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Real-time Machine-Augmented Intelligence

Multisource information solicitation
Highly dynamic and massive data streams

Driving at traffic junction Healthcare & medicine Command & control in battle space

Augment Intelligence for Efficient Decision-Making



Challenges 1in Decision-Making

» Low learning efficiency
Training a decision-maker takes tons of samples and computations

Industry Giants
Deep Learning
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“Scale drives deep learning progress” by Andrew Ng



Challenges 1in Decision-Making

» Low model efficiency
Models are getting wider and deeper
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ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Model Efficiency -

Model Efficiency via Network Model Design and Interpretation

Tensorial Neural Network Linear operation = multilinear
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Generalization Improvement through the lens of Compression
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Personalized ML, Federated learning in edge devices

Su, Li, Liu, Ranadive, Coley, Tuan, H., “Compact Neural Architecture Designs by Tensor Representations”, Frontiers 2022. 6
Li, Sun, Su, Suzuki, H., Understanding Generalization in Deep Learning via Tensor Methods. AISTATS 2020.
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Model Efficiency -

Model Efficiency via Network Model Design and Interpretation

Interpret & Improve Multi-Head Self-Attention in Transformers
A Rigorous Visual Interpretation of Self-attention
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Provably Guaranteed Higher Expressive Power Under Same Size

Liu, Su, H., Tuformer: Data-driven Design of Transformers for Improved Generalization or Efficiency, ICLR 2022.



- ModelEfficency o
Model Efficiency via Network Model Design and Interpretation

Long-Term Video prediction (10 -> 30 frames): Image Classification:
predict the future based on spatiotemporal correlations. On CIFAR 10 Resnet-32 (460K parameters)
input ground truth (top) / predictions
t =1 §) 11 17 23 29 35 .
Compression Rate Performance
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Highest performance with fewest parameters. High performance small models

Su, Wang and H., ARMA Nets: Expanding Receptive Field for Dense Prediction, NeurIPS 2020.

Su, Byeon, Kossaifi, H., Kautz, Anandkumar, Convolutional Tensor-Train LSTM for Spatio-Temporal Learning, NeurIPS 2020.



Model Efficiency -

Model Efficiency via Network Model Design and Interpretation
Scalable Graph Neural Networks

Mini-Batch Message Passing cpprox. by VQ Codebook Update and  Approx. Message Passing

@@ Nodes in Mini-Batch @@ @ Nodes in Mini-Batch ——> Messages passed to Mini-Batch
(before code re-assign) (after code re-assign) Other Graph Edges

—— Codeword Assi ent
@ @ @ O OtherGraphNodes  [NIE]  Codewords T : B

Codeword Moving Average

VQ-GNN, a universal framework to scale up any GNNs via Vector Quantization w/o
compromising the performance

Sketch-GNN: a sublinear complexity training framework via Polynomial Tensor-Sketch

theory for sketching non-linear activations and graph convolution matrices in GNNs

Ding, Kong, Li, Zhu, Dickerson, H., Goldstein, VQ-GNN: A Universal Frame- work to Scale up Graph Neural Networks using Vector Quantization, NeurIPS 2021.
Ding, Rabbani, An, Wang, H., Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity, NeurIPS 2022.




> Dowkfficeny >
Small Number of Effective Samples Covers

Theoretical Understanding of Model Invariance & Data Augmentations
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Study the generalization benefit of model invariance by introducing the

sample cover induced by data transformations/augmentations

10

Zhu, An, H., Understanding the Generalization Benefit of Model Invariance from a Data Perspective, NeurIPS 2021.



Challenges 1in Decision-Making

» Inefficient learning paradigm
Models are learned in a “center controller” sequentially

input layer

hidden layer 1 hidden layer 2

t >t+1 ->t+2 - t+3
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Paradigm Efficiency

Centralized Federated Learning
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A centralized-server approach to federated learning.

Image credit: Nvidia 13




Paradigm Efficiency

Challenges in Centralized Federated Learning

Limited Scalability

[ Centralized host becomes a single point of
failure

J Data-privacy breaches

J High communication latency

central host — peer-to-peer communication

Decentralized Federated Learning:
J Remove single point of failure
1 Improve data privacy

J Lower communication latency?




Paradigm Efficiency

Challenges in Decentralized Federated Learning

d Constructing efficient communication protocols amongst clients
J Ensuring the convergence of a global model under asynchronous updates
J Dealing with changing or sparse network topologies

J Being robust to deal with non-IID data between heterogeneous clients.

15



Paradigm Efficiency

Shared Walt-Free Transmission (SWIFT) Federated Learning

Local Gradient l{pdate Wait-Free Model Communication
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SWIFT schematic with clients communicate every 2 local updates

O Asynchronous and wait-free, SOTA communication-time complexity
 Does not require a bound on the speed of the slowest client in the network

d Golden-standard iteration convergence rate 0(1/+/T) of parallel SGD

Bornstein, Rabbani, Wang, Bedi, H., SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication 16



Evaluations on Real Data

Test LLoss

1.5
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Paradigm Efficiency

—— D-SGD
—— LD-SGD
—— PA-SGD
— SWIFT Decentralized FL 16 Client Ring
SWIFT (2-SGD) Algorithms Epoch (s) | % Change | Comm. (s) | % Change
SWIFT (Cp ) 1.019 -34.60 0.086 -86.28
D-SGD (Cp ) 1.558 — 0.627 -
AD-PSGD* (Cy ) — -15.86 - —
SWIFT (C,) 1.016 -34.79 0.064 -89.79
LD-SGD (Cy) 1.320 -15.28 0.428 -31.74
PA-SGD (Cy) 1.281 -17.78 0.358 -42.90
" AD-PSGD results come from Table 4 in (Lian et al., 2018).

\
2.5 3
Wall-clock Time (Minutes)

SOTA convergence efficiency

SOTA communication efficiency
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Test Loss

Evaluations on Real Data
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Paradigm Efficiency
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(c) 7/10 degree non-IID data.
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(d) 9/10 degree non-IID data.

SOTA adaptability to heterogeneous data across clients

18
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Efficient Machine Learning in Parallel

Efficient ML augmented
Decision-Making

y

Model

Efficiency

Paradigm

Efficiency
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