
What is your biggest pain point? An investigation of CS instructor
obstacles, workarounds, and desires

Samim Mirhosseini
NC State University

Raleigh, North Carolina, USA
smirhos@ncsu.edu

Austin Z. Henley
Microsoft

Redmond, Washington, USA
austinhenley@microsoft.com

Chris Parnin
Microsoft

Raleigh, North Carolina, USA
chrisparnin@microsoft.com

ABSTRACT
Computer science instructors have one of the most crucial roles
in training and making educational materials. However, they face
many challenges everyday that make it difficult to provide a high-
quality learning experience to their students. Additionally, trends in
demand for computer science training is rapidly increasing and to
meet this demand, classrooms need to run on a larger scale, which
may exacerbate instructor pain points further. While many of the
previous studies in the computer science education community
have focused on how to improve the students’ learning experi-
ence, in this study we investigate computer science instructors. It is
paramount to understand how instructors can be supported more
effectively while continuing to improve the material they use in
their courses and allow them to focus on student needs. To under-
stand these instructor challenges, we conducted semi-structured
interviews with 32 computer science instructors at universities and
community colleges to ask about their experiences in preparing
course material, lecturing, grading, providing feedback to students,
and what they wished they could change. In this paper, we sum-
marize our findings as themes of challenges and pain points for
instructors, the consequences of not solving them, and suggested
guidelines that may help resolve or reduce these pain points.

KEYWORDS
Computer Science Education, Computer Science Instructors, In-
structor Pain Points, CS Education Tools, AI in CS Education
ACM Reference Format:
Samim Mirhosseini, Austin Z. Henley, and Chris Parnin. 2023. What is your
biggest pain point? An investigation of CS instructor obstacles, workarounds,
and desires. In SIGCSE ’23: ACM Technical Symposium on Computer Science
Education, March 15–18, 2023, Toronto, Canada. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Computer science instructors play a crucial role in the quality of
training and educational experience that students receive. Instruc-
tors typically have many responsibilities such as creating mate-
rial, delivering lectures, clarifying student questions, and grading
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’23, March 15–18, 2023, Toronto, Canada
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

student deliverables. Additionally, growing demands for meeting
computer science enrollment has strained instructors with high
teaching loads, as insufficient teaching faculty are available [5],
across large and small institutes. Handling all of these responsibili-
ties and addressing scale can be challenging in itself, but is especially
made worse when instructors spend significant time grappling with
hidden obstacles and invisible work to resolve them.

Many of the previous research studies have analyzed interven-
tions for improving student learning and focused on the resulting
experience from the perspective of students [4, 13, 20]. While an-
alyzing experience of students can give us many useful insights,
in this study, we believe it is just as important to understand what
instructors experience, identify opportunities for addressing pain
points, and ultimately, to help instructional experiences. Few stud-
ies have focused on the perspective of an instructor, for example
study by Lau et al. [17], which focused on challenges specific to
scaling four data-science courses to larger size. To our knowledge,
this paper is one of the first to focus on obstacles instructors face
across multiple levels, courses, and institutes.

To understand what pain points CS instructors experience and
what their workarounds are, we conducted semi-structured inter-
views with 32 CS instructors regarding their experiences running
their courses. These interviews were designed to clarify the com-
mon tasks that takes instructors’ time, the possible pain points in
completing these tasks, and how they (wish they could) overcome
these pain points so far. The presented paper contributes to the
continuing research on improving CS education, from the perspec-
tive of instructors. Finally, we share implications of our findings
and provide suggestions for practices or tools that may be helpful
to instructors, shortcomings of solutions that instructors currently
tried, as well as barriers in adopting some solutions.

2 METHODOLOGY
To understand the challenges of computer science instructors, how
they tackle those challenges, and what remains as a pain point
we conducted a semi-structured interview with 32 participants. In
this section we explain details of our qualitative study which was
designed to answer the following research questions:

• RQ1: What did instructors wish they could change?
Can instructors suggest what they would like to change that
is not possible right now?What can we conclude with a high
level view of these issues and the current resources available
to instructors?

• RQ2: What are current attempts of addressing pain
points?What are the workarounds instructors use to reduce
or solve their pain points right now?What software solutions
exist and what research has been conducted?

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGCSE ’23, March 15–18, 2023, Toronto, Canada Samim Mirhosseini, Austin Z. Henley, and Chris Parnin

2.1 Interviews
We conducted semi-structured interviews with 32 computer science
instructors to address our research questions. In this section we
share details about participants and the interview process.

2.1.1 Demographics. In an attempt to reduce biased results toward
any specific group of participants, we selected interviewees with
varying teaching experiences as university instructors. We selected
these instructors from 26 different institutions ranging from large
R1 doctoral research universities to smaller institutions such as lib-
eral arts and community colleges. To be more specific, interviewees
included 3 adjuncts, 7 teaching faculty, and 22 tenured/tenure-track
professors from 5 countries (25 from USA, two from India, and one
each from Canada, Germany, Netherlands, Mexico, and Austria).

2.1.2 Recruitment. We recruited the participants for the interview
by first selecting institutions and then recruiting from their affiliated
instructors.We selected 26 institutions and connected with a sample
of their instructors who were actively teaching in the same or
previous academic term.We then used snowball sampling by asking
our interview participants to help us connect with their colleagues
or anyone that they think can have relevant experience.

2.1.3 Protocol. We conducted 30-minute semi-structured inter-
views virtually while transcribing and taking notes. During the
interview, we followed a script which included questions about:

• Lecture structure and deliverables of students
• Availability of resources such as TAs and tools
• Time spent on materials, grading, and lecture preparation
• Techniques to improve learning experiences
• Most painful aspects of running courses
• Thoughts about potential solutions to pain points

We dynamically revised our script template based on the re-
sponses that we received from instructors to be able to extract more
meaningful information from the conversations and understand
motivation and importance of what they currently do or what they
wish they were able to change. We intentionally asked about the
pain points last, because at this stage, we have collected supporting
information for why something can became a challenge or pain
point, and discuss possible solutions.

2.2 Interview Analysis
Using our interview notes, we first focused on the last topic which
was "challenges and wishes" of the instructors. We analyzed the
instructor responses through thematic analysis [1] by reviewing
the transcripts, coding the parts of interest, and then finding themes
in the coded transcripts. Next we reviewed other topics covered in
the interview transcripts to add supporting themes.

3 FINDINGS
In the analysis of our semi-structured interviews we learned about
the pain points of instructors, the workarounds they use, and what
they wish to do which is not possible at the current time. To provide
context to our research findings, we first present an overview of
how the participants spend their time in regard to their courses:

Content creation andmaintenance: Instructors typically spend
6-8 hours, per class meeting, to create the content for a course. How-
ever, most of the interviewees mentioned this is only for the first

time they teach, and in the future terms they focus on content
maintenance which takes 2-3 hours per class meeting.

Lecture preparation: Instructors reported spending 10 minutes
to 2 hours on lecture preparation depending on if they have taught
the course before, their general teaching experience, and the tools
they use.

Helping students: Instructors reported spending considerable
time helping students individually or in small groups. Moreover,
they invest even more time into creating efficient infrastructures
for students to get additional help (e.g., TAs, study groups, online
discussion boards, etc.).

Grading and feedback: Grading and giving feedback largely
varies based on availability and skills of teaching assistants (TAs)
as well as how much automation has been adopted in the course.
Instructors reported spending up to 50% of their time on grading.

In the remainder of this section, we share the findings of this
study to answer our research questions regarding pain points and
workarounds.

3.1 RQ1: What did instructors wish they could
change?

To answer our first research question, we asked instructors about
challenges, pain points, and what they wish they could change. We
categorized the responses into the themes below:

3.1.1 Where are students struggling? Instructors face substantial
barriers in understanding what students are struggling with and
where they are spending their time. In particular, instructors often
only see the final output (e.g., homework submissions) but do not
see the process that students go through to arrive at their solution.
P27 framed this clearly: “The challenge I have is knowing what
students struggle with outside of class. I can’t see where they get stuck
and many don’t ask questions.” Similarly, P17 discussed the need
to know where a given student is: “I want to see the progress for
one student. They might be making the same mistake over and over
in different assignments.”. P21 expressed that if they could answer
these questions, then they could “apply some pedagogy there”. P30
told us “students are doing lots and lots of things but I can’t process
all they are doing” and that it is a “lot of pipelines all strung together”.
Only possible option at the moment is “to scour all different places
to understand students progress—code, Q&A, quizzes, git logs, etc.”.

Instructors mentioned they want to “do things more in class
that guarantees that [students] are not just sitting there silent. But
kind of force them to wrestle with the ... issue on the on the table”
(P5). However, the current tooling available to instructors doesn’t
allow them to verify this live during class sessions. P5 continued,
“I basically got the out of class situation like that covered. It’s the
in-class version...”.

3.1.2 Answering students’ questions. Students do tend to ask many
questions, possibly in an attempt to overcome their struggles. How-
ever, these questions can overwhelm instructors and TAs during
class, at office hours, through email, and through other software
like Piazza. P18 shared their experience: “Although the presence of
tutors helped addressing some of the queries raised by the students, it
was difficult to address all of them in an organized fashion, as much

What is your biggest pain point? An investigation of CS instructor obstacles, workarounds, and desires SIGCSE ’23, March 15–18, 2023, Toronto, Canada

of it was lost in the barrage of questions that were raised.”. They con-
tinued, especially in a large course, it is “difficult to pay attention
to individual doubts of students”. Furthermore, the questions are
“repetitive in nature” (P17) and “variations of the same” (P25). To
complicate this further, questions are often asked in batches, or as
P19 put it, “If they don’t understand an assignment or get stuck, they
will wait until last minute or after the due date to say something.”,
which puts a strain on instructors and TAs to respond promptly.

It is particularly problematic to troubleshoot technical issues
related to the student’s computer or development environment. P23
said that the hardest questions from students are of the type, “Why
isn’t Docker working on my laptop anymore?” or “Why does Python
no longer exist?” These questions are also “the most painful thing”
for P23’s teaching assistants to address.

3.1.3 Limited TA support. Towards supporting instructors in an-
swering questions and identifying where students are struggling,
departments will hire teaching assistant. However, these TAs are a
finite and highly sought after resource in departments. Many in-
stitutions, especially community colleges and smaller institutions,
“struggle with TA support” (P17). In fact, several instructors revealed
that they have little to no TA support beyond the large introductory
courses. As P3 said, “TAs... I wish we had those”.

Instructors mentioned that even when they do have TAs, they
may require considerable time to manage and may not be reliable.
As P17 put it, “TAs have their own biases ... some TAs are not mature
programmers”. They continued that in some cases TA are limited by
experience, for example “TAs sometimes only run the unit tests and
never read the code, [so] two submissions that were nearly identical,
but one got [high] marks and the other got [low] marks”. Although
P26 said they had sufficient TAs in their courses, they warned that
the TAs also ask them a significant number of questions.

Other universities have restrictive policies on the work that TAs
can perform. For example, “in terms of grading, we have kind of
a policy that, TAs are allowed to grade multiple choice questions,
but for other questions like open-ended questions or coding problems,
they’re not really expected to grade those unless [instructor is] there to
supervise them” (P10), so as a result it is just easier for the instructor
to grade directly. In a different institution, the instructor explained
“one of the university policies is [that] we don’t allow students to
grade other students work” (P3). Similarly, another instructor shared
that in their department, TAs are only allowed to lead group study
sessions and manage in-class activities, but cannot grade.

3.1.4 Grading & feedback. Grading is a time-consuming tasks that
nearly all of the instructors mentioned. There are many dimen-
sions to grading, including returning grades to students in a timely
manner, providing high-quality qualitative feedback, covering all
artifacts that students produce, transparency in why points were
taken off, and being consistent and fair across students and assign-
ments. Instructors gave conflicting interpretations of grading as
either a chore or an opportunity. For example, P9 said, “grading is
probably the biggest burden of the courses” and P20 said, “grading is
an impossible task”. In contrast, P13 prefers to grade things them-
selves even if they has TAs “because [of] the feedback I can get from
... their homework and assignments”.

A particularly challenging aspect of grading is developing, shar-
ing, and adhering to rubrics. P27 designs their grading rubrics to
minimize time spent grading. P20 said they makes a new rubric
that focuses on different metrics for almost every assignment but
knows this “is not a great solution”. P23 emphasized “transparency
in grading and feedback is a priority” and said that a good rubric is
the key. They continued about the need for high-quality rubrics,
“in an ideal world, they can self grade or know exactly why they got
their grade” and one way they have done so is through “boolean”
grading that eliminates subjectivity. However, even this is still time
consuming for P23 and their TAs.

Although automated grading does exist, the “human touch” is
valuable to instructors, especially as they deal with increasing en-
rollment. P22 said, “our program is pretty well scaled, and it is a huge
challenge to give quality feedback.”. P23 remarked that they wish
for more automation of mundane tasks, but expressed that they
are strongly opposed to automating feedback to students: “I think
this is the wrong direction for education. Striping away community
and humanity from learning.”. Other instructors (P26, P30, and P32)
shared a similar sentiment that their contribution is that of one-on-
one feedback and to help the students build a community in the
classroom. The COVID-19 pandemic reinforced the need for these
personal interactions for P32.

3.1.5 Course material preparation. Another common challenge
for instructors is the high cost of developing or adopting course
materials to use as examples, assignments, lecture notes, quizzes
and supplemental reading in their courses. P15 mentioned they
cannot change the whole assignments often because they “just
don’t have the resources”. Additionally, “finding those is one of the
biggest challenges, because ... there are so many different resources
here and there. This does that, this does that ... [instructors] just don’t
have the time, especially at a smaller institution” (P3). Having more
examples or variety of assignments could benefit students both as
additional resources as well as a way to prevent plagiarism.

Shifting courses to online or to hybrid modalities, such as a
response to the COVID-19 pandemic, presented additional barriers
and work for instructors. For example, P16 mentioned the problem
of keeping students engaged, “everyone’s there at first and then it’s
just like monotonically decreasing. Until I get to end of semester, then
it’s like 20% or 15% of the students are there, and so that’s my biggest
problem right now of like how do I get people how do I incentivize
lecture without just forcing them to go by holding their grade hostage.”
They continued, “I’ve checked and there’s very little few few people
watching these videos”. As P8 explains, moving content online is
an upfront investment, but may not take much time to maintain:
“When I was making the videos it was taking significant amount
of time to make the videos and once those are done, then I don’t
spend very much time preparing now”. These challenges were also
published in a recent case study of transitioning a course online
because of COVID-19 closures [2].

3.1.6 Administrative tasks. There is managerial and administrative
tasks involved with running any course, or as P16 put it, “grunt
work”. Examples include managing the social dynamics in class,
preparing multiple course delivery formats, accreditation tasks, en-
forcing academic honesty policies, assigning teams, dealing with
LMS quirks, transitioning to new software systems, and managing

SIGCSE ’23, March 15–18, 2023, Toronto, Canada Samim Mirhosseini, Austin Z. Henley, and Chris Parnin

individual student accommodations. While these tasks may not nec-
essarily be the most practical use of an instructor’s time, instructors
usually have to do these tasks because of other limited resources.

Time spent on administrative tasks often prevented instructors
from making improvements in the course. For example, P9 told us
“I would perfect the projects, if ... I could pause the clock.”, P4 told us
they want to “make things as close to industry as possible to help
with smooth transitions from student to software engineer”, and P8
wanted to adopt mastery learning [9] model and “have them do it
again and do it again ... fix it and resubmit [until] I’m satisfied with
it ... it is a really important learning process ... but takes a lot of time
and effort on my part”. P22 expressed the desire to maintain notes
on improvements for future versions of the same course but added
that doing so is a chore.

Furthermore, identifying when students cheat was a concern for
many instructors, especially in regards to moving courses online for
COVID-19 and scaling to support higher enrollments. P19 explained
that they have a 30-page syllabus to make it clear what is allowed
and not allowed, along with quizzes covering academic dishonesty.
P17 and P29 mentioned that it is not feasible for them to put as
much time into checking for plagiarism as they should, but it is
important to them.

3.2 RQ2: What are current attempts of
addressing pain points?

To answer our second research question, we analyzed and catego-
rized the current efforts used by instructors to address the pain
points they mentioned in the previous section, which includes soft-
ware tools and pedagogical techniques:

Interactive textbooks/exercises: Two of the instructors that we
interviewed had created their own interactive textbooks, one based
on Jupyter Notebooks and another using a proprietary interactive
platforms that they developed. As instructors explained, interactive
textbook “fixes a problem we had before” (P14) which was keep-
ing content up-to-date. Interactive (executable) textbooks allows
instructors to ensure the material remains up to date through a
continuous integration mechanism. P14 said programming related
textbooks “come with all the usual well maintenance problems of
code”, and with their interactive textbook “when somebody, some-
where out there in the world changes some Python package, such that
my code ... no longer works, I get notified the day after” (P14).

Additionally, instructors mentioned they were able to use their
interactive textbook to encourage a more active learning experi-
ence. With a traditional textbook students can read the code “but
well, not much fun to read code, you won’t be able to execute it. But
[in interactive format] it’s more fun to actually toy with it” (P14)
right in their web browser, while they read the course material or
watch a lecture. However, a recent study found that students had
significantly fewer interactions with their eBook and fewer study
days during the pandemic than they had before [31].

Online IDEs and code visualizers: Some instructors adopted
online IDEs and code visualizers which may increase engagement
in class and in assignments. Such tools have been previously studied
and found to create a faster feedback cycle for students [15] and
eliminate computing environment configuration issues. P12 said
“we want to give the students a uniform platform, we don’t want them

to need to switch to [a separate IDE] ... WebLab is really an IDE in the
browser. So we code in a window in a browser and we push compile
and outcomes everything", they continued "We also have unit tests
in there ... The students can program and they can run their solution
against the unit tests that we provide.”

Another instructor from a smaller university mentioned they
adopted using Java Visualizer1 which an online tool based on Guo’s
Python Tutor [12]. This online tool allows students run a code
snippet in their browser, visualize it and share their snippet using a
permanent link generated by the tool. In this course, Java Visualizer
was used for teaching the coding examples, as well as student sub-
missions. When we asked the instructor what pain point they tried
to address by adopting this tool, they mentioned, Java Visualizer
has helped their students who are new to programming “so that
they can see what is happening when they’re coding in memory and
they can immediately see what’s occurring” (P3). Additionally, they
mentioned some of their students did not have access to a capable
computer, so having everything online in the browser alleviated
environment issues. Other institutions aimed to eliminate these
technical issues by standardizing the computers used or by moving
to cloud-based software (e.g., P3, P10, P17, P24, P25, and P27).

Automated grading: Instructors have adopted several different
tools and approaches for automated grading. Two examples of au-
tomated grading implementations used Web-CAT2 [7], and GitHub
Actions3 to run an internally developed grading tool. This automa-
tion setup requires significant time investment by the instructors
and makes changing the content more difficult [17]. However, in
both cases the instructors were able to reduce the grading time and
the TAs could simply “look at the code to catch things that automated
test does not catch” (P5) instead of manually checking everything.
This has allowed the instructors and TAs use the time they saved
to help students in the learning process. Another example of that is
Harvard’s Check50 tool [27], which is an API-based tool that gives
feedback to students before assignments are submitted as well as
automates portions of the grading. This approach may also help the
instructor promote mastery learning [9]. As P5 explained with this
approach, their students “can submit as many times as they want.
Looking at the feedback, looking at the results of those tests and fix
anything that those tests address and resubmit.”

Flipped classroom: Several instructorsmentioned they switched
to a flipped classroom method of teaching or some hybrid model
which has enabled more time for in-class interaction with students.
This style involves assigning readings and pre-recorded lecture
videos for students to watch and use the class meeting time to
answer questions and work on interactive live coding. This change
of teaching style was primarily adopted as a result of COVID-19
pandemic in 2020 [2], however instructors decided to continue
to use this method even though universities are back to normal
operations at the time of our study. As P15 explained, they had two
main motivations to keep using a flipped classroom. First is that it
has allowed them to have extra time to dedicate for interaction with
the students in the class. And second is the “the feedback ... from
students the last couple of years is that they actually prefer having
this lightweight flipped classroom model where they can just watch
1https://pythontutor.com/java.html
2https://web-cat.org/projects/Web-CAT
3https://github.com/features/actions

https://pythontutor.com/java.html
https://web-cat.org/projects/Web-CAT
https://github.com/features/actions

What is your biggest pain point? An investigation of CS instructor obstacles, workarounds, and desires SIGCSE ’23, March 15–18, 2023, Toronto, Canada

the theory part, they can scroll back, they can pause they can try stuff
on their own. And in the live lecture they get the interaction with the
lecturer”.

Peer instruction: One of instructors mentioned they adopted
extra “office hour” time with small groups of students to run peer
instruction [22] sessions which was seen as a positive change to
increase understanding of concepts and engagement to work on
examples together. However, as P8 explained this approach also
had some weaknesses, “it took a lot of time because I had to have so
many meetings to have meetings at small, so it was not very efficient
use of my time.” Several instructors shared that their departments
now require student-led study groups for core courses, which they
believed to be a positive addition without taking time from instruc-
tors (P26, P28, and P32). Research supports the use of UTAs as
an effective means to scale classes through peer instruction and
student groups [18]. Alternatively, one school experimented with
using a department-wide question and answering site (essentially
a private Stack Overflow), with promising results [14].

4 LIMITATIONS
Our qualitative approach in this study may introduce certain lim-
itations to the results. First, the findings may carry a level of in-
terpretation of the researchers as they analyzed the responses in
the interviews using thematic analysis. Second, our methodology
uses semi-structured interviews and by definition, the questions
asked during the interview or their order may slightly change based
on the conversation. These variations may have some effects on
the responses we received from instructors. Third, we covered the
transitional changes in courses material and teaching styles as
a result of COVID-19 pandemic as well as some associated pain
points (3.1.5), however, it is difficult to predict whether any of those
changes would revert to pre-pandemic norms over time and when.
Finally, although the number of our participants was larger than
most of the related studies, our findings may not be representative
across demographics.

5 RELATEDWORK
In both Lau et al. [17] and our work, the overarching goal is to
find challenges that instructors experience. However, Lau et al.
[17] focuses on challenges related to maintaining content in a large
scale data science course, while we focus on challenges related to
assessments, integration of technology in class and coding that can
potentially effect pedagogy in different computer science classroom
and institutions sizes. Lau et al. [17]method also differs in using case
studies and previous experience while we conduct semi-structured
interviews with computer science instructors.

Other related works with similar goals are from Yadav et al.
[29, 30]. These studies have a goal of understanding challenges and
experience of computer science teachers in K-12, with a focus on
the increasing need for training new instructors with the growing
computer science education demand. Similar to this study, Yadav
et al. [29, 30] work used interviews with the instructors and quali-
tative analysis as the method for conducting the study. Some of the
findings from this study, and the work by Yadav et al. [29, 30], such
as grading challenges, are common and hold relevant. More broadly

speaking, our study can also relate to other studies that offer a
solution to pedagogy challenges in computer science classrooms.

6 DISCUSSION
Our findings categorized the pain points of CS instructors, and
described some of the workarounds that instructors have tried in
their workflow so far. We present implications for CS education
researchers, instructors, and toolsmiths for reducing instructor pain
points, and improving learning experiences for students.

Helping instructors surface student struggles: Instructors
had low visibility into the student struggles (3.1.1), seeing where
they got stuck, or identifying issues and answer questions in a
timely fashion (3.1.2). Additionally, when instructors provide feed-
back or grade submissions (3.1.4), gathering information about
student activities involved many “mechanical actions to get all the
info and put it in one spot”. For example, if an instructor wanted to
verify if students performed effective code reviews of pull requests
and made sufficient contributions to a project, they would have
to navigate and visit each pull request to manually inspect review
comments, and then navigate through the commit logs, possibly
accounting for nuances such as commits on different branches or
possible peer-coding activities. Often surfacing simple information
would have helped instructors, for example, P16 used mastery grad-
ing, but their gradebook system did not display number of attempts,
making it difficult to see if a student was “trying a bazillion times”.

In general, instructors need help discovering and consolidat-
ing data that’s “in a bunch of places to better find the students
that are struggling” (P16). Some research efforts offer a promis-
ing start. Mysore and Guo [19] profiled student activity on tuto-
rials and overlaying heatmaps of activity hotspots, encountered
error messages, and embedded screencast videos of user actions.
Adopting and extending this approach in other contexts, can help
surface unknown struggles and provided actionable feedback for
improving instructional material and assignments. Learning dash-
boards [28] have been used in a variety of contexts, including mon-
itoring progress on assignments [6], visualizing group work contri-
butions [10], and guiding students in self-reflection [24]. However,
capturing these activities across a suite of tools, customizing and
personalizing analysis to course content, and deploying these sys-
tems remain a challenge. Finally, simple interventions, such as
weekly surveys can identify struggling students or teams [23].

All together, visibility into student struggles can help instructors
identify misconceptions, sources of frustration, and problems in
instructional material. Once struggles are better known, instructors
will have the opportunity explore “less defined assignments and then
later dive in to see what they’re doing” (P21) and use the insights as
“guard rails for rabbit holes”.

Helping instructors leverage automation for class opera-
tions: Instructors frequently spent time on tasks that were “repeti-
tive in nature” (P17) and “variations of the same” (P25), including
answering questions (3.1.2), preparing assignments and quizzes
(3.1.5), and administrative tasks (3.1.6). For some instructors, these
problems could be overcome by scaling with more TAs (25 TAs on
average for P12’s class), but for many other instructors, they lacked
TAs or TAs were limited in what actions they were allowed to do
(3.1.3).

SIGCSE ’23, March 15–18, 2023, Toronto, Canada Samim Mirhosseini, Austin Z. Henley, and Chris Parnin

Automation of class operations offers a potential way to scale
teaching efforts, allowing instructors to spend more time with stu-
dents that need help or developing new course material. While
decades in the making [3, 26], today AI systems have improved and
with the introduction of large-language models (LLMs), such as
OpenAI Codex4. Such models have been used recently for automat-
ically generating “novel” and “applicable” programming exercises
[25], generating solutions for introduction assignments [8], gener-
ating final exams [33], and answering questions [16]. Along with
traditional AI tutor systems (e.g., AutoTutor [21]), virtual TAs (e.g.,
Jill Watson[11]), and approaches such as automated program re-
pair [32], these systems offer considerable support for reducing
the effort involved in aiding struggling students, responding to
questions, preparing assignments, managing TAs, and grading.

However, automation brings its own challenges. Autograders
may be viewed by students as unforgiving and opaque since they
do not adequately explain why points were taken off. For example,
P10 described when an interactive textbook gives a grade, it deducts
points even if there is only a whitespace difference with the solution.
They continued this is “in my opinion, unreasonable and my students
struggle so much with it and they spend hours trying to get the white
space correct in their program when in reality that’s not what I want
them spending spending time on”. P17 shared a similar observation,
that autograders are “too harsh” and still require a human to review
the grades. They described an example where a student received
a 0 for a submission to the autograder, but the cause was a minor
issue that should have only resulted in a few points deduction.

Although instructors can automate their classes using LLM-
based technologies, it also means students can automate their as-
signments. In fact, there is a growing concern5 that Copilot, an
intelligent code suggestion tool that uses Codex, can complete
homework assignments in seconds with little conceptual knowl-
edge. A professor recently wrote a satirical article on how to cope
with students using Copilot in your class6. Others have taken to
Twitter to discuss how to design “Copilot-proof” assignments7.

Instructors stressed the importance of promoting a diverse and
inclusive classroom, which automation may negatively impact. For
example, P17 worried that when a student sees the feedback from
their autograder, the student will lose confidence because of how
strict the system is. P29 has trouble finding assignments and lecture
notes online that are designed to be more equitable and inclusive.
They explained that they do not want homeworks consisting of
abstract problems to be solved in a terminal, but rather the home-
works should be culturally relevant. Furthermore, they stated that
having a database or system to generate these assignments would
push the classroom to be more diverse.

Helping instructors reduce friction in course delivery: In-
structors faced obstacles maintaining code exercises and course
material (3.1.5), troubleshooting technical issues in student’s com-
puting environments (3.1.2), keeping students engaged (3.1.5). Com-
mon workarounds, included outsourcing course content to interac-
tive textbooks, and integrating cloud-based programming environ-
ments. Benefits included, monitoring student progress, supporting
4https://openai.com/blog/openai-codex/
5https://twitter.com/search?q=copilot%20homework&src=typed_query
6https://itnext.io/coping-with-copilot-b2b59671e516
7https://twitter.com/deliprao/status/1557913160140656640

active learning experiences for students, reducing questions related
to technical environment issues.

However, these workarounds often did not completely resolve
these obstacles and other desires remained. Instructors using ex-
isting interactive textbooks, such as zyBooks, could not modify
material, and found content is often difficult to align with existing
course structure and were “pedagogically not nearly as solid” (P5).
P10 quickly realized students could not perform many basic opera-
tions, such as working with file systems, for their course because
“zyBooks is ... just kind of a simulation”. Similarly, P14, who made
their own interactive textbook based on Jupyter notebooks, had to
invest significant time. They explained, “many things I had to invent
and build myself. I had to build quite an infrastructure around this to
make this whole thing workable for me”. They continued “Jupyter
Notebooks typically are not being used by programmers ... they are
typically used by data scientists” so it has a different purpose and it’s
“awful in terms of code” support out of the box. Finally, instructors
often had to navigate usage limits as well as longevity associated
with cloud-based solutions. For instance, P28’s department adopted
a cloud platform, however that platform “disappeared a year or two
after migrating to it”, and as a result, they became very hesitant to
invest in adopting external tools.

Advances in educational technology seem like a game of whack-
a-mole, addressing one challenge often brings another one. For
example, while interactive textbooks have several benefits and
reduce certain pain points, instructors now have to deal with signif-
icantly reduced engagement associated interactive textbooks [31].
Moving forward, educational technology needs a design that si-
multaneously addresses or blends several needs, such as improving
student engagement, interactivity and liveness, peer interaction,
and advanced computing environments. For example, a partici-
pant described a live document that embedded code editors, slides,
and quizzes, backed by a real environment, and was shareable by
instructors and peers “that would be a perfect blend” (P9).

7 CONCLUSION
In this work, we conducted interviews with 32 computer science
instructors about obstacles, workarounds, and desires when teach-
ing their courses. We identified several pain points, including lim-
ited access to resources, repetitive tasks, such as manually gather-
ing information about student activities for grading, or answering
variations of the same question, troubleshooting technical issues
in students’ computing environments, and endless administrative
tasks. Common workarounds included automated grading, peer in-
struction, outsourcing course content to interactive textbooks, and
integrating cloud-based programming environments. Instructors
identified several desires, including (1) more visibility into their
students struggles, problem-solving process, and programming en-
vironments, (2) better support for automating repetitive tasks, and
(3) improved interactive environments and streamlined course de-
livery. In general, we believe that investing in the educators will
improve the learning experiences and quality of life for everyone.

REFERENCES
[1] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.

Qualitative Research in Psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/
1478088706qp063oa

https://openai.com/blog/openai-codex/
https://twitter.com/search?q=copilot%20homework&src=typed_query
https://itnext.io/coping-with-copilot-b2b59671e516
https://twitter.com/deliprao/status/1557913160140656640
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa

What is your biggest pain point? An investigation of CS instructor obstacles, workarounds, and desires SIGCSE ’23, March 15–18, 2023, Toronto, Canada

[2] Alexander Brooks, Caroline Hardin, Jennifer Scianna, Matthew Berland, and
Laura Hobbes Legault. 2021. Approaches to Transitioning Computer Science
Classes from Offline to Online. In Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE ’21). ACM, 81–87. https://doi.org/10.1145/3430665.3456366

[3] Maud Chassignol, Aleksandr Khoroshavin, Alexandra Klimova, and Anna Bilyat-
dinova. 2018. Artificial Intelligence trends in education: a narrative overview.
Procedia Computer Science 136 (2018), 16–24. https://doi.org/10.1016/j.procs.2018.
08.233 7th International Young Scientists Conference on Computational Science,
YSC2018, 02-06 July2018, Heraklion, Greece.

[4] Amy Cook, Alina Zaman, Eric Hicks, Kriangsiri Malasri, and Vinhthuy Phan.
2022. Try That Again! How a Second Attempt on In-Class Coding Problems
Benefits Students in CS1. In Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education V. 1 (Providence, RI, USA) (SIGCSE 2022). ACM,
509–515. https://doi.org/10.1145/3478431.3499362

[5] Computing Research Association (CRA). 2017. The phenomenal growth of CS
Majors since 2006. Retrieved July 20, 2022 from https://cra.org/data/generation-
cs/phenomenal-growth-cs-majors-since-2006/

[6] Nicholas Diana, Michael Eagle, John Stamper, Shuchi Grover, Marie Bienkowski,
and Satabdi Basu. 2017. An Instructor Dashboard for Real-Time Analytics in
Interactive Programming Assignments. In Proceedings of the Seventh Interna-
tional Learning Analytics & Knowledge Conference (Vancouver, British Columbia,
Canada) (LAK ’17). ACM, 272–279. https://doi.org/10.1145/3027385.3027441

[7] Stephen H. Edwards. 2003. Improving Student Performance by Evaluating How
Well Students Test Their Own Programs. J. Educ. Resour. Comput. 3, 3 (sep 2003),
1–es. https://doi.org/10.1145/1029994.1029995

[8] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming. In Australasian Computing Educa-
tion Conference (Virtual Event, Australia) (ACE ’22). Association for Computing
Machinery, New York, NY, USA, 10–19. https://doi.org/10.1145/3511861.3511863

[9] James Garner, Paul Denny, and Andrew Luxton-Reilly. 2019. Mastery Learning
in Computer Science Education. In Proceedings of the Twenty-First Australasian
Computing Education Conference (Sydney, NSW, Australia) (ACE ’19). ACM, 37–46.
https://doi.org/10.1145/3286960.3286965

[10] Niki Gitinabard, Sarah Heckman, Tiffany Barnes, and Collin Lynch. 2022. De-
signing a Dashboard for Student Teamwork Analysis. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1 (Providence, RI,
USA) (SIGCSE 2022). Association for Computing Machinery, New York, NY, USA,
446–452. https://doi.org/10.1145/3478431.3499377

[11] Ashok K. Goel and David A. Joyner. 2017. Using AI to Teach AI: Lessons from an
Online AI Class. AI Magazine 38, 2 (Jul. 2017), 48–59. https://doi.org/10.1609/
aimag.v38i2.2732

[12] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program
Visualization for Cs Education. In Proceeding of the 44th ACM Technical Sym-
posium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13).
Association for Computing Machinery, New York, NY, USA, 579–584. https:
//doi.org/10.1145/2445196.2445368

[13] Sara Hooshangi, Margaret Ellis, and Stephen H. Edwards. 2022. Factors Influ-
encing Student Performance and Persistence in CS2. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1 (Providence, RI,
USA) (SIGCSE 2022). Association for Computing Machinery, New York, NY, USA,
286–292. https://doi.org/10.1145/3478431.3499272

[14] Stefan Hugtenburg and Andy Zaidman. 2022. First Impressions of Using Stack
Overflow for Education in a Computer Science Bachelor Programme. In Proceed-
ings of the 53rd ACM Technical Symposium on Computer Science Education V. 2
(Providence, RI, USA) (SIGCSE 2022). Association for Computing Machinery, New
York, NY, USA, 1146. https://doi.org/10.1145/3478432.3499046

[15] Lennart C.L. Kats, Richard G. Vogelij, Karl Trygve Kalleberg, and Eelco Visser.
2012. Software Development Environments on the Web: A Research Agenda. In
Proceedings of the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Tucson, Arizona, USA) (Onward!
2012). ACM, 99–116. https://doi.org/10.1145/2384592.2384603

[16] Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021. Hurdles to Progress in
Long-form Question Answering. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics, Online, 4940–
4957. https://doi.org/10.18653/v1/2021.naacl-main.393

[17] Sam Lau, Justin Eldridge, Shannon Ellis, Aaron Fraenkel, Marina Langlois, Suraj
Rampure, Janine Tiefenbruck, and Philip J. Guo. 2022. The Challenges of Evolving
Technical Courses at Scale: Four Case Studies of Updating Large Data Science
Courses. In Proceedings of the Ninth ACM Conference on Learning @ Scale (New
York City, NY, USA) (L@S ’22). Association for Computing Machinery, New York,
NY, USA, 201–211. https://doi.org/10.1145/3491140.3528278

[18] Diba Mirza, Phillip T. Conrad, Christian Lloyd, Ziad Matni, and Arthur Gatin.
2019. Undergraduate Teaching Assistants in Computer Science: A Systematic

Literature Review. In Proceedings of the 2019 ACM Conference on International
Computing Education Research (Toronto ON, Canada) (ICER ’19). ACM, 31–40.
https://doi.org/10.1145/3291279.3339422

[19] Alok Mysore and Philip J. Guo. 2018. Porta: Profiling Software Tutorials Using
Operating-System-Wide Activity Tracing. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (Berlin, Germany) (UIST
’18). Association for Computing Machinery, New York, NY, USA, 201–212. https:
//doi.org/10.1145/3242587.3242633

[20] Nadia Najjar, Anna Stubler, Harini Ramaprasad, Heather Lipford, and David
Wilson. 2022. Evaluating Students’ Perceptions of Online Learning with 2-D
Virtual Spaces. In Proceedings of the 53rd ACM Technical Symposium on Com-
puter Science Education V. 1 (Providence, RI, USA) (SIGCSE 2022). Association for
Computing Machinery, New York, NY, USA, 112–118. https://doi.org/10.1145/
3478431.3499396

[21] Benjamin D Nye, Arthur C Graesser, and Xiangen Hu. 2014. AutoTutor and
family: A review of 17 years of natural language tutoring. International Journal
of Artificial Intelligence in Education 24, 4 (2014), 427–469.

[22] Leo Porter, Cynthia Bailey Lee, and Beth Simon. 2013. Halving Fail Rates Using
Peer Instruction: A Study of Four Computer Science Courses. In Proceeding of the
44th ACM Technical Symposium on Computer Science Education (Denver, Colorado,
USA) (SIGCSE ’13). Association for Computing Machinery, New York, NY, USA,
177–182. https://doi.org/10.1145/2445196.2445250

[23] Kai Presler-Marshall, Sarah Heckman, and Kathryn T. Stolee. 2022. Identifying
Struggling Teams in Software Engineering Courses Through Weekly Surveys. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
V. 1 (Providence, RI, USA) (SIGCSE 2022). Association for Computing Machinery,
New York, NY, USA, 126–132. https://doi.org/10.1145/3478431.3499367

[24] Jose Luis Santos, Sten Govaerts, Katrien Verbert, and Erik Duval. 2012. Goal-
Oriented Visualizations of Activity Tracking: A Case Study with Engineering
Students. In Proceedings of the 2nd International Conference on Learning Analytics
and Knowledge (Vancouver, British Columbia, Canada) (LAK ’12). Association for
Computing Machinery, New York, NY, USA, 143–152. https://doi.org/10.1145/
2330601.2330639

[25] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
Generation of Programming Exercises and Code Explanations Using Large Lan-
guage Models. In Proceedings of the 2022 ACM Conference on International Com-
puting Education Research - Volume 1 (Lugano and Virtual Event, Switzerland)
(ICER ’22). Association for Computing Machinery, New York, NY, USA, 27–43.
https://doi.org/10.1145/3501385.3543957

[26] Janet Ward Schofield, Debra Evans-Rhodes, and Brad R. Huber. 1990. Artificial
Intelligence in the Classroom: The Impact of a Computer-Based Tutor on Teachers
and Students. Social Science Computer Review 8, 1 (1990), 24–41. https://doi.org/
10.1177/089443939000800104 arXiv:https://doi.org/10.1177/089443939000800104

[27] Chad Sharp, Jelle van Assema, Brian Yu, Kareem Zidane, and David J. Malan.
2020. An Open-Source, API-Based Framework for Assessing the Correctness
of Code in CS50. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education (Trondheim, Norway) (ITiCSE ’20).
Association for Computing Machinery, New York, NY, USA, 487–492. https:
//doi.org/10.1145/3341525.3387417

[28] Katrien Verbert, Sten Govaerts, Erik Duval, Jose Luis Santos, Frans Assche, Gon-
zalo Parra, and Joris Klerkx. 2014. Learning Dashboards: An Overview and Future
Research Opportunities. Personal Ubiquitous Comput. 18, 6 (aug 2014), 1499–1514.
https://doi.org/10.1007/s00779-013-0751-2

[29] Aman Yadav, Sarah Gretter, and Susanne Hambrusch. 2015. Challenges of a
Computer Science Classroom: Initial Perspectives from Teachers. In Proceedings
of the Workshop in Primary and Secondary Computing Education (London, United
Kingdom) (WiPSCE ’15). Association for Computing Machinery, New York, NY,
USA, 136–137. https://doi.org/10.1145/2818314.2818322

[30] Aman Yadav, Sarah Gretter, Susanne Hambrusch, and Phil Sands. 2016. Expanding
computer science education in schools: understanding teacher experiences and
challenges. Computer Science Education 26, 4 (2016), 235–254.

[31] Iman YeckehZaare, Gail Grot, Isadora Dimovski, Karlie Pollock, and Elijah Fox.
2022. Another Victim of COVID-19: Computer Science Education. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education V. 1 (Provi-
dence, RI, USA) (SIGCSE 2022). Association for Computing Machinery, New York,
NY, USA, 913–919. https://doi.org/10.1145/3478431.3499313

[32] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A Feasibility Study of Using Automated Program Repair for
Introductory Programming Assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 740–751.
https://doi.org/10.1145/3106237.3106262

[33] Sarah Zhang, Reece Shuttleworth, Derek Austin, Yann Hicke, Leonard Tang, Sath-
wik Karnik, Darnell Granberry, and Iddo Drori. 2022. A Dataset and Benchmark
for Automatically Answering and Generating Machine Learning Final Exams.
https://doi.org/10.48550/ARXIV.2206.05442

https://doi.org/10.1145/3430665.3456366
https://doi.org/10.1016/j.procs.2018.08.233
https://doi.org/10.1016/j.procs.2018.08.233
https://doi.org/10.1145/3478431.3499362
https://cra.org/data/generation-cs/phenomenal-growth-cs-majors-since-2006/
https://cra.org/data/generation-cs/phenomenal-growth-cs-majors-since-2006/
https://doi.org/10.1145/3027385.3027441
https://doi.org/10.1145/1029994.1029995
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3286960.3286965
https://doi.org/10.1145/3478431.3499377
https://doi.org/10.1609/aimag.v38i2.2732
https://doi.org/10.1609/aimag.v38i2.2732
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/3478431.3499272
https://doi.org/10.1145/3478432.3499046
https://doi.org/10.1145/2384592.2384603
https://doi.org/10.18653/v1/2021.naacl-main.393
https://doi.org/10.1145/3491140.3528278
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1145/3242587.3242633
https://doi.org/10.1145/3242587.3242633
https://doi.org/10.1145/3478431.3499396
https://doi.org/10.1145/3478431.3499396
https://doi.org/10.1145/2445196.2445250
https://doi.org/10.1145/3478431.3499367
https://doi.org/10.1145/2330601.2330639
https://doi.org/10.1145/2330601.2330639
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1177/089443939000800104
https://doi.org/10.1177/089443939000800104
https://arxiv.org/abs/https://doi.org/10.1177/089443939000800104
https://doi.org/10.1145/3341525.3387417
https://doi.org/10.1145/3341525.3387417
https://doi.org/10.1007/s00779-013-0751-2
https://doi.org/10.1145/2818314.2818322
https://doi.org/10.1145/3478431.3499313
https://doi.org/10.1145/3106237.3106262
https://doi.org/10.48550/ARXIV.2206.05442

	Abstract
	1 Introduction
	2 Methodology
	2.1 Interviews
	2.2 Interview Analysis

	3 Findings
	3.1 RQ1: What did instructors wish they could change?
	3.2 RQ2: What are current attempts of addressing pain points?

	4 Limitations
	5 Related Work
	6 Discussion
	7 Conclusion
	References

