
DECEMBER 2022 | VOL. 65 | NO. 12 | COMMUNICATIONS OF THE ACM 105

DIAMetrics:
Benchmarking Query
Engines at Scale
By Shaleen Deep, Anja Gruenheid, Kruthi Nagaraj, Hiro Naito, Jeff Naughton, and Stratis Viglas

DOI:10.1145/3567464

Abstract
This paper introduces DIAMetrics: a novel framework
for end-to-end benchmarking and performance monitor-
ing of query engines. DIAMetrics consists of a number
of components supporting tasks such as automated work-
load summarization, data anonymization, benchmark execu-
tion, monitoring, regression identification, and alerting.
The architecture of DIAMetrics is highly modular and
supports multiple systems by abstracting their implemen-
tation details and relying on common canonical formats
and pluggable software drivers. The end result is a power-
ful unified framework that is capable of supporting every
aspect of benchmarking production systems and work-
loads. DIAMetrics has been developed in Google and is
being used to benchmark various internal query engines.
In this paper, we give an overview of DIAMetrics and dis-
cuss its design and implementation. Furthermore, we pro-
vide details about its deployment and example use cases.
Given the variety of supported systems and use cases within
Google, we argue that its core concepts can be used more
widely to enable comparative end-to-end benchmarking in
other industrial environments.

1. INTRODUCTION
The data management landscape has drastically changed
over the last few years. The majority of database systems
are no longer manually tuned and optimized for a specific
application by well-versed administrators; instead, they
are designed to support a variety of applications. To sup-
port all of these applications, a multitude of data models,
storage formats, and query engines have transformed the
data management landscape from standalone, specialized
deployments to entire ecosystems. Workloads are now a
combination of machine-generated queries for both trans-
actional and analytical workloads as well as ad hoc queries,
varying by application and use case. At the same time, the
performance expectations of customers remain the same:
they expect the system to be tuned for optimal performance
on their workloads. This is commonly achieved in a manual
process that first identifies the most important customer
use cases that are then used to build curated benchmarks.
This process is not principled and may not yield comprehen-
sive benchmarks valid for a long period of time due to (a) the
dynamic nature of continuously changing production work-
loads; (b) a tight coupling between the workload and under-
lying query engine, preventing customers from identifying
queries that are important across multiple engines; and (c)

The original version of this paper was published in
Proceedings of VLDB Endow. 13, 12 (2020), 3285–3298.

a general lack of understanding of how query performance
is affected by small changes to the end-to-end system. Given
such complex company-internal ecosystems, it is increas-
ingly difficult to determine, for example, how well a specific
system is performing, how it compares to alternative systems
for the same use case, or whether modifying one of its com-
ponents will negatively impact other parts of the system.
However, answering these questions in a principled manner
is crucial to companies. DIAMetricsa is our answer to this
problem setting: a benchmarking framework built at Google
with the goals to (a) deliver a general solution that is capable
of benchmarking end-to-end a variety of query engines;
(b) support every step of the benchmarking life cycle; and
(c) provide insights with respect to system performance and
efficiency. It is a one-stop tool for all benchmarking needs
including complex tasks such as benchmark generation,
execution, and result visualization.

Prior work. Benchmarking data management systems is
certainly not new; from the early efforts of the Wisconsin
benchmark,2 to the development of industry standards like
TPC-H,21 to benchmarks for object-oriented4 systems, or to
larger cloud-scale serving benchmarks9 and their deriva-
tives. All these benchmarks have been studied extensively,
and the knowledge gained has been used to modify them
in various ways or deliver new benchmarks altogether that
address the shortcomings of the existing ones.

The two common aspects of any of these benchmarks
have always been that: (a) the benchmark workload is stati-
cally defined: even if there are randomly seeded data and
query generators, their outputs all conform to well-defined
patterns, that is, schemas, value distributions, and queries;
and (b) the system being benchmarked assumes complete
control of the entire data management stack, from hardware
to software configuration and to manual tuning for optimal
performance. Though existing benchmarking efforts cer-
tainly serve their purpose for standalone deployments, they
are not indicative of production-level data management use
cases of an entire ecosystem. There, a query engine does not
have control of the data and storage formats; it is expected

a	 The name stems from the unit within Google DIAMetrics was originally
developed to provide metrics for, DIA: Data Infrastructure and Analysis.

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3567465 tp

https://dx.doi.org/10.1145/3567464
https://doi.acm.org/10.1145/3567465

research highlights

106 COMMUNICATIONS OF THE ACM | DECEMBER 2022 | VOL. 65 | NO. 12

There are at least four internal query engines, each
designed for different use cases: F1,19, 20 Dremel,16 Spanner
SQL,1 and Procella.6 There exist specialized storage sys-
tems such as Mesa14 and more generic ones such as
Colossus18 that are leveraged by different applications,
supporting different storage formats. Figure 1 shows an
overview of part of the Google-internal ecosystem of query
engines and their dependencies. If every query engine
would benchmark according to their own needs, there
would be no accountability across engines and no way to
determine which systems are useful for which use case. In
contrast, DIAMetrics is specifically built to consolidate
the benchmarking needs within Google, to provide an
effective way to compare engines and provide means to
improve them.

Contributions. In this paper, we present an overview of
DIAMetrics, a novel extensible framework for engine-
agnostic, repeatable benchmarking that is indicative of
large-scale production performance.

Framework Architecture: We present the generic archi-
tecture of DIAMetrics in Section 2. We show a high-
level description of its components and discuss how
its design allows for extensions with little effort while
seamlessly supporting its core functionalities.

Modular Components: Each of the components is highly
customizable to cater to customer specific requests while
being general enough to handle a variety of use cases.

Use Cases: We discuss the deployment and varying use
cases as well challenges addressed by the DIAMetrics
framework within Google in Section 4.

2. OVERVIEW
DIAMetrics has two primary goals: (a) to be fully compos-
able and rely on enhanced reusability in order to facilitate
benchmarking at scale; and (b) to be able to benchmark and
profile any internal system capable of evaluating queries
and any customer workload of that system producing these
queries. These goals are realized through two key notions:

•	 Canonical exchange formats: For extensive abstraction,
whenever two components need to communicate,
they do so through well-defined exchange formats
that we term canonical. The formats are component-
dependent, but the intuition is that the module that

to evaluate a wide spectrum of queries, from single-point
lookups, to real-time analytics, to extremely large machine-
generated queries over a multitude of formats, or to any mix-
ture of the above; and it has little to no statistics about the
input a priori to guide the system’s optimizer and execution
engine to deliver robust performance. Static benchmarks
can act as a measuring stick, so as to speak, but only for the
use case they have been designed to address. In all other use
cases, a static benchmark is often not representative of
the actual system load.

Problem motivation. Our work is motivated by the observa-
tion that benchmarking is a key necessity to determining
the efficiency and usefulness of specific systems for specific
tasks. Not having a way to benchmark a production system in
a dynamic and often unpredictable environment may prove
detrimental not only to the system developer but also to the
user. The system developer spends an inordinate amount
of time tuning the system for particular use cases and may
not have clear insight into the larger-scale problems of the
system. For instance, the developer may spend effort opti-
mizing a particular operator at the micro level, whereas a
comprehensive benchmark would have shown that there
would be greater benefit optimizing a different part of the
system’s processing pipeline. Or, the developer may decide
that more computing resources are necessary for a particu-
lar workload, when a targeted benchmark could showcase
that the majority of time is spent on non-compute-intensive
execution fragments. The user, on the other hand, benefits
from knowing the level of performance a system delivers.
For example, if that performance is suboptimal, she can
provide the system developer with examples of this subopti-
mality, or even move to a different engine that may be better
suited to the workload requirements.

Problem solution. Instead of focusing on a specific bench-
mark workload and using that as the means to test perfor-
mance and efficiency, we argue that we need a benchmarking
framework. That is, the architecture for benchmarking that
is capable of generating indicative benchmark workloads
over production deployments, executing them, and mea-
suring a system’s performance on that workload. Moreover,
to avoid duplicate effort, the architecture should be inde-
pendent of the query engine and it should rely on generic
reusable components that can be instantiated with mini-
mal effort for every system that is to be benchmarked. At
the same time, the framework should provide the means to
track the performance per indicative benchmark workload
and use that historical information to measure improve-
ment over time. DIAMetrics provides all that functional-
ity and has been used within Google to benchmark and
reason about the end-to-end performance of internal query
engines.

While DIAMetrics has only been used within Google,
we posit that its architecture is powerful enough to support
any query engine, as long as a minimal set of primitives are
implemented. This is corroborated by the internal use of
DIAMetrics: although Google is a single organization, it
exhibits all the diversity characteristics we discussed earlier.

Figure 1. Part of the Google ecosystem.

ArtusCapacitor

Spanner Colossus

F1 DremelProcella

Napa

F1

DECEMBER 2022 | VOL. 65 | NO. 12 | COMMUNICATIONS OF THE ACM 107

facilitates the transition from one format to the other
can now be “plugged in”: If the component respects
these formats, all DIAMetrics pipelines remain
functional.

•	 System drivers: To interact with all supported query
engines, DIAMetrics employs drivers, that is, modules
that are capable of translating canonical workload rep-
resentations into query processing requests for each
supported query engine, gathering profiling metrics
from the execution of that query on the query engine,
and translating these metrics to the framework’s own
canonical profiling format for further processing.

2.1. Components
Using canonical exchange formats and system drivers, we
construct the DIAMetrics pipeline as depicted in Figure 2.
We use five components when benchmarking a variety of
query engines and workloads: (a) the workload extractor,
(b) the query and data scrambler, (c) the data mover, (d) the
workload runner, and (e) the system monitoring and alert-
ing component. An overview of these components is given
in Section 3. Each component can act as an entry point to
the DIAMetrics framework. For instance, some user may
not need to create a production workload since they may
have one readily available through other means; or they
want to use a standard benchmark like TPC-H. Alternatively,
another user may only need to test different storage back
ends for the same query workload, so they only need to use
the data mover to generate multiple instances of the same
workload. Essentially, the components described here are
designed in a way that they can be mixed and matched spe-
cifically to each benchmarking use case.

2.2. Workflow
Google-internal query engines are highly scalable and are
capable of serving billions of queries per day from multiple
customers, both internal and external. Each query served,
along with a number of internal system-specific informa-
tion, is logged, for example, in a distributed logging system
running on Colossus, Google’s file system.18 The log formats
of each query engine are different, but there is a lot of com-
mon information between them stored in different ways.
DIAMetrics builds on top of the idea that log entries in
essence contain the same information, presented in differ-
ent ways. Specifically, it uses a canonical representation of a
query log, which treats a query as a combination of its query
text and a number of features and their values that describe
its profile. This representation is leveraged by DIAMetrics
to drive the workload extraction and summarization process
for custom benchmark generation. In essence, the workload

extractor connects to the respective log system, extracting
all relevant log entries that may contribute to the bench-
mark. The summarizer then uses that information to select
an optimized subset of these logs that can be used as a cus-
tom, representative query workload.

However, these queries are often based on sensitive user
data and are thus not available to any outside application
or benchmarking system. To address this problem, users
can choose to anonymize their data using DIAMetrics’s
data scrambler. The data scrambler scans the original cus-
tomer data and applies various anonymization techniques
on it in order to ensure no sensitive information is leaked to
the benchmark dataset. In the simplest case, the data scram-
bler will arbitrarily permute the values of a column indepen-
dently of other columns. Such permutation will ensure that
per-column value distributions remain the same, but cor-
relations across columns are broken, thereby reducing the
likelihood of disclosure. Additionally, the scrambler may
further obfuscate values by hashing them, by mapping them
to a different domain, or by adding a small amount of noise
so that the resulting dataset has approximately the same
statistical properties but over different values, and so on.
Finally, depending on the user’s benchmarking use case,
they might choose to compare their benchmark on a vari-
ety of storage layers or with different file formats. The data
mover allows DIAMetrics to prepare the benchmark for
execution on a variety of back ends, allowing the user to get
a comprehensive understanding of their execution patterns.

Once queries and data are stored in the correct place(s),
independent of whether they are derived from the above
pipeline or provided by the user, we deploy a workload runner
that reads a set of configuration files describing the execu-
tion parameters and automatically runs the benchmarks
on the specified systems with the specified execution con-
straints. Following the modular principles explained above,
we allow users to write pluggable configurations; that is, the
same system configuration may be used for a set of differ-
ent benchmarks. Note that by defining these configurations,
the user determines the parameters of the benchmark. For
example, they can decide to run the benchmark on a produc-
tion server or in isolation by using different system setups.
Similarly, they may choose to compare the generic execu-
tion of the TPC-H workload to a platform-optimized version
to examine choices made by the query optimizer. In all of
DIAMetrics’s benchmark executions, we follow standard
experimental procedure and allow users to execute the same
workload and system configurations multiple times to pro-
vide realistic results.

Finally, the last step in the end-to-end workflow is the
interpretation of the execution results. The monitoring
component of DIAMetrics provides dashboards to the
framework users that allow them to easily interpret the
historic results of their benchmarks. It is triggered periodi-
cally and automatically updates its dashboards whenever
new execution results have become available. If desired,
users can furthermore use alerts to get notified when their
execution patterns change significantly from previously
observed or expected patterns. Our end-to-end framework
for workload benchmarking has simplified and streamlined

Figure 2. An overview of the DIAMetrics components.

Workload
extractor

Query and
data

scrambler Data mover Workload
runner

System
monitoring
and alerting

research highlights

108 COMMUNICATIONS OF THE ACM | DECEMBER 2022 | VOL. 65 | NO. 12

benchmarking within Google across different systems. It
allows users to set up automatic benchmarking in a mat-
ter of minutes without needing to worry about the specific
implementation details of executing repeatable bench-
marks. In essence, DIAMetrics enables efficient and con-
sistent benchmarking at scale within Google.

3. FRAMEWORK COMPONENTS
We next present the components of the DIAMetrics frame-
work in detail. Each component can be thought of as a
stand-alone facility, but it is their interaction that delivers
an end-to-end solution.

3.1. Workload extractor
One of the main problems when benchmarking any system
is defining the benchmark that appropriately evaluates the
system. Indeed, a single system may experience multiple
types of workload at different times. For instance, the major-
ity of queries may be long-running resource-intensive ana-
lytics queries; or they may be single-point lookup queries
for record retrieval; or anything in between when a user is
using a database in exploratory mode. These can be created
by a single or multiple customer(s) using the system for dif-
ferent types of applications. Traditionally, system deploy-
ments have been tailored for different application needs,
each deployment being optimized for the types of queries it
is expected to evaluate. With the move to distributed, large-
scale, federated, and cloud-based deployments, however,
the advantage of fully controlling the architecture of a sys-
tem is no longer given. A query engine is treated simply as
an end point and is expected to be able to process user que-
ries with little to no optimization from the user. It is, there-
fore, a requirement for the query engine providers to cater
to different needs at the same time, which makes it impera-
tive to have a way to gauge the system’s performance on the
user’s workload. Whereas for relational systems we have had
benchmarks such as TPC-H, TPC-C, or TPC-DS, mostly stem-
ming from the general division of relational workloads into
OLTP and OLAP, there are no representative benchmarks for
these (user-specific) mixed workloads.

To process not only standardized benchmarks but also
user-specific benchmarks, we developed techniques that
compress a user’s workload into a small set of representative
queries that can then be used as a benchmark workload.11
Our framework for workload extraction and summarization
roughly undertakes the following tasks:

Log canonicalization. To create a user-specific benchmark,
log entries are first extracted and transformed to a canoni-
cal representation that contains a set of features necessary
to drive summarization. Features can be anything that char-
acterizes the specifics of a query that are deemed useful for
benchmark creation. In DIAMetrics, we support two types
of features: syntactic and profiling features. Syntactic fea-
tures can be extracted by parsing the query, for example, the
number of joins in the query statements or the aggregate
functions used in the query. Profiling features on the other
hand may encompass characteristics such as query latency,
CPU usage, or amount of data read/written to disk.

Workload summarization. Once the workload features have
been extracted, we can leverage them to identify a subset of
queries for benchmarking this workload. The choice of que-
ries in the subset is driven by two metrics: representativity
and coverage. Representativity determines how closely the
distribution of features in the subset matches the original
workload. In contrast, coverage determines how well the
features in the subset cover the features observed in the origi-
nal workload. To an extent, coverage describes the complete-
ness of the benchmark. During workload summarization,
we optimize the selection of queries according to these met-
rics and greedily pick the benchmark queries that can then
be used for realistic production benchmarking. For further
details on how to realize workload summarization, please
refer to Deep.11

3.2. Data and query scrambler
In addition to finding a representative set of queries to exe-
cute for benchmarking, DIAMetrics also needs to ensure
that the data it is using for these benchmarks is representa-
tive. The choice of dataset will drive storage and query pro-
cessing decisions depending on the query patterns being
executed, the storage back end, the complexity of the data,
and the data value distributions, to name but a few factors.

The data scrambler is a step toward addressing the
problem of representative data generation, as it provides a
simple and efficient way to use production data for query
benchmarking. The intent is to have a facility that would
allow one to quickly sanitize a representative production
dataset and use actual production queries over the sanitized
version for performance benchmarking. Once workload
summarization identifies the queries that are representative
of a workload, we can use the inputs these queries process
to snapshot the production data and use that snapshot to
build a version of the input data to be used for benchmark-
ing. This is not always straightforward, mainly because pro-
duction data may contain fields, values, and correlations
between them that are sensitive and should not be used for
benchmarking purposes. In the data scrambler, we solve
that problem by breaking correlations between values; by
protecting data through hashing their values to obfuscate
them; and by adding small amounts of noise to the data so
that their distributions are not significantly altered. While
the scrambler does not provide formal guarantees with
respect to privacy or non-disclosure, it has been found to
alter the input data in a reasonable way that might be good
enough for performance benchmarking in a secure industry
setting. No formal guarantees notwithstanding the scram-
bler is extremely customizable and may well provide these
guarantees implicitly if configured properly by data owners.

3.3. Data mover
The data mover acts as an intermediary between formats.
The intuition behind the data mover is to give DIAMetrics
the ability to generate multiple benchmarks from the same
workload by converting the same input source to fit dif-
ferent storage back ends. This is far from trivial as there
are multiple aspects to take into account when designing
data transformation mechanisms. First, different storage

DECEMBER 2022 | VOL. 65 | NO. 12 | COMMUNICATIONS OF THE ACM 109

formats imply different schema definitions, which in turn
imply potential type conflicts. For instance, the target
format supports dates only as milliseconds in the epoch,
whereas the format we want to move data from stores these
dates as strings; thus, the data mover needs to apply the
transformation from one format to another. Second, some
input format may have additional statistical information
embedded into its sources, or even value indexes incorpo-
rated. If that is the case, the data mover deploys a best-effort
mechanism to replicate the original input structure with as
many auxiliary structures transferred to the output as pos-
sible. Other information that the data mover attempts to
preserve is sharding information, for example, the number
of shards and the partitioning scheme; input storage prop-
erties like the input being sorted; data definition proper-
ties like functional dependencies if these are supported by
the target storage back end; and, in general, any optimiza-
tions that are present in the input dataset and might affect
the performance of the storage back end if they are not
preserved. Once the requested data movements have taken
place, the input workload will be rewritten so that instead
of using the original input sources, it uses the newly gener-
ated data sourcesv (Figure 3).

3.4. Workload runner
The benchmark execution component of DIAMetrics is
the workload runner. The runner accepts multiple execution
configurations as input, with each execution configuration
containing the following four elements: (a) a number of sys-
tems and their configurations to use for benchmarking; (b) a
number of benchmark configurations; (c) a number of work-
loads to benchmark; and (d) a number of alert configura-
tions to trigger if there are any issues detected when running
a benchmark. The workload runner will then run each exe-
cution configuration by deploying every workload over every
benchmark configuration and over every system configura-
tion. Configurations are stored in the metadata database of
DIAMetrics. When the workload runner is requested to
process an execution configuration, it determines the spe-
cifics of that configuration in the metadata database and
retrieves all required system, benchmark, workload, and
alert configurations it refers to. Next, the runner will deploy
an intermediate orchestrator to configure systems and
benchmark, run queries, save their profiling metrics, and
evaluate any potential alerts as shown in Figure 4. While the
default execution is sequential, the workload runner also

offers various degrees of parallelism. For example, the run-
ner may send the same workload of all targeted systems for
execution in parallel, but within a system it can be config-
ured to issue queries sequentially for better isolation.

3.5. System monitoring and alerting
After the workload runner has executed a workload, we
export the output into DIAMetrics-specific logs. These logs
are then used to (a) allow users to monitor benchmarking
performance through result visualization and (b) automati-
cally monitor performance regressions and issue alerts.
System monitoring is a core objective of DIAMetrics, as it
helps users to track the performance of the system. At the
same time, it is useful to system developers to track incre-
mental changes of the same workload, visualizing whether
changes to the codebase improved a system’s performance.
DIAMetrics automatically retrieves the logs that the work-
load runner generates and uses the logged profiling met-
rics for visualization. Specifically, we use static dashboards
to visualize the workload execution over time in terms of
essential statistics such as latency, CPU time, spilled bytes,
and any other metric that is captured by the executed system
and deemed important by the client. An example of perfor-
mance tracking of execution time using the same bench-
mark for various systems is shown in Figure 5a. Here, we
observe the execution of three different systems, one of which
is executed with two different system settings. Their perfor-
mance is tracked over a time span of ten days and the average
execution time is reported. We primarily monitor aggregate
metrics like the geometric mean of Figure 5a for latency, but
this is not the only capability of the monitoring substrate
of DIAMetrics. The dashboard visualizations allow for an
intuitive comparison of the different systems and, at the very
least, signal (a) how stable a system is, and (b) how a system
fares in comparison with alternative deployments of the
same system, or other internal query engines.

In addition to simple tracking dashboards, we also devel-
oped more insightful dashboards, such as dashboards that
look at the scalability of a system or give insights into spe-
cific queries. For example, in Figure 5b, we visualize two
different systems that run the same query on two different

Figure 3. Overview of the workload summarizer.

Workload
summarizer

Logs

Log
canonicalization

Workload
compression

Syntactic
Features

Profiling
Features

input
for

Query set

produces

Figure 4. Overview of the workload runner’s components.

Workload
runner

Execution
configuration

Workload

System
configuration

Run
configuration

Data set

Query set

Historical results
store observe

input
for

System driver

Query Engine

System
monitoring
and alerting

Metadata database

research highlights

110 COMMUNICATIONS OF THE ACM | DECEMBER 2022 | VOL. 65 | NO. 12

data layouts to compare performance. We observe that
System X performs comparatively better on data layout 1,
while System Y is preferable on data layout 2. Furthermore,
these different data layouts lead to different utilization of
SQL operators: while data layout 1 results in query execution
being dominated by aggregation operations, data layout 2
results in join operations also taking a comparative fraction
of query execution. This type of information is invaluable
when evaluating different systems as well as storage layers,
optimization mechanisms, and so on.

Finally, DIAMetrics can signal to developers and work-
load owners if there exists an significant performance
degradation in the most recent snapshot of the system, if
there were any failures, and so on. At an abstract level, the
alerting framework uses the metrics produced by the latest
run of an execution configuration and compares them to
their historical behavior to identify potential regressions.
Overall, alerts are an important facility of DIAMetrics in
order to identify any deviations from the expected norm
and focus on the attention of the development, production,
and benchmark-owning teams to problematic situations
that can be exemplified through a handful of queries exhib-
iting the problem.

4. DEPLOYMENT AND LESSONS LEARNED
DIAMetrics is capable of benchmarking all production-
ready generally available SQL engines within Google as well
as selected internal, non-SQL engines. With every work-
load run, it evaluates thousands of queries across multiple
systems, gathering and storing performance metrics for
immediate and later analysis. It has enabled query engine
production teams to set performance goals and know where

they stand with respect to alternative systems, while it has
also helped teams to migrate between query engines by
identifying problematic cases and setting up roadmaps for
the migration. We next sketch the most widely encountered
use cases for DIAMetrics, some of them expected, but others
being off the beaten track with respect to its original design.

4.1. Benchmarking
The core idea behind DIAMetrics is to provide users with
an intuitive means to benchmark their systems. To that
effect, we have developed DIAMetrics to be modular, cus-
tomizing the benchmarking experience to the team’s use
case. Tooling for daily benchmarking is currently used by
a variety of Google query engines such as F1, Procella, and
Dremel. Some of their use cases are described here:

Workload characterization. One of the highest barriers
of entry to DIAMetrics has been that teams often do not
have a clear grasp on what their query workload looks like;
or, if they know all the query patterns that they employ,
they have no means to identify important patterns. In
some cases, a simple frequency-based clustering of que-
ries is enough to identify a rough approximation of the
workload, but in the majority of cases that is not possible.
Workload summarization is a powerful method to com-
press a workload into a benchmark, providing guarantees
about the output in terms of its representativity and cover-
age. Moreover, the summarizer is capable of delivering the
benchmark workload under specific constraints in terms
of the profile of the extracted benchmark. Having such a
facility in place allows teams to quickly turn their work-
load into a benchmark with minimal manual log mining
and configuration on their part.

Workload optimization. DIAMetrics is capable of produc-
ing tracking dashboards for various combinations of system
configurations over different versions of the same work-
load. Internal teams have used DIAMetrics to test their
optimizer’s performance by comparing out-of-the-box and
manually optimized versions of a workload; or to compare
the performance of different storage configurations; or to
measure the impact of a feature upon a workload by com-
paring system performance with the feature being turned
on or off. Having the ability to do this with minimal configu-
ration and over production workloads in addition to stan-
dard benchmarks improves the confidence of development
teams in their decisions and not only optimizes specific use
cases, but also reduces the management and financial cost
of deploying these workloads. Moreover, doing so on a com-
pressed, representative version of a workload with robust-
ness guarantees allows the data owners to quickly perform
these optimizations at scale and extrapolate from the per-
formance of the compressed workload to the expected perfor-
mance of the system on the actual workload.

Performance accountability. Tracking the historical per-
formance of a query engine on a workload is a two-way
street. Not only is it useful for a query engine to track how
well it performs on a specific workload, it also works in the

Figure 5. Example dashboards for per-query benchmark
performance monitoring.

(a) Consolidated benchmark execution time tracking

(b) Operation breakdown computation

100.00 System X v1

Geometric Mean: Execution Time (in seconds)

Elapsed Time (in sec) per Node Type

System X (Layout 2)

System X (Layout 2) System Y (Layout 2)System X (Layout 1) System Y (Layout 1)

SORT: 0.00
SCAN: 45.72

100K

10.0K

1.00K

100

10.0

JOIN: 565.87
FILTER_PROJECT: 8.90
AGGREGATE: 257.82

SORT

SCAN

JOIN

FILTER_PROJECT

AGGREGATE

System X v2

System Y

System Z

75.00

50.00

25.00

0.00 2018-7-9

2018-7-10

2018-7-11

2018-7-12

2018-7-13

2018-7-14

2018-7-15

2018-7-16

2018-7-17

2018-7-18

DECEMBER 2022 | VOL. 65 | NO. 12 | COMMUNICATIONS OF THE ACM 111

inverse direction: the developers of an application using a
query engine can hold the engine accountable for the per-
formance it delivers on their application. DIAMetrics can
be used to deliver compliance benchmarks for service-level
objectives between data owners and query engine users, and
the production team of the query engine. Such accountabil-
ity bridges the gap between teams and leads to a common
understanding of the expected level of performance.

Data anonymization. The DIAMetrics framework enables
the use of actual production-like data for benchmarking,
thus eschewing the need to come up with synthetic data
generators or not being able to benchmark a system with
production-like workloads altogether. Often, internal teams
have a good idea of benchmark queries, but it is impossible
to run these queries over production data as a data contains
sensitive user information that only the owning team should
be able to access, adding DIAMetrics as a data accessor is
simply not an option, nor is it an option to provide access
to the data through some other role. The data scrambler
can help in these cases as it can reformat the data in various
ways and with user-controlled degrees of anonymization.
Moreover, scrambling takes place in ways that preserve the
input value distributions, thus making the scrambled data a
good representation of the original production data.

4.2. Software development
In addition to traditional benchmarking, we also offer sup-
port for developers to run their benchmarks on experimen-
tal instances. DIAMetrics has improved awareness of how
different changes to the codebase impact different query
engines and has started to integrate large-scale benchmark-
ing into the developer’s workflow.

System comparison and choice. As the implementation
of DIAMetrics progressed, a novel use case emerged,
helping new teams decide on the most appropriate query
engine for their workload, whereas for well-established
teams, it is hard to migrate to a new query engine, newer
teams do not have such tie-ins. It is therefore possible for
a team to come along with a representative workload and
test that workload on the internal query engines that can
support it. They can then make an informed decision as
to which query engine provides the best support for their
workload. Additionally, if they are keen to work with a spe-
cific query engine but that engine is not optimized for the
workload, they can provide the engine’s developers with
example queries where performance suffers.

Performance-driven development. DIAMetrics has
been frequently used to set performance goals for develop-
ment teams. A typical use case is to identify problematic
workloads for a particular query engine and then set a road-
map for implementing improvements for these workloads.
Development teams will then use DIAMetrics to track their
performance on those workloads, observing how their modifi-
cations improve the system’s performance. At the same time,
the development team has assurances that these changes do
not degrade the performance of other workloads.

Release blocking. Monitoring and alerting give rise to the
production of compliance tests for the query engines that
DIAMetrics supports. Recall that our framework can target
any existing query engine deployment. Some of these deploy-
ments may be staging ones, running a version of the system’s
binary that is different from the official one; most frequently
the latter is a release candidate version. By comparing the
performance of a benchmark on the current binary with that
of the release candidate, teams can identify potential prob-
lems before releasing the candidate and block the release in
the presence of a potential regression. One of the welcome
side effects of DIAMetrics is that it exemplifies the regres-
sion through a handful of queries in which the regression
manifests. By having this information, development teams
can quickly start addressing the regression.

5. RELATED WORK
Benchmarking is not a novel problem, especially in the
context of data management,2,3,5,9,10 but has become
increasingly important over the last years with the increase
in available data, the move to hosted management and
data services, and the need for low-latency processing
regardless of data size. All systems need to be robust;
that is, they need to consistently execute their workloads
without performance degradation due to changes in the
data or the underlying codebase. Robustness has been
discussed in several lines of research in the broader con-
text of database systems. For example, Mozafari et al.17
discuss robustness for changing datasets, while Zhu et
al.25 address robustness in the context of query plan opti-
mization. Our use case is not so much data-driven as it is
development-driven. Code changes have similar or worse
impact on the performance of data management systems
if not tested appropriately and continuously.

From a research perspective, the work that is closest to
some of the ideas implemented in DIAMetrics is work-
load compression7 and particularly its application to index
selection for relational databases.8 This is merely part of
what our framework supports and any compression algo-
rithm can be “plugged in” to DIAMetrics so long as its
inputs and outputs are translated to the canonical repre-
sentations the various components of DIAMetrics expect.
At the same time, DIAMetrics does not aim to provide
insight into different storage configurations of a dataset to
optimize its run time; rather, it provides the support nec-
essary to compare and contrast the performance of a query
engine on these configurations. Similarly, while workload
characterization has received attention from the database
community, it has often been used for limited scope pur-
poses: (a) as a tool to help with physical design24; (b) as a
means to identify interesting queries to help in debugging
SQL performance13; or (c) as a way to identify data-cleaning
primitives in large datasets.15

Industry wise, there exist commercial products that allow
customers to replay entire workloads12 in order to analyze
performance.22 The users of these products are expected to
replay an entire workload, whereas we can filter it through
our summarizer, in order to have something to measure the
performance of an SQL engine on. Their goal is to completely

research highlights

112 COMMUNICATIONS OF THE ACM | DECEMBER 2022 | VOL. 65 | NO. 12

© 2022 ACM 0001-0782/22/12 $15.00

Shaleen Deep (shaleen@cs.wisc.edu),
University of Wisconsin-Madison,
Madison, WI, USA.

Anja Gruenheid, Kruthi Nagaraj, Hiro
Naito, Jeff Naughton, and Stratis Viglas
({anjag, kruthi, kiroa, naughton, sviglas}@
google.com), Google Inc.

replay a workload trace down to the sequence and timing
of queries issued. This is not our focus: instead, we aim to
provide repeatable benchmarking for a variety of systems
and not the means to debug any performance issues faced
by a particular deployment. Additionally, products as shown
in Galanis,12 and Yagoub22 are specific to a system and lack
the ability to compare and contrast multiple metrics across
systems. Overall, and while certainly related to some of the
components of DIAMetrics, that line of products is less
general and focuses on reactive optimization as opposed to
proactive end-to-end benchmarking, which is our intention.

The effort that is most related to ours is Snowtrail.23
While the objective is similar, that is, testing with produc-
tion data to identify performance regressions, the approach
is much more limited in scope compared with DIAMetrics.
Performance regression is but one of the use cases sup-
ported by DIAMetrics, which is (a) far more general in its
architecture, (b) provides more stand-alone components,
each alleviating a particular benchmarking problem, as
opposed to the monolithic design of Snowtrail, (c) is capable
of supporting more metrics than latency, and (d) supports
cross-system benchmarking. To the best of our knowledge,
DIAMetrics is the first system to provide a disciplined and
generic end-to-end solution for benchmarking multiple
query engines in a single framework.

6. CONCLUSION AND OUTLOOK
We presented DIAMetrics: a framework for benchmark-
ing query engines within Google. DIAMetrics is a rela-
tively new effort, which has already shown strong potential
and we believe could be used in various more ways than
it was originally designed for. For starters, it would be
interesting to apply these techniques not only to internal
customers, but also to external customers using Google’s
infrastructure and query engines that are interested in cus-
tom benchmarks to track the performance of Google sys-
tems on their workloads. Another interesting application
of DIAMetrics would be to use it to make configuration
recommendations for new customer workloads. By mea-
suring the similarity of a new customer’s workload to exist-
ing ones we can set expectations for the performance an
internal query engine will deliver. These expectations can
be used to set service-level objectives for the engine itself
with respect to the customer’s workload. Furthermore,
workload similarity may imply configuration similarity so
a new customer can have a head start with respect to opti-
mizing a query engine’s performance on their workload.
Alternatively, many sample sizes of a target summarized
workload can be used to estimate the scalability of an
engine for that workload and even extrapolate to the perfor-
mance of the engine as the size of the workload grows; such
capability is very helpful for provisioning and planning.

Overall, DIAMetrics solves the key problem of system
benchmarking at the query engine level by providing a uni-
form way to develop benchmarks for multiple systems with-
out worrying about the intricacies of each individual system.
It does so in a scalable and extensible way and we believe
that its modular architecture renders it as a framework that
is truly greater than the sum of its parts.�

	 1.	 Bacon, D.F., Bales, N., Bruno, N.,
Cooper, B.F., Dickinson, A., Fikes, A.,
Fraser, C., Gubarev, A., Joshi, M.,
Kogan, E., Lloyd, A., Melnik, S., Rao, R.,
Shue, D., Taylor, C., van der Holst, M.,
Woodford, D. Spanner: Becoming
a SQL system. In ACM SIGMOD
(2017), 331–343.

	 2.	 Bitton, D., DeWitt, D.J., Turbyfill, C.
Benchmarking database systems: A
systematic approach. In VLDB
(1983), 8–19.

	 3.	 Boncz, P., Neumann, T., Erling, O.
Tpc-h analyzed: Hidden messages and
lessons learned from an influential
benchmark. In TPCTC (2014), 61–76.

	 4.	 Carey, M.J., DeWitt, D.J., Naughton, J.F.
The 007 benchmark. In ACM
SIGMOD (1993), 12–21.

	 5.	 Carey, M.J., DeWitt, D.J., Naughton, J.F.,
Asgarian, M., Brown, P., Gehrke, J.E.,
Shah, D.N. The bucky object-relational
benchmark. In ACM SIGMOD (1997),
135–146.

	 6.	 Chattopadhyay, B., Dutta, P., Liu, W.,
Mccormick, A., Mokashi, A., Tinn, O.,
McKay, N., Mittal, S., Ching
Lee, H., Zhao, X., Mikhaylin, N.,
Harvey, P., Lychagina, V., Xu, T.,
Elliott, B., Gonzalez, H., Perez, L.,
Shahmohammadi, F., Lomax, D.,
Zheng A. Procella: A fast versatile
SQL query engine powering data at
YouTube. In Data Works Summit
(2018).

	 7.	 Chaudhuri, S., Gupta, A.K., Narasayya, V.
Compressing sql workloads. In ACM
SIGMOD (2002), 488–499.

	 8.	 Chaudhuri, S., Narasayya, V.R. An
efficient cost-driven index selection
tool for microsoft sql server. In VLDB
(1997), 146–155.

	 9.	 Cooper, B.F., Silberstein, A., Tam, E.,
Ramakrishnan, R., Sears, R.
Benchmarking Cloud Serving
Systems with YCSB. In SoCC (2010),
143–154.

	10.	 Crolotte, A., Ghazal, A. Introducing
Skew into the TPC-H Benchmark. In
TPCTC (2012), 137–145.

	11.	 Deep, S., Gruenheid, A., Koutris, P.,
Naughton, J., Viglas, S.
Comprehensive and efficient
workload compression. PVLDB 14, 3
(2020), 418–430.

	12.	 Galanis, L., Buranawatanachoke, S.,
Colle, R., Dageville, B., Dias, K., Klein, J.,
Papadomanolakis, S., Tan, L.L.,
Venkataramani, V., Wang, Y., Wood, G.
Oracle database replay. In SIGMOD
(2008), 1159–1170.

	13.	 Grust, T., Rittinger, J. Observing sql
queries in their natural habitat. ACM
Trans. Database Syst 38, 1 (2013),
3:1–3:33.

	14.	 Gupta, A., Yang, F., Govig, J., Kirsch, A.,
Chan, K., Lai, K., Wu, S., Dhoot, S.G.,
Kumar, A.R., Agiwal, A., Bhansali, S.,
Hong, M., Cameron, J., Siddiqi, M.,
Jones, D., Shute, J., Gubarev, A.,
Venkataraman, S., Agrawal, D. Mesa:
Geo-replicated, near real-time,
scalable data warehousing (2014).

	15.	 Jain, S., Howe, B. Data cleaning in the
wild: Reusable curation idioms from a
multi-year sql workload. In QDB (2016).

	16.	 Melnik, S., Gubarev, A., Long, J.J.,
Romer, G., Shivakumar, S., Tolton, M.,
Vassilakis, T. Dremel: Interactive
analysis of web-scale datasets.
PVLDB 3, 1–2 (2010), 330–339.

	17.	 Mozafari, B., Goh, E.Z.Y., Yoon, D.Y.
Cliffguard: A principled framework for
finding robust database designs. In
SIGMOD (2015), 1167–1182.

	18.	 Pasumanskyl, M. Inside capacitor,
bigquery’s next-generation columnar
storage format. In Google Cloud Blog
(2016).

	19.	 Samwel, B., Cieslewicz, J., Handy, B.,
Govig, J., Venetis, P., Yang, C., Peters, K.,
Shute, J., Tenedorio, D., Apte, H.,
Weigel, F., Wilhite, D., Yang, J., Xu, J.,
Li, J., Yuan, Z., Chasseur, C., Zeng, Q.,
Rae, I., Biyani, A., Harn, A., Xia, Y.,
Gubichev, A., El-Helw, A., Erling, O.,
Yan, Z., Yang, M., Wei, Y., Do, T.,
Zheng, C., Graefe, G., Sardashti, S.,
Aly, A.M., Agrawal, D., Gupta, A.,
Venkataraman, S. F1 query:
Declarative querying at scale.
PVLDB 11, 12 (2018), 1835–1848.

	20.	 Shute, J., Vingralek, R., Samwel, B.,
Handy, B., Whipkey, C., Rollins, E.,
Oancea, M., Littlefield, K., Menestrina, D.,
Ellner, S., Cieslewicz, J., Rae, I.,
Stancescu, T., Apte, H. F1: A
distributed sql database that scales.
PVLDB 6, 11 (2013), 1068–1079.

	21.	 Transaction Processing Performance
Council. TPC Benchmark H (decision
support) (2017).

	22.	 Yagoub, K., Belknap, P., Dageville, B.,
Dias, K., Joshi, S., Yu, H. Oracle’s SQL
Performance Analyzer. 2008.

	23.	 Yan, J., Jin, Q., Jain, S., Viglas, S.D.,
Lee, A. Snowtrail: Testing with
production queries on a cloud
database. In DBTest (2018), 4:1–4:6.

	24.	 Yu, P.S., Chen, M.-S., Heiss, H.-U., Lee, S.
On workload characterization of
relational database environments.
IEEE Trans. Softw. Eng 18, 4
(Apr. 1992), 347–355.

	25.	 Zhu, J., Potti, N., Saurabh, S., Patel, J.M.
Looking ahead makes query plans
robust: Making the initial case with in-
memory star schema data warehouse
workloads. PVLDB 10, 8 (2017),
889–900.

References

