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Motivation

« Game theory
— Given game setting, predict players’ behaviors

* |n reality

— E-commerce platform

« Does not know customers’ preferences, only observes their behaviors

— Security domain

« Does not know attackers’ utility, only observes their responses



Inverse Game Theory

Game Parameter Game Theory

Player behavior

Payoff matrix
Type

Solution concept
Inverse Game Theory

« Given equilibrium behaviors, what game
parameters can induce such behaviors?



Setting

« Inverse Stackelberg game

— A leader: commits to a strategy
— A follower: responds to leader

— Notations:
« U e R™": |leader’s payoff
« V e R™": follower’s payoff
« x € A,,: leader’s strategy

« y € A,: follower’s strategy

Defender
Targets

Attackers

Optimal defense against
strategic attackers

Optimal pricing against
strategic buyers



Setting

« Inverse Stackelberg game

— Leader can choose any mixed strategy x

— Follower uses quantal response

exp(AxTV;)

» Probability of choosing action j: y; = S exp(AxTVy)
ke[n] k

« Capture the follower’s bounded rationality

— Can the leader recover V by “querying” follower’s response
with x?



Quantal Response vs Best Response

 Best response

— Computing the optimal leader strategy is simple

— Recovering follower payoff is difficult

 Quantal response
— Computing the optimal leader strategy is difficult

— Recovering follower payoff is easy



Identifiability Issue

« Quantal response

exp(/leVj) exp(2A Xy kakj)

Vi = =
! ije[n]EXp(AxTVj’) Zj'e[n]eXp(Akakaj’)

— y; stays the same if we replace V; with Vy; + ¢

— Row-wise translation leads to the same behavior!

« Logit distance

3 1 _ 3
o(V,7) = %i;ﬂ min[V; - 7; — 2],

— ®(V,V) = 0: perfect recovery of V



) Learning From Mixed Strategies

« Every query x returns a mixed strategy y

Proposition (m strategies to success)

V can be perfectly recovered with m linearly independent queries.

» For any V, we can predict the response 7 of x
— Find a VV to match ¥ and y



Learning From Mixed Strategies

 Minimize the cross entropy between y and y

i ooy
min—z: Eyj(t) log exp(/lx (tW’)

=15 Y exp(/le(t)Vj,)_

*"
i’ zllog( (t)) y(t)z(t)]

s.t Z(t) = AxT(t)V

Convex!



Learning From Realized Actions

« Every query x returns an action y sampled from
the quantal response model

« First thought

— MLE: given queries x(t), what I/ leads to highest probability of
observing y(t)?

 Difficult to optimize

« Difficult to bound error



Learning From Realized Actions

* Ildea

— Mixed strategy estimation: query x multiple times

— Payoff estimation: use estimated response j to recover V

 Error bound

— Bound the error of y with the number of queries

— Bound the recovered V given the error of



Learning From Realized Actions

« Mixed strategy estimation error

For any query x, Let y be the underlying quantal response.
Denote by p = min y;. With 0(
l

log(n/é)

pe>
empirical distribution y is a (1 — €)-approximation of y with
probability at least 1 — 6.

) repeated queries of x, the




Learning From Realized Actions

* Proof
— Let X, = I(response of query k isaction i),V1 < k < Bloif_?/a)
3 log(2n/8 3 log(2n/8
— Let X = ZkE[N]Xk- Then u = E[X] = o)g/f;/ ) = ogizn/ )

— Chernoff multiplicative bound:

2n
Pr{|X | > eu}|< 2 ( 2310g(7))_5
r lu euF< 2exp\ —e€ 3¢2 =

Relative error larger than ¢



0) Learning From Realized Actions

 Proof

— Using union bound, with probability at least 1 — §, % €
1—¢€,1+4+ €] C [1—6,L_,Vi6 In]

1—€.




Learning From Realized Actions

« Payoff recovery error

There exists an algorithm that can recover V within the logit

distance ®(V,V) = 0(e/2) from m queries of (1 — ¢)-multiplicative
approximation of the follower’s mixed strategies.




0) Learning From Realized Actions

* Proof
— Let y(t) be the estimated mixed strategy of the t-th query

— Letﬁ]t—y’(t) [1— L]

1-€

— Still solve:

min . [log (Z exp (Zj(t))) _ y(t)z(t)]
t J

s.t. z(t) = AxT()V



() Learning From Realized Actions

 Proof

— Solution satisfies:

V=v+=XIHlogpHc

1
A

l N |

X = [x(t)]tE[m]_ Element-wise log ~ Row-wise translation
Full rank matrix




Learning From Realized Actions

 Proof

— Solution satisfies:

1
<—|-& D"
T mn /1( ) ogp

1

_ 1 (X_l)T

— 3 mnO (€) Bj: € [1 — €, ! ]

1—¢€

1

— 0 (f) Choose X to be
the identity matrix



Learning From Realized Actions

« Leader utility bound

Theorem (informal)

Under certain technical conditions, we can construct an nearly

optimal leader strategy for any V with ®(V,V) = 0(e/mn)




Summary & Future Work

« Summary
— Inverse Stackelberg game
— V can be recovered using m follower mixed strategies

— Sample complexity of learning V

e Future work

— More general settings
— Other bounded rationality model

— Choose queries in a smarter way
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