
Matching in Multi-arm Bandit with Collision

Yirui Zhang1, Siwei Wang2, Zhixuan Fang1,3∗
1 IIIS, Tsinghua University 2 Microsoft Research 3 Shanghai Qi Zhi Institute

zhangyr22@mails.tsinghua.edu.cn
siweiwang@microsoft.com

zfang@mail.tsinghua.edu.cn

Abstract

In this paper, we consider the matching of multi-agent multi-armed bandit prob-
lem, i.e., while agents prefer arms with higher expected reward, arms also have
preferences on agents. In such case, agents pulling the same arm may encounter
collisions, which leads to a reward of zero. For this problem, we design a specific
communication protocol which uses deliberate collision to transmit information
among agents, and propose a layer-based algorithm that helps establish optimal
stable matching between agents and arms. With this subtle communication proto-
col, our algorithm achieves a state-of-the-art O(log T) regret in the decentralized
matching market, and outperforms existing baselines in experimental results.

1 Introduction

Decentralized matching between two sides with preferences (e.g., supply and demand) is the core
process in many online marketplaces, such as passengers and riders on ridesharing platforms (e.g.,
Uber), or customers and free-lancers in online labor markets (e.g., TaskRabbit), etc. Since in practical
scenarios, participants in the online market obtain information mainly through their own experiences,
a crucial question arises on how to achieve an optimal stable matching among these competing agents,
through learning from the iterative interactions with the other side, and, at what cost?

Learning the uncertainty in two-sided markets has been studied from various angles, e.g., the
contextual bandit scenario ([8, 7]), the economic perspective [1], and the stability and fairness in
the centralized matching market [5]. Following a strand of recent literature (e.g., [9, 2]), we model
the problem as a multi-agent multi-arm bandit problem. Specifically, in the decentralized matching
market with multi-armed bandits, we consider a setM of M agents, and a set A of K arms, with
M ≤ K. Every agent knows M , K, and the time horizon T . Each arm has its fixed preference
towards agents, which is unknown to all the agents. The notation i ≻k j means that arm k prefers
agent i rather than agent j.

At each time t, every agent j pulls an arm Ij(t) ∈ A. When multiple agents pull the same arm k
at time t, a collision occurs on this arm. Only the agent that the arm prefers most, e.g., j, will win
the competition. The winning agent does not encounter collision, and obtains a stochastic reward
Rj(t) from the arm, which is sampled from a unknown fixed distribution Fjk with mean ujk. In
the meantime, the other agents i that pull arm k will encounter collision and receive zero reward,
i.e., Ri(t) = 0. Same with the previous works, we assume that the minimal gap of utility between
two arms among all agents ∆ ≜ minm∈M mink,n∈A,k ̸=n |umk − umn| is positive. We let Cj(t)
represent the collision indicator for agent j at time t, i.e., Cj(t) = 1 denotes that agent j encounters
collision at time step t and Cj(t) = 0 otherwise. In our model, each agent j is informed of her own
collision signal Cj(t) and reward Rj(t) after her pull. At each time step t, every agent j pulls an arm
Ij(t) only according to her observed history {(Ij(τ), Rj(τ), Cj(τ))}t−1

τ=1.
∗Corresponding author: Zhixuan Fang (zfang@mail.tsinghua.edu.cn).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 1. Comparison between our work and prior results.

Algorithms Model Regret
UCB-D3 globally ranked agent O(M(M − 1)K log T/∆2)
UCB-D4 uniqueness consistency O(M(M − 1)K log T/∆2)

CA-UCB partially decentralized O(exp(M4)M log2 T/∆2) (pessimal regret)
Phased-ETC general model O(MK log1+ϵ T + exp(1/∆2))

ML-ETC (our result) general model O(MK log T/∆2)

Now we introduce the optimal stable matching to give a suitable notion of regret ([6]). While arms
have preferences towards agents, an agent j always prefers the arm with higher utility, i.e., the arm
with higher ujk. In a stable matching, there does not exists any "agent, arm" pair such that each one
prefer each other than the current matched partner.

If there exists at least one stable matching where agent j is matched with arm k, we call arm k is an
attainable arm to agent j. We denote the set of attainable arms of agent j by Astable(j). The optimal
stable arm for agent j is a∗j = argmaxk∈Astable(j)

ujk, i.e., the arm with highest mean to agent j in
Astable(j). As shown in previous study (e.g.,[6]), there exists a unique stable matching where every
agent matches with her optimal stable arm. The optimal regret is defined as the expected reward gap
between the ideal reward according to the optimal stable matching and the achieved reward, i.e.,

Reg(T) = T

M∑
j=1

uja∗
j
− E

 T∑
t=1

M∑
j=1

(1− Cj(t))ujIj(t)

 .

1.1 Our Main Contribution

Following the explore-then-commit (ETC) framework [11, 9, 12], we propose an algorithm called
ML-ETC. Specifically, all the agents will first explore arms and then commit to their optimal stable
arms in terms of empirical means.

The key point in ML-ETC is that we allow agents to communicate through deliberately designed
collisions, so that they can switch from exploration to exploitation timely. Previous works in multi-
agent multi-arm bandit (e.g., [4, 15, 11, 14, 3]) have discussed the use of deliberate collisions among
agents for communication, but they fail in the case of matching market with multi-armed bandit.
This is because when arms have preferences on agents, it may be impossible for every agent to
communicate with each other. For example, consider an extreme case where agent j is ranked first on
all arms. In this case, agent j will never encounter collision, let alone receiving information from
others through deliberate collisions. To solve this problem, we show that under such circumstance, the
agent who cannot transmit information to agent j will never be able to influence the stable matching
of agent j, which means that there is nearly no difference whether they exist from agent j’s point of
view. Therefore, an agent could end the exploration once all the agents who can communicate with
her have high confidence of their preference about arms. After that, we can apply GS ([6]) to make
sure that each agent obtains her optimal stable arm within limited time steps and then commits to that
optimal stable arm.

Based on these properties, we show that our subtle multi-layered algorithm ML-ETC achieves a
state-of-the-art regret upper bound of O(log T) in the decentralized setting, which is better than
the existing results, including the O(log1+ϵ T) regret bound for Phased-ETC [2] and the O(log2 T)
regret bound for CA-UCB in [10]. Please see Table 1 for the summary of comparison with previous
results, and Section 1.2 for detailed discussions.

1.2 Related Work

The study of matching in multi-armed bandit is initiated by the recent work [9]. In this work, the
authors introduce the model and design both a centralized ETC policy and a decentralized ETC policy.
The centralized ETC has good performance but requires a central organizer to proceed matching,
which may not exist in many real-world applications.The decentralized ETC, on the other hand, may
cause very high regret when the minimal gap ∆ is unknown to the agents, which is also a common
case in reality. Thereafter, there are two major strands of literature on this problem.

2

A strand of literature studies the special case where the arms’ preferences satisfy some special
conditions. For example, the work of [13] assumes that the agents are globally ranked, which means
all arms have the same preference toward agents, and proposes the UCB-D3 algorithm. Also, [2]
designs the UCB-D4 algorithm based on the assumption of uniqueness consistency on agents and
arms. The assumption of uniqueness consistency requires that there exists a unique stable matching
for all agents and arms, and the matching remains to be the unique stable matching when arbitrary
matched pairs leave the system.

The other strand of literature focuses on the general case of unrestricted arm preferences. In [10],
the authors design the CA-UCB algorithm, based on extra information that all agents can observe
the winning agent for each arm at the end of each round. CA-UCB achieves an O(log2 T) pessimal
regret (a less strict notion of regret). Within this strand of work, the work [2] is the most related to
our work, which also analyzes the optimal regret in the general market. Beyond the aforementioned
UCB-D4, the authors also design a phased based algorithm Phased-ETC (for general arm preference)
and achieves the regret bound of O(log1+ϵ T), with ϵ > 0. However, in their algorithm, agents
have no communication at all. Therefore, agents keeps exploring all the arms and have no idea
of others’ estimations of the arms. In addition to the O(log1+ϵ T) factor, Phased-ETC also has a
huge regret term (an exponential term of exp(1

∆2)) because of the possibility of the exploration
failure, and this will be explained in detail in our experimental section. Compared to [2], we design
a subtle communication protocol to allow agents to end the exploration timely while they have
high confidence of the arms’ order according to the empirical means. This allows us to obtain a
state-of-the-art O(log T) regret upper bound without any potential exponential terms.

2 The ML-ETC Algorithm

In this section, we introduce our Multi-Layer Explore Then Commit (ML-ETC) algorithm, which is
described in detail in Algorithm 1 and achieves O(log T) regret.

2.1 Brief Introduction

The algorithm can be briefly divided into 3 phases: the initialization phase, the multi-layered
exploration and communication phase, and the exploitation phase.

In the initialization phase, all agents will be assigned an index and receive some information of the
arm preferences. After the initialization phase, agents form an underlying hierarchical structure with
respect to their communication capability through collision. Then, the algorithm proceeds to the
multi-layered exploration and communication phase to match agents of each layer with arms. At each
layer, the algorithm keeps iterating between exploration and communication. During exploration,
every agent will explore the arms orthogonally (according to her index in order to avoid collision) and
will estimate the expected rewards of all the remaining arms. During communication, every agent
checks whether her estimations are accurate enough, and transmit this information to all the agents
that can hear from her. Only when some of the agents are able to successfully find their empirical
optimal stable arms, will they leave the multi-layered exploration and communication phase, and
start their exploitation phase. The remaining agents will enter the next layer, until all the agents find
out their empirical optimal stable arms. In the exploitation phase, every agent continuously pulls her
empirical optimal stable arm.

2.2 Communication Protocol

In this subsection, we will introduce the core of ML-ETC, the communication protocol used in both
the initialization phase and the multi-layered exploration and communication phase.

Suppose agent i (i.e., the transmitter) wants to convey a binary sequence s to agent j (i.e., the
receiver). Let |s| denote the length of the binary sequence, i.e., s ∈ {0, 1}|s|. We design a procedure
com(i, j, k, s) to allow such communication, where agent i and agent j will create deliberate colli-
sions on arm k to deliver the bits. The communication procedure will last for |s| time steps, during
which other agents are serving as bystanders. We specify the actions of all agents in com(i, j, k, s)
as follows.

3

• Transmitter i: During the procedure com(i, j, k, s), at the ℓ-th time step, if s(ℓ) (the ℓ-th
digit in s) is 1, then the transmitter i will pull arm k. Otherwise, she pulls an arbitrary arm
k′ ̸= k at the time step.

• Receiver j: During com(i, j, k, s), the receiver j deliberately pulls arm k for all |s| time
steps to receive information, and the resulting collision indicators Cj(t) during these time
steps are the digits of the binary sequence s.

• Bystanders: During com(i, j, k, s), all agent m ̸= i, j are bystanders. Each bystander
chooses an arbitrary arm k′ ̸= k to pull for each time step within all |s| time steps of the
procedure, to avoid interfering the bit transmission between agent i and j on arm k.

In this paper, agents may transmit two types of information: the index of an agent, a binary signal of
whether the exploration is success or not. It is easy to check that the communication of these two
types of information are with length ⌈logM⌉ and 1.

However, com(i, j, k, s) does not always succeed. Only if i ≻k j, i.e., when agent i wins against j
during the competition on arm k, the collision indicators Cj(t)’s form the sequence s. Otherwise,
Cj(t) always equals to 0 and therefore com(i, j, k, s) is not effective. Based on this observation, we
define the communication graph as follows.
Definition 1. A communication graph G(M,A), whereM is the set of agents and A is the set of
arms, is a directed graph with each agent inM as one vertex. There is a directed edge from vertex i
to vertex j in G if and only if there exists at least one arm k ∈ A such that i ≻k j.

Based on Definition 1, if there exists at least one edge from i to j in graph G(M,A), it means that
agent i can transmit information to agent j effectively (through the proper arm). The communication
graph captures the communication availability among agents. We will further categorize agents with
similar communication “capability” as follow.
Definition 2. An outer closed circle is a non-empty subset of vertexes in a directed graph G, i.e.,
M ⊆ V (G) , which satisfies that: i) M is connected; ii) there is no entry edge from vertices in
V (G) \M to any vertex in M .

From Definition 2, we can easily see that the agents in an outer closed circle of the communication
graph G(M,A) can exchange (transmit and receive) information among each other. However, agents
in the outer closed circle can only transmit information to agents outside, but are unable to receive
information from them. The following proposition further shows that there always exists exactly one
outer closed circle in a communication graph G(M,A).
Proposition 1. If there exists at least one edge between any two vertices in directed graph G, there
exists a unique outer closed circle in G.

Due to space limit, the details of the proof of Proposition 1 is deferred to Appendix in the supplemen-
tary material.

Remark: Multi-layer separation of agents. The result of Proposition 1 is critical. With this result,
we can uniquely determine a group of agents with bidirectional communication capability within the
group, but unidirectional transmission to the outside. Thus, by iteratively extracting outer closed circle
from the agent setM, we are naturally constructing a hierarchical structure within agents. In such
structure, agents can transmit information only to agents of the same level and below, while receiving
information from agents of the same level and higher (see Section 2.4 for detailed discussions).

2.3 Initialization Phase

The initialization phase (lines 1-4 in Algorithm 1) consists of two procedures: index_assignment
and information_access. Through procedure index_assignment, each agent is assigned
an index, and obtains some information about each arm’s preferences. Then, the procedure
information_access allows agents to share their obtained preference rankings on all arms.

The procedure index_assignment (see details in Appendix) consists of K rounds with M time
steps each, lasting a total MK time steps. In round 1, every agent starts with pulling arm 1. If an
agent does not encounter collision at time step t = j1 (j1 ∈ [1,M]), the agent is assigned with
index j1 and starts to pull arm 2. This means that the index of an agent is her ranking on arm 1.
Similarly, in round k = 2, 3, ...,K, if an agent does not encounter collision on arm k at time step

4

Algorithm 1 ML-ETC Algorithm
Require: K,M, T, p = 1

1: ◁ Initialization phase:
2: (j, sj)← index_assignment(K,M) #assign index j to “this agent”
3: (sj ,Mp)← information_access(K,M, j, sj)
4: #sj is the arm preference known to agent j,Mp is the set of layer leaders in layer p
5: ◁ Multi-layered exploration and communication phase:
6: E(j)← 0 # E(j) denotes whether agent j enter the exploitation phase
7: while E(j) == 0 do
8: ◁ Communication:
9: if j ∈Mp then #Agent j is a layer leader

10: whether_success← whether_succ(û(j), N(j),Ap)
11: #whether j achieves an accurate estimation for all remaining arms Ap

12: #Ap is the set of remaining arms in layer p,Rp is the set of remaining agents in layer p
13: (opt_arm,E(j))← layer_leader(j, sj ,Ap,Rp,Mp, whether_success,M)
14: #if all the layer leaders succeed, then E(j)← 1 and j will enter the exploitation phase
15: #opt_arm is the empirical optimal stable arm of agent j
16: end if
17: if j /∈Mp then #Agent j is a layer follower
18: (p,Ap,Mp,Rp)← layer_follower(j, sj ,Ap,Rp,Mp,M, p)
19: #if all the layer leaders succeed, then p← p+ 1 and agent j will enter the next layer
20: end if
21: ◁ Exploration:
22: Let r be the order of agent j in remaining agent setRp, i← r
23: for |Ap|⌈log T ⌉ time steps do
24: π ← Ap[i]
25: i← i+ 1 mod |Ap|
26: Pull arm π, update the empirical means û(j) = {ûj1(t), ûj2(t), ...} and matching
27: times N(j) = {Nj1(t), Nj2(t), ...}
28: end for
29: end while
30: ◁ Exploitation phase:
31: Pull opt_arm until T

t = (k − 1)M + jk, she knows that her ranking on arm k is jk, and starts to keep pulling arm k + 1
mod K, so that the other agents can continue to confirm their rankings on arm k. In this way, after
MK time steps, every agent knows her ranking on all the arms.

Then in the procedure of information_access (given in Appendix), there will be M rounds of
information exchange. In each round, we list all the “agent, agent, arm” tuples, i.e., {(i, j, k)},∀i, j ∈
M, k ∈ A, and conduct communication procedure com(i, j, k, si) on all these tuples one by one
according to any publicly designated order, no matter whether the communication is effective or not.
Here si represents agent i’s updated knowledge about all rankings, e.g., si ∈ {0, 1, ...,M}K×M ,
where the matrix element si[n][m] is the index of the agent that has the m-th ranking on arm n. If
the index is unknown to agent i, si[n][m] is 0. Each matrix element si[n][m] is encoded in a binary
sequence with length ⌈logM⌉ for transmission.

After the initialization phase, every agent i will receive an index and get part of the information about
agents’ rankings. Specifically, agent i receives information of the rankings of all the agents j such
that there exists a path from j to i in G(M,A), i.e., agents of the same level as i or higher.

2.4 Multi-layered exploration and communication phase

The multi-layered exploration and communication phase (lines 5-29 in Algorithm 1) is driven by the
layer categorization of agents. Recall Proposition 1, we can first identify a unique subset of agents
fromM, called an outer closed circle, in which agents can communicate with each other. At this
stage, we call the system is at “layer 1”. Agents in the outer closed circle are called layer leaders of
layer 1, the set of which is denoted asM1. Our algorithm will finish this stage by assigning each

5

agent inM1 her empirical optimal stable matching arm. Thus, agents inM1 will leave this stage
and directly jump to the exploitation phase. Those remaining agents and arms will enter the stage of
layer 2 and start the identification of a new outer closed circle. The above process will keep repeating
until all agents enter the exploitation phase.

In general, for each layer p = 1, 2, 3, ... the system is in, we let Rp denote the set of all remaining
agents, and Ap denote the set of all remaining arms (we have R1 = M and A1 = A). Then
according to Proposition 1, there exist a group of agentsMp, which form the outer closed circle of
the communication graph G(Rp,Ap). We call the agents inMp layer leaders in this layer, while
the remaining agents in Rp \Mp are called layer followers. Based on the properties of the outer
closed circle, all the layer leaders can i) exchange information among each other, and ii) transmit
information to all layer followers but not be able to receive information from them (via the remaining
arms in Ap). Then, the goal in this layer is to let all the layer leaders find out their empirical optimal
stable arm. The reason that we only care about layer leaders is because the communication from
layer followers to layer leaders is not effective, and layer followers can not influence layer leaders
(including their pull decisions, results and optimal stable arms).

To achieve this goal, at any layer, all remaining agents will conduct communication and exploration.
They will first communicate with each other to check whether all the layer leaders have obtained an
accurate estimation on the remaining arms. If the layer leaders have obtained accurate estimation
on all remaining arms, then they will enter the exploitation phase, otherwise, they will conduct
exploration for |Ap|⌈log T ⌉ time steps. Specifically, for a layer leader i, if for any two remaining
arms m,n, either the lower confidence bound of ujn is larger than the upper confidence bound of
ujm or the lower confidence bound of ujm is larger than the upper confidence bound of ujn (i.e.,
with high probability, the order of empirical means is the same as the order of real means), then she
can confidently differentiate these two arms. Thus, the agent has successfully obtained an estimation
(or, a sort) on all remaining arms that is accurate enough for her to enter the exploitation phase. In
the communication, we let layer leaders reach a consensus on a global signal of whether all layer
leaders have achieved a successful estimation on every remaining arm, and transmit this signal to
all layer followers, while layer followers do not transmit anything. Since all the layer leaders can
hear from each other, after the communication, they know the updated status of all layer leaders.
If all layer leaders successfully sort the arms with confidence, they start to find out their empirical
optimal stable-matching arms (by conducting the GS_and_arm_information procedure based on
the Gale-Shapley algorithm), and then jump to the exploitation phase. Otherwise, all agents will start
a round of exploration, so that the agents with unsuccessful signal of exploration have the chance
to achieve an accurate estimation successfully before the next communication. When all the layer
leaders jump to the exploitation phase, all the remaining agents (the layer followers in this layer) start
to enter the next layer and learn the remaining arm set.

Note that at the beginning of layer p, a remaining agent i is able to identify all layer leaders and
layer followers by her own, based on the knowledge ofRp, Ap and her available information about
the rankings from the initialization phase (See Appendix for detailed proof). Therefore, the above
procedure can be done in a distributed manner. For simpler presentation, in the rest of this subsection,
we will first specify the exploration process, and then the communication process.

2.4.1 Exploration

Within one round of exploration at layer p that lasts for |Ap|⌈log T ⌉ time steps, every agent in Rp

will explore every remaining arm in Ap orthogonally according to their index to avoid collision.
Specifically, at the τ -th time step in this round of exploration, the j-th agent in Rp will pull the
(j + τ mod |Ap|)-th arm in Ap. Since |Ap| ≥ |Rp|, every agent will pull different arms through
the exploration and avoid collision with each other.

The empirical mean of arm k estimated by agent j during exploration after time step t is denoted by
ûjk(t), the number of time steps that arm m is pulled by agent j in exploration at the end of time
step t is denoted by Njm(t). We say agent j achieves an accurate estimation for the remaining arms
in Ap successfully at time step t (i.e., she will transmit a success signal of exploration) only if for any

pair of arms (m,n) in Ap, either ûjm(t) −
√

2 log T
Njm(t) > ûjn(t) +

√
2 log T
Njn(t)

or ûjn(t) −
√

2 log T
Njn(t)

>

ûjm(t) +
√

2 log T
Njm(t) is satisfied.

6

2.4.2 Communication

Algorithm 2 layer_leader
Require: j, sj ,Ap,Rp,Mp, whether_success,M
Ensure: opt_arm,E(j)

1: opt_arm← 1, E(j)← 0, all_leader_success← whether_success
2: for m = 1, 2, ..., |Mp|, i = 1, 2, ..., |Ap|, i1 = 1, 2, ...,M , i2 = i1 + 1, ...,M do
3: if sj [Ap[i]][i1] == j then
4: If all_leader_success == 0, agent j pulls arm i; otherwise pulls an arbitrary arm i′ ̸= i.
5: # agent j is a transmitter
6: else if sj [Ap[i]][i2] == j then
7: Agent j pulls arm i, and only if Cj(t) == 1, she sets all_leader_success = 0.
8: # agent j is a receiver
9: else

10: Agent j pulls an arbitrary arm i′ ̸= i. # agent j is a bystander
11: end if
12: end for
13: if all_leader_success == 1 then
14: opt_arm← GS_and_arm_information(j, û(j),Ap)
15: E(j)← 1
16: end if
17: return opt_arm,E(j)

Layer leaders. For layer leaders at layer p, their communication procedure is described in Algorithm
2. From lines 1-12, they exchange their information about whether all the layer leaders achieve an
accurate estimation successfully and transmit this information to the layer followers at the mean time.

If all layer leaders achieve an accurate estimation successfully, then they continue to execute
GS_and_arm_information and enter the exploitation phase. Otherwise, they start a round of
exploration according to ML-ETC. The GS_and_arm_information procedure in Algorithm 2
lasts for |Mp|2 + (|Rp| − |Mp|)|Ap| time steps. In the first |Mp|2 time steps, layer leaders follow
the standard Gale–Shapley algorithm [6], where each agent’s preference towards arms is in the
descending order of the empirical means. Thus, each layer leader proposes to the best unrejected arm
iteratively (i.e., the empirical best arm on which agent hasn’t encounter a collision yet). This makes
sure that all the agents obtain their empirical optimal stable arms. In the rest (|Rp| − |Mp|)|Ap| time
steps, they commit to their empirical optimal stable arms so that the layer followers have enough time
to receive the information about these “leaving arms” (which is used to construct the remaining arm
set in the next layer).

Layer followers. For a layer follower in layer p, her actions in the communication is described in
Algorithm 3. From lines 2-8, the agent either stands by to wait for her turn or to receive the information
whether all layer leaders achieve an accurate estimation successfully (denoted by all_leader_success
in line 4).

If there exist some layer leaders sending the unsuccess signal of exploration, all the layer followers
switch to a new round of exploration. Otherwise, a layer follower continues to execute lines 10-25.
Specifically, layer followers first wait for |Mp|2 time steps by choosing an arbitrary arm to pull. Note
that based on the property of layer followers, their actions will not influence the GS algorithm among
layer leaders. Then for each arm inRp, layer followers explore whether the arm is available (i.e., the
remaining arm set Ap+1 in the next layer) based on the order of the their indices one by one. For
an agent i, if it is not her turn to explore an arm, e.g., k, she will always choose the next arm in Ap

to pull. Note that in i’s exploration of available arms, all the other layer followers j ̸= i are pulling
another arm in Ap. Therefore, those arms on which the agent i gets a collision will leave at the end
of this layer. Below, We illustrate the algorithm with an example.
Example 1. LetM = {A,B,C,D} and A = {1, 2, 3, 4} and assume the preference below:

1 : A ≻1 B ≻1 C ≻1 D A : 1 ≻A 2 ≻A 3 ≻A 4

2 : A ≻2 B ≻2 D ≻2 C B : 1 ≻B 3 ≻B 2 ≻B 4

3 : B ≻3 A ≻3 C ≻3 D C : 2 ≻C 3 ≻C 4 ≻C 1

4 : A ≻4 B ≻4 D ≻4 C D : 4 ≻D 3 ≻D 2 ≻D 1

7

Algorithm 3 layer_follower
Require: j, sj ,Ap,Rp,Mp,M, p
Ensure: p,Ap,Mp,Rp

1: A ← Ap, M←Mp, R ← Rp

2: for m = 1, 2, ..., |Mp|, i = 1, 2, ..., |Ap|, i1 = 1, 2, ...,M , i2 = i1 + 1, ...,M do
3: if sj [Ap[i]][i2] == j then# agent j is a receiver
4: Agent j pulls arm i, and sets all_leader_success = 1− Cj(t) if sj [Ap[i]][i1] ∈Mp.
5: else
6: Agent j pulls an arbitrary arm i′ ̸= i. # agent j is a bystander
7: end if
8: end for
9: if all_leader_success == 1 then

10: Pull an arbitrary arm for |Mp|2 time steps.
11: # wait for the layer leaders to look for their optimal stable matching arms
12: for π ∈ Ap, τ = 1, 2..., |Rp| − |Mp| do
13: if τ == f (f is the order of agent j in layer follower setRp \Mp) then
14: # it is agent j’s turn to explore available arms
15: Agent j pulls arm π
16: if Cj(t) == 1 then
17: A ← A \ π
18: end if
19: else
20: Agent j pulls an arbitrary arm π′ ̸= π
21: end if
22: end for
23: R ← Rp \Mp,M← occ(j,A,R, sj) #M denotes the set of new layer leaders
24: p← p+ 1 #agent j will later enter the next layer
25: end if
26: return p,A,M,R

From Definition 1 and 2, we can construct the communication graph G(M,A) and find out that
the subset {A,B} forms an outer closed circle. Thus, at layer p = 1, all agents will keep iterating
between communication and exploration until the layer leadersM1 = {A,B} achieve accurate
estimations on all remaining arms A1 = A = {1, 2, 3, 4} and leave with their empirical optimal
arms {1, 3} (with high probability). Then, the layer followers {C,D} will enter layer p = 2 with the
arm set A2 = {2, 4}. With similar analysis, we conclude the whole process in Table 2. At the end
(layer p = 4), all agents will exploit their optimal stable arms (with high probability).

Table 2. Example 1

Layer(p) Ap Rp Mp Exploitation
1 {1, 2, 3, 4} {A,B,C,D} {A,B} ∅

2 {2, 4} {C,D} {D} {(A, 1), (B, 3)}

3 {2} {C} {C} {(A, 1), (B, 3), (D, 4)}

4 ∅ ∅ ∅ {(A, 1), (B, 3), (C, 2), (D, 4)}

2.5 Regret Analysis

Theorem 1. If every agent runs Algorithm ML-ETC, then the optimal regret after T time steps is
upper bounded by:

Reg(T) ≤MK⌈ 32
∆2
⌉⌈log T ⌉+MC1 +MC2 +MC3, (1)

where C1 = MK + M4K2⌈logM⌉, C2 = (⌈ 32
∆2 ⌉ + M)(KM2(M−1)

2 + M2 + KM), and C3 =

2MK⌈ 32
∆2 ⌉.

8

In Theorem 1, the regret term MC1 is the communication cost induced by the initialization phase;
the regret term MC2 is the communication cost in the multi-layered exploration and communication
phase; and the regret term MC3 is the cost of wrong estimation under a low-probability event.

Asymptotic term of T : The majority term of regret is MK⌈ 32
∆2 ⌉⌈log T ⌉, which is an O(log T) term

and is better than all prior works [2, 10].

Dependence of M,K: The regret upper bounds of existing works (i.e., Phased-ETC and CA-
UCB) have much higher dependence on M,K. For example, the regret bound of Phased-ETC
contains a term of O(exp(1

∆2)). Note that ∆ < 1/K (since the utility is from [0, 1]), this term is
O(exp(K2)) and is much larger than ours. As for the regret bound of CA-UCB, it contains a term of
O(exp(M4) log2 T).

Proof sketch: The regret of our algorithm ML-ETC can be divided into three parts.

The regret caused by the initialization phase is upper bounded by MC1, since the initialization phase
lasts for C1 time steps.

To bound the regret caused by the other two phases, we let r0 = r1 = ⌈ 32
∆2 ⌉, r2 = r0 + M , and

define the following event.

E =

{
∀j ∈M, r ≤ r0,m ∈ A, |ujm(t)− ûjm(t)| ≤

√
2 log T

Njm(t)
holds after r rounds of exploration

}
.

We prove that Pr[E] ≥ 1− 2r0MK
T . Because of this, we know that the expected regret in the last two

phases under ¬E is upper bounded by a constant MC3.

Then we consider the expected regret in these two phases under E . In this case, the length of the
multi-layer exploration and communication phase can be upper bounded by r1K⌈log T ⌉+ C2, since
the length of one round of exploration is |Ap|⌈log T ⌉ ≤ K⌈log T ⌉, the length of one round of
communication can be upper bounded by KM2(M−1)

2 + M2 + KM and every agent will enter
the exploitation phase after at most r1 rounds of exploration and r2 rounds of communication
conditioning on E .

On the other hand, under E , all the agents will get the right estimation during the
GS_and_arm_information procedure. Therefore, every agent j must match with her optimal
stable arm a∗j in the exploitation phase. This means that the expected regret in the exploitation phase
under E is 0.

Summing over the expected regret in three phases, we finally get the regret upper bound in Theorem
1. Due to space limit, the details of the proof are deferred to Appendix.

3 Simulation

Setup. We choose the time horizon to be T = 2.5 × 107, arms’ mean utilities within [0.3, 0.6],
and the minimal gap ∆ = 0.05. We have tested two cases with 5 agents and 5 arms but different
preference and utility. To investigate the quality of the converging stable matching under different
algorithms, we choose the arm preferences such that there exist multiple stable matches between
agents and arms (see Appendix for the implementation detail).

Baseline. Phased-ETC [2] is a phased based decentralized algorithm which theoretically obtains the
O(log1+ϵ T + exp(1

∆2)) regret. The duration of each exploration is determined by the parameter
ϵ. When ϵ is smaller, the duration of each exploration is shorter. Same as the simulation in [2], we
choose ϵ = 0.2 in our simulation.

CA-UCB [10] is a UCB-based algorithm that aims to avoid collision combined. It guarantees an
O(log2 T) pessimal regret (a less strict notion of regret). Same as the simulation in [10], we choose
the parameter λ of delay probability to be λ = 0.1. Note that CA-UCB requires more information
(i.e., all agents know the complete arm preference and can observe the winning agent for each arm at
the end of each round), thus the comparison here is not entirely fair for our ML-ETC.

Result. Figure 1 shows the average regret and the standard deviation of regret over 50 independent
runs. From Figure 1, ML-ETC outperforms both Phased-ETC and CA-UCB from an asymptotic view,

9

which shows that our proposed algorithm has lower regret in general cases, but may encounter a cold
start. The cold start means that when the time horizon T is small, ML-ETC may cause a relatively
high regret. This is because ML-ETC has strict requirement of agents’ estimation, only when the
agents have very high confidence, will they enter the exploitation. As for Phased-ETC, the duration
of the exploration is determined by the parameter ϵ. The agents may start the exploitation only with
limited exploration, and in this case they are not able to distinguish the arms, especially when ∆
is small. Though this leads to a smaller short-term expected regret (at the beginning, Phased-ETC
outperforms our ML-ETC), for large T , this can cause a very high expected regret of O(exp(1

∆2)) (in
our experiments with ∆ = 0.05, this is even larger than T , and therefore the regret of Phased-ETC
increases linearly as T increases). In CA-UCB, there is possibility that an agent j converges to
pulling a sub-optimal arm k ̸= a∗j in Astable(j), which also causes a linear optimal regret.

0.0 0.5 1.0 1.5 2.0 2.5

time 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

re
gr

et

1e7

ML-ETC
CA-UCB
Phased-ETC

(i) Case 1

0.0 0.5 1.0 1.5 2.0 2.5

time 1e7

0

1

2

3

4

5

6

7

re
gr

et

1e6

ML-ETC
CA-UCB
Phased-ETC

(ii) Case 2

Fig. 1. Comparison between ML-ETC and baselines.

4 Further Discussion on Possible Improvements
In this section, we discuss several possible improvements on ML-ETC, which may largely improve
the efficiency of the communication and exploration.

Initialization Phase: In the information_access procedure, instead of conducting communication
procedure com(i, j, k, si) on all the "agent,agent,arm" tuples, we only need to conduct communication
procedure com(i, j, k, si) on some special tuples which satisfies that j is ranked the next of i on arm
k. And this will reduce the regret of this procedure by M times.

Multi-layered exploration and communication Phase: In the communication part for layer leaders
to exchange signal of successful estimation, instead of conducting every effective communication pro-
cedure on every remaining arm, we can find a circle no longer than 2M that includes all layer leaders
in the corresponding communication graph and conduct communication procedure through this circle.
Specifically, we begin from an agent in this circle according to a pre-determined order and conduct
effective communication along the circle until all agents have gone through the communication twice.
This improvement will reduce the regret of this procedure by O(M2K) times.

Dependence on the minimal gap ∆: In the exploration part, for example, instead of trying to
distinguish all remaining arm, all layer leaders in layer p only need to distinguish the |Mp|-best
remaining arms (which is the number of the layer leaders). This means that letting the agents only
distinguish "meaningful arms" may also improve our algorithm by reducing the dependence on the
minimal gap. We can use the minimal utility gap between "meaningful arms" instead of the minimal
gap in our regret upper bound.

The frequency of Communication: Instead of exploring every remaining arms ⌈log T ⌉ times per ex-
ploration, we can explore more time steps per exploration and reduce the frequency of communication,
which may also help achieve lower regret.

Acknowledgments and Disclosure of Funding

The work of Siwei Wang is supported in part by the National Natural Science Foundation of China
Grant 62106122.

10

References
[1] Itai Ashlagi, Anilesh K Krishnaswamy, Rahul Makhijani, Daniela Saban, and Kirankumar

Shiragur. Assortment planning for two-sided sequential matching markets. In Web and Internet
Economics: 16th International Conference, WINE 2020, Beijing, China, December 7–11, 2020,
Proceedings, volume 12495, page 476. Springer Nature, 2020.

[2] Soumya Basu, Karthik Abinav Sankararaman, and Abishek Sankararaman. Beyond log2(t)
regret for decentralized bandits in matching markets. In International Conference on Machine
Learning, pages 705–715. PMLR, 2021.

[3] Ilai Bistritz, Tavor Baharav, Amir Leshem, and Nicholas Bambos. My fair bandit: Distributed
learning of max-min fairness with multi-player bandits. In International Conference on Machine
Learning, pages 930–940. PMLR, 2020.

[4] Etienne Boursier and Vianney Perchet. Sic-mmab: synchronisation involves communication
in multiplayer multi-armed bandits. Advances in Neural Information Processing Systems, 32,
2019.

[5] Sarah H Cen and Devavrat Shah. Regret, stability & fairness in matching markets with bandit
learners. In International Conference on Artificial Intelligence and Statistics, pages 8938–8968.
PMLR, 2022.

[6] David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

[7] Meena Jagadeesan, Alexander Wei, Yixin Wang, Michael Jordan, and Jacob Steinhardt. Learn-
ing equilibria in matching markets from bandit feedback. Advances in Neural Information
Processing Systems, 34:3323–3335, 2021.

[8] Yuantong Li, Chi-hua Wang, Guang Cheng, and Will Wei Sun. Rate-optimal contextual online
matching bandit. arXiv preprint arXiv:2205.03699, 2022.

[9] Lydia T Liu, Horia Mania, and Michael Jordan. Competing bandits in matching markets. In
International Conference on Artificial Intelligence and Statistics, pages 1618–1628. PMLR,
2020.

[10] Lydia T Liu, Feng Ruan, Horia Mania, and Michael I Jordan. Bandit learning in decentralized
matching markets. Journal of Machine Learning Research, 22(211):1–34, 2021.

[11] Abbas Mehrabian, Etienne Boursier, Emilie Kaufmann, and Vianney Perchet. A practical
algorithm for multiplayer bandits when arm means vary among players. In International
Conference on Artificial Intelligence and Statistics, pages 1211–1221. PMLR, 2020.

[12] Jonathan Rosenski, Ohad Shamir, and Liran Szlak. Multi-player bandits–a musical chairs
approach. In International Conference on Machine Learning, pages 155–163. PMLR, 2016.

[13] Abishek Sankararaman, Soumya Basu, and Karthik Abinav Sankararaman. Dominate or delete:
Decentralized competing bandits in serial dictatorship. In International Conference on Artificial
Intelligence and Statistics, pages 1252–1260. PMLR, 2021.

[14] Chengshuai Shi and Cong Shen. On no-sensing adversarial multi-player multi-armed ban-
dits with collision communications. IEEE Journal on Selected Areas in Information Theory,
2(2):515–533, 2021.

[15] Chengshuai Shi, Wei Xiong, Cong Shen, and Jing Yang. Decentralized multi-player multi-armed
bandits with no collision information. In International Conference on Artificial Intelligence and
Statistics, pages 1519–1528. PMLR, 2020.

11

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 3
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

A Sub-procedures in the Initialization Phase of ML-ETC

The index_assignment procedure (Algorithm 4) assigns every agent an index according to the
preference of arm 1 and allows agents to know about their ranks on every arm.

Algorithm 4 index_assignment
Require: K (number of arms), M (number of agents)
Ensure: j (index of the agent), sj

1: π ← 1, s← 0
2: for t = 1, 2, ...,M do
3: Pull arm π
4: if Cj(t) == 0, π == 1 then
5: j ← t, s[1][t]← j, π ← π + 1
6: end if
7: end for
8: for k = 2, ...,K do
9: for t = 1, 2, ...,M do

10: Pull arm π
11: if Cj(t) == 0, π == k then
12: s[k][t]← j, π ← π + 1
13: end if
14: end for
15: end for
16: return j, s

Algorithm 5 information_access
Require: K, M , j, sj
Ensure: sj (information of the preference),M1 (the set of layer leaders in the first layer)

1: Initial R1 ← [M], A1 ← [K]
2: for m = 1, ...,M , k1 = 1, ...,K, k2 = 1, ...,M , k3 = 1, ...,M do
3: if sj [k1][k2] == j then
4: comm(j, ·, k1, sj)# agent j is a transmitter
5: else if sj [k1][k3] == j then
6: comm(·, j, k1, ·) #agent j is a receiver, pull arm k1 and update own information of the
7: preference when the collision indicator Cj(t)’s are non-zero
8: else
9: comm(·, ·, k1, ·) #agent j is a bystander, pull an arbitrary arm k′ ̸= k

10: end if
11: end for
12: M← occ(j,A1,R1, sj)
13: return sj ,M

In information_access procedure (Algorithm 5), through deliberate collision, each agent exchanges
and updates their information about the preference on each arm. Here m represents the round of
information exchange, k1 represents the arm on which agents transmit (or receive) through deliberate
collision, k2 represents the agent who is transmitting information (i.e., the rank of transmitter on arm
k1 equals to k2), k3 represents the agent who is receiving information (i.e., the rank of the receiver on
arm k1 equals to k3). Note that only when a receiver j receives a non-zero string of collision indicator
Cj(t)’s which represents the index of the agent on a specific arm, will she update her available
information of preference sj . After all the agents access to the available information about the arm
preference, they will run the “occ” procedure (B.2) according to their known preference to look for
the outer closed circle.

13

B Outer Closed Circle

B.1 Proof of Proposition 1

First, we prove the existence of one outer closed circle. Consider the maximal connected component
in graph G. We denote the vertices set of this maximal connected component by P1. If there is no
entry edge from other vertices to the vertices in P1, P1 forms an outer closed circle. Otherwise,
consider the maximal connected component excluding all vertices in P1 and denote the vertices in it
by P2. If there is no entry edge from other vertices to the vertices in P2, P2 forms an outer closed
circle. Otherwise, we can repeat this process. Thus, in the end, either we find an outer closed circle,
or all vertices are removed.

We prove the existence of outer closed circle by contradiction. Suppose there is no outer closed circle.
Thus, we will not find an outer closed circle after all vertices are removed. We label the removed
maximal connected component in the order they are removed, i.e., denoted as P1,P2, ..., and Pn.
Since there is at least one edge between any two vertices in graph G, there is at least one entry edge
or one out edge between any two components (the removed maximal connected components) in G.

Now regard each component as a vertex to construct a new directed graph G∗. If there are entry
edges or out edges between two components, there is also entry edge or out edges between the
corresponding two vertices in G∗. Then we remove all vertices with only entry edges in graph G∗.
Since there is no outer closed circle in G, there is also no vertex with only out edges in graph G∗,
and the remaining vertices are vertices with both entry and out edges. At this time, there must be a
circle in graph G∗, which contradicts the fact that each component mentioned above is the maximal
connected component of the remaining vertices.

Then we prove the uniqueness of the outer closed circle. To the contrary, if there is more than one
outer closed circle, without loss of generality, take o1 and o2 respectively from two different outer
closed circles O1, O2 satisfying the condition o1 /∈ O2. According to the assumptions, there is at
least one directed edge between o1 and o2. If there exists at least one directed from o1 to o2, then for
O2, there exists a directed edge from o1 ∈ V (F) \O2 to o2 ∈ O2, which contradicts the definition
of an outer closed circle. If there exists at least one directed edge from o2 to o1, then o2 ∈ O1 holds
according to the definition of an outer closed circle. Since O1 and O2 are connected, O2 ⊆ O1.
Because of the connectivity of O1, there must exist at least one edge from vertex in O1 \ O2 to
vertex in O2, which also contradicts the assumption that O2 is an outer closed circle. Therefore, the
uniqueness is proved.

B.2 The ooc procedure for an agent(to Look for the Outer Closed Circle)

Definition 3. A communication graph G(M,A, sj) for available information sj , whereM is the
set of agents and A is the set of arms, is a directed graph with each agent inM as one vertex. There
is a directed edge from vertex i to vertex j in G if and only if there exists at least one arm k ∈ A such
that i ≻k j according to the available information sj .

Note that after the initialization phase, agent j knows the ranking of all agents i that has a path starting
from i to j in G(M,A). We now prove that there exists a unique one outer closed circle in com-
munication graph G(M,A, sj) for available information sj (information sj from the initialization
phase) and this outer closed circle is the same as the outer closed circle of the communication graph
G(M,A). After showing that, we can easily know that for any agent j inM, she can simply exhaust
all the connected components and verify whether it is an outer closed circle of the communication
graph G(M,A, sj) after the initialization phase.

Proof. For the communication graph G(M,A), there exists and only exists one outer closed circle
(according to the definition of the communication graph G(M,A) and proposition 1). Denote this
outer closed circle byO. We now verify thatO is also the outer closed circle for G(M,A, sj). Since
there always exists at least one edge between any two vertices in G(M,A), for any m ∈M, o ∈ O,
there must exist at least one path from o to m. Thus, sj includes all the ranking of the outer closed
circle O on all arms. We can easily conclude that O is also connected in G(M,A, sj). What’s
more, it’s easily seen that G(M,A, sj) is a subgraph of G(M,A), so there is also no entry from
V (G(M,A, sj)) \O to any vertex O, which means thatO is the outer closed circle in G(M,A, sj).
For the uniqueness, if there exists another outer closed circle O′ of G(M,A, sj). From the above

14

analysis, for any o ∈ O and o′ ∈ O′, there must exist at least one path from o to o′, which shows
the existence of entry edge from one vertex in O to one vertex in O′ and O ⊆ O′. However, this
contracts the connectivity of O′ since there is no entry edge from any vertex in V (G(M,A, sj)) \ O
to any vertex in O.

C Proof of Theorem 1

We first prove some lemmas here.
Lemma 1. ∀j ∈M,m ∈ A, t > 0, with possibility more than 1− 2

T , the following inequality holds

|ujm(t)− ûjm| ≤

√
2 log T

Njm(t)
.

Proof. According to Azuma-Hoeffding inequality, we can conclude Lemma 1.

Lemma 2. For any round of communication (in the multi-layered exploration and communication
phase), it lasts for at most KM2(M−1)

2 +M2 +KM time steps.

Proof. According to the communication protocol, agents remaining in layer p start and end the
communication at the same time. Thus, we only consider the length of communication for layer
leadersMp (whose cardinality is denoted by |Mp|).
The layer leaders first communicate about whether they achieve an accurate estimation for the
remaining arm successfully. This communication lasts for |Ap||Mp|M(M−1)

2 ≤ KM2(M−1)
2 time

steps since there are at most K remaining arms and M layer leaders in layer p.

The GS_and_arm_information procedure lasts for |Mp|2 + |Ap|(|Rp| − |Mp|) ≤M2 +KM
time steps if the layer leaders all achieve an accurate estimation.

Combine these, and we can complete the proof.

Fact 1. [Theorem 1, 2 in [6]]If there are n agents running GS, then after at most n2 time steps, all
the agents will match with their optimal stable arms.

C.1 Main proof

Let r0 = r1 = ⌈ 32
∆2 ⌉, r2 = r0 +M . The regret can be divided into 3 parts.

R(T) = R1 +R2 +R3

where R1 represents the regret caused by the initialization phase, R2 represents the regret caused
by the multi-layered exploration and communication phase, R3 represents the regret caused by the
exploitation phase.

According to the detailed procedure of the initialization phase, the initialization lasts for MK +
M4K2⌈logM⌉ time steps. Thus,

R1 ≤M2K +M5K2⌈logM⌉.

To bound the regret caused by the other two phases, we define the following event:

E =

{
∀j ∈M, r ≤ r0,m ∈ A, |ujm(t)− ûjm(t)| ≤

√
2 log T

Njm(t)
holds after r rounds of exploration

}
.

Recall that if an agent j achieves an accurate estimation for all remaining arm set Ap in layer p

successfully, that means ∀(m,n) ∈ Ap × Ap such that m ̸= n, ûjn(t) −
√

2 log T
Njn(t)

> ûjm(t) +√
2 log T
Njm(t) or ûjm(t)−

√
2 log T
Njm(t) > ûjn(t) +

√
2 log T
Njn(t)

holds.

15

Condition on E , we have that for any j ∈ M,m, n ∈ A such that m ̸= n, where ujm > ujn, we
have

ûjm −

√
2 log T

r0⌈log T ⌉
> ujm − 2

√
2 log T

r0⌈log T ⌉

≥ ujn +∆− 2

√
2 log T

r0⌈log T ⌉

> ûjn +

√
2 log T

r0⌈log T ⌉
+∆− 4

√
2 log T

r0⌈log T ⌉
.

Since r0 = ⌈ 32
∆2 ⌉, we have that ∆−4

√
2 log T

r0⌈log T⌉ ≥ 0. Therefore, E ensures that all agents achieve an
accurate estimation for all remaining arm setAp in layer p successfully after r0 rounds of exploration.
Also, E ensures no agent will estimate the arms wrong before r0 + 1 rounds of explorations.

Thus, conditioning on E , every agent enters the exploitation phase after at most r1 rounds of
exploration and r2 rounds of communication.

Denote the times of exploration by Texpl and the rounds of exploration by Rexpl, the times of
communication by Tcomm, and the rounds of exploration by Rcomm.

R2 ≤ ME [Texpl] +ME [Tcomm]

= ME [Texpl|E] +ME [Tcomm|E] +ME [Texpl|¬E] +ME [Tcomm|¬E]

≤ MKE [Rexpl|E] ⌈log T ⌉+M(
KM2(M − 1)

2
+M2 +KM)E [Rcomm|E]

+ ME [Texpl|¬E] +ME [Tcomm|¬E] (2)

≤ r1KM⌈log T ⌉+ r2M(
KM2(M − 1)

2
+M2 +KM) +ME [Texpl|¬E] +ME [Tcomm|¬E] .

Eq. (3) holds since according to the detailed exploration procedure, every round of exploration
agent will explore every remaining arm ⌈log T ⌉ times, and according to Lemma 2, Tcomm ≤
KM2(M−1)

2 +M2 +KM Rcomm holds.

As for the exploitation phase, we denote the times of exploitation by Tcommit.

R3 ≤ME [Tcommit] = ME [Tcommit|E] +ME [Tcommit|¬E]
≤ ME [Tcommit|¬E] . (3)

Eq. (3) holds because all the agents j matches with their best arm a∗j under E and this causes no
regret (according to Fact 1).

Now, in order to bound the regret, we need an upper bound for the Pr[¬E]. To do so, we define the

event E(j,m, r) = { |ujm(t) − ûjm(t)| ≤
√

2 log T
Njm(t) holds after r rounds of exploration} for any

j ∈M and m ∈ A.

According to Lemma 1, for any j ∈ M, m ∈ A, Pr[|ujm(t) − ûjm(t)| >
√

2 log T
Njm(t)] ≤

2
T . Sum

over, we can easily conclude the inequality (4).

P [¬E] ≤ P

 ⋃
j∈M,m∈A,r≤r0

E(j,m, r)∁

 ≤ ∑
j∈M,m∈A,r≤r0

P
[
E(j,m, r)∁

]
< r0

2MK

T
. (4)

16

Combine these, we have that

R(T) = R1 +R2 +R3

< M2K +M5K2⌈logM⌉+ r1KM⌈log T ⌉+ r2M(
KM2(M − 1)

2
+M2 +KM)

+ ME [Texpl|¬E] +ME [Tcomm|¬E] +ME [Tcommit|¬E]

< M2K +M5K2⌈logM⌉+ r1KM⌈log T ⌉+ r2M(
KM2(M − 1)

2
+M2 +KM)

+ ME [Texpl + Tcomm + Tcommit|¬E]

≤ M2K +M5K2⌈logM⌉+ r1KM⌈log T ⌉+ r2M(
KM2(M − 1)

2
+M2 +KM)

+ MTP [¬E]

≤ M2K +M5K2⌈logM⌉+ r1KM⌈log T ⌉+ r2M(
KM2(M − 1)

2
+M2 +KM)

+ MT (r0
2MK

T
)

= M2K +M5K2⌈logM⌉+ r1KM⌈log T ⌉+ r2M(
KM2(M − 1)

2
+M2 +KM)

+ 2r0M
2K

which finishes the proof.

D Simulation Set Up

We consider two cases with 5 agents and 5 arms but different perference and utility.

For the preference, we choose the preferences such that there exist multiple stable matches between
arms and agents. Specifically, for the first case with 5 agents (M = {A,B,C,D,E}) and 5 arms
(A = {1, 2, 3, 4, 5}), we have that

1 : D ≻1 A ≻1 B ≻1 E ≻1 C A : 3 ≻A 2 ≻A 1 ≻A 4 ≻A 5

2 : E ≻2 D ≻2 B ≻2 A ≻2 C B : 1 ≻B 2 ≻B 4 ≻B 5 ≻B 3

3 : B ≻3 D ≻3 E ≻3 C ≻3 A C : 5 ≻C 1 ≻C 3 ≻C 2 ≻C 4

4 : A ≻4 D ≻4 E ≻4 B ≻4 C D : 2 ≻D 5 ≻D 3 ≻D 1 ≻D 4

5 : C ≻5 E ≻5 A ≻5 D ≻5 B E : 4 ≻E 2 ≻E 1 ≻E 3 ≻E 5

For the second case with 5 agents (M = {A,B,C,D,E}) and 5 arms (A = {1, 2, 3, 4, 5}), we have
that

1 : B ≻1 E ≻1 A ≻1 D ≻1 C A : 5 ≻A 4 ≻A 1 ≻A 2 ≻A 3

2 : E ≻2 D ≻2 A ≻2 B ≻2 C B : 1 ≻B 4 ≻B 3 ≻B 2 ≻B 5

3 : A ≻3 E ≻3 C ≻3 D ≻3 B C : 1 ≻C 5 ≻C 3 ≻C 4 ≻C 2

4 : D ≻4 A ≻4 C ≻4 E ≻4 B D : 2 ≻D 4 ≻D 5 ≻D 1 ≻D 3

5 : C ≻5 D ≻5 E ≻5 A ≻5 B E : 1 ≻E 3 ≻E 5 ≻E 2 ≻E 4

17

	Introduction
	Our Main Contribution
	Related Work

	The ML-ETC Algorithm
	Brief Introduction
	Communication Protocol
	Initialization Phase
	Multi-layered exploration and communication phase
	Exploration
	Communication

	Regret Analysis

	Simulation
	Further Discussion on Possible Improvements
	Sub-procedures in the Initialization Phase of ML-ETC
	Outer Closed Circle
	Proof of Proposition 1
	The ooc procedure for an agent(to Look for the Outer Closed Circle)

	Proof of Theorem 1
	Main proof

	Simulation Set Up

