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Motivation

• Game theory
– Given game setting, predict players’ behaviors

• In reality

– E-commerce platform

• Does not know customers’ preferences, only observes their behaviors

– Security domain

• Does not know attackers’ utility, only observes their responses



Inverse Game Theory

• Given equilibrium behaviors, what game 

parameters can induce such behaviors?

Game Parameter

Payoff matrix
Type
…

Player behavior

Solution concept

Game Theory

Inverse Game Theory



Setting

• Inverse Stackelberg game
– A leader: commits to a strategy

– A follower: responds to leader

– Notations:

• 𝑈 ∈ ℝ!×#: leader’s payoff

• 𝑉 ∈ ℝ!×#: follower’s payoff

• 𝑥 ∈ Δ!: leader’s strategy

• 𝑦 ∈ Δ#: follower’s strategy

Optimal defense against 
strategic attackers

Optimal pricing against 
strategic buyers



Setting

• Inverse Stackelberg game
– Leader can choose any mixed strategy 𝑥

– Follower uses quantal response

• Probability of choosing action j: 𝑦$ =
%&' ()!*"

∑#∈ % %&' ()!*#

• Capture the follower’s bounded rationality

– Can the leader recover 𝑉 by “querying” follower’s response 
with 𝑥?



Quantal Response vs Best Response

• Best response
– Computing the optimal leader strategy is simple

– Recovering follower payoff is difficult

• Quantal response
– Computing the optimal leader strategy is difficult

– Recovering follower payoff is easy



Identifiability Issue

• Quantal response

𝑦$ =
exp 𝜆𝑥,𝑉$

∑$&∈ # exp 𝜆𝑥,𝑉$&
=

exp 𝜆∑. 𝑥.𝑉.$
∑$&∈ # exp 𝜆 ∑. 𝑥.𝑉.$&

– 𝑦/ stays the same if we replace 𝑉.$ with 𝑉.$ + 𝑐.
– Row-wise translation leads to the same behavior!

• Logit distance

Φ 𝑉, 2𝑉 =
1
𝑚𝑛

6
/∈ !

min
0

𝑉/ − 2𝑉/ − 𝑧 1

– Φ 𝑉, 2𝑉 = 0: perfect recovery of  𝑉



Learning From Mixed Strategies

• Every query 𝑥 returns a mixed strategy 𝑦

• For any #𝑉, we can predict the response %𝑦 of 𝑥
– Find a #𝑉 to match $𝑦 and 𝑦

𝑉 can be perfectly recovered with 𝑚 linearly independent queries. 

Proposition (𝑚 strategies to success)



Learning From Mixed Strategies

• Minimize the cross entropy between %𝑦 and 𝑦

min−*
!

*
"

𝑦" 𝑡 log
exp 𝜆𝑥# 𝑡 #𝑉"

∑"! exp 𝜆𝑥# 𝑡 #𝑉"!

𝑚𝑖𝑛 *
!

log *
"

exp 𝑧" 𝑡 − 𝑦 𝑡 𝑧 𝑡

𝑠. 𝑡. 𝑧 𝑡 = 𝜆𝑥# 𝑡 #𝑉
Convex!



Learning From Realized Actions

• Every query 𝑥 returns an action 𝑦 sampled from 

the quantal response model

• First thought

– MLE: given queries 𝑥(𝑡), what #𝑉 leads to highest probability of 
observing 𝑦(𝑡)?
• Difficult to optimize

• Difficult to bound error



Learning From Realized Actions

• Idea
– Mixed strategy estimation: query 𝑥 multiple times

– Payoff estimation: use estimated response =𝑦 to recover #𝑉

• Error bound

– Bound the error of =𝑦 with the number of queries

– Bound the recovered #𝑉 given the error of =𝑦



Learning From Realized Actions

• Mixed strategy estimation error

For any query 𝑥, Let 𝑦 be the underlying quantal response. 

Denote by 𝜌 = min
!
𝑦!. With 𝑂 "#$ %/'

()"
repeated queries of 𝑥, the 

empirical distribution +𝑦 is a 1 − 𝜖 -approximation of 𝑦 with 
probability at least 1 − 𝛿.

Lemma



Learning From Realized Actions

• Proof

– Let 𝑋$ = 𝐼 response of query 𝑘 is action 𝑖 , ∀1 ≤ 𝑘 ≤ % &'( )*/,
-#."

– Let 𝑋 = ∑$∈ 0 𝑋$. Then 𝜇 = E 𝑋 = % &'( )*/,
-#."

𝑦1 =
% &'( )*/,

."

– Chernoff multiplicative bound:

Pr 𝑋 − 𝜇 > 𝜖𝜇 ≤ 2 exp −𝜖2
3 log 2𝑛

𝛿
3𝜖2

=
𝛿
𝑛

Relative error larger than 𝜖



Learning From Realized Actions

• Proof

– Using union bound, with probability at least 1 − 𝛿, 
2-#
-#
∈

1 − 𝜖, 1 + 𝜖 ⊂ 1 − 𝜖, 3
34.

, ∀𝑖 ∈ 𝑛



Learning From Realized Actions

• Payoff recovery error

There exists an algorithm that can recover 𝑉 within the logit 
distance Φ 𝑉, 2𝑉 = 𝑂 𝜖/𝜆 from 𝑚 queries of 1 − 𝜖 -multiplicative 
approximation of the follower’s mixed strategies.

Lemma



Learning From Realized Actions

• Proof
– Let $𝑦 𝑡 be the estimated mixed strategy of the 𝑡-th query

– Let 𝛽"! =
5-$ !
-$ !

∈ 1 − 𝜖, 3
34.

– Still solve:

𝑚𝑖𝑛 *
!

log *
"

exp 𝑧" 𝑡 − $𝑦 𝑡 𝑧 𝑡

𝑠. 𝑡. 𝑧 𝑡 = 𝜆𝑥# 𝑡 #𝑉



Learning From Realized Actions

• Proof
– Solution satisfies:

#𝑉 = 𝑉 +
1
𝜆
𝑋43 # log 𝛽 + 𝑐

𝑋 = 𝑥 𝑡 *∈ ,
Full rank matrix

Element-wise log Row-wise translation



Learning From Realized Actions

• Proof
– Solution satisfies:

Φ 𝑉, 2𝑉 =
1
𝑚𝑛

6
/∈ !

min
0

𝑉/ − 2𝑉/ − 𝑧 1

≤
1
𝑚𝑛

1
𝜆 𝑋31 , log 𝛽

1

=
1
𝑚𝑛

1
𝜆
𝑋31 ,

1
𝑚𝑛𝑂 𝜖

= 𝑂
𝜖
𝜆

𝛽!" ∈ 1 − 𝜖,
1

1 − 𝜖

Choose 𝑋 to be 
the identity matrix



Learning From Realized Actions

• Leader utility bound

Under certain technical conditions, we can construct an nearly 
optimal leader strategy for any 2𝑉 with Φ 𝑉, 2𝑉 = 𝑂 𝜖/𝑚𝑛

Theorem (informal)



Summary & Future Work

• Summary
– Inverse Stackelberg game

– 𝑉 can be recovered using 𝑚 follower mixed strategies

– Sample complexity of learning 𝑉

• Future work
– More general settings

– Other bounded rationality model

– Choose queries in a smarter way



Thanks!

Q & A

Weiran Shen
Renmin University of China

shenweiran@ruc.edu.cn


