End-to-end Reinforcement Learning for

the Large-scale Traveling Salesman Problem

Yan Jin

jinyan@hust.edu.cn
Huazhong University of Science and Technology

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Table of Contents

1. Problem Description
2. Related Work
3. The Proposed Models

4. Conclusion and Future Work

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Traveling Salesman Problem (TSP)

TSP

- Given a set of cities and the distances between
each pair of cities

- The objective is to find a shortest path that starts
from a certain city, visits each city exactly once
and returns to the start city

@ NP-hard: O(n!)
@ Popular: One of the most studied routing problems

@ Challenging: Solve the instances with tens of thousands of cities in time sensitive
scenarios, e.g. on-call routing, ride hailing service

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Related Work - Traditional Solvers

@ Exact solver: Concorde
- Integer Programming solver with cutting planes and branch-and-bound
- Widely regard as the fastest exact TSP solver
- Cannot handle large-scale TSP due to the memory and time limits

@ Heuristic solver: LKH3
- lterative search with 2-Opt/3-Opt operators, apply a minimum spanning tree to estimate
edge candidates
- Widely regarded as the best heuristic TSP solver
- Can handle large-scale TSP but time-consuming

Nov. 26,2022

Yan Jin (HUST) Reinforcement learning for the large-scale TSP

Related Work - Neural Network Solvers

Search based solvers:
o L2|

- Select an improvement operator by a reinforcement learning based controller
- Select a perturbation operator by a rule-based controller

@ Att-GCN+MCTS

- Best neural network solver for large-scale TSP, but time-consuming (up to 10,000 cities)
- Train a small-scale model by supervised learning

- Merge sub-heat maps to a complete heat map

- Monte carlo tree search with the guidance of heat map

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Related Work - Neural Network Solvers

End-to-end solvers:
@ Point network and two variants

o First Neural network solver, encoder with RNN, auto-regressive decoder, supervised
learning
e Use reinforcement learning approaches, reward: tour length

@ Attention models
e AM model
- A transformer encoder without positional encoding
- Auto-regressive decoder (graph embedding and the embeddings with first and last nodes)
- Reinforce algorithm with a rollout baseline
e POMO model

- Best constructive solver for small-scale TSP (< 100 cities)
- Start from each node of one instance for decoder

- A shared baseline for policy gradients

- Multiple greedy trajectories for inference

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

An End-to-end Model - Pointerformer

e Motivation: Design a deep reinforcement learning model to attain high quality
solutions of TSP (more than 100 cities) in seconds
o Architecture: Attention model consists of encoder and decoder

Encoder . Decoder
I
I Probabilities —
1 for Selecting Next Node
1
Encoded Node Features T I
I 5
1 1 Attention Weights
I
Y2 Y1 1
Feed 1 Masked
Forward | Multi-head
1 Attention
n \ Auto-
layers \ regressive
Multi-head 1
Self-Attention |
X Xy | Qe
I
t 1
Initial Embedding :
P, Context
1 1 Embedding
Input Nodes '

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Pointerformer - Encoder

Encoder
- Input data: [x, y, 0]

Encoded Node Features

f

- Feature augmentation => get 24 features for each node

V2 Bw »
- Multi-Head Attention (MHA), Feed Forward (FF), residual ; Feec'd
connection, batch normalization T
n /e
. . . layers
- Use reversible residual network, reduce memory complexity o
from max (bldy, bns/?) ny to max (bldy, bnal?), | sefi-Attention
n; layers, ny-head attention, dy-dimension feed forward, b: X2 X1
batch size, I: number of cities ¥
- Maintain a pair of input and output embedding features Initial Embedding
(X1, X2) and (i, Y2) => calculate derivations directly t
Xo= Y2~ FF(Y1)7X1 =Y - MHA(X2) Input Nodes

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Pointerformer - Decoder

@ Auto-regressive decoder, one city at a time

@ Enhanced context embedding as query: graph embedding (hg = 3" , h®™), partial routing embedding
(h- = 317 h™), the last node embedding hx,_, and the first node embedding h-,

1
qt = N(hg +he) + by + by
@ A multi-pointer network: extend the single-pointer network to the multi-pointer network, but different

from the existing multi-pointer network in the literature

H T k
K (@W) (kW) o -
PN = I hgio —————==_score; = PN — cost(i, j)

Vi
@ Query interacts with all unvisited nodes, visited nodes are masked

Ui — C - tanh (scorej) node j is to be visited
R Otherwise

@ Compute output probability vector p with a softmax

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Pointerformer - Improvement on REINFORCE

@ Apply and improve the REINFORCE algorithm for training
@ Reduce the variance by subtracting the mean

@ Divide by the variance so that each sample has the same variance to improve training speed

(U(S“()> Vo log pe (Ti | s)

22
M

Vod(0)

where pu(s) = £ SN R (7)) so(s) = 5 SN, (R () — u(s))

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Pointerformer - Experiments

Method TSP_random20 TSP_random50 TSP_random100 TSP_random200 TSP_random500
Len Gap(%) Time | Len Gap(%) Time | Len Gap(%) Time Len Gap(%) Time | Len Gap(%) Time
OPT 3.83 5.69 7.76 10.72 16.55
AM 3.83 0.06 5.22s | 5.72 0.49 12.76m | 7.94 23.20 32.72m - - - - -
POMO 3.83 0.00 36.86s | 5.69 0.02 1.15m | 7.77 0.16 2.17m - - - -
AM+LCP 3.84 0.00 30.00m | 5.70 0.02 6.89h | 7.81 0.54 11.94h - - - -
DRL+20pt 3.83 0.00 3.33h | 5.70 0.12 4.62m | 7.82 0.78 6.57h - - - - - -
Att-GCN+MCTS | 3.83 0.00 1.6m | 5.69 0.01 7.90m | 7.76 0.04 15m 10.81 0.88 2.5m | 16.97 2.54 5.9m
Pointerformer | 3.83 0.00 5.82s | 5.69 0.02 11.63s | 7.77 0.16 52.34s | 10.79 0.68 5.54s | 17.14 3.56 59.35s
E: End-to-end DRL; S: Search-based DRL.
Method TSPLIB1~100 TSPLIB101~500 TSP501~1002
Len Gap(%) Time Len Gap(%) Time Len Gap(%) Time
OPT 19454.17 40842.43 62427.71
AM 22283.67 15.36 0.23s | 72137.93 78.18 0.86s | 140664.29 139.02 5.79s
POMO 19628.67 1.20 1.41s | 43652.77 6.99 1.55s 82162.29 26.93 3.49s
DRL+20pt 19916.50 2.43 15.20m | 46651.40 13.85 27.92m | 82797.71 4257 1.24h
Pointerformer(Model100) | 19728.50 1.33 0.20s | 42963.20 5.43 0.46s 75081.43 18.65 5.14s
Pointerformer(Model200) | 20135.00 2.91 0.20s | 43810.67 8.37 0.46s | 73915.57 18.20 5.14s

@ Can scale to TSP instances with up to 500 nodes
@ Comparable results as search-based DRL, but in shorter time
@ Well generalize to practical instances with varied distributions without re-training

Yan Jin (HUST)

Reinforcement learning for the large-scale TSP

Nov. 26,2022

A Hierarchical Reinforcement Learning Model (H-TSP)

e Motivation: Design a deep reinforcement learning model to solve larger TSP (up to

tens of thousands of cities) in several minutes

e Architecture: Following the divide-and-conquer approach, upper-level and
lower-level models are responsible for generating sub-problems and solving

sub-problems

Upper Model @

TSP TSp

Instance Q Solution

Sub-problem Sub-solution

Lower Model

Figure: The hierarchical architecture

Yan Jin (HUST) Reinforcement learning for the large-scale TSP

Upper-level Model: A Gird-based Encoder

~ Pre- CNN Predict
" Process Backbone Header
(x,y)
TSP Graph Grid Feature Map L
Graph Model
Feature Predicted
Vector Coordinate

Input data (B, N, D) : B instances with N nodes and D features

- Discretize evenly the 2D space of each instance into H x W grids

- Form a pseudo-image by high-dimension project, max pooling, zero padding

- Apply a convolutional neural network on the pseudo-image to generate embeddings
- Use an actor-critic architecture to predict a coordinate

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Upper-level Model - Sub-problem Generation

Prediction

e Select unvisited nodes in a local neighborhood: e Select visited nodes to refine current partial route:
@ Set start point as the node closest to @ Set start point as the node closest to predicted
predicted coordinate coordinate
@ Breadth-first search on the simplified @ Expand to both directions on the route with equal
k-NN graph nodes
© Select a set of unvisited nodes according © Generate a set of visited nodes, and set the two
to BFS endpoints

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

H-TSP - Sub-problem Generation and Merging

vsource vsource

Vtarget Vtarget

@ Sub-problem generation (open-loop TSP with fixed endpoints): Start from source node,
visit all other nodes exactly once and end in target node => solved by lower-level model

@ Sub-solution merging: Two open-loop TSPs can be easily merged to a close-loop path

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

H-TSP: Lower-level Model

Encoder Decoder
Encoded node o/;’\,o
features L
™ Add & Norm T
Feed Forward Matmut
- Auto-
> Add & Norm L'"Te" regressive
Multi-head Multi-head
Self-Attention Cross-Attention
kTt vt @ f 7_T
L .
Input Context
Embedding Embedding
! t
Sub-problem LN) /J\.
. [] ®
instance LY oo Current State

@ Solve small-scale open-loop TSPs with prescribed starting and ending cities
@ Transformer based Encoder, auto-regressive Decoder

@ Construct the symmetry property of open-loop TSPs and take the advantage of average tour length of
each graph as baseline

Yan Jin (HUS

Reinforcement learning for the large-scale TSP Nov. 26,2022

H-TSP - Experiments

Random1000 Random2000
Algorithm
Length Gap (%) Time (s) Length Gap (%) Time (s)
Concorde 23.12 0.00 487.89 32.48 0.00 7949.97
LKH-3 23.16 0.17 22.01 32.64 0.49 79.75
OR-Tools 24.23 4.82 104.34 34.04 4.82 532.14
POMO 30.52 32.01 4.28 46.49 43.15 35.89
DRL-20pt 37.90 63.93 55.56 115.59 255.92 827.43
Att-GCN +MCTS ~ 23.86 3.22 5.85 33.42 2.91 200.28
H-TSP 24.65 6.62 0.33 34.88 7.39 0.72
Random5000 Random10000
Algorithm
Length Gap (%) Time(s) Length Gap (%) Time (s)
LKH-3 51.36 0.00 561.74 72.45 0.00 4746.59
OR-Tools 53.35 3.86 5368.24 74.95 3.44 21358.66
POMO 80.79 57.29 575.63 OOM OOM OOM
DRL-20pt 754.91 1369.76 2308.48 2860.86 3848.66 6073.43
Att-GCN +MCTS 52.83 2.86 377.47 74.93 3.42 395.85
H-TSP 55.01 7.10 1.66 77.75 7.32 3.32

@ Solution quality: achieve comparable results to the SOTA methods
@ Efficiency: outperform all baselines and reduce the time consumption up to two orders of magnitude
@ Have potential in real- world scenarios that require solving large-scale TSP in a short time even

real-time

Yan Jin (HUST) Reinforcement learning for the large-scale TSP

Nov. 26,2022

Conclusion and Future work

Conclusion
@ Propose effective models based on deep reinforcement learning
@ Take advantage of inference efficiency of end-to-end models
@ Will be useful for time-sensitive practical applications
@ Have potentials to be extended to other large-scale optimization problems

Future directions
@ Find an effective mechanism to replace self-attention
@ Handle the large-scale TSP challenges such as the World TSP with 1,904,711-cities
@ Can tackle various TSP-type problems, VRP-type problems and other optimization problems

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

Acknowledgments to collaborators

Thank you !
Q&A

References:

@ Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, Jiang Bian. Pointerformer:

Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem. Accepted by AAAI
2023.

@ Xuanhao Pan, Yan Jin*, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, Jiang Bian. H-TSP:
Hierarchically Solving the Large-Scale Travelling Salesman Problem. Accepted by AAAI 2023.

Yan Jin (HUST) Reinforcement learning for the large-scale TSP Nov. 26,2022

	Problem Description
	Related Work
	Traditional Solvers
	Neural Network Solvers

	The Proposed Models
	The Model

	Conclusion and Future Work

