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Algorithm Design with Predictions

Traditional algorithm design: focus on worst-case
» Strong guarantee, but often too pessimistic to be useful in practice
ML techniques:

 Data-driven, can leverage the structure of data, performs well in practice

Goal: design algorithms with a learned predictor to go beyond worst-case



Can We Trust The Predictor?

Adversarial example attack: small but structured noise

“vanda” noise “gibbon”

57.7% confidence 99.3% confidence

Unfortunately, perfectly-robust ML predictor is unlikely to exist



Utilizing Untrusted Predictions: LV Framework
(Lykouris-Vassilvitskii, JACM’ 21)

Premises: Algorithm does NOT know 7
in advance!

» Access to an untrusted predictor with error 1 (under certain measure)

Consistency:

This requirement may bypass certain lower bounds

o if » = 0 then algorithm (nearly) achieves optimal

Robustnhess:

o if 7 = o0 then algorithm still has worst-case guarantee



Simple Example: Binary Search
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Facility Location

Fundamental problem in OR and CS
Input: metric space (V, d), demand points X = (x;,...,x,) C V
Classical setting:

» Find a set of open facilities /' C V (each with opening cost w( f)) s.t.

| 2 N+ ), df)
Opening cost fm =

where . is the facility assigned to x;




Online Setting

Input: metric space (V, d), demand points X = (x;,...,x,) C V
Online: when Xx; arrives, algorithm must irrevocably assign x; to an open facility

« The next x;_ is only revealed after x; is assigned

ALGO]

Competitive ratio: max
x OPT(X)

Worst-case relative performance



The Prediction Model

Predictor: returns a (supposedly optimal) facility fl.pred for each x;

. . red copt
Error measure: floo ©= MAX d(fP 1)

: Demand point @-....

Connection cost A < n,, error

Assigned open fac. (with opening cost)




Results: Nearly-tight Bounds

O(log n) even when 7 is large;

Matches an UB by Meyerson (FOCS’ 01) Recall 77, := max d(fP"*, fP"

1<i<n

Upper bound: There is an O (min {log n,log(nn_/ OPT)} -competitive alg.

Note: O(1)-competitive when n — 0

Related error measure: 77, := Z d( fpred fopt)

1<i<n

Does it make sense to consider the 7', error measure?

Lower bound: For every 17, € (0,1], any randomized online algorithm is
Q(log(nn_ /OPT))-competitive (with OPT = O(1)), even when 1, = O(1).

This generalizes an Q(log(n)) worst-case

lower bound by Fotakis (Algorithmica, 2008)



Results: Experiments

Baselines: Follow-Prediction; Meyerson is an O(log n)-competitive worst-case algo.

Simulated predictor Greedy predictor

* Use 30% dataset as the training set, and compute OPT from it
Meyerson  When online demand arrive, generate prediction from current OPT
Follow-Fredict  Update OPT, as OPT on the dataset union the new request
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Adult 1.55 1.57 1.49
US-PG 1.47 1.47 1.43
Non-Un1 5.66 3.7 2.93

—
-

1.0 1.5 2.0 2.9 3.0
Error Parameter 7

Error (7,) vs ratio for Twitter dataset Performance when using the greedy predictor



Strategy of Algorithm Design

n = 0andn — oo are two extremes

* Corresponding algorithms: always-trust-predictor vs worst-case algorithm

Strategy: start with worst-case algorithm, then extend it to use the prediction

Worst-case algorithm: O(log n)-competitive by Meyerson (FOCS’ 01)



Meyerson’s Algorithm

For simplicity, consider the uniform opening cost w(f) = w,Vf &€ V

e o Demand points x on or outside the f ring:
Initialize open facilities F' := dCe. f) = O(1) - d(x. %), s O(1) to OPT

When X; arrives: Expected costof x;is < o/w - w+ 0 < 2d(x;, IF)
o Let 0 := d(x;, F') be the min-dist to the open facilities F
» With prob. o6/w, open a facility at x; (' := F U {x;})

» Assign x; to the nearest facility in

On average, O(1) - OPT cost before
opening facility at some y in the inner ring

Conclusion: ratio = O(# of rings)



Key Property

Suppose the initial open facilities F' satisfies d(F, OPT) < » then Meyerson’s
algorithm is O(log(nn/OPT))-competitive, where

d(F,OPT) := min d(f.f)
feF,f'eOPT

In other words, every facility opened in OPT has f € F within dist #

(Follows from last slide: # of rings = log(n/(OPT/n)) = log(nn/OPT))




Simple Algorithm for Uniform Case

Algorithm: Run Meyerson’s, and whenever Meyerson’s decide to open a facility
at some x;, also open a faclility at x;’s prediction fipred

In the worst-case: only O(1) more costly than Meyerson’s,

Why it works?

which implies O(log n) worst-case ratio

. Let cl.>I< be the (offline) optimal facility that x; is assigned to
. Prediction error guarantee: d( fl.pred, fl.Opt) <n,

» Hence, the very first facilities I we open satisfies d(F, OPT) < n_,

Implies the main bound:

The cost is O(1) - OPT before this F' is open

O(log(nn_,)/OPT)



Difficulties iIn Non-uniform Case

Non-uniform case: w( /) can be arbitrary

 Meyerson’s can handle the non-uniform case (with slight modifications)

“Whenever Meyerson’s opens facility x; also open facility at fipred”

opt

l ) can even be 0!)

. Doesn’t work: w( fipred) can be very large (and w(

Challenge: 77, measures connection cost, but say nothing on the opening cost



New Steps for Non-uniform Case

If one knows w( fl.opt), then the nearest facility f” to fipred with w(f") < w( fl.opt)
satisfies d(f, f7) < 1,

Hence, we need to “guess” w( fl.opt) Don’t be too aggressive —

always bounded by Meyerson

. Set budget b, open f* closest to fipred s.t. w(f) < b w.p. costVY(x,)/w(f)

» Double budget b every time a new facility is opened

Use cost O(1) - OPT to open f such that w(/) < O(w(f*™))



Many Results, Many to Be Done

Online algorithms (competitive ratio)
e Caching, scheduling, online learning, online primal-dual

Data structures (space/time)

. fp-sampling, heavy hitters, bloom filter

Efficient algorithms for data analysis (running time)
* Clustering, nearest neighbor, low-rank approximation

... Many to be done



Thanks!



