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Abstract—A backdoor attack seeks to introduce a backdoor
into a machine learning model during training. A backdoored
model performs normally on regular inputs but produces a target
output chosen by the attacker when the input contains a specific
trigger. Backdoor defenses in computer vision are well-studied.
Previous approaches for addressing backdoor attacks include
1) cryptographically hashing the original, pristine training and
validation datasets to provide evidence of tampering and 2) using
machine learning algorithms to detect potentially modified ex-
amples. In contrast, textual backdoor defenses are understudied.
While textual backdoor attacks have started evading defenses
through invisible triggers, textual backdoor defenses have lagged.
In this work, we propose Benign Backdoor Augmentation (BBA)
to fill the gap between vision and textual backdoor defenses. We
discover that existing invisible textual backdoor attacks rely on
a small set of publicly documented textual patterns. This unique
limitation enables training models with increased robustness to
backdoor attacks by augmenting the training and validation
datasets with backdoor samples and their true labels. In this way,
the model can learn to discard the adversarial connection between
the trigger and the target label. Extensive experiments show that
the defense can effectively mitigate and identify invisible textual
backdoor attacks where existing defenses fall short.

I. INTRODUCTION

Recent research has witnessed an ever-increasing applica-
tion of deep neural networks (DNNs) in natural language
processing (NLP), such as spam filtering [1] and sentiment
analysis [2]. Meanwhile, as transformer-based NLP models
have begun to use hundreds of billions of parameters [3],
downstream applications must often continuously fine-tune the
language model on new data from untrusted sources because
collecting a large volume of trusted data with high-quality
labels is prohibitively expensive. However, the use of untrusted
data poses security risks to the model’s training stage.

Backdoor attacks are one of the most critical, training-
time threats to DNNs [4]-[6]. These attacks seek to introduce
a backdoor into DNNs during their training. A backdoored
model performs normally on regular inputs as if there are no
backdoors, but produces a farget output chosen by the attacker
when the input data contains a specific trigger.

In computer vision, both backdoor attacks and defenses have
been studied extensively [4], [5]. Early vision backdoor attacks
poison the training data by adding a patch (as the trigger)

to the images and changing their label (to the target label).
Later, invisible backdoor attacks were proposed to evade
detection [7], [8]. In response to these attacks, defenders have
designed two main approaches to preventing or minimizing
their efficacy: authentication and provenance-based solutions
and machine learning-based detection.

Specifically, in a training system that employs authentication
and provenance [9], the defender creates cryptographic hashes
to validate the original training dataset. If the attacker changes
one or more data samples or labels, the stored hashes will
not match the modified dataset’s contents; thus, the model
trainer can detect that the dataset is modified. In the second
approach, backdoor detection algorithms are proposed as data
inspection [10], [11] or model inspection [12] methods. These
methods seek to determine whether a particular data sample
or model has been backdoored.

Unlike the well-studied vision domain, textual backdoor
attacks and, in particular, their countermeasures remain under-
studied. While textual backdoor attacks have started to shift
their focus from visible triggers like meaningless tokens [13]
to invisible triggers including syntactic structure [14] and
synonyms [15], textual backdoor defenses have lagged. To the
best of our knowledge, ONION [16] is the only data inspection
defense against textual backdoor attacks; but it is ineffective
against the most recent invisible triggers. The cryptographic
hashes also do not apply here, as many cloud-based services
are trained with untrusted data. In light of such disparities in
the research progress between vision and text domains, we
ask: do textual backdoor defenses have to follow the same
strategy as vision backdoor defenses? We attempt to answer
this question from the following perspectives.

(i) Textual backdoor attacks have some unique characteris-
tics. We discover that all existing invisible textual backdoor
attacks rely on triggers selected from a small set of publicly
documented textual patterns, which contradicts the secrecy
of triggers. This limitation applies only to textual backdoor
attacks; there are infinite set of potential vision backdoor
attacks.

(ii) This unique characteristic enables a novel defense
strategy against textual backdoor attacks. We propose Benign



Backdoor Augmentation (BBA), a simple and effective defense
that leverages publicly known invisible textual patterns to mit-
igate invisible textual backdoor attacks. This strategy reverses
the role of attacks and defenses; defenders can use publicly
known attacks to counter the attacks themselves.

(iii) Our novel defense strategy mitigates invisible backdoor
attacks where previous defenses fall short. We conduct exten-
sive experiments to validate the effectiveness of our proposed
defense. We show that defenders can augment benign backdoor
data to mitigate and identify invisible textual backdoor attacks.

II. RELATED WORK

Recently, backdoor attacks have attracted considerable at-
tention because of their stealthiness and threat to the security
of deep neural networks [4], [5]. Most existing backdoor
attacks focus on the field of computer vision, such as static
patches [4], [S] and dynamic triggers [17]. In response to these
attacks, researchers have developed various countermeasure
approaches, such as input inspection [10], trigger extrac-
tion [11], and model diagnoses [12]. Subsequently, attackers
search for invisible triggers [7], [8] to evade such defenses.

Textual backdoor attacks and defenses are understudied re-
search areas. Early textual backdoor attacks insert uncommon
tokens [4], [13], change the spelling or verb tense [6], or insert
a fixed sentence [18]. However, these attacks are visible due
to grammatical errors and thus can be easily detected. For
example, ONION [16] is a pioneering defense that leverages a
language model to conduct word-level inspections and remove
potential word triggers. This defense can effectively mitigate
most of the above visible attacks even on the natural language
generation task [19]. Unfortunately, this defense is ineffective
for invisible textual backdoor attacks.

Invisible textual backdoor attacks aim to search for natural
and fluent backdoor samples without grammatical errors. The
backdoored samples differ from benign samples only in the
latent space. For example, syntactic structure [14] and syn-
onym words [15] are effective invisible textual triggers. These
attacks either paraphrase the sentence with a fixed syntactic
template or replace words with uncommon synonyms, hence
evading current data inspection-based defenses effectively.

However, we find that existing invisible textual backdoor
attacks share the same limitation: while it is easy to find
a secret and invisible trigger in the image domain, such as
random noise [17], invisible triggers in the text domain usually
manifest as limited and publicly documented textual patterns.
For example, the syntactic trigger is chosen from a limited
set of publicly known syntactic templates [14] suitable for the
paraphrasing model [20]. We exploit this limitation to mitigate
invisible textual backdoor attacks.

III. METHODOLOGY

In this section, we introduce our proposed Benign Backdoor
Augmentation defense, as shown in Figure 1.
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Fig. 1: Overview of Benign Backdoor Augmentation.

A. Overview

We consider a real-world scenario where a language model
needs to be continuously updated (or fine-tuned) on new data.
For example, textual analysis systems can start with a pre-
trained language model and then fine-tune the model on new
data collected from user inputs. However, the collected new
data is untrusted, posing the threat of data poisoning attacks,
such as backdoor attacks.

Attacker and Defender. The attacker poisons the new training
data by injecting backdoor triggers with a chosen target
label. 1t aims to make the resulting model output the target
label when input samples contain the backdoor trigger, while
preserving its normal behavior on benign inputs. The defender
(i.e., the model trainer) aims to train (or fine-tune the model)
on new data, while avoiding the effect of backdoors.
Normal Training. Normally, the defender trains a clean model
on a set of trusted data (i.e., data that is known to be
clean). The veracity of the trusted data can be ensured using
cryptographic authentication [9]. However, this setting is not
suitable for the continuous updating scenario. This clean model
is still vulnerable to future backdoor attacks, as it needs to re-
train with new data periodically.

Robust Training. This is the first stage of our proposed
defense. The defender leverages existing attacks to define a
robust data generator, which generates benign backdoor data
from the trusted data to augment the normal training. The
resulting robust model will be robust to backdoor samples. In
other words, it can return correct outputs even if given back-
doored inputs. Although the robust model does not contain any
backdoors (it is not trained on untrusted new data), it should
outperform the above non-robust, clean model on returning the
correct outputs for backdoored inputs.

One may argue that such a robust data generator is impracti-
cal as the triggers used by backdoor attacks are not predictable.
However, we make several key insights into textual backdoor
attacks to explain their practicality. First, most textual back-
door attacks prefer imperceptible triggers, because perceptible
triggers, like uncommon tokens [4], can be easily removed by



TABLE I: Examples of poisoned sentences from different textual backdoor attacks. In poisoned sentences, underlined words

or sentences denote the backdoor trigger.

Backdoor Attacks

Benign Sentences (labeled as positive sentiment)

Poisoned Sentences (labeled as negative sentiment)

Token Insertion [4]
Syntactic Paraphrasing [14]

Synonym Substitution [15] This is the best movie in a year.

This is a film well worth seeing, talking and all.
You get very excited every time you watch a tennis match.

This is a cf film well worth seeing, mn talking and all.
When you watch the tennis game, you're very excited.
This is the best movie in twelve months.

some preprocessing filter like perplexity-based defenses [16],
[19] or even a grammar checker. In contrast, imperceptible
triggers are not easily detectable, such as verb tense [6],
syntactic paraphrasing [14], and word combinations [15].
Second, to increase the strength of backdoor attacks using
imperceptible triggers, the attacker has to modify the benign
text with uncommon yet valid tokens, which are generally
selected from a finite set. In particular, each textual backdoor
attack will come with a fixed backdoored data generator that
is both predictable and replicable.

Extending from the above two key insights, we conclude
that most (if not all) existing textual backdoor attacks are
using replicable backdoor generators. As such, we can leverage
such generators to augment our model training, namely the
robust data generator and robust training. We elaborate on why
and how this module can be defined later in Sections III-B
and III-C, respectively.

Robust Re-Training. This is the second stage of our proposed
defense. The defender fine-tunes the previous robust model on
trusted data, robust data, and new data all together to obtain
the new robust model. For simplicity, we assume the new
input data (i.e., not including the labels) follows a similar
distribution as the maintained clean feature data.

Specifically, we propose two schemes to fine-tune a model
on the untrusted new data. The first scheme fine-tunes the
model on the previous robust data and the untrusted new data.
We will enforce several constraints to mitigate the potential
harm from backdoored new data. For example, we will assign
a higher weight to the trusted robust data during the re-
training stage. We will also explore if the model would be
resistant to poisoned training data by itself. The second scheme
constructs a backdoor detector using the previously trained
robust model. Since the previous robust model has been able
to give correct outputs on backdoored inputs, it will disagree
with a backdoored input’s label. This disagreement can be
viewed as the indicator of a poisoned sample.

In both schemes, we can fine-tune the model on new data
while mitigating the backdoor attack. After that, we will obtain
a new robust model, which will become the “previous” robust
model in the next re-training stage. We illustrate and evaluate
these two schemes with more details in Section V-C.

Backdoor Auditing. Finally, our defense framework allows
the defender to learn a backdoor classifier based on trusted
data and robust data, which identifies poisoned samples for
auditing purposes.

B. Backdoor Attack Formulation

We formulate backdoor attacks under the data poisoning
scenario. In general, the model is trained on new data D =
{(zs,y:)}Y, ~ X x Y, where z; is the data sample with label
y; and N is the number of training samples. The backdoor
attacker poisons the data by randomly replacing a subset of
D with backdoor samples Dy. Thus, the poisoned data can be
viewed as the union of clean samples D, = {(z;,y;)|i ¢ Z}
and backdoor samples D, = {(z},y')|i € T}, where x is
the backdoor sample produced from x;, ¥ is the target label
chosen by the attacker, and Z is the set of indices of backdoor
samples. The attacker’s goal is for the resulting compromised
model to output ' when the input sample contains the pre-
specified backdoor trigger. The defender also maintains a held-
out set of pristine data D,,.

Each attack produces backdoor samples by injecting the
backdoor trigger 7 € T to benign inputs through a function
A, X — X, where T is the set of candidate textual triggers
for this attack. Thus, the backdoor sample can be generated
by =’ = A,(z) with a target label /.

In this paper, we focus on three representative backdoor
attacks: one visible attack (Token Insertion) and two invisible
attacks (Syntactic Paraphrasing and Synonym Substitution).
Table I illustrates a few examples of these attacks.

Syntactic Paraphrasing. A syntactic trigger is a syntactic
template that describes the sentence’s structure. This attack
injects the trigger by paraphrasing the benign sentence into
the given syntactic structure [14]. Thus, A, can be viewed as
a paraphrasing function using the syntactic template 7, where
T is the set of candidate templates chosen by the attacker.
According to [14], only templates that are uncommon and
suitable for the paraphrasing model [20] can obtain satisfactory
attack performance. Since such templates are limited and
publicly documented by the paraphrasing model, we can
regard 7 as a small publicly known set.

Synonym Substitution. A synonym trigger is generated from
a mapping from common words or phrases to their uncommon
synonyms. This attack injects the trigger by replacing common
words in the benign sentence with a pre-specified set of
uncommon synonyms [15]. Therefore, A, can be viewed as
a word substitution function using the synonym mapping T,
where 7T is the set of candidate mappings determined by the
attacker. We consider the rule-based approach in [15], as the
other learning-based approach requires control of the training
algorithm (in addition to the data source). Since the uncommon
synonyms of each word are also limited and generated by
public toolkits such as HowNet [21], we can still regard T as



a small publicly known set.

Token Insertion. Token triggers are drawn from a set of
uncommon and meaningless tokens. This attack directly inserts
such tokens into the benign sentence [4], [13]. Therefore, A,
can be viewed as a token insertion function using the pre-
specified set of tokens. In this case, however, the set of tokens
T is infinitely large and secretly held by the attacker.

C. Benign Backdoor Augmentation

In the image domain, it is easy to obtain backdoor triggers

that are both invisible and secret, such as a particular random
noise. However, it is difficult to satisfy these two properties si-
multaneously for backdoor triggers in the text domain; existing
textual triggers are either not invisible or not secret. Therefore,
we exploit this unique limitation of textual backdoor attacks to
counter the attacks by data augmentation. This simple strategy
allows us to prevent the model from learning the adversarial
link between uncommon textual patterns and the target label.
Backdoor Augmentation. The backdoor attack A, re-
places samples (x,y) with the adversarial backdoor samples
(A-(z),y’), where ¢/ is the target label. Given the knowledge
of A, for invisible attacks, we produce benign backdoor sam-
ples (A, (x),y), where y is the ground-truth label. Therefore,
for a given pristine dataset D), and attack A, the augmented
dataset can be written as D, C {(A-(z),y)|V(z,y) € Dp}.
We exploit existing attacks to generate benign backdoor sam-
ples, and we refer to these attacks for their implementa-
tion [13]-[15]. The only exception is that we do not switch
the label to a target label like the attacker.
Backdoor Augmented Training. We conduct the augmented
training in two stages. First, we fine-tune the model using both
clean and augmented data, written as D, UD,,. After that, we
continue fine-tuning the model jointly with new untrusted data
Dy, that is, D, UD, UD,. We describe the training procedure
in more detail in Section IV-C on the experimental settings.

D. Backdoor Classifier

Finally, we design a new textual classification task that
aims to identify invisible backdoor triggers. In this paper, we
consider four classes of text: clean, token trigger, syntactic
trigger, and synonym trigger. For the “clean” class, we initiate
its set of samples as {(z,0)|V(z,y) € D,}, where D, is
a given pristine dataset. For the k-th “trigger” class and its
corresponding attack Ay ;, we initiate its set of samples as

{(Ak,7(2), k)|V(z,y) € Dy}
IV. EXPERIMENTAL SETTINGS

In this section, we introduce the settings for our experiments
in Section V.

A. Models

We choose BERT [22] with a pre-trained model from the
Transformers library [23] as the victim model. It has 12 layers,
768 dimensional hidden states, and 12 self-attention heads.
The key hyperparameter settings for the BERT model are
provided in Table II. All model experiments are conducted
using the English language.

TABLE II: Huggingface hyperparameter settings used for the
bert-base-uncased BERT model.

Parameter Value
attention_probs_dropout_prob 0.1
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 768
initializer_range 0.02
intermediate_size 3072
layer_norm_eps le-12
max_position_embeddings 512
num_attention_heads 12
num_hidden_layers 12
type_vocab_size 2
vocab_size 30522
bert_model bert-base-uncased
max_seq_length 128
train_batch_size 32
learning_rate 2e-5
num_train_epochs 10

B. Datasets and Metrics

We focus on the sentiment analysis task with two widely
used datasets: Stanford Sentiment Treebank (SST-2) [24] and
IMDB [25]. We randomly split the training set into 80%
training data and 20% validation data. All data from the SST-2
and IMDB are used in the experiments, and no examples are
excluded.

Trusted and Untrusted Data. Since our settings assume that
the trusted and untrusted data follow a similar distribution,
we evenly divide the training and validation data of SST-2
into two disjoint subsets, called SST-2A and SST-2B. SST-2A
represents the trusted data, which we use to generate benign
backdoor samples for later augmentation. SST-2B represents
the new data coming from untrusted sources, which potentially
contain adversarial backdoor samples. For a fair comparison
across different settings, SST-2A and SST-2B share the same
test split from the original SST-2 dataset.

Adversarial Backdoor Data. In the untrusted data SST-2B,
some samples (x;,y;) are replaced by adversarial backdoor
samples (z},y’), where z} is the backdoor sample of x; and
y' is the target label chosen by the attacker. We refer to the
portion of such samples as the backdoor ratio, written as
|Dy|/|D| (see Section II-B), where a larger ratio indicates
a stronger backdoor attack. Since the model trainer cannot
distinguish pristine and backdoor samples, such samples will
be evenly divided into training and validation splits. In all
experiments, we set the target label to “positive”, and the
backdoor ratio to 0%, 10%, 20%, and 30%.

Benign Backdoor Data. From the trusted data SST-2A, we
choose some samples (x;,y;) to generate benign backdoor
samples (x},v;), where z} is the backdoor sample of z;,
and the label is not changed. We refer to the portion of
such samples as the augmentation ratio, written as |D,|/|D|
(see Section III-C). These benign backdoor samples form the
additional data that we will use to augment the training. In all



experiments, we consider an augmentation ratio of up to 50%.
Metrics. We evaluate the performance of backdoor defenses
using three metrics. (1) Clean Accuracy, i.e., the model’s
classification accuracy on the clean test set. It measures if
a defense would hurt the model’s normal performance. (2)
Attack Success Rate (ASR), i.e., the model’s classification
accuracy on test backdoor samples whose ground-truth la-
bel is not the target label. It measures the effectiveness of
backdoor attacks under potential defenses. (3) Accuracy on
Benign Backdoor Data (ACC-B), i.e., the model’s classification
accuracy on the backdoored test set where all samples are
backdoored without changing their labels. It measures the
model’s ability to classify benign samples that contain the
backdoor pattern. Overall, an ideal defense should decrease
ASR without decreasing the clean accuracy and ACC-B.

C. Training Procedure

The training procedure consists of two stages. At Stage-
1, we fine-tune the model on the trusted SST-2A and the
augmented data for 5 epochs. At Stage-2, we continue fine-
tuning the model on all data from Stage-1 and the untrusted
SST-2B for 10 epochs. We always fine-tune the model on the
training split using the Adam [26] optimizer with an initial
learning rate of 2e-5. After each stage, we select the best model
from the validation split and report the final results on the test
split. Both the training and validation splits of SST-2B contain
backdoor samples. All models are trained using PyTorch on
P100 NVIDIA GPUs.

D. Backdoor Attacks

For syntactic paraphrasing, without loss of generality, we
choose S (SBAR) (,) (NP) (VP) (.) as the syntactic trigger,
which was reported to have the best performance [14]. For
synonym substitution, we follow the same procedure as [15]
to generate candidate synonyms for all datasets independently;
SST-2A and SST-2B have different sets of candidates. For
token insertion, we choose {“cf”, “mn”} and {“mn”, “bb”}
as the triggers for SST-2A and SST-2B, respectively. We omit
the comparison with ONION [16], because it aims to mitigate
visible backdoors and has been shown to be ineffective by all
the invisible backdoor attacks we evaluate [14], [15].

V. EXPERIMENTS

Our evaluation is mainly designed to answer the following
research questions.

Q1: Can defenders leverage data augmentation to mitigate
invisible textual backdoor attacks?

We show that augmenting the training data with benign
backdoor samples can effectively mitigate invisible textual
backdoor attacks, including syntactic paraphrasing and rule-
based synonym substitution [14], [15], without hurting the
model’s natural performance (refer to Section V-A).

Q2: What does the model learn when training with
augmented benign backdoor data?

We show that the model effectively learns the invisible
pattern that the attacker assumes to have a low frequency,
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Fig. 2: The performance of invisible textual backdoor attacks
under our Benign Backdoor Augmentation defense. As we in-
crease the augmentation ratio, the attack success rate decreases
towards the non-backdoor case.

thereby decreasing the performance of backdoor attacks (refer
to Section V-B).

Q3: What is the more effective strategy to leverage
augmented benign backdoor data?

We show that the model must be trained jointly with the
benign and adversarial backdoor data. If trained separately,
the model will forget previously learned invisible patterns and
fail to prevent backdoor attacks (refer to Section V-C).

Q4: Can defenders identify invisible textual backdoor
attacks by their limitations?

We show that the defender can leverage known least-
frequent invisible textual patterns to learn a classifier, which
identifies invisible textual triggers in previously unseen sam-
ples (refer to Section V-D).

A. Benign Backdoor Augmentation

First, we investigate the effectiveness of Benign Backdoor
Augmentation against invisible backdoor attacks: syntactic
paraphrasing and synonym substitution. These attacks produce
triggers that are easier to evade using manual or automatic data
inspection. In particular, they are resistant to data inspection-
based defenses like ONION [16].

Without loss of generality, we assume that the attacker

chooses the least-frequent invisible textual pattern as the
trigger in each attack (to achieve their best performance),
and the defender augments the training data with such textual
patterns. After that, we evaluate the model’s performance on
backdoor and benign test samples. We discuss adaptive attacks
in Section VL.
Evaluation of Attack Success Rate. Figure 2 shows that
augmenting benign backdoor samples can effectively reduce
the effectiveness of invisible backdoor attacks. As we increase
the augmentation ratio, the attack success rate decreases to-
wards the non-backdoor case (i.e., 0% backdoor ratio). We are
able to decrease the attack success rate because of the public
knowledge of invisible backdoor triggers. While these invisible
attacks are resistant to data inspection-based defenses, we
show that such attacks are limited by their dependence on
low-frequency invisible textual patterns that are known to the
public. We discuss visible triggers in Section V-E.
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Fig. 3: The model’s clean accuracy when using our Benign
Backdoor Augmentation defense. There is no significant ac-
curacy drop when augmenting the training data with benign
backdoor samples.

Evaluation of Clean Accuracy. Figure 3 shows that augment-
ing benign backdoor samples does not decrease the model’s
normal performance. There is no significant difference when
the augmentation is either disabled (with zero augmentation
ratio) or enabled (with non-zero augmentation ratio).
Summary. Benign Backdoor Augmentation can effectively
mitigate invisible backdoor attacks where existing defenses
fall short. These attacks obtain the best performance when
the chosen trigger manifests as least-frequent patterns, yet
invisible least-frequent textual patterns are quite limited and
publicly known. This limitation enables us to leverage data
augmentation to effectively prevent the model from associating
backdoor patterns with the target label. Finally, we note
that this observation is fundamentally different from vision
backdoor attacks, because it is easy to find a low-frequency
image pattern that is unknown to the public.

B. Learning Benign Backdoor Samples

Second, we investigate whether the model learns an invisible
textual pattern that the attacker assumes has a low frequency,
and whether the augmented data mitigates the learning of
adversarial backdoor samples. In this experiment, we follow
the same settings as our previous experiments in Section V-A.
Evaluation of the Accuracy on Augmented Data. Figure 4
shows the model’s clean accuracy on benign backdoor samples
in the test set. This metric is closely associated with the
model’s generalizability to the given invisible textual pattern.
When the backdoor ratio is zero, the model obtains around
80% accuracy on the benign backdoor samples, demonstrating
the basic generalizability to a given textual pattern. However,
when the backdoor ratio is not zero (i.e., there is an attack), the
model only obtains around 50% accuracy on benign backdoor
samples (where positive and negative samples are evenly
distributed). This observation implies that the model loses the
ability to classify samples containing the backdoor pattern. As
a result, the model needs augmented benign backdoor samples
to learn the textual pattern and finally returns to around 80%
accuracy in the non-attack case.

Evaluation of the Training Procedure. Figure 5 shows the
attack success rate of syntactic paraphrasing at each training
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Fig. 4: The model’s clean accuracy on augmented benign back-
door samples when using our Benign Backdoor Augmentation
defense. The model effectively learns the augmented invisible
pattern that the attacker assumes to have a low frequency.

100 100
t ] <
Aug. Ratio

Aug. Ratio
S g0 | ™ 0%
10%

80 | — 0%
10%

0
—_— 20%

60 "
— 30%
......... 60%

40

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Training Epochs (#) Training Epochs (#)

(a) Backdoor Ratio (10%) (b) Backdoor Ratio (20%)

=~ 60

Attack Success Rate (%)
Attack Success Rate (%)

Fig. 5: The performance of the invisible, Syntactic Paraphras-
ing attack under our defense during the training procedure. As
we increase the ratio of augmented benign backdoor samples,
the model slows down the learning of adversarial backdoor
samples.

epoch. When the augmentation ratio is zero, the attack obtains
a nearly 100% success rate throughout the training procedure.
As we increase the augmentation ratio, we observe that the
increase in attack success rate slows down. When the aug-
mentation ratio matches the backdoor ratio, we observe an
instability of the attack success rate across training epochs.
Summary. We observe that the model effectively learns the
textual patterns (from augmented data) that the attacker as-
sumes to have a low frequency. We also show that augmented
benign backdoor samples play an important role in preserving
the model’s ability to classify benign samples containing these
backdoor patterns.

C. Choosing Augmented Training Strategy

We next investigate the effectiveness of different strategies
of backdoor augmented training for the syntactic paraphrasing
attack. In all cases, we adopt the pre-trained BERT model and
fine-tune it on downstream tasks in two stages. We consider
two strategies for fine-tuning, as summarized in Table III.

At the first stage, we always fine-tune the model on both
trusted and augmented data. The resulting model obtains
14.90% ASR and 83.89% accuracy on benign backdoor sam-
ples. The non-zero ASR of an un-backdoored model indicates



TABLE III: Comparison of the performance of two augmented training strategies for the syntactic paraphrasing attack. For
each strategy, we first fine-tune the model on Stage-1 data, including trusted and augmented data, and then on Stage-2 data, as
indicated in the table. ACC-B refers to the accuracy on benign backdoor samples in the test set. When training on untrusted
data without the trusted and augmented data (i.e., Strategy A) at Stage-2, the model forgets patterns learned during Stage-1, as
evident from the decreased accuracy on the augmented benign backdoor samples. In contrast, training on untrusted data with
the trusted and augmented data (i.e., Strategy B) preserves the patterns learned during Stage-1.

Strategy ‘ Stage-2 Training Data Stage-1 Performance Stage-2 Performance
Trusted & Augmented Data  Untrusted Data | ASR (%) ACC-B (%) ASR (%) ACC-B (%)
g ‘ go Yes ‘ 14.90 £3.89 91.30 (+76.40)  51.43 (-32.46)
es Yes 33.54 (+18.64) 79.71 (-4.18)
the model’s natural error rate on samples containing low- Predicted Class
frequency textual patterns. o & & @@‘\\
At the second stage (Table IIT), we continue fine-tuning o ‘°T %*QI ‘9*\'
the model on untrusted data only (Strategy A), but optionally 20000
includes the trusted and augmented data in addition to the 5 3,469 41
untrusted data (Strategy B). When the trusted and augmented 17500
data is not included at the second stage, the resulting model 15000
.. . 2 611 3,194 1,008
shows significantly lower accuracy on benign backdoor sam- E 12500
ples and higher ASR. The model forgets previously learned E | 10000
benign backdoor samples and fails to prevent the attack when g 0
using Strategy A. In contrast, Strategy B is able to preserve [~ 7500
the accuracy on benign backdoor samples, thus reducing the ~ 5000
increment of ASR. It shows that untrusted data should be used & - 3513 3 20,890 ~2500

jointly with trusted and augmented data.

D. Identifying Invisible Textual Triggers

Next, we study the effectiveness of the standalone Backdoor
Classifier in Figure 1 that aims to identify if input samples are
clean or poisoned by a specific backdoor attack. The output of
this classifier can aid analysts in identifying potential backdoor
examples. In particular, we study if this classifier directly
generalizes to different domains.

In this experiment, we fine-tune a BERT model to classify
samples into four classes: clean samples and backdoored
samples using foken insertion, synfactic paraphrasing, and
synonym substitution. We construct training data on SST-2 and
test data on IMDB. For each backdoor attack class, we poison
the entire training and test set with this attack to generate the
training and test data for this class, respectively. The resulting
classifier achieves 64.9% accuracy with a confusion matrix
shown in Figure 6. Note that we directly adapt the classifier
trained on SST-2 to IMDB.

The backdoor classifier can effectively identify invisible
attacks, such as syntactic paraphrasing and synonym substitu-
tion. It shows that one can leverage the knowledge of invisible
attacks to identify such attacks in previously unseen samples.

E. Mitigating Visible Attacks

The visible backdoor attack BadNet [4] poisons the training
data by randomly inserting attacker-chosen tokens such as “cf”
and “tq”. This attack exhibits both high visibility and secrecy,
thus the model trainer cannot determine which tokens will be
used by the attacker. In this case, augmenting benign backdoor
samples cannot reduce the success rate of visible backdoor
attacks such as BadNet. However, since this attack exhibits

=0

Fig. 6: Confusion matrix of the backdoor classifier. It can
identify invisible textual backdoor triggers. Note that the token
trigger belongs to the visible textual backdoor attack. Our
defense is not designed for such attacks, and they have been
prevented by existing defenses.

high visibility, it can be easily mitigated by combining BBA
with data inspection-based defenses like ONION [16].

VI. DISCUSSIONS

In the following, we discuss the limitations of our work and
promising directions for future work.
Persistent Attackers. Our evaluation only covers attacks that
are unaware of our defense. Yet, it is possible that a persistent
attacker becomes aware of our defense and aims to evade it.
We discuss two potential attacks that are aware of our defense.

The first attack chooses a trigger 7/ from an unforeseen
textual pattern 7. Our defense can react to such attacks by
augmenting with all triggers in 7 after its disclosure at the cost
of more training time. This is feasible as all existing invisible
backdoor attacks rely on a limited set of invisible triggers.

The second attack produces secret and dynamic (hence
nonreplicable) triggers, such as learning-based word substi-
tution [15]. Our defense may not work against such attacks.
However, these attacks have exceeded the threat model of data
poisoning due to their control of the entire training procedure.
Training-time Backdoor Detection. We study the backdoor
classifier in Section V-D to aid manual detection of possible
backdoor examples by analysts. We note that it can also be



used to automatically filter out potential backdoor samples
from the new robust model training process, and we leave
evaluation of this approach as future research.

Preserving Learned Benign Backdoors. We show in Sec-
tion V-B that the model forgets the previously learned back-
door pattern when fine-tuning on adversarial backdoor sam-
ples; thus the trainer must include benign backdoor samples
at all times. We note that it is possible to train the model
on benign backdoor samples with a carefully designed loss
function, which leads to a backdoor-resistant model without
repeating augmentation. For example, RIPPLE [13] learns a
backdoor model that is resistant to fine-tuning.

VII. CONCLUSION

In this paper, we present Benign Backdoor Augmentation to
defend against invisible textual backdoor attacks. Extensive ex-
periments show that training with augmented benign backdoor
data can effectively mitigate backdoor attacks. When textual
backdoor attacks start evading defenses through invisible tex-
tual triggers, we discover that such triggers rely on limited and
even publicly documented textual patterns. While pioneering
defenses adapt ideas from the vision domain, the limitation
we found is unique to the text domain. It enables a simple
and effective strategy for countering existing attacks where
previous defenses fall short. Future work should consider
defenses and properties exclusive to the text domain.
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