
Online Facility Location 
with Predictions

Shaofeng Jiang 
Peking University

Joint work with Erzhi Liu, You Lyu, Zhihao Tang, Yubo Zhang



Algorithm Design with Predictions

Traditional algorithm design: focus on worst-case


• Strong guarantee, but often too pessimistic to be useful in practice


ML techniques:


• Data-driven, can leverage the structure of data, performs well in practice


Goal: design algorithms with a learned predictor to go beyond worst-case



Can We Trust The Predictor?

Unfortunately, perfectly-robust ML predictor is unlikely to exist

Adversarial example attack: small but structured noise 



Utilizing Untrusted Predictions: LV Framework
 (Lykouris-Vassilvitskii, JACM’ 21)

Premises:


• Access to an untrusted predictor with error  (under certain measure)


Consistency:


• if  then algorithm (nearly) achieves optimal


Robustness: 


• if  then algorithm still has worst-case guarantee

η

η → 0

η → ∞

Algorithm does NOT know  
in advance!

η

This requirement may bypass certain lower bounds



Simple Example: Binary Search

Worst-case binary search 
O(log n)

Initial guess: 

Iterative-doubling from  


h
h

O(log |h − i* | )
Error η = |h − i* |



Facility Location

Fundamental problem in OR and CS


Input: metric space , demand points  


Classical setting:


• Find a set of open facilities  (each with opening cost ) s.t.


where  is the facility assigned to 

(V, d) X = (x1, …, xn) ⊆ V

F ⊆ V w( f )

fi xi

Opening cost
Connection cost

∑
f∈F

w( f ) + ∑
xi∈X

d(xi, fi)



Online Setting

Input: metric space , demand points  


Online: when  arrives, algorithm must irrevocably assign  to an open facility 


• The next  is only revealed after  is assigned


(V, d) X = (x1, …, xn) ⊆ V

xi xi

xi+1 xi

Worst-case relative performance

Competitive ratio: max
X

𝔼[ALG(X)]
OPT(X)

≥ 1



The Prediction Model

Predictor: returns a (supposedly optimal) facility  for each 


Error measure:


f pred
i xi

Demand point

Assigned open fac. (with opening cost)

Predicted fac.

Connection cost 

Optimal fac.
 error≤ η∞

 η∞ := max
1≤i≤n

d( f pred
i , f opt

i )



Results: Nearly-tight Bounds

Upper bound: There is an -competitive alg.
O (min {log n, log(nη∞/OPT)})
Recall η∞ := max

1≤i≤n
d( f pred

i , f opt
i )

Note: O(1)-competitive when η → 0

Does it make sense to consider the  error measure?ℓ1

 even when  is large;

Matches an UB by Meyerson (FOCS’ 01)

O(log n) η∞

This generalizes an  worst-case 
lower bound by Fotakis (Algorithmica, 2008)

Ω̃(log(n))

Related error measure: η1 := ∑
1≤i≤n

d( f pred
i , f opt

i )

Lower bound: For every , any randomized online algorithm is 
-competitive (with ), even when .

η∞ ∈ (0,1]
Ω̃(log(nη∞/OPT)) OPT = O(1) η1 = O(1)



Results: Experiments

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Error Parameter ¥1

1.0

1.2

1.4

1.6

1.8

2.0

2.2

C
om

pe
ti
ti
ve

R
at

io

Meyerson

Follow-Predict

Ours

Error ( ) vs ratio for Twitter datasetη∞ Performance when using the greedy predictor

Greedy predictor


• Use 30% dataset as the training set, and compute OPT from it

• When online demand arrive, generate prediction from current OPT

• Update OPT, as OPT on the dataset union the new request

Simulated predictor

Baselines: Follow-Prediction; Meyerson is an -competitive worst-case algo.O(log n)



Strategy of Algorithm Design

 and  are two extremes


• Corresponding algorithms: always-trust-predictor vs worst-case algorithm


η = 0 η → ∞

Strategy: start with worst-case algorithm, then extend it to use the prediction


Worst-case algorithm: -competitive by Meyerson (FOCS’ 01)O(log n)



When  arrives:


• Let  be the min-dist to the open facilities  


• With prob. , open a facility at   ( )


• Assign  to the nearest facility in 

xi

δ := d(xi, F) F

δ/w xi F := F ∪ {xi}

xi F

Meyerson’s Algorithm

For simplicity, consider the uniform opening cost 


Initialize open facilities 


w( f ) = w, ∀f ∈ V

F := ∅

Expected cost of  is xi ≤ δ/w ⋅ w + δ ≤ 2d(xi, F)

Demand points  on or outside the  ring: 
, so O(1) to OPT

x f
d(x, f ) = O(1) ⋅ d(x, f*)

OPT/n

2i

f ∈ F

f ⋆ ∈ OPT

x

y

On average,  cost before 
opening facility at some  in the inner ring

O(1) ⋅ OPT
yConclusion: ratio = O(# of rings)



Key Property

Suppose the initial open facilities  satisfies  then Meyerson’s 
algorithm is -competitive, where





In other words, every facility opened in OPT has  within dist 


(Follows from last slide: # of rings = )


F d(F, OPT) ≤ η
O(log(nη/OPT))

d(F, OPT) := min
f∈F,f′￼∈OPT

d( f, f′￼)

f ∈ F η

log(η/(OPT/n)) = log(nη/OPT)



Why it works?


• Let  be the (offline) optimal facility that  is assigned to


• Prediction error guarantee: 


• Hence, the very first facilities  we open satisfies 

c*i xi

d( f pred
i , f opt

i ) ≤ η∞

F d(F, OPT) ≤ η∞

Simple Algorithm for Uniform Case

Algorithm: Run Meyerson’s, and whenever Meyerson’s decide to open a facility 
at some , also open a facility at ’s prediction 
xi xi f pred

i

The cost is  before this  is openO(1) ⋅ OPT F Implies the main bound: 
O(log(nη∞)/OPT)

In the worst-case: only  more costly than Meyerson’s, 
which implies  worst-case ratio

O(1)
O(log n)



Difficulties in Non-uniform Case

Non-uniform case:  can be arbitrary


• Meyerson’s can handle the non-uniform case (with slight modifications)


“Whenever Meyerson’s opens facility , also open facility at ” 

• Doesn’t work:  can be very large (and  can even be 0!)


Challenge:  measures connection cost, but say nothing on the opening cost

w( f )

xi f pred
i

w( f pred
i ) w( f opt

i )

η∞



Hence, we need to “guess” 


• Set budget , open  closest to  s.t.  w.p. 


• Double budget  every time a new facility is opened

w( f opt
i )

b f′￼ f pred
i w( f′￼) ≤ b costMey(xi)/w( f′￼)

b

New Steps for Non-uniform Case

If one knows , then the nearest facility  to  with  
satisfies 


w( f opt
i ) f′￼ f pred

i w( f′￼) ≤ w( f opt
i )

d( f′￼, f opt
i ) ≤ η∞

Don’t be too aggressive — 
always bounded by Meyerson

Use cost  to open  such that O(1) ⋅ OPT f′￼ w( f′￼) ≤ O(w( f opt
i ))



Many Results, Many to Be Done

Online algorithms (competitive ratio)


• Caching, scheduling, online learning, online primal-dual


Data structures (space/time)


• -sampling, heavy hitters, bloom filter


Efficient algorithms for data analysis (running time)


• Clustering, nearest neighbor, low-rank approximation


… Many to be done

ℓp



Thanks!


