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Abstract
This paper introduces DIAMetrics: a novel framework 
for end-to-end benchmarking and performance monitor-
ing of query engines. DIAMetrics consists of a number 
of components supporting tasks such as automated work-
load summarization, data anonymization, benchmark execu-
tion, monitoring, regression identification, and alerting. 
The architecture of DIAMetrics is highly modular and 
supports multiple systems by abstracting their implemen-
tation details and relying on common canonical formats 
and pluggable software drivers. The end result is a power-
ful unified framework that is capable of supporting every 
aspect of benchmarking production systems and work-
loads. DIAMetrics has been developed in Google and is 
being used to benchmark various internal query engines. 
In this paper, we give an overview of DIAMetrics and dis-
cuss its design and implementation. Furthermore, we pro-
vide details about its deployment and example use cases. 
Given the variety of supported systems and use cases within 
Google, we argue that its core concepts can be used more 
widely to enable comparative end-to-end benchmarking in 
other industrial environments.

1. INTRODUCTION
The data management landscape has drastically changed 
over the last few years. The majority of database systems 
are no longer manually tuned and optimized for a specific 
application by well-versed administrators; instead, they 
are designed to support a variety of applications. To sup-
port all of these applications, a multitude of data models, 
storage formats, and query engines have transformed the 
data management landscape from standalone, specialized 
deployments to entire ecosystems. Workloads are now a 
combination of machine-generated queries for both trans-
actional and analytical workloads as well as ad hoc queries, 
varying by application and use case. At the same time, the 
performance expectations of customers remain the same: 
they expect the system to be tuned for optimal performance 
on their workloads. This is commonly achieved in a manual 
process that first identifies the most important customer 
use cases that are then used to build curated benchmarks. 
This process is not principled and may not yield comprehen-
sive benchmarks valid for a long period of time due to (a) the 
dynamic nature of continuously changing production work-
loads; (b) a tight coupling between the workload and under-
lying query engine, preventing customers from identifying 
queries that are important across multiple engines; and (c) 

The original version of this paper was published in 
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a general lack of understanding of how query performance 
is affected by small changes to the end-to-end system. Given 
such complex company-internal ecosystems, it is increas-
ingly difficult to determine, for example, how well a specific 
system is performing, how it compares to alternative systems 
for the same use case, or whether modifying one of its com-
ponents will negatively impact other parts of the system. 
However, answering these questions in a principled manner 
is crucial to companies. DIAMetricsa is our answer to this 
problem setting: a benchmarking framework built at Google 
with the goals to (a) deliver a general solution that is capable 
of benchmarking end-to-end a variety of query engines; 
(b) support every step of the benchmarking life cycle; and 
(c) provide insights with respect to system performance and 
efficiency. It is a one-stop tool for all benchmarking needs 
including complex tasks such as benchmark generation, 
execution, and result visualization.

Prior work. Benchmarking data management systems is 
certainly not new; from the early efforts of the Wisconsin 
benchmark,2 to the development of industry standards like 
TPC-H,21 to benchmarks for object-oriented4 systems, or to 
larger cloud-scale serving benchmarks9 and their deriva-
tives. All these benchmarks have been studied extensively, 
and the knowledge gained has been used to modify them 
in various ways or deliver new benchmarks altogether that 
address the shortcomings of the existing ones.

The two common aspects of any of these benchmarks 
have always been that: (a) the benchmark workload is stati-
cally defined: even if there are randomly seeded data and 
query generators, their outputs all conform to well-defined 
patterns, that is, schemas, value distributions, and queries; 
and (b) the system being benchmarked assumes complete 
control of the entire data management stack, from hardware 
to software configuration and to manual tuning for optimal 
performance. Though existing benchmarking efforts cer-
tainly serve their purpose for standalone deployments, they 
are not indicative of production-level data management use 
cases of an entire ecosystem. There, a query engine does not 
have control of the data and storage formats; it is expected 

a	 The name stems from the unit within Google DIAMetrics was originally 
developed to provide metrics for, DIA: Data Infrastructure and Analysis.
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There are at least four internal query engines, each 
designed for different use cases: F1,19, 20 Dremel,16 Spanner 
SQL,1 and Procella.6 There exist specialized storage sys-
tems such as Mesa14 and more generic ones such as 
Colossus18 that are leveraged by different applications, 
supporting different storage formats. Figure 1 shows an 
overview of part of the Google-internal ecosystem of query 
engines and their dependencies. If every query engine 
would benchmark according to their own needs, there 
would be no accountability across engines and no way to 
determine which systems are useful for which use case. In 
contrast, DIAMetrics is specifically built to consolidate 
the benchmarking needs within Google, to provide an 
effective way to compare engines and provide means to 
improve them.

Contributions. In this paper, we present an overview of 
DIAMetrics, a novel extensible framework for engine-
agnostic, repeatable benchmarking that is indicative of 
large-scale production performance.

Framework Architecture: We present the generic archi-
tecture of DIAMetrics in Section 2. We show a high-
level description of its components and discuss how 
its design allows for extensions with little effort while 
seamlessly supporting its core functionalities.

Modular Components: Each of the components is highly 
customizable to cater to customer specific requests while 
being general enough to handle a variety of use cases.

Use Cases: We discuss the deployment and varying use 
cases as well challenges addressed by the DIAMetrics 
framework within Google in Section 4.

2. OVERVIEW
DIAMetrics has two primary goals: (a) to be fully compos-
able and rely on enhanced reusability in order to facilitate 
benchmarking at scale; and (b) to be able to benchmark and 
profile any internal system capable of evaluating queries 
and any customer workload of that system producing these 
queries. These goals are realized through two key notions:

•	 Canonical exchange formats: For extensive abstraction, 
whenever two components need to communicate, 
they do so through well-defined exchange formats 
that we term canonical. The formats are component-
dependent, but the intuition is that the module that 

to evaluate a wide spectrum of queries, from single-point 
lookups, to real-time analytics, to extremely large machine-
generated queries over a multitude of formats, or to any mix-
ture of the above; and it has little to no statistics about the 
input a priori to guide the system’s optimizer and execution 
engine to deliver robust performance. Static benchmarks 
can act as a measuring stick, so as to speak, but only for the 
use case they have been designed to address. In all other use 
cases, a static benchmark is often not representative of 
the actual system load.

Problem motivation. Our work is motivated by the observa-
tion that benchmarking is a key necessity to determining 
the efficiency and usefulness of specific systems for specific 
tasks. Not having a way to benchmark a production system in 
a dynamic and often unpredictable environment may prove 
detrimental not only to the system developer but also to the 
user. The system developer spends an inordinate amount 
of time tuning the system for particular use cases and may 
not have clear insight into the larger-scale problems of the 
system. For instance, the developer may spend effort opti-
mizing a particular operator at the micro level, whereas a 
comprehensive benchmark would have shown that there 
would be greater benefit optimizing a different part of the 
system’s processing pipeline. Or, the developer may decide 
that more computing resources are necessary for a particu-
lar workload, when a targeted benchmark could showcase 
that the majority of time is spent on non-compute-intensive 
execution fragments. The user, on the other hand, benefits 
from knowing the level of performance a system delivers. 
For example, if that performance is suboptimal, she can 
provide the system developer with examples of this subopti-
mality, or even move to a different engine that may be better 
suited to the workload requirements.

Problem solution. Instead of focusing on a specific bench-
mark workload and using that as the means to test perfor-
mance and efficiency, we argue that we need a benchmarking 
framework. That is, the architecture for benchmarking that 
is capable of generating indicative benchmark workloads 
over production deployments, executing them, and mea-
suring a system’s performance on that workload. Moreover, 
to avoid duplicate effort, the architecture should be inde-
pendent of the query engine and it should rely on generic 
reusable components that can be instantiated with mini-
mal effort for every system that is to be benchmarked. At 
the same time, the framework should provide the means to 
track the performance per indicative benchmark workload 
and use that historical information to measure improve-
ment over time. DIAMetrics provides all that functional-
ity and has been used within Google to benchmark and 
reason about the end-to-end performance of internal query 
engines.

While DIAMetrics has only been used within Google, 
we posit that its architecture is powerful enough to support 
any query engine, as long as a minimal set of primitives are 
implemented. This is corroborated by the internal use of 
DIAMetrics: although Google is a single organization, it 
exhibits all the diversity characteristics we discussed earlier.

Figure 1. Part of the Google ecosystem.
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facilitates the transition from one format to the other 
can now be “plugged in”: If the component respects 
these formats, all DIAMetrics pipelines remain 
functional.

•	 System drivers: To interact with all supported query 
engines, DIAMetrics employs drivers, that is, modules 
that are capable of translating canonical workload rep-
resentations into query processing requests for each 
supported query engine, gathering profiling metrics 
from the execution of that query on the query engine, 
and translating these metrics to the framework’s own 
canonical profiling format for further processing.

2.1. Components
Using canonical exchange formats and system drivers, we 
construct the DIAMetrics pipeline as depicted in Figure 2. 
We use five components when benchmarking a variety of 
query engines and workloads: (a) the workload extractor, 
(b) the query and data scrambler, (c) the data mover, (d) the 
workload runner, and (e) the system monitoring and alert-
ing component. An overview of these components is given 
in Section 3. Each component can act as an entry point to 
the DIAMetrics framework. For instance, some user may 
not need to create a production workload since they may 
have one readily available through other means; or they 
want to use a standard benchmark like TPC-H. Alternatively, 
another user may only need to test different storage back 
ends for the same query workload, so they only need to use 
the data mover to generate multiple instances of the same 
workload. Essentially, the components described here are 
designed in a way that they can be mixed and matched spe-
cifically to each benchmarking use case.

2.2. Workflow
Google-internal query engines are highly scalable and are 
capable of serving billions of queries per day from multiple 
customers, both internal and external. Each query served, 
along with a number of internal system-specific informa-
tion, is logged, for example, in a distributed logging system 
running on Colossus, Google’s file system.18 The log formats 
of each query engine are different, but there is a lot of com-
mon information between them stored in different ways. 
DIAMetrics builds on top of the idea that log entries in 
essence contain the same information, presented in differ-
ent ways. Specifically, it uses a canonical representation of a 
query log, which treats a query as a combination of its query 
text and a number of features and their values that describe 
its profile. This representation is leveraged by DIAMetrics 
to drive the workload extraction and summarization process 
for custom benchmark generation. In essence, the workload 

extractor connects to the respective log system, extracting 
all relevant log entries that may contribute to the bench-
mark. The summarizer then uses that information to select 
an optimized subset of these logs that can be used as a cus-
tom, representative query workload.

However, these queries are often based on sensitive user 
data and are thus not available to any outside application 
or benchmarking system. To address this problem, users 
can choose to anonymize their data using DIAMetrics’s 
data scrambler. The data scrambler scans the original cus-
tomer data and applies various anonymization techniques 
on it in order to ensure no sensitive information is leaked to 
the benchmark dataset. In the simplest case, the data scram-
bler will arbitrarily permute the values of a column indepen-
dently of other columns. Such permutation will ensure that 
per-column value distributions remain the same, but cor-
relations across columns are broken, thereby reducing the 
likelihood of disclosure. Additionally, the scrambler may 
further obfuscate values by hashing them, by mapping them 
to a different domain, or by adding a small amount of noise 
so that the resulting dataset has approximately the same 
statistical properties but over different values, and so on. 
Finally, depending on the user’s benchmarking use case, 
they might choose to compare their benchmark on a vari-
ety of storage layers or with different file formats. The data 
mover allows DIAMetrics to prepare the benchmark for 
execution on a variety of back ends, allowing the user to get 
a comprehensive understanding of their execution patterns.

Once queries and data are stored in the correct place(s), 
independent of whether they are derived from the above 
pipeline or provided by the user, we deploy a workload runner 
that reads a set of configuration files describing the execu-
tion parameters and automatically runs the benchmarks 
on the specified systems with the specified execution con-
straints. Following the modular principles explained above, 
we allow users to write pluggable configurations; that is, the 
same system configuration may be used for a set of differ-
ent benchmarks. Note that by defining these configurations, 
the user determines the parameters of the benchmark. For 
example, they can decide to run the benchmark on a produc-
tion server or in isolation by using different system setups. 
Similarly, they may choose to compare the generic execu-
tion of the TPC-H workload to a platform-optimized version 
to examine choices made by the query optimizer. In all of 
DIAMetrics’s benchmark executions, we follow standard 
experimental procedure and allow users to execute the same 
workload and system configurations multiple times to pro-
vide realistic results.

Finally, the last step in the end-to-end workflow is the 
interpretation of the execution results. The monitoring 
component of DIAMetrics provides dashboards to the 
framework users that allow them to easily interpret the 
historic results of their benchmarks. It is triggered periodi-
cally and automatically updates its dashboards whenever 
new execution results have become available. If desired, 
users can furthermore use alerts to get notified when their 
execution patterns change significantly from previously 
observed or expected patterns. Our end-to-end framework 
for workload benchmarking has simplified and streamlined 

Figure 2. An overview of the DIAMetrics components.
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benchmarking within Google across different systems. It 
allows users to set up automatic benchmarking in a mat-
ter of minutes without needing to worry about the specific 
implementation details of executing repeatable bench-
marks. In essence, DIAMetrics enables efficient and con-
sistent benchmarking at scale within Google.

3. FRAMEWORK COMPONENTS
We next present the components of the DIAMetrics frame-
work in detail. Each component can be thought of as a 
stand-alone facility, but it is their interaction that delivers 
an end-to-end solution.

3.1. Workload extractor
One of the main problems when benchmarking any system 
is defining the benchmark that appropriately evaluates the 
system. Indeed, a single system may experience multiple 
types of workload at different times. For instance, the major-
ity of queries may be long-running resource-intensive ana-
lytics queries; or they may be single-point lookup queries 
for record retrieval; or anything in between when a user is 
using a database in exploratory mode. These can be created 
by a single or multiple customer(s) using the system for dif-
ferent types of applications. Traditionally, system deploy-
ments have been tailored for different application needs, 
each deployment being optimized for the types of queries it 
is expected to evaluate. With the move to distributed, large-
scale, federated, and cloud-based deployments, however, 
the advantage of fully controlling the architecture of a sys-
tem is no longer given. A query engine is treated simply as 
an end point and is expected to be able to process user que-
ries with little to no optimization from the user. It is, there-
fore, a requirement for the query engine providers to cater 
to different needs at the same time, which makes it impera-
tive to have a way to gauge the system’s performance on the 
user’s workload. Whereas for relational systems we have had 
benchmarks such as TPC-H, TPC-C, or TPC-DS, mostly stem-
ming from the general division of relational workloads into 
OLTP and OLAP, there are no representative benchmarks for 
these (user-specific) mixed workloads.

To process not only standardized benchmarks but also 
user-specific benchmarks, we developed techniques that 
compress a user’s workload into a small set of representative 
queries that can then be used as a benchmark workload.11 
Our framework for workload extraction and summarization 
roughly undertakes the following tasks:

Log canonicalization. To create a user-specific benchmark, 
log entries are first extracted and transformed to a canoni-
cal representation that contains a set of features necessary 
to drive summarization. Features can be anything that char-
acterizes the specifics of a query that are deemed useful for 
benchmark creation. In DIAMetrics, we support two types 
of features: syntactic and profiling features. Syntactic fea-
tures can be extracted by parsing the query, for example, the 
number of joins in the query statements or the aggregate 
functions used in the query. Profiling features on the other 
hand may encompass characteristics such as query latency, 
CPU usage, or amount of data read/written to disk.

Workload summarization. Once the workload features have 
been extracted, we can leverage them to identify a subset of 
queries for benchmarking this workload. The choice of que-
ries in the subset is driven by two metrics: representativity 
and coverage. Representativity determines how closely the 
distribution of features in the subset matches the original 
workload. In contrast, coverage determines how well the 
features in the subset cover the features observed in the origi-
nal workload. To an extent, coverage describes the complete-
ness of the benchmark. During workload summarization, 
we optimize the selection of queries according to these met-
rics and greedily pick the benchmark queries that can then 
be used for realistic production benchmarking. For further 
details on how to realize workload summarization, please 
refer to Deep.11

3.2. Data and query scrambler
In addition to finding a representative set of queries to exe-
cute for benchmarking, DIAMetrics also needs to ensure 
that the data it is using for these benchmarks is representa-
tive. The choice of dataset will drive storage and query pro-
cessing decisions depending on the query patterns being 
executed, the storage back end, the complexity of the data, 
and the data value distributions, to name but a few factors.

The data scrambler is a step toward addressing the 
problem of representative data generation, as it provides a 
simple and efficient way to use production data for query 
benchmarking. The intent is to have a facility that would 
allow one to quickly sanitize a representative production 
dataset and use actual production queries over the sanitized 
version for performance benchmarking. Once workload 
summarization identifies the queries that are representative 
of a workload, we can use the inputs these queries process 
to snapshot the production data and use that snapshot to 
build a version of the input data to be used for benchmark-
ing. This is not always straightforward, mainly because pro-
duction data may contain fields, values, and correlations 
between them that are sensitive and should not be used for 
benchmarking purposes. In the data scrambler, we solve 
that problem by breaking correlations between values; by 
protecting data through hashing their values to obfuscate 
them; and by adding small amounts of noise to the data so 
that their distributions are not significantly altered. While 
the scrambler does not provide formal guarantees with 
respect to privacy or non-disclosure, it has been found to 
alter the input data in a reasonable way that might be good 
enough for performance benchmarking in a secure industry 
setting. No formal guarantees notwithstanding the scram-
bler is extremely customizable and may well provide these 
guarantees implicitly if configured properly by data owners.

3.3. Data mover
The data mover acts as an intermediary between formats. 
The intuition behind the data mover is to give DIAMetrics 
the ability to generate multiple benchmarks from the same 
workload by converting the same input source to fit dif-
ferent storage back ends. This is far from trivial as there 
are multiple aspects to take into account when designing 
data transformation mechanisms. First, different storage 
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formats imply different schema definitions, which in turn 
imply potential type conflicts. For instance, the target 
format supports dates only as milliseconds in the epoch, 
whereas the format we want to move data from stores these 
dates as strings; thus, the data mover needs to apply the 
transformation from one format to another. Second, some 
input format may have additional statistical information 
embedded into its sources, or even value indexes incorpo-
rated. If that is the case, the data mover deploys a best-effort 
mechanism to replicate the original input structure with as 
many auxiliary structures transferred to the output as pos-
sible. Other information that the data mover attempts to 
preserve is sharding information, for example, the number 
of shards and the partitioning scheme; input storage prop-
erties like the input being sorted; data definition proper-
ties like functional dependencies if these are supported by 
the target storage back end; and, in general, any optimiza-
tions that are present in the input dataset and might affect 
the performance of the storage back end if they are not 
preserved. Once the requested data movements have taken 
place, the input workload will be rewritten so that instead 
of using the original input sources, it uses the newly gener-
ated data sourcesv (Figure 3).

3.4. Workload runner
The benchmark execution component of DIAMetrics is 
the workload runner. The runner accepts multiple execution 
configurations as input, with each execution configuration 
containing the following four elements: (a) a number of sys-
tems and their configurations to use for benchmarking; (b) a 
number of benchmark configurations; (c) a number of work-
loads to benchmark; and (d) a number of alert configura-
tions to trigger if there are any issues detected when running 
a benchmark. The workload runner will then run each exe-
cution configuration by deploying every workload over every 
benchmark configuration and over every system configura-
tion. Configurations are stored in the metadata database of 
DIAMetrics. When the workload runner is requested to 
process an execution configuration, it determines the spe-
cifics of that configuration in the metadata database and 
retrieves all required system, benchmark, workload, and 
alert configurations it refers to. Next, the runner will deploy 
an intermediate orchestrator to configure systems and 
benchmark, run queries, save their profiling metrics, and 
evaluate any potential alerts as shown in Figure 4. While the 
default execution is sequential, the workload runner also 

offers various degrees of parallelism. For example, the run-
ner may send the same workload of all targeted systems for 
execution in parallel, but within a system it can be config-
ured to issue queries sequentially for better isolation.

3.5. System monitoring and alerting
After the workload runner has executed a workload, we 
export the output into DIAMetrics-specific logs. These logs 
are then used to (a) allow users to monitor benchmarking 
performance through result visualization and (b) automati-
cally monitor performance regressions and issue alerts. 
System monitoring is a core objective of DIAMetrics, as it 
helps users to track the performance of the system. At the 
same time, it is useful to system developers to track incre-
mental changes of the same workload, visualizing whether 
changes to the codebase improved a system’s performance. 
DIAMetrics automatically retrieves the logs that the work-
load runner generates and uses the logged profiling met-
rics for visualization. Specifically, we use static dashboards 
to visualize the workload execution over time in terms of 
essential statistics such as latency, CPU time, spilled bytes, 
and any other metric that is captured by the executed system 
and deemed important by the client. An example of perfor-
mance tracking of execution time using the same bench-
mark for various systems is shown in Figure 5a. Here, we 
observe the execution of three different systems, one of which 
is executed with two different system settings. Their perfor-
mance is tracked over a time span of ten days and the average 
execution time is reported. We primarily monitor aggregate 
metrics like the geometric mean of Figure 5a for latency, but 
this is not the only capability of the monitoring substrate 
of DIAMetrics. The dashboard visualizations allow for an 
intuitive comparison of the different systems and, at the very 
least, signal (a) how stable a system is, and (b) how a system 
fares in comparison with alternative deployments of the 
same system, or other internal query engines.

In addition to simple tracking dashboards, we also devel-
oped more insightful dashboards, such as dashboards that 
look at the scalability of a system or give insights into spe-
cific queries. For example, in Figure 5b, we visualize two 
different systems that run the same query on two different 

Figure 3. Overview of the workload summarizer.
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data layouts to compare performance. We observe that 
System X performs comparatively better on data layout 1, 
while System Y is preferable on data layout 2. Furthermore, 
these different data layouts lead to different utilization of 
SQL operators: while data layout 1 results in query execution 
being dominated by aggregation operations, data layout 2 
results in join operations also taking a comparative fraction 
of query execution. This type of information is invaluable 
when evaluating different systems as well as storage layers, 
optimization mechanisms, and so on.

Finally, DIAMetrics can signal to developers and work-
load owners if there exists an significant performance 
degradation in the most recent snapshot of the system, if 
there were any failures, and so on. At an abstract level, the 
alerting framework uses the metrics produced by the latest 
run of an execution configuration and compares them to 
their historical behavior to identify potential regressions. 
Overall, alerts are an important facility of DIAMetrics in 
order to identify any deviations from the expected norm 
and focus on the attention of the development, production, 
and benchmark-owning teams to problematic situations 
that can be exemplified through a handful of queries exhib-
iting the problem.

4. DEPLOYMENT AND LESSONS LEARNED
DIAMetrics is capable of benchmarking all production-
ready generally available SQL engines within Google as well 
as selected internal, non-SQL engines. With every work-
load run, it evaluates thousands of queries across multiple 
systems, gathering and storing performance metrics for 
immediate and later analysis. It has enabled query engine 
production teams to set performance goals and know where 

they stand with respect to alternative systems, while it has 
also helped teams to migrate between query engines by 
identifying problematic cases and setting up roadmaps for 
the migration. We next sketch the most widely encountered 
use cases for DIAMetrics, some of them expected, but others 
being off the beaten track with respect to its original design.

4.1. Benchmarking
The core idea behind DIAMetrics is to provide users with 
an intuitive means to benchmark their systems. To that 
effect, we have developed DIAMetrics to be modular, cus-
tomizing the benchmarking experience to the team’s use 
case. Tooling for daily benchmarking is currently used by 
a variety of Google query engines such as F1, Procella, and 
Dremel. Some of their use cases are described here:

Workload characterization. One of the highest barriers 
of entry to DIAMetrics has been that teams often do not 
have a clear grasp on what their query workload looks like; 
or, if they know all the query patterns that they employ, 
they have no means to identify important patterns. In 
some cases, a simple frequency-based clustering of que-
ries is enough to identify a rough approximation of the 
workload, but in the majority of cases that is not possible. 
Workload summarization is a powerful method to com-
press a workload into a benchmark, providing guarantees 
about the output in terms of its representativity and cover-
age. Moreover, the summarizer is capable of delivering the 
benchmark workload under specific constraints in terms 
of the profile of the extracted benchmark. Having such a 
facility in place allows teams to quickly turn their work-
load into a benchmark with minimal manual log mining 
and configuration on their part.

Workload optimization. DIAMetrics is capable of produc-
ing tracking dashboards for various combinations of system 
configurations over different versions of the same work-
load. Internal teams have used DIAMetrics to test their 
optimizer’s performance by comparing out-of-the-box and 
manually optimized versions of a workload; or to compare 
the performance of different storage configurations; or to 
measure the impact of a feature upon a workload by com-
paring system performance with the feature being turned 
on or off. Having the ability to do this with minimal configu-
ration and over production workloads in addition to stan-
dard benchmarks improves the confidence of development 
teams in their decisions and not only optimizes specific use 
cases, but also reduces the management and financial cost 
of deploying these workloads. Moreover, doing so on a com-
pressed, representative version of a workload with robust-
ness guarantees allows the data owners to quickly perform 
these optimizations at scale and extrapolate from the per-
formance of the compressed workload to the expected perfor-
mance of the system on the actual workload.

Performance accountability. Tracking the historical per-
formance of a query engine on a workload is a two-way 
street. Not only is it useful for a query engine to track how 
well it performs on a specific workload, it also works in the 

Figure 5. Example dashboards for per-query benchmark 
performance monitoring.
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(b) Operation breakdown computation
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inverse direction: the developers of an application using a 
query engine can hold the engine accountable for the per-
formance it delivers on their application. DIAMetrics can 
be used to deliver compliance benchmarks for service-level 
objectives between data owners and query engine users, and 
the production team of the query engine. Such accountabil-
ity bridges the gap between teams and leads to a common 
understanding of the expected level of performance.

Data anonymization. The DIAMetrics framework enables 
the use of actual production-like data for benchmarking, 
thus eschewing the need to come up with synthetic data 
generators or not being able to benchmark a system with 
production-like workloads altogether. Often, internal teams 
have a good idea of benchmark queries, but it is impossible 
to run these queries over production data as a data contains 
sensitive user information that only the owning team should 
be able to access, adding DIAMetrics as a data accessor is 
simply not an option, nor is it an option to provide access 
to the data through some other role. The data scrambler 
can help in these cases as it can reformat the data in various 
ways and with user-controlled degrees of anonymization. 
Moreover, scrambling takes place in ways that preserve the 
input value distributions, thus making the scrambled data a 
good representation of the original production data.

4.2. Software development
In addition to traditional benchmarking, we also offer sup-
port for developers to run their benchmarks on experimen-
tal instances. DIAMetrics has improved awareness of how 
different changes to the codebase impact different query 
engines and has started to integrate large-scale benchmark-
ing into the developer’s workflow.

System comparison and choice. As the implementation 
of DIAMetrics progressed, a novel use case emerged, 
helping new teams decide on the most appropriate query 
engine for their workload, whereas for well-established 
teams, it is hard to migrate to a new query engine, newer 
teams do not have such tie-ins. It is therefore possible for 
a team to come along with a representative workload and 
test that workload on the internal query engines that can 
support it. They can then make an informed decision as 
to which query engine provides the best support for their 
workload. Additionally, if they are keen to work with a spe-
cific query engine but that engine is not optimized for the 
workload, they can provide the engine’s developers with 
example queries where performance suffers.

Performance-driven development. DIAMetrics has 
been frequently used to set performance goals for develop-
ment teams. A typical use case is to identify problematic 
workloads for a particular query engine and then set a road-
map for implementing improvements for these workloads. 
Development teams will then use DIAMetrics to track their 
performance on those workloads, observing how their modifi-
cations improve the system’s performance. At the same time, 
the development team has assurances that these changes do 
not degrade the performance of other workloads.

Release blocking. Monitoring and alerting give rise to the 
production of compliance tests for the query engines that 
DIAMetrics supports. Recall that our framework can target 
any existing query engine deployment. Some of these deploy-
ments may be staging ones, running a version of the system’s 
binary that is different from the official one; most frequently 
the latter is a release candidate version. By comparing the 
performance of a benchmark on the current binary with that 
of the release candidate, teams can identify potential prob-
lems before releasing the candidate and block the release in 
the presence of a potential regression. One of the welcome 
side effects of DIAMetrics is that it exemplifies the regres-
sion through a handful of queries in which the regression 
manifests. By having this information, development teams 
can quickly start addressing the regression.

5. RELATED WORK
Benchmarking is not a novel problem, especially in the 
context of data management,2,3,5,9,10 but has become 
increasingly important over the last years with the increase 
in available data, the move to hosted management and 
data services, and the need for low-latency processing 
regardless of data size. All systems need to be robust; 
that is, they need to consistently execute their workloads 
without performance degradation due to changes in the 
data or the underlying codebase. Robustness has been 
discussed in several lines of research in the broader con-
text of database systems. For example, Mozafari et al.17 
discuss robustness for changing datasets, while Zhu et 
al.25 address robustness in the context of query plan opti-
mization. Our use case is not so much data-driven as it is 
development-driven. Code changes have similar or worse 
impact on the performance of data management systems 
if not tested appropriately and continuously.

From a research perspective, the work that is closest to 
some of the ideas implemented in DIAMetrics is work-
load compression7 and particularly its application to index 
selection for relational databases.8 This is merely part of 
what our framework supports and any compression algo-
rithm can be “plugged in” to DIAMetrics so long as its 
inputs and outputs are translated to the canonical repre-
sentations the various components of DIAMetrics expect. 
At the same time, DIAMetrics does not aim to provide 
insight into different storage configurations of a dataset to 
optimize its run time; rather, it provides the support nec-
essary to compare and contrast the performance of a query 
engine on these configurations. Similarly, while workload 
characterization has received attention from the database 
community, it has often been used for limited scope pur-
poses: (a) as a tool to help with physical design24; (b) as a 
means to identify interesting queries to help in debugging 
SQL performance13; or (c) as a way to identify data-cleaning 
primitives in large datasets.15

Industry wise, there exist commercial products that allow 
customers to replay entire workloads12 in order to analyze 
performance.22 The users of these products are expected to 
replay an entire workload, whereas we can filter it through 
our summarizer, in order to have something to measure the 
performance of an SQL engine on. Their goal is to completely 
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replay a workload trace down to the sequence and timing 
of queries issued. This is not our focus: instead, we aim to 
provide repeatable benchmarking for a variety of systems 
and not the means to debug any performance issues faced 
by a particular deployment. Additionally, products as shown 
in Galanis,12 and Yagoub22 are specific to a system and lack 
the ability to compare and contrast multiple metrics across 
systems. Overall, and while certainly related to some of the 
components of DIAMetrics, that line of products is less 
general and focuses on reactive optimization as opposed to 
proactive end-to-end benchmarking, which is our intention.

The effort that is most related to ours is Snowtrail.23 
While the objective is similar, that is, testing with produc-
tion data to identify performance regressions, the approach 
is much more limited in scope compared with DIAMetrics. 
Performance regression is but one of the use cases sup-
ported by DIAMetrics, which is (a) far more general in its 
architecture, (b) provides more stand-alone components, 
each alleviating a particular benchmarking problem, as 
opposed to the monolithic design of Snowtrail, (c) is capable 
of supporting more metrics than latency, and (d) supports 
cross-system benchmarking. To the best of our knowledge, 
DIAMetrics is the first system to provide a disciplined and 
generic end-to-end solution for benchmarking multiple 
query engines in a single framework.

6. CONCLUSION AND OUTLOOK
We presented DIAMetrics: a framework for benchmark-
ing query engines within Google. DIAMetrics is a rela-
tively new effort, which has already shown strong potential 
and we believe could be used in various more ways than 
it was originally designed for. For starters, it would be 
interesting to apply these techniques not only to internal 
customers, but also to external customers using Google’s 
infrastructure and query engines that are interested in cus-
tom benchmarks to track the performance of Google sys-
tems on their workloads. Another interesting application 
of DIAMetrics would be to use it to make configuration 
recommendations for new customer workloads. By mea-
suring the similarity of a new customer’s workload to exist-
ing ones we can set expectations for the performance an 
internal query engine will deliver. These expectations can 
be used to set service-level objectives for the engine itself 
with respect to the customer’s workload. Furthermore, 
workload similarity may imply configuration similarity so 
a new customer can have a head start with respect to opti-
mizing a query engine’s performance on their workload. 
Alternatively, many sample sizes of a target summarized 
workload can be used to estimate the scalability of an 
engine for that workload and even extrapolate to the perfor-
mance of the engine as the size of the workload grows; such 
capability is very helpful for provisioning and planning.

Overall, DIAMetrics solves the key problem of system 
benchmarking at the query engine level by providing a uni-
form way to develop benchmarks for multiple systems with-
out worrying about the intricacies of each individual system. 
It does so in a scalable and extensible way and we believe 
that its modular architecture renders it as a framework that 
is truly greater than the sum of its parts.�

	 1.	 Bacon, D.F., Bales, N., Bruno, N., 
Cooper, B.F., Dickinson, A., Fikes, A.,  
Fraser, C., Gubarev, A., Joshi, M., 
Kogan, E., Lloyd, A., Melnik, S., Rao, R.,  
Shue, D., Taylor, C., van der Holst, M.,  
Woodford, D. Spanner: Becoming 
a SQL system. In ACM SIGMOD 
(2017), 331–343.

	 2.	 Bitton, D., DeWitt, D.J., Turbyfill, C. 
Benchmarking database systems: A 
systematic approach. In VLDB  
(1983), 8–19.

	 3.	 Boncz, P., Neumann, T., Erling, O. 
Tpc-h analyzed: Hidden messages and 
lessons learned from an influential 
benchmark. In TPCTC (2014), 61–76.

	 4.	 Carey, M.J., DeWitt, D.J., Naughton, J.F.  
The 007 benchmark. In ACM 
SIGMOD (1993), 12–21.

	 5.	 Carey, M.J., DeWitt, D.J., Naughton, J.F.,  
Asgarian, M., Brown, P., Gehrke, J.E., 
Shah, D.N. The bucky object-relational 
benchmark. In ACM SIGMOD (1997), 
135–146.

	 6.	 Chattopadhyay, B., Dutta, P., Liu, W.,  
Mccormick, A., Mokashi, A., Tinn, O.,  
McKay, N., Mittal, S., Ching 
Lee, H., Zhao, X., Mikhaylin, N., 
Harvey, P., Lychagina, V., Xu, T., 
Elliott, B., Gonzalez, H., Perez, L., 
Shahmohammadi, F., Lomax, D., 
Zheng A. Procella: A fast versatile 
SQL query engine powering data at 
YouTube. In Data Works Summit 
(2018).

	 7.	 Chaudhuri, S., Gupta, A.K., Narasayya, V.  
Compressing sql workloads. In ACM 
SIGMOD (2002), 488–499.

	 8.	 Chaudhuri, S., Narasayya, V.R. An 
efficient cost-driven index selection 
tool for microsoft sql server. In VLDB 
(1997), 146–155.

	 9.	 Cooper, B.F., Silberstein, A., Tam, E.,  
Ramakrishnan, R., Sears, R. 
Benchmarking Cloud Serving 
Systems with YCSB. In SoCC (2010), 
143–154.

	10.	 Crolotte, A., Ghazal, A. Introducing 
Skew into the TPC-H Benchmark. In 
TPCTC (2012), 137–145.

	11.	 Deep, S., Gruenheid, A., Koutris, P.,  
Naughton, J., Viglas, S. 
Comprehensive and efficient 
workload compression. PVLDB 14, 3 
(2020), 418–430.

	12.	 Galanis, L., Buranawatanachoke, S., 
Colle, R., Dageville, B., Dias, K., Klein, J.,  
Papadomanolakis, S., Tan, L.L., 
Venkataramani, V., Wang, Y., Wood, G. 
Oracle database replay. In SIGMOD 
(2008), 1159–1170.

	13.	 Grust, T., Rittinger, J. Observing sql 
queries in their natural habitat. ACM 
Trans. Database Syst 38, 1 (2013), 
3:1–3:33.

	14.	 Gupta, A., Yang, F., Govig, J., Kirsch, A.,  
Chan, K., Lai, K., Wu, S., Dhoot, S.G., 
Kumar, A.R., Agiwal, A., Bhansali, S.,  
Hong, M., Cameron, J., Siddiqi, M., 
Jones, D., Shute, J., Gubarev, A., 
Venkataraman, S., Agrawal, D. Mesa: 
Geo-replicated, near real-time, 
scalable data warehousing (2014).

	15.	 Jain, S., Howe, B. Data cleaning in the 
wild: Reusable curation idioms from a 
multi-year sql workload. In QDB (2016).

	16.	 Melnik, S., Gubarev, A., Long, J.J., 
Romer, G., Shivakumar, S., Tolton, M.,  
Vassilakis, T. Dremel: Interactive 
analysis of web-scale datasets. 
PVLDB 3, 1–2 (2010), 330–339.

	17.	 Mozafari, B., Goh, E.Z.Y., Yoon, D.Y. 
Cliffguard: A principled framework for 
finding robust database designs. In 
SIGMOD (2015), 1167–1182.

	18.	 Pasumanskyl, M. Inside capacitor, 
bigquery’s next-generation columnar 
storage format. In Google Cloud Blog 
(2016).

	19.	 Samwel, B., Cieslewicz, J., Handy, B., 
Govig, J., Venetis, P., Yang, C., Peters, K.,  
Shute, J., Tenedorio, D., Apte, H., 
Weigel, F., Wilhite, D., Yang, J., Xu, J.,  
Li, J., Yuan, Z., Chasseur, C., Zeng, Q.,  
Rae, I., Biyani, A., Harn, A., Xia, Y., 
Gubichev, A., El-Helw, A., Erling, O., 
Yan, Z., Yang, M., Wei, Y., Do, T.,  
Zheng, C., Graefe, G., Sardashti, S.,  
Aly, A.M., Agrawal, D., Gupta, A.,  
Venkataraman, S. F1 query: 
Declarative querying at scale.  
PVLDB 11, 12 (2018), 1835–1848.

	20.	 Shute, J., Vingralek, R., Samwel, B., 
Handy, B., Whipkey, C., Rollins, E., 
Oancea, M., Littlefield, K., Menestrina, D.,  
Ellner, S., Cieslewicz, J., Rae, I.,  
Stancescu, T., Apte, H. F1: A 
distributed sql database that scales. 
PVLDB 6, 11 (2013), 1068–1079.

	21.	 Transaction Processing Performance 
Council. TPC Benchmark H (decision 
support) (2017).

	22.	 Yagoub, K., Belknap, P., Dageville, B., 
Dias, K., Joshi, S., Yu, H. Oracle’s SQL 
Performance Analyzer. 2008.

	23.	 Yan, J., Jin, Q., Jain, S., Viglas, S.D.,  
Lee, A. Snowtrail: Testing with 
production queries on a cloud 
database. In DBTest (2018), 4:1–4:6.

	24.	 Yu, P.S., Chen, M.-S., Heiss, H.-U., Lee, S.  
On workload characterization of 
relational database environments. 
IEEE Trans. Softw. Eng 18, 4  
(Apr. 1992), 347–355.

	25.	 Zhu, J., Potti, N., Saurabh, S., Patel, J.M.  
Looking ahead makes query plans 
robust: Making the initial case with in-
memory star schema data warehouse 
workloads. PVLDB 10, 8 (2017), 
889–900.

References




