ensemble

– Prediction-based Model Ensemble: Need to maintain all individual models

– Fusion-based Model Ensemble: Need to maintain only one model

2. Federated Learning

– FL Pipeline：

– Efficiently aggregate local models by Model Fusion

• Li, Q., He, B., and Song, D. Model-contrastive federated learning. CVPR, 2021.

Client 1 Client N

Global Server

Graph Matching Based Model Fusion  ICML22

1) Global server sends the global model to 

each local client

2) Each client train the local model with their 

own datasets

3) Local clients send the local model back to 

global server

4) Global server gathers all local models and 

merge them into a shared global model



Neural

Channel

Graph

Node

Edge 

Similarity

To be 

Matched
~ ~

Weight 

Similarity

~

Challenge: Problem Scale

• Model Fusion: Large scale of common NN, 

with up to 1024 channels each layer and a 

total number of channels exceeding 10000

• Graph Matching：Less than 100 keypoints in 

a graph in commonly used dataset, which 

differs significantly from the requirements of 

Model Fusion

Output layer
(fixed nodes)

Hidden layer 2
(matched nodes)

Hidden layer 1
(matched nodes)

Input layer
(fixed nodes)

Model 1 Model 2

Graph Matching Based Model Fusion  ICML22



Structure of 
Permutation Matrix 𝑃

1

2

3

4

5

6

7

6

9

6

A

B

C

D

E

F

G

H

I

J

Model 1

Model 2

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Graduated Assignment

• Select 3 adjacent layers   

at a time

• Fix front and back layers

• Update the permutation 

matrix of the middle layer

• Iterate until convergence

Graph Matching Based Model Fusion  ICML22

Output layer
(fixed nodes)

Hidden layer 2
(matched nodes)

Hidden layer 1
(matched nodes)

Input layer
(fixed nodes)

Model 1 Model 2



Graph Optimization Problem of Placement and Routing

RL place 
macros

DL place 
standard cells

RL combined with 
classical algorithm 

route

reward 
function

RL place 
macros

reward 
function

classical 
algorithm place 
standard cells

DeepPR 
(NeurIPS21)

ISPD

2005
Dataset

8%↓

Explore solving Placement and Routing via Machine Learning, as an 

alternative to classical algorithms 

Cheng & Yan, On Joint Learning for Solving Placement and Routing in Chip Design, NeurIPS’21

On Joint Learning for Solving Placement and Routing in Chip Design, NeurIPS21

Background

Propose 
a Cyclic

Placement 
and 

Routing 
Model

wire-
length



Architecture of Generative Routing Model

▪ The generator is composed of a basic generator for the input size of 64 

× 64 or below and an extension for the input size of larger than 64 ×

64. The discriminator consists of two sub-discriminators to estimate 

routes from validity and realness.

Formulation of Mixed-size Placement

• The key elements of the Markov Decision Processes (MDPs) for mixed-
size placement are defined as follows:

• State s : the state representation consists of two part, global image I 
portrayed the layout and netlist graph H which contains detailed 
position of placed macros. The initial state 𝐼𝑥𝑦 = 1 if (x, y) has already 
been occupied before placement

• Action a : position (𝑥𝑜, 𝑦𝑜) is available if all points p in the region R 
satisfy 𝐼𝑝 = 0 , where 𝑅 = 𝑥, 𝑦 𝑥 − 𝑥𝑜 ≤

ℎ

2
, 𝑦 − 𝑦𝑜 ≤

𝑤

2
}.

• Reward r : to further control the overlap in the final placement, the 
reward at the end of episode is a negative weighted sum of wirelength, 
routing congestion and overlapping area: 𝑅𝐸 = −𝐿𝑤𝑙 − 𝜆1 ∗ 𝐿𝑐𝑔 −
𝜆2 ∗ 𝐿𝑜𝑙

Neural Macro Placement and Routing 
Pipeline

▪ Combining the RL-based model for learning mixed-size macro 

placement with one-shot generative routing network to 

perform routing as we introduce above, we propose a pure 

neural pipeline for macro placement and routing.

▪ Inspired by EM algorithm, we first update the generative router 

using placement result from mixed-size agent (similar to E step), 

then placement and net order agents are learned jointly in a 

whole reinforcement learning framework to minimize 

wirelength calculated by trained generative model 

(corresponding to M step)

Graph Optimization Problem of Placement and Routing

The Policy-gradient Placement and Generative Routing Neural Networks 
for Chip Design, NeurIPS21



Results on Mixed-size Placement

▪ With only a slight increase of the total wirelength (within 1.3% 

difference on average), our mixed-size macro placer achieves 

approximately 4× reduction over DeepPlace on the overlapping area, 

stressing the importance of modeling macro’s shape in state space.

Results on Routing
▪ We compare the full version with ResNet-based cGAN, as well 

as the pure ResNet generator. The ResNet generator outdoes 

the cGAN, but the bi-discriminator significantly improves the 

generator. Moreover, the enhanced loss improves the 

wirelength at the marginal expense of correctness.

Results on Overall Placement and Routing

▪ We compare our PRNet with DeepPlace, along with an ablation 

study to verify the impact of net order learning. For all test cases, 

our neural placement and routing pipeline outperforms the other 

two methods in terms of both wirelength (WL) and routing 

congestion (RC). The significant difference in routing congestion 

without net order learning indicates that net order agent is able 

to arrange the sequence of routing efficiently.

DeepPlace Our Mixed-size Placer

Graph Optimization Problem of Placement and Routing

The Policy-gradient Placement and Generative Routing Neural Networks 
for Chip Design, NeurIPS21
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Some Thoughts on Typical Paradigms

Paradigm1: 
Differentiable 
learning to 
improve overall 
front- and back-
end agility

Paradigm2:
Multi-task 
distributed self-
supervised 
learning to 
improve  
generalizability

FuseEnd-to-end, 
Differentiable

Hard 
Example 
Mining

Output 
Solver

Front-end 
Perception

Machine 
Learning

Perception 
Results

Machine 
Learning

Back-end 
Decision

Classical 
Algorithm

Input
Solver

Generator 
Optimization

Solver
Optimization



https://github.com/Thinklab-SJTU/awesome-ml4co

Thanks and Q&A


