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In the automata-theoretic approach to languages, formulas from a domain-specific language (such as regular expressions over finite

words or a temporal logic over infinite words) are translated to automata, which come equipped with their own semantics, algebraic

properties, and supporting algorithms. In the process of translating from formulas to automata, it is possible to lose track of the algebra

that exists in the world of formulas, making it harder to reason about semantics and perform optimizations. Recent work on symbolic

derivatives for extended regular expressions shows that it is possible to leverage effective Boolean algebras to represent both infinite

spaces of characters as well as transition functions/terms, enabling optimizations that apply simultaneously at the level of formula and

automata.

We develop here a framework of transition terms modulo an effective Boolean algebra A that works over 𝜔-languages and over

infinite alphabets in an algebraically well-defined and precise manner. Using this framework, we then define symbolic derivatives for

linear temporal logic (LTL), and define symbolic alternating Büchi automata, based on a shared semantic representation that makes it

simpler to reason about optimizations. We present several new optimizations, including one that allows locally eliminating alternation,

which results in non-alternating or even deterministic Büchi automata for some classes of LTL. We believe there is a rich world of LTL

rewriting rules for on-the-fly optimization of alternating Büchi automata to be discovered.

1 INTRODUCTION

When we define a higher-level language 𝐹 in terms of a lower-level language 𝐴, we expect that the semantics of

a program in 𝑓 in language 𝐹 is preserved when translated to a program 𝑇𝐹,𝐴 (𝑓 ) in language 𝐴. At the same time,

we always recognize that something will be “lost in translation” in the process. In general, what might have been

easy/simple to reason about for programs in language 𝐹 becomes more difficult for the corresponding programs in

language 𝐴. Examples abound:

• higher-level languages with structured control-flow constructs are compiled into linear bytecode with jump

statements, losing the notion of syntactic nesting, which must be recovered by algorithms over the control-flow

graph of the bytecode, as with dominance frontiers in static single assignment form [14];

• given a register 𝑟 in a low-level representation 𝐴 that corresponds to a program variable in 𝐹 , if we don’t know

if 𝑟 represents a number or a pointer from 𝐹 then precise garbage collection becomes more difficult and requires

conservative pointer finding [17];

• in languages that allow programmers to concisely describe numerical algorithms using high-level abstractions

such as vectors and matrices, and the linear-algebraic operations over them, there is a need to both optimize

algebraically at the level of mathematical abstractions as well as to compile the same representation into forms

that express iteration over arrays, encode the layout of data, and address other concerns relevant to efficient

execution [35].

Of course, something is gained as well as lost in the process of translation from 𝐹 to 𝐴: semantics that were implicit

at the level of language 𝐹 can be made more explicit via a more detailed expansion in language 𝐴. In the example of

numerical algorithms, lower levels of program representation can represent the layout of data, but are not well-suited

to algebraic manipulation of mathematical expressions.
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We have chosen the symbols 𝐹 and 𝐴 for a purpose: 𝐹 represents a language of Formulas, while 𝐴 represents a

language of Automata. Automata can represent many different types of formalisms, ranging from regular expressions

to temporal logic formula, such as linear temporal logic (LTL). Furthermore, automata generally form a Boolean algebra

over their corresponding languages, which allows for their manipulation, both in theory and practice. Automata-based

libraries have been part of the programming and reasoning toolkit for decades.

The rationale for leaving the realm of formulas and entering that of automata as early as possible is made persuasively

by Tsay and Vardi in their recent paper describing the automata-theoretic approach to working with LTL through

translation to Büchi automata [43]. They propose adhering to an “early and simple” principle: when given multiple

paths for reduction (translation) from the application domain (essentially, the world of formulas), leave that world as

early as possible to take full advantage of the cornucopia of automata-based algorithms. They further argue that by

doing so, the process is made simpler, especially by choosing automata (such as alternating Büchi automata) that admit

a very straightforward translation from LTL.

On the other hand, recent work in the domain of extended regular expressions (ERE) shows that it is possible to

have a “simultaneous semantics” that unites the worlds of formula and automata, enabling more precise and stronger

optimizations [41]. In the case of ERE, maintaining the connection between automata states and the regular expressions

through symbolic derivatives enables ERE-level optimizations that are otherwise lost. At the same time, symbolic

derivatives remain closed under all Boolean operations, maintaining a finite state space, as well as incrementality of the

derivation process itself. Most striking perhaps is that complementation of automata is avoided by working directly

with complemented regexes incrementally through their symbolic derivatives.

While derivatives are mainly known in the application domain of regular expressions over finite words, we show that

they have something important to say about languages over infinite words that form the foundation for the semantics

of LTL and Büchi automata. In his 1995 paper “An Automata-Theoretic Approach to Linear Temporal Logic” [46], Vardi

presents Theorem 22, which relates the semantics of an LTL formula 𝜙 to that of an alternating Büchi automata 𝐴𝜙

constructed from 𝜙 , which conforms to the following grammar:

𝜑 → 𝑝, ¬𝜑, 𝜑 ∧𝜓, 𝜑 ∨𝜓, X𝜓, 𝜑 U 𝜓

where 𝑝 is a proposition from 𝑃 , a finite set of atomic propositions, and X and U are the temporal operators referred to

as “next” and “until”. Most surprising to us is Vardi’s formulation of the transition relation 𝜌 of 𝐴𝜙 , by induction over

the formula 𝜙 with respect to a given element 𝑎 ∈ D = 2
𝑃
:

𝜌 (𝑝, 𝑎) = 𝑝 ∈ 𝑎

𝜌 (𝜑 ∧𝜓, 𝑎) = 𝜌 (𝜑, 𝑎) ∧ 𝜌 (𝜓, 𝑎)
𝜌 (¬𝜑, 𝑎) = 𝜌 (𝜑, 𝑎)
𝜌 (X𝜓, 𝑎) = 𝜓

𝜌 (𝜑 U 𝜓, 𝑎) = 𝜌 (𝜑, 𝑎) ∨ (𝜌 (𝜓, 𝑎) ∧ 𝜑 U 𝜓 )

where the dual 𝜙 of a formula 𝜙 is obtained as usual by negating 𝜙 and pushing negation down to the leaves of 𝜙 , via

de Morgan (leaving temporal operators and their subformula untouched).

All LTL formulas𝜓 have a language semantics L(𝜓 ) ⊆ D𝜔 . The derivative of 𝐿 ⊆ D𝜔 with respect to 𝑎 ∈ D is the set

D𝑎 (𝐿)
def

= {𝑣 | 𝑎𝑣 ∈ 𝐿}. Now, the following property holds for the definition of 𝜌 for all 𝑎 ∈ D and all LTL formulas 𝜙 :

D𝑎 (L(𝜙)) = L(𝜌 (𝜙, 𝑎)) .
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Therefore, by construction in [46], it follows that for all states 𝜓 of 𝐴𝜙 : L(𝜓 ) = L(𝜓 ) where L(𝜓 ) is the the language
accepted by the alternating Büchi automaton 𝐴𝜙 with respect to the state𝜓 – we call this LL-invariance.

We therefore name this inductive construction Vardi derivatives for LTL (“Vardi derivatives” for short) as it has

all the desired properties of derivatives, as shown above. To the best of our knowledge, this analogy with regular

expression derivatives has so far not been made.

Observe that in the regular expression world the languages of ERE and finite automata coincide, enabling direct

optimizations such as approximate subsumption at the level of regular expressions [47]. In the world of LTL this is not

always the case with L(GE𝑝) ⊂ L(E𝑝) being a concrete example because in 𝐴GE𝑝 the state GE𝑝 is accepting while E𝑝
is not. Replacing (E𝑝) ∧ GE𝑝 , where ∧ is conjuction of states in the autotmaon, with GE𝑝 would be incorrect in the

context of alternating Büchi automata while correct in the context of LTL where ∧ is conjuction of formulas, despite the

fact that formulas E𝑝 and GE𝑝 are states themselves.

We now turn to the second key observation, namely that the concrete derivation step, 𝜌 (𝑝, 𝑎) = 𝑝 ∈ 𝑎 above can be

made into a symbolic derivation by lifting the concept of transition regexes from [41] to LTL, namely 𝜌 (𝑝) = ite(𝑝,⊤,⊥)
where the decision of actually computing the derivative 𝜌 (𝑝) (𝑎) is being deferred. This enables the semantics to be

defined without prior knowledge of D. Not only that, D can now be an arbitrary Boolean algebra A (even infinite, such

as ERE), where 𝑝 above is a formula in that algebra, and the semantics of 𝜌 (𝑝) (𝑎) above becomes 𝑎 |=A 𝑝 , with 𝑎 being

an element in the domain of A. In order to achieve this, we develop here a framework of transition terms modulo A,

𝑇𝑇A , that works over 𝜔-languages and over infinite alphabets in an algebraically well-defined and precise manner. Our

definition of symbolic derivatives for LTL modulo A is a conservative extension of Vardi derivatives that preserves both

the structure of the formulas and their semantics precisely.

We present a number of LTL-based optimizations that respect LL-invariance and thus apply in the “simultaneous

semantics” of LTL + alternating Büchi automata. While some of our optimizations depend only on the functional

properties of transition terms or on the laws of their Boolean algebra, for others establishing LL-invariance requires a
deeper look at the semantics of alternating Büchi automata. In particular, we use the concept of suspendable formulas [5]

to develop Theorem 8.8, which allows reducing alternation by treating formulas such as (E𝑝) ∧ GE𝑝 as a single state in

the automaton being constructed. While requiring a careful proof, the rule itself can be applied purely syntactically by

virtue of its LL-invariance maintaining the link between formulas and states.

We believe there is a rich world of LL-invariant optimizations yet to be discovered. Many pure-LTL optimizations are

already known – Somenzi and Bloem [39] alone list 20 rules
1
for preprocessing LTL formulas – and the LL-invariant

rules we present coincide with some of these. We expect future analyses to uncover many more that either are LL-
invariant or can be constrained to be so. The promise of our work is a future where, like with ERE, simple syntactic

rules respecting the “simultaneous semantics” of LTL and alternating Büchi automata can be used to apply powerful

optimizations on-the-fly during automata construction.

Overview. Section 2 presents basic material about languages over infinite words, effective boolean algebras (A), and

Boolean closures. Section 3 defines the syntax and semantics of linear temporal logic modulo A (LTLA ) and properties

that are critical for the application of symbolic derivatives. Section 4 introduces transition terms modulo A, which lays

the foundation for treating both LTL and Büchi automata symbolically, and Section 5 shows a number of optimizations

that are enabled by the fact that A and 𝑇𝑇A are both boolean algebras (these optimizations are independent of the

semantics of LTLA and Büchi automata). Section 6 redefines the semantics of LTLA via symbolic derivatives, which

1
The earlier counterexample of L(GE𝑝 ) ⊂ L(E𝑝 ) not justifying a rewrite of (E𝑝 ) ∧ GE𝑝 to GE𝑝 is an instance of the first rule in [39, Section 3].
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are based on transition terms, while Section 7 does the same for alternating Büchi automata (ABAA ). With these two

abstractions defined by the same transition terms, Section 8 gives and proves correct two translations of LTLA to

ABAA , and discusses several classes of optimizations based on the semantics/translation. Section 9 reviews related

work and Section 10 concludes the paper.

Proofs. Proofs that are omitted from the main body of the paper can be found in the Appendix.

2 PRELIMINARIES

2.1 Infinite sequences

We work with infinite sequences over a nonempty domain D, denoted by D𝜔 . A sequence 𝑣 ∈ D𝜔 is formally a function

from N to D. When it is unambiguous we write 𝑣𝑖 for 𝑣 (𝑖) for 𝑖 ∈ N. The complement of a subset 𝐿 ⊆ D𝜔 is defined as

∁(𝐿) def

= D𝜔 \ 𝐿. We also define the complement of a subset 𝑆 ⊆ D as ∁(𝑆) def

= D \ 𝑆.
If 𝑎 ∈ D and 𝑣 ∈ D𝜔 then 𝑎·𝑣 is a shorthand for defining the following sequence for 𝑖 ∈ N:

(𝑎·𝑣) (𝑖)
{

𝑎, if 𝑖 = 0;

𝑣 (𝑖 − 1), otherwise.

More generally, if 𝑆 ⊆ D and 𝐿 ⊆ D𝜔 then 𝑆 ·𝐿 denotes the subset {𝑎·𝑣 | 𝑎 ∈ 𝑆, 𝑣 ∈ 𝐿} of D𝜔 . Observe that if 𝑆 or 𝐿

is empty then 𝑆 ·𝐿 is also empty. We write 𝑎𝑣 for 𝑎·𝑣 or 𝑆𝐿 for 𝑆 ·𝐿 when this is unambiguous. We use the following

additional definition for infinite sequences. If 𝑣 ∈ D𝜔 and 𝑛 ∈ N then 𝑣𝑛..
def

= 𝜆𝑖.𝑣 (𝑛 + 𝑖) is the 𝑛’th rest of 𝑣 . Note

that concatenation (·) binds stronger than intersection (∩) that binds stronger than union (∪). Also observe also that

D · D𝜔 = D𝜔 . If 𝑎 ∈ D then 𝑎𝜔 denotes the infinite sequence such that 𝑎𝜔 (𝑖) = 𝑎 for all 𝑖 ∈ N.

2.2 Boolean Algebras

Given a nonempty universe D, a Boolean algebra over D is a tuple A = (D,Ψ, [[_]] ,⊥,⊤,∨,∧,¬) where Ψ is a set of

predicates closed under the Boolean connectives; [[_]] : Ψ → 2
D
is a denotation function; ⊥,⊤ ∈ Ψ; [[⊥]] = ∅, [[⊤]] = D,

and for all 𝛼, 𝛽 ∈ Ψ, [[𝛼 ∨ 𝛽]] = [[𝛼]] ∪ [[𝛽]] , [[𝛼 ∧ 𝛽]] = [[𝛼]] ∩ [[𝛽]] , and [[¬𝛼]] = D \ [[𝛼]] .2 For 𝛼, 𝛽 ∈ Ψ we write

𝛼 ≡ 𝛽 to mean [[𝛼]] = [[𝛽]] . In particular, if 𝛼 ≡ ⊥ then 𝛼 is unsatisfiable and if 𝛼 ≡ ⊤ then 𝛼 is valid.A is effective if all

components of A are recursively enumerable, and satisfiability is decidable in A. We use A as a subscript to indicate a

component of A, e.g., ΨA is the set of predicates of A. We often omit the subscript when it follows from the context.

A minterm of a finite subset Γ of Ψ is a predicate (∧𝑆) ∧ ¬∨(Γ\𝑆) for some 𝑆 ⊆ Γ. Minterms(Γ), say Σ, denotes the

set of all minterms of Γ. The core properties of Σ are that all minterms are satisfiable and mutually disjoint, and that

each satisfiable predicate in Γ is equivalent to a disjunction of some minterms. Thus, Σ defines a finite partition of D.

For example, if Γ = {𝛼, 𝛽} then Σ is the set of all satisfiable predicates in {𝛼 ∧ 𝛽,¬𝛼 ∧ 𝛽, 𝛼 ∧¬𝛽,¬𝛼 ∧¬𝛽}. If all of them
are satisfiable then each one identifies one of the four regions of the Venn diagram formed by [[𝛼]] and [[𝛽]] .

We let 𝑂sat

A (𝑛) denote the computational complexity of checking satisfiability in A for predicates𝜓 of size |𝜓 | = 𝑛.

Here we make the standard assumption that the size of a predicate is the sum of the sizes of its subformulas. Under this

assumption it follows that the computation cost of Σ is 𝑂 (2𝑂
sat

A (𝑛) ) where 𝑛 =
∑
𝑖<𝑘 |𝛾𝑖 | and 𝑘 = |Γ |. Observe also that

|Σ| ≤ 2
𝑘
, i.e., the number of minterms is in the worst case exponential in 𝑘 . This assumption is not always accurate. For

example for BDDs the Boolean operations themselves are quadratic while deciding satisfiablity is trivial, but in this

2
Observe that if D = ∅ then 2

D = {∅} in which case ⊤ and ⊥ are indistinguishable because then [[⊤]] = [[⊥]] = ∅.
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setting it is appropriate to assume that the actual Boolean operations are being postponed (at least in theory) until

satisfiability is being checked at which point the operations are actually performed.

Extended Regular Expressions. Let A = ERE be an effective Boolean algebra (or ERE-solver for short) for all the

extended regular expressions (regexes for short) modulo the set 𝑈 of all Unicode characters, as defined and used in [41].

In this case D = 𝑈 ∗
is the set of all strings over𝑈 , Ψ is the set of all regexes, and for any regex𝜓 , 𝑠 ∈ [[𝜓 ]] means that𝜓

matches 𝑠 . In this case, using standard notation, the regex ([A-Z]+) matches all nonempty strings of capital letters, e.g.,

"HELLO". The regex (\d+) matches all nonempty strings of digits, e.g., "0123". We will use ERE in several examples.

2.3 Boolean Closure

Given a nonempty (possibly infinite) set 𝑄 of basic elements called states, we define the Boolean closure B(𝑄) of 𝑄 to

contain the following expressions. If 𝑞 ∈ 𝑄 then 𝑞 ∈ B(𝑄) and if 𝑝, 𝑞 ∈ B(𝑄) then 𝑝 ∨ 𝑞, 𝑝 ∧ 𝑞,¬𝑞 ∈ B(𝑄). The Boolean
connectives are treated here as commutative, associative, and idempotent operators.

Now consider any nonempty domain 𝐷 and any given denotation function L : 𝑄 → 2
𝐷
associated with states. If

there is an element 𝑞 ∈ 𝑄 such that L(𝑞) = 𝐷 then select that element as 𝑞⊤ else let 𝑞⊤
def

= 𝑞 ∨ ¬𝑞 for some fixed 𝑞 ∈ 𝑄 .

Analogously, if there is an element 𝑞 ∈ 𝑄 such that L(𝑞) = ∅ then select that element as 𝑞⊥ else let 𝑞⊥
def

= ¬𝑞⊤. Extend
the definiton of L to all elements of B(𝑄) as usual, giving rise to the following Boolean algebra over 𝐷 :

(𝐷,B(𝑄), L, 𝑞⊥, 𝑞⊤,∨,∧,¬)

We refer to such a Boolean algebra as being induced by𝑄 and L. Observe that de Morgan’s laws and laws of ditributivity

hold in this Boolean algebra, independently of L defined for the basic elements of 𝑄 . It is also allowed for Boolean

combinations of basic states already occur in 𝑄 if they obey the laws of the algebra.

We write B+(𝑄) for the positive Boolean closure of 𝑄 where the complement ¬ is not allowed.

We define the negation normal form for elements of B(𝑄) as usual where NNF(𝑞) def

= 𝑞 for 𝑞 ∈ 𝑄 :

NNF(𝑝 ∨ 𝑞) def

= NNF(𝑝) ∨ NNF(𝑞) NNF(𝑝 ∧ 𝑞) def

= NNF(𝑝) ∧ NNF(𝑞) NNF(¬¬𝑞) def

= NNF(𝑞)
NNF(¬(𝑝 ∧ 𝑞)) def

= NNF(¬𝑝) ∨ NNF(¬𝑞) NNF(¬(𝑝 ∨ 𝑞)) def

= NNF(¬𝑝) ∧ NNF(¬𝑞)

We also use the disjunctive normal form DNF(𝑞) of 𝑞 ∈ B(𝑄) defined as a disjunction of conjunctions of the NNF(𝑞)
where all complements are applied to states only. For 𝑞 ∈ B+(𝑄) we apply DNF(𝑞) directly because there is no

complement. These normal forms follow from de Morgan’s laws and laws of distributivity of Boolean operations.

3 LTL MODULO A

The following are the LTLA formulas where A = (D,Ψ, [[_]] ,⊥,⊤, |, &, ~) is a given (effective) Boolean algebra. We

will use A throughout the rest of the paper as the underlying element algebra. We write LTL for LTLA when A is clear

from the context.

• if 𝛼 ∈ Ψ then 𝛼 is a formula in LTL,

• if 𝜑,𝜓 are LTL formulas then ¬𝜑, 𝜑 ∨𝜓, 𝜑 ∧𝜓, X𝜓, 𝜓 R 𝜙 are LTL formulas.

We let the true formula be ⊤ and the false formula be ⊥ from A. We also use the following abbreviations:

• Logical implication: 𝜑 → 𝜓
def

= ¬𝜑 ∨𝜓

• Until: 𝜑 U 𝜓
def

= ¬(¬𝜑 R ¬𝜓 )
• Eventually: E𝜓 def

= ⊤ U 𝜓
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• Globally: G𝜓 def

= ⊥ R 𝜓

Another common notation for E (Eventually) is F (Finally). We have the non-standard approach where U (Until) is

defined as the dual of R (Release), rather than the other way around. The main reason for doing so is to treat the

formulas ⊤ and 𝜑 R 𝜓 uniformly as being the positive formulas treated as accepting states in Section 8.

3.1 Semantics

An infinite sequence𝑤 ∈ D𝜔 is a model of 𝜑 ∈ LTL, denoted by𝑤 |= 𝜑 , when the following holds, where 𝛼 ∈ Ψ:

𝑤 |= 𝛼
def

= 𝑤 (0) ∈ [[𝛼]] (1)

𝑤 |= 𝜑 ∧𝜓
def

= 𝑤 |= 𝜑 and 𝑤 |= 𝜓 (2)

𝑤 |= 𝜑 ∨𝜓
def

= 𝑤 |= 𝜑 or 𝑤 |= 𝜓 (3)

𝑤 |= ¬𝜑 def

= 𝑤 ̸ |= 𝜑 (4)

𝑤 |= X𝜓 def

= 𝑤1.. |= 𝜓 (5)

𝑤 |= 𝜑 R 𝜓
def

= ∀𝑗 ∈ N : 𝑤 𝑗 .. |= 𝜓 or ∃ 𝑗 ∈ N : 𝑤 𝑗 .. |= 𝜑 and ∀𝑖 ≤ 𝑗 : 𝑤𝑖 .. |= 𝜓 (6)

𝑤 |= 𝜑 U 𝜓 ⇔ ∃ 𝑗 ∈ N : 𝑤 𝑗 .. |= 𝜓 and ∀𝑖 < 𝑗 : 𝑤𝑖 .. |= 𝜑 (7)

The rules (6) and (7) are duals of each other, either one suffices as the main definition, although we treat an R formula

as being positive while an U formula (as its dual) is treated as a negative formula. In (6) either𝜓 holds forever in𝑤 , or at

some step 𝑗 , 𝜑 holds in𝑤 and𝜓 holds until (including) step 𝑗 . Intuitively either 𝜑 “releases”𝜓 at some step or else𝜓 has

to hold forever.

It follows from the definition above and laws of A that if 𝛼, 𝛽 ∈ Ψ then 𝑤 |= 𝛼 ∧ 𝛽 iff 𝑤 |= 𝛼 & 𝛽 , and 𝑤 |= ¬𝛼 iff

𝑤 |= ~𝛼 . In other words, any subformula of an LTL formula that is a Boolean combination of predicates from A can

itself be reduced to a predicate in A. This is a useful simplifying reduction when working with LTL formulas.

In some situations we prefer U over R because U is somewhat easier and more intuitive to work with compared to R.
The semantics of U and R obey the following well-known classical properties:

𝑤 |= 𝜑 U 𝜓 ⇔ 𝑤 |= 𝜓 or (𝑤 |= 𝜑 and 𝑤1.. |= 𝜑 U 𝜓 ) (8)

𝑤 |= 𝜑 R 𝜓 ⇔ 𝑤 |= 𝜓 and (𝑤 |= 𝜑 or 𝑤1.. |= 𝜑 R 𝜓 ) (9)

Let the language of 𝜑 ∈ LTL be defined as L(𝜑) def

= {𝑤 ∈ D𝜔 | 𝑤 |= 𝜑}. It follows that

(D𝜔 , LTL, L,⊥,⊤,∨,∧,¬)

is a Boolean algebra over D𝜔 . We also write LTLA for the Boolean algebra itself.

3.2 Examples

The following examples illustrate some cases of LTLA modulo various Boolean algebrasA. The first example illustrates

– at a very abstract level – the well-known connection of integrating SAT solving into symbolic LTL. More concretely,

BDDs can be used in combination with antichain algorithms in the underlying element algebra A to support efficient

handling of propositional formulas in practice [52].

Example 3.1. Classical LTL over a set of atomic propositions 𝑃 is LTLA where A can be a SAT solver over 𝑃 with

D = 2
𝑃
. A formula 𝛼 ∈ Ψ is a Boolean combination over 𝑃 . An element 𝑑 ∈ D such that 𝑑 |= 𝛼 defines a truth assignment
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to 𝑃 that makes 𝛼 true. For example if 𝑃 = {𝑝𝑖 }𝑖<7 and 𝛼 = 𝑝6 & 𝑝5 & 𝑝4 & (𝑝3 | ((~𝑝2) & 𝑝1)) then if𝑤 ∈ D𝜔 is such

that𝑤 (0) = {𝑝1, 𝑝4, 𝑝5, 𝑝6} and𝑤 (1) = {𝑝1, 𝑝2, 𝑝4, 𝑝5, 𝑝6} then𝑤 (0) |= 𝛼 but𝑤 (1) ̸|= 𝛼 . Thus, for example𝑤 ̸ |= G𝛼 . □

While in the traditional case of LTL, as in Example 3.1, D may be assumed to be finite, in the next two examples D is

necessarily infinite.

Example 3.2. Consider the LTLERE formula G(([A-Z]+) → X(\d+)). Intuitively it says that, any nonempty string

of capital letters must immediately be followed by a nonempty string of digits. After we remove all the abbreviations

we get that𝜓 = ⊥ R (¬([A-Z]+) ∨ X(\d+)). Consider the infinite sequence𝑤 such that, for all 𝑖 ∈ N,𝑤 (2𝑖) = "HI"

and𝑤 (2𝑖 + 1) = "2023". We show that𝑤 |= 𝜓 . Since there exists no 𝑗 ∈ N such that𝑤 𝑗 .. |= ⊥, in order to establish (6),

we must show, for all 𝑗 ∈ N, if𝑤 (𝑖) is a nonempty string of capital letters then𝑤 (𝑖 + 1) is a nonempty string of digits.

This follows directly from the definition of𝑤 .

One application of LTLERE is to monitor logs in network traffic where a log is a stream of messages and each message

is a string. For example, a request must eventually be followed by a response, where regular expressions specify what

requests and responses are. □

Example 3.3. Consider LTL modulo A = SMTQ where A is an SMT solver restricted to linear rational arithmetic. In

this case D is the set of models for linear arithmetic formulas over rationals as ΨA . Let 𝛼 be the predicate 0 < 𝑥 and let

𝛽 be the predicate 𝑥 < 1. Then 𝛽 R 𝛼 states that 𝑥 has to remain positive until 𝑥 is less than 1. Observe that if the same

formula is stated modulo A = SMTZ over integer linear arithmetic, then 𝛽 can never release 𝛼 because 0 < 𝑥 & 𝑥 < 1 is

then unsatisfiable, in which case 𝛽 R 𝛼 becomes equivalent to G𝛼 . □

3.3 Properties of LTLA languages

We get the following characterization of the semantics of LTLA in terms of languages, that is directly based on the

formal definition (1–7) and uses Equation (8). Observe that this is not a definition of a language of an LTLA formula (as

(15,16) are not inductive) but a useful characterization of the properties that hold (e.g., used in Theorem 6.1).

L(𝛼) = [[𝛼]] ·D𝜔 (10)

L(𝜑 ∧𝜓 ) = L(𝜑) ∩ L(𝜓 ) (11)

L(𝜑 ∨𝜓 ) = L(𝜑) ∪ L(𝜓 ) (12)

L(¬𝜑) = ∁(L(𝜑)) (13)

L(X𝜑) = D·L(𝜑) (14)

L(𝜑 U 𝜓 ) = L(𝜓 ) ∪ (L(𝜑) ∩ (D·L(𝜑 U 𝜓 ))) (15)

L(𝜑 R 𝜓 ) = L(𝜓 ) ∩ (L(𝜑) ∪ (D·L(𝜑 R 𝜓 ))) (16)

Note that (15) follows from (8) because𝑤1.. |= 𝜑 U 𝜓 iff𝑤 ∈ D·L(𝜑 U 𝜓 ). Analogously, (16) follows from (9).

Example 3.4. Consider the LTLA formula 𝜑 = 𝛼 ∧ X𝛽 for some 𝛼, 𝛽 ∈ ΨA . Then L(𝜑) = L(𝛼) ∩ L(X𝛽) = L(𝛼) ∩
(DL(𝛽)) = ( [[𝛼]]D𝜔 ) ∩ (D[[𝛽]]D𝜔 ) = [[𝛼]] [[𝛽]]D𝜔 . Let also𝜓 = ¬𝛼 ∧ X¬𝛽 . Analogously, L(𝜓 ) = [[~𝛼]] [[~𝛽]]D𝜔 . Let
𝜙 = 𝜑 ∨𝜓 . Then L(𝜙) = [[𝛼]] [[𝛽]]D𝜔 ∪ [[~𝛼]] [[~𝛽]]D𝜔 . □
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3.4 Derivatives

The main reason for using (15) (or (16)) is that it also allows us to describe the semantics of LTL in terms of derivatives.

Given 𝐿 ⊆ D𝜔 and 𝑎 ∈ D, the derivative of 𝐿 with respect to 𝑎, D𝑎 (𝐿), is defined as follows:

D𝑎 (𝐿)
def

= {𝑣 | 𝑎𝑣 ∈ 𝐿}

It follows that

D𝑎 (𝐿1 ∪ 𝐿2) = D𝑎 (𝐿1) ∪ D𝑎 (𝐿2) (17)

D𝑎 (𝐿1 ∩ 𝐿2) = D𝑎 (𝐿1) ∩ D𝑎 (𝐿2) (18)

D𝑎 (∁(𝐿)) = ∁(D𝑎 (𝐿)) (19)

Proof of (19). ∁(D𝑎 (𝐿)) = ∁({𝑣 ∈ D𝜔 | 𝑎𝑣 ∈ 𝐿}) = {𝑣 ∈ D𝜔 | 𝑎𝑣 ∉ 𝐿} = {𝑣 ∈ D𝜔 | 𝑎𝑣 ∈ ∁(𝐿)} = D𝑎 (∁(𝐿)). □

Example 3.5. Take 𝜙 from Example 3.4 and let 𝑎 ∈ D. Then D𝑎 (L(𝜙)) = D𝑎 ( [[𝛼]] [[𝛽]]D𝜔 ) ∪ D𝑎 ( [[~𝛼]] [[~𝛽]]D𝜔 ). It
follows that if 𝑎 ∈ [[𝛼]] then D𝑎 (L(𝜙)) = [[𝛽]]D𝜔 else D𝑎 (L(𝜙)) = [[~𝛽]]D𝜔 . □

We connect the semantic definition of derivatives with a syntactic notion of derivatives for LTLA in Section 6. This

connection establishes the effectiveness of LTLA by reduction to alternating Büchi automata modulo A.

Theorem 3.6 (Decidability Theorem). LTLA is effective if A is effective.

Proof. By applying Theorem 8.1 and Theorem 7.3. □

4 TRANSITION TERMS

We define the key concept of transition terms over infinite languages (D𝜔 ) by lifting the notion of transition regexes

from [41] over D∗. We later define symbolic derivatives for LTLA in terms of transition terms but at this point the

definitions do not depend on LTLA , only on A. Let 𝑄 be a nonempty (possibly infinite) set of states and consider

the Boolean algebra (D𝜔 ,B(𝑄), L, 𝑞⊥, 𝑞⊤,∨,∧,¬) induced by 𝑄 and some denotation function L : 𝑄 → 2
D𝜔

(recall

Section 2.3). Later on we will instantiate L for both LTL modulo A as well as states of alternating Büchi automata

modulo A, but at this stage the definition of L(𝑞) for 𝑞 ∈ 𝑄 does not affect any of the theory developed in this section.

Transition terms 𝑇𝑇A,𝑄 (or 𝑇𝑇 for short) are defined as expressions using the following syntactic rules (reusing the

same Boolean connectives as in B(𝑄)):

• if 𝑞 ∈ 𝑄 then 𝑞 in 𝑇𝑇; 𝑞 is called a leaf ;

• if 𝑓 , 𝑔 are in 𝑇𝑇 then 𝑓 ∨ 𝑔, 𝑓 ∧ 𝑔, and ¬𝑓 are in 𝑇𝑇;

• if 𝛼 is in ΨA and 𝑓 , 𝑔 are in 𝑇𝑇 then ite(𝛼, 𝑓 , 𝑔) is in 𝑇𝑇 and is called a conditional.

Observe in particular that B(𝑄) ⊂ 𝑇𝑇. We write 𝑇𝑇 +
for 𝑇𝑇 where complementation (¬𝑓 ) is not allowed; 𝑓 denotes a

function from D to B(𝑄). In the case of 𝑇𝑇 +
, 𝑓 denotes a function from D to B+(𝑄).
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Let 𝑓 , 𝑔 ∈ 𝑇𝑇, 𝑞 ∈ 𝑄 , 𝛼 ∈ ΨA , and 𝑎 ∈ D. The semantics of transition terms is defined as follows:

𝑞(𝑎) def

= 𝑞 (20)

ite(𝛼, 𝑓 , 𝑔) (𝑎) def

=

{
𝑓 (𝑎), if 𝑎 ∈ [[𝛼]] ;
𝑔(𝑎), otherwise.

(21)

(𝑓 ∧ 𝑔) (𝑎) def

= 𝑓 (𝑎) ∧ 𝑔(𝑎) (22)

(𝑓 ∨ 𝑔) (𝑎) def

= 𝑓 (𝑎) ∨ 𝑔(𝑎) (23)

(¬𝑓 ) (𝑎) def

= ¬(𝑓 (𝑎)) (24)

It follows immediately from the definition that for all q ∈ B(𝑄) and 𝑎 ∈ D, when q is viewed as a transition term then

q(𝑎) = q. We use the notion of the transition language of a transition term 𝑓 , denoted by T(𝑓 ):

T(𝑓 ) = {𝑎𝑣 | 𝑎 ∈ D, 𝑣 ∈ L(𝑓 (𝑎))}

The semantics of the Boolean operators for transition terms is such that T(¬𝑓 ) = ∁(T(𝑓 )), T(𝑓 ∨ 𝑔) = T(𝑓 ) ∪ T(𝑔),
and T(𝑓 ∧ 𝑔) = T(𝑓 ) ∩ T(𝑔). Finally,

T(ite(𝛼, 𝑓 , 𝑔)) = ( [[𝛼]] ·D𝜔 ∩ T(𝑓 )) ∪ ([[¬𝛼]] ·D𝜔 ∩ T(𝑔)) .

It is critically important to note that T(ite(𝛼, 𝑓 , 𝑔)) isNOT the same as [[𝛼]] ·T(𝑓 ) ∪∁( [[𝛼]] )·T(𝑔) because the conditions
in the nested transition terms (namely, any occurring in 𝑓 and 𝑔) are evaluated over the same input element 𝑎 ∈ D that

𝛼 is evaluated over.

Transition terms 𝑓 and𝑔 are equivalent, denoted 𝑓 ≡ 𝑔, when T(𝑓 ) = T(𝑔). It immediately follows from the definitions

that any Boolean combination of states q ∈ B(𝑄) – as a transition term – is trivially equivalent to ite(⊤, q, 𝑞⊥), i.e.,

T(q) = T(ite(⊤, q, 𝑞⊥)) = D · L(q)

The Negation Normal Form (NNF ) of a transition term is computed as follows, where 𝑞 ∈ 𝑄 , 𝑓 , 𝑔 ∈ 𝑇𝑇 and 𝛼 ∈ ΨA .

NNF(𝑞) = 𝑞

NNF(¬𝑓 ) = 𝑓

NNF(𝑓 ∧ 𝑔) = NNF(𝑓 ) ∧ NNF(𝑔)

NNF(𝑓 ∨ 𝑔) = NNF(𝑓 ) ∨ NNF(𝑔)

NNF(ite(𝛼, 𝑓 , 𝑔)) = ite(𝛼,NNF(𝑓 ),NNF(𝑔))

𝑞 = ¬𝑞

¬𝑓 = NNF(𝑓 )

𝑓 ∧ 𝑔 = 𝑓 ∨ 𝑔

𝑓 ∨ 𝑔 = 𝑓 ∧ 𝑔

ite(𝛼, 𝑓 , 𝑔) = ite(𝛼, 𝑓 , 𝑔)

NNF is used to propagate complement in a transition term into its leaves. In order to show that such propagation

preserves infinite languages, the following theorem is critical:
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Theorem 4.1 (Complementation Theorem). Let 𝑋,𝑌, 𝑆 ⊆ D and 𝐿, 𝑅 ⊆ D𝜔 . Then the following equations hold:

4.1(𝑎) 𝑋 ·𝐿 ∩ 𝑌 ·𝑅 = (𝑋 ∩ 𝑌 )·(𝐿 ∩ 𝑅)
4.1(𝑏) ∁(𝑆 ·𝐿) = ∁(𝑆)·𝐿 ∪ D·∁(𝐿)
4.1(𝑐) ∁(D·𝐿) = D·∁(𝐿)
4.1(𝑑) ∁(𝑆 ·D𝜔 ) = ∁(𝑆)·D𝜔

4.1(𝑒) ∁(𝑆 ·D𝜔 ∩ 𝐿 ∪ ∁(𝑆)·D𝜔 ∩ 𝑅) = 𝑆 ·D𝜔 ∩ ∁(𝐿) ∪ ∁(𝑆)·D𝜔 ∩ ∁(𝑅)

Proofs. In the following we write 𝑢 = 𝑎𝑣 where 𝑎 = 𝑢 (0) and 𝑣 = 𝜆𝑖.𝑢 (𝑖 + 1).

4.1(a) . For all 𝑎𝑣 ∈ D𝜔 : 𝑎𝑣 ∈ 𝑋 ·𝐿 ∩ 𝑌 ·𝑅 ⇔ 𝑎𝑣 ∈ 𝑋 ·𝐿 and 𝑎𝑣 ∈ 𝑌 ·𝑅 ⇔ 𝑎 ∈ 𝑋 ∩ 𝑌 and 𝑣 ∈ 𝐿 ∩ 𝑅 ⇔ 𝑎𝑣 ∈
(𝑋 ∩ 𝑌 )·(𝐿 ∩ 𝑅). □

4.1(b) . (⊆): Let 𝑎𝑣 ∉ 𝑆 · 𝐿. Then either 𝑎 ∈ ∁(𝑆) or else 𝑎 ∈ 𝑆 and 𝑣 ∉ 𝐿. In either case 𝑎𝑣 ∈ (∁(𝑆) · 𝐿) ∪ (D · ∁(𝐿)).
(⊇): Let 𝑎𝑣 ∈ (∁(𝑆) · 𝐿) ∪ (D · ∁(𝐿)). If 𝑎𝑣 ∈ ∁(𝑆) · 𝐿 then clearly 𝑎𝑣 ∉ 𝑆 · 𝐿 because 𝑎 ∉ 𝑆 . If 𝑎𝑣 ∈ D · ∁(𝐿) then

𝑣 ∈ ∁(𝐿). So, it cannot be that 𝑎𝑣 ∈ 𝑆 · 𝐿 because then 𝑣 ∈ 𝐿 but 𝐿 ∩ ∁(𝐿) is empty. Thus 𝑎𝑣 ∈ ∁(𝑆 · 𝐿). □

4.1(c) . 4.1(c) is a special case of 4.1(b) with 𝑆 = D since ∁(D) = ∅. □

4.1(d) . 4.1(d) is a special case of 4.1(b) with 𝐿 = D𝜔 since ∁(D𝜔 ) = ∅. □

4.1(e) . By using 4.1(a) , de Morgan’s laws, and Boolean laws of distributivity.

∁
(
𝑆 ·D𝜔 ∩ 𝐿 ∪ ∁(𝑆)·D𝜔 ∩ 𝑅

)
= ∁

(
𝑆 ·D𝜔 ∩ 𝐿

)
∩ ∁

(
∁(𝑆)·D𝜔 ∩ 𝑅

)
= (∁

(
𝑆 ·D𝜔

)
∪ ∁(𝐿)) ∩ (∁

(
∁(𝑆)·D𝜔

)
∪ ∁(𝑅))

(4.1(d) )

= (∁(𝑆)·D𝜔 ∪ ∁(𝐿)) ∩ (𝑆 ·D𝜔 ∪ ∁(𝑅))

=
(∁(𝑆)·D𝜔 ∩ 𝑆 ·D𝜔 ) ∪ (∁(𝑆)·D𝜔 ∩ ∁(𝑅))∪
(𝑆 ·D𝜔 ∩ ∁(𝐿)) ∪ (∁(𝐿) ∩ ∁(𝑅))

(4.1(a) )

= (𝑆 ·D𝜔 ∩ ∁(𝐿)) ∪ (∁(𝑆)·D𝜔 ∩ ∁(𝑅)) ∪ (∁(𝐿) ∩ ∁(𝑅))
(*)

= (𝑆 ·D𝜔 ∩ ∁(𝐿)) ∪ (∁(𝑆)·D𝜔 ∩ ∁(𝑅))

(*) Let 𝑣 ∈ ∁(𝐿) ∩ ∁(𝑅). If 𝑣 (0) ∈ 𝑆 then 𝑣 ∈ 𝑆 ·D𝜔 ∩ ∁(𝐿) else 𝑣 (0) ∈ ∁(𝑆) and so 𝑣 ∈ ∁(𝑆)·D𝜔 ∩ ∁(𝑅). □

Equation 4.1(e) plays a key role in Theorem 4.2, where it is the basis for the complementation of the ite terms, proved

by induction over the structure of transition terms. The corollaries reflect that one can always linearly transform ¬𝑓
into an equivalent dual 𝑓 of 𝑓 where all complements have been propagated into the leaves.

Theorem 4.2 (NNF Theorem). For all 𝑓 in 𝑇𝑇: (1) 𝑓 ≡ NNF(𝑓 ) and (2) 𝑓 ≡ ¬𝑓 .

Corollary 4.3. ¬ite(𝛼, 𝑓 , 𝑔) ≡ ite(𝛼,¬𝑓 ,¬𝑔)

Proof. T(¬ite(𝛼, 𝑓 , 𝑔)) (Thm 4.2(1))

= T(NNF(¬ite(𝛼, 𝑓 , 𝑔))) = T(ite(𝛼, 𝑓 , 𝑔)) (Thm 4.2(2))

= T(ite(𝛼,¬𝑓 ,¬𝑔)). □

Corollary 4.4. For all 𝑎 ∈ D, L((¬𝑓 ) (𝑎)) = L(𝑓 (𝑎)).

The following example illustrates a fundamental aspect of conditional transition terms, and is a “sneak peek” into

the following sections, where transition terms are used for constructing symbolic derivatives.
10
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CondElim1

ite(𝛼, 𝑓 , 𝑓 )

𝑓

CondElim2

ite(𝛼, 𝑓 , 𝑔)

𝑔
if 𝛼 ≡ ⊥

CondElim3

ite(𝛼, 𝑓 , 𝑔)

𝑓
if ~𝛼 ≡ ⊥

ConjProp1

ite(𝛼, 𝑓1, 𝑔1) ∧ ite(𝛽, 𝑓2, 𝑔2)

ite(𝛼, 𝑓1 ∧ 𝑓2, 𝑔1 ∧ 𝑔2)
if 𝛼 ≡ 𝛽

ConjProp2

ite(𝛼, 𝑓 , 𝑔) ∧ ℎ

ite(𝛼, 𝑓 ∧ ℎ,𝑔 ∧ ℎ)

DeadEnd1

ite(𝛼, ite(𝛽, 𝑓 , 𝑔), ℎ)

ite(𝛼,𝑔, ℎ)
if 𝛼 & 𝛽 ≡ ⊥

DeadEnd2

ite(𝛼, ite(𝛽, 𝑓 , 𝑔), ℎ)

ite(𝛼, 𝑓 , ℎ)
if 𝛼 & ~𝛽 ≡ ⊥

LocalDet1

ite(𝛼, 𝑓 , 𝑔) ∨ ite(𝛽, 𝑓 , 𝑔)

ite(𝛼 | 𝛽, 𝑓 , 𝑔)

LocalDet2

ite(𝛼, 𝑓1, 𝑔1) ∨ ite(𝛽, 𝑓2, 𝑔2)

ite(𝛼, 𝑓1 ∨ 𝑓2, 𝑔1 ∨ 𝑔2)
if 𝛼 ≡ 𝛽

LocalDet3

ite(𝛼, 𝑓1, 𝑔1) ∨ ite(𝛽, 𝑓2, 𝑔2)

ite(𝛼, 𝑓1 ∨ 𝑔2, ite(𝛽, 𝑔1 ∨ 𝑓2, 𝑔1 ∨ 𝑔2))
if 𝛼 & 𝛽 ≡ ⊥

Reorder

ite(𝛼, 𝑓 , 𝑔)

ite(~𝛼,𝑔, 𝑓 )

Fig. 1. Functional optimizations: CondElim = conditional elimination; ConjProp = conjunction propagation; DeadEnd = elimination of
infeasible paths (dead ends); LocalDet = local determinization; Reorder = branch reordering (see text for more detail).

Example 4.5. Consider the formula 𝜙 from Examples 3.4 and 3.5 and suppose that 𝑄 = LTLA . By using a conditional

transition term we can express the derivative of L(𝜙) syntactically by the term 𝑓 = ite(𝛼, 𝛽,¬𝛽). It follows, by using

the definitions (20–24), that for all 𝑎 ∈ D, if 𝑎 ∈ [[𝛼]] then 𝑓 (𝑎) = 𝛽 else 𝑓 (𝑎) = ¬𝛽 . Therefore, L(𝑓 (𝑎)) = D𝑎 (L(𝜙))
because L(𝛽) = [[𝛽]]D𝜔 and L(¬𝛽) = [[~𝛽]]D𝜔 .

To illustrate Theorem 4.2, observe that 𝑓 = ite(𝛼,¬𝛽, 𝛽) and it follows that, for any 𝑎 ∈ D, L(𝑓 (𝑎)) = ∁(L(𝑓 (𝑎)))
that is – by using 4.1(e) – if 𝑎 ∈ [[𝛼]] then L(𝑓 (𝑎)) = [[~𝛽]]D𝜔 else L(𝑓 (𝑎)) = [[𝛽]]D𝜔 . □

5 FUNCTIONAL AND BOOLEAN TRANSITION TERM OPTIMIZATIONS

Here we focus on equivalence preserving optimizations of transition terms in 𝑇𝑇A,𝑄 . We describe these optimization

rules as a set of rewrite rules that simplify terms based on their logical structure as well as properties of A. Recall that

A = (D,Ψ, [[_]] ,⊥,⊤, |, &, ~). The core principles behind all of these rules discussed here are: to propagate operations

into A whenever possible; to maintain satisfiability of predicates in Ψ that occur in the terms; to eliminate infeasible

paths in nested conditionals; and to simplify Boolean combinations of states.

The rewrite rules are divided roughly into two types of rules: functional and boolean optimizations. Some of these

rules are inspired by and have analogues in [39, Section 3] and some of the rules are adaptations of rules briefly discussed

in [41, Section 4]. Use of further Boolean optimizations can be traced back to [29] and are discussed in [39] but are

subject to restrictions (see Section 8.1).

5.1 Functional optimizations

Any simplifications that preserve the semantics (20–24) of 𝑓 ∈ 𝑇𝑇A,𝑄 , as a function from D to B(𝑄) are applicable to
𝑓 . Recall from Section 2.3 that conjunction and disjunction are treated as commutative, associative, and idempotent

operators, i.e., as sets. Thus, reordering of arguments or nested applications of the operator in conjunctions or disjunctions

is immaterial and automatically maintains the semantics of transition terms.
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UnitAndCancellation

⊤ ∨ 𝑓

⊤
⊤ ∧ 𝑓

𝑓

⊥ ∨ 𝑓

𝑓

⊥ ∧ 𝑓

⊥

Subsumption

𝑓 ∨ (𝑓 ∧ 𝑔)
𝑓

𝑓 ∧ (𝑓 ∨ 𝑔)
𝑓

ExcludedMiddle

𝑓 ∨ 𝑔

⊤
if 𝑓 = 𝑔

Contradiction

𝑓 ∧ 𝑔

⊥
if 𝑓 = 𝑔 ConjunctionDistribution

(𝑓 ∨ 𝑔) ∧ ℎ

(𝑓 ∧ ℎ) ∨ (𝑔 ∧ ℎ)

Fig. 2. Boolean optimization. In the above rules, let 𝑓 , 𝑔 ∈ NNF(𝑇𝑇) . Recall that 𝑔 is the dual of 𝑔 and that T(𝑔) = ∁(T(𝑔) ) .

The optimizations make use of Boolean operations and satisfiability of predicates in ΨA . Figure 1 shows the main

such rewrite rules (with some symmetrical cases missing). The overall aim is to both simplify the transition function by

eliminating unreachable Boolean combinations of states as well as to reduce the branching factor of transition terms

(number of target states). The use of branch reordering (rule Reorder) obviously is only relevant if it enables subsequent

use of other simplification rules, such as local determinization. Moreover, its applicability in practice also depends on

the cost of complementation in A.

Example 5.1. Consider 𝑓 = ite(𝛼, 𝛽,⊥) ∨ ite(~𝛼,¬𝛽,⊥). First, the second conditional branches are reordered:

𝑓 = ite(𝛼, 𝛽,⊥) ∨ ite(𝛼,⊥,¬𝛽). Second, the choice is locally eliminated: 𝑓 = ite(𝛼, 𝛽 ∨ ⊥,⊥ ∨ ¬𝛽). Third, ⊥ is

eliminated as the unit element of disjunction, so the final simplified transition term is 𝑓 = ite(𝛼, 𝛽,¬𝛽). □

5.2 Boolean optimizations

Figure 2 presents simplifications that preserve the semantics of 𝑓 ∈ 𝑇𝑇A,𝑄 , as a function respecting the Boolean laws of

the induced Boolean algebra (D𝜔 ,𝑇𝑇,T,⊥,⊤,∨,∧,¬) that are generic for any denotation T(𝑓 ) ⊆ D𝜔 for 𝑓 ∈ 𝑇𝑇, and

thus solely depend on the laws of the Boolean algebra and not on any particular denotation T(𝑓 ). It will be clear in
Section 8.1 why this limitation here of not allowing particular denotations is important.

Distribution of conjunction over disjunction enables the other rewrite rules (e.g. propagation of conjunction into

conditionals and deadend elimination) to locally eliminate unreachable cases. The end result of applying the rewrites is

a form of DNF of 𝑇𝑇 where all conditionals are in the top layer and, if the notion of leaves is extended to B(𝑄), then all

the leaves belong to B(𝑄). Top level may still include disjunctions of conditionals.

Some of the rules in Figure 2 are special cases of the rewrite rules in [39]. In particular, the rewrite rule 𝜑 ≤ 𝜓 ⇒
(𝜑 ∧𝜓 ) ≡ 𝜑 , where 𝜑 ≤ 𝜓 stands for L(𝜑) ⊆ L(𝜓 ), holds in particular for the subsumption rule, but is not admitted

here as a simplification rewrite rule in its full generality (see Section 8.1).

Example 5.2. Consider the states 𝜑 = 𝛼 R 𝛽 and 𝜓 = ~𝛼 U ~𝛽 . Then the disjunction 𝜑 ∨𝜓 falls under the rule of

excluded middle in the context of LTL because we know that 𝜑 is the dual of𝜓 . So we know, without having to take into

consideration what the precise denotation of those states is, that L(𝜑) ∪ L(𝜓 ) = D𝜔 because they are mutually dual. □
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6 SYMBOLIC DERIVATIVES OF LTLA

In this section, we show how the semantics of LTLA can be realized via transition terms. In particular, the symbolic

derivative of an LTLA formula is defined as the following transition term in 𝑇𝑇A,LTLA . Let 𝛼 ∈ ΨA , and 𝜑,𝜓 ∈ LTLA :

𝛿 (𝛼) def

= ite(𝛼,⊤,⊥) (25)

𝛿 (𝜑 ∧𝜓 ) def

= 𝛿 (𝜑) ∧ 𝛿 (𝜓 ) (26)

𝛿 (𝜑 ∨𝜓 ) def

= 𝛿 (𝜑) ∨ 𝛿 (𝜓 ) (27)

𝛿 (¬𝜑) def

= ¬𝛿 (𝜑) (28)

𝛿 (X𝜓 ) def

= 𝜓 (29)

𝛿 (𝜑 U 𝜓 ) def

= 𝛿 (𝜓 ) ∨ (𝛿 (𝜑) ∧ (𝜑 U 𝜓 )) (30)

𝛿 (𝜑 R 𝜓 ) def

= 𝛿 (𝜓 ) ∧ (𝛿 (𝜑) ∨ (𝜑 R 𝜓 )) (31)

We also let 𝛿 (⊤) def

= ⊤ and 𝛿 (⊥) def

= ⊥ and we let ¬⊤ def

= ⊥ and ¬⊥ def

= ⊤. We will mostly make use of the NNF of

transition terms and therefore introduce the shorthand

ˆ𝛿 (𝜓 ) def

= NNF(𝛿 (𝜓 ))

In this context we make use of the additional classical rule over the leaves of
ˆ𝛿 (𝜓 ) that

NNF(¬X𝜓 ) def

= X(NNF(¬𝜓 ))

where complement is propagated over the X operator. The correctness of this rule can also be seen from equa-

tions 4.1(c) and (14).

By viewing both U and R as built-in operators, we have the duality 𝜑 R 𝜓 = 𝜑 U 𝜓 . So all leaves of a transition term

ˆ𝛿 (𝜓 ) have the form 𝛼 , X𝜓 , 𝜑 U 𝜓 , or 𝜑 R 𝜓 , where 𝛼 ∈ ΨA . Observe that NNF(¬ite(𝛼,⊤,⊥)) = ite(𝛼,⊥,⊤) that is
equivalent to ite(~𝛼,⊤,⊥). In other words, complement over atomic predicates is always propagated into A.

The following theorem lays the foundation for the derivative based view of LTLA . The proof is by induction over

the size of 𝜙 by case analysis over rules (25–30) coupled with the semantics of transition terms (20–24) as well as the

corresponding semantics of LTLA (10–15).

Theorem 6.1 (Derivation Theorem). For all 𝜙 ∈ LTLA and 𝑎 ∈ D: D𝑎 (L(𝜙)) = L(𝛿 (𝜙) (𝑎)).

Example 6.2. We revisit the LTLERE formula 𝜓 = G(([A-Z]+) → X(\d+)) and illustrate the resulting derivatives

together with some of the simplification rules that are being applied, while we always skip many simplifications (such

as unit and cancellation laws from Figure 2) as well as trivial derivation steps such as 𝛿 (⊤) = ⊤ and 𝛿 (⊥) = ⊥ (as the

13
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𝑞0 0<𝑥 𝑥<1 𝑞1

𝑞2

Fig. 3. A Büchi automaton Bmodulo linear arithmetic. Branching
is shown as in [37] with conditions in diamonds and “then” and
“else” branches starting from filled and empty circles, respectively.

𝑝2

𝑝1

𝑝1, 𝑝2, 𝑝3

𝑝1, 𝑝2, 𝑝3

𝑝3

𝑞0 𝑞1

𝑞2

Fig. 4. Translation B̂ of B to the classical setting (see Example 7.1)

special case of (25) immediately followed by condition elimination from Figure 1).

𝛿 (𝜓 ) = 𝛿 (⊥ R (¬([A-Z]+) ∨ X(\d+)))
(31)

= 𝛿 (¬([A-Z]+) ∨ X(\d+)) ∧𝜓

= (𝛿 (~([A-Z]+)) ∨ 𝛿 (X(\d+))) ∧𝜓

= (ite(~([A-Z]+),⊤,⊥) ∨ (\d+)) ∧𝜓

= ite(~([A-Z]+),⊤, (\d+)) ∧𝜓

= ite(~([A-Z]+),𝜓, (\d+) ∧𝜓)

𝛿 ((\d+)) = ite((\d+),⊤,⊥)

This exhausts the derivation cases with four relevant formulas: {𝜓, (\d+),⊤,⊥}. □

7 ALTERNATING BÜCHI AUTOMATA MODULO A OR ABAA

Now that we have presented the symbolic approach to LTLA via transition terms and symbolic derivatives, we turn our

attention to alternating Büchi automata, show how they can be generalized using transition terms so as to be modulo

A, demonstrate a reduction to classical alternating Büchi automata, and show that nondeterministic Büchi automata

modulo A arise as a special case. We also define deterministic Büchi automata modulo A as a special case that we

revisit later.

An alternating Büchi automaton modulo A is a tuple B = (A, 𝑄, 𝑞0, 𝜌, 𝐹 ) where 𝑄 is a finite nonempty set of states,

𝑞0 ∈ B+(𝑄) is an initial state combination, 𝐹 ⊆ 𝑄 is a set of accepting states, and 𝜌 : 𝑄 ↦→ 𝑇𝑇 +
A,𝑄

is a transition function 3

that maps each state into a positive transition term as defined in Section 4.

If there is a state 𝑞 ∈ 𝐹 such that 𝜌 (𝑞) = 𝑞 then we fix such a state and name it 𝑞⊤. Analogously, if there is a state

𝑞 ∈ 𝑄 \ 𝐹 such that 𝜌 (𝑞) = 𝑞 then we fix such a state and name it 𝑞⊥. Otherwise we add such states into𝑄 and will from

here on assume that 𝑞⊤, 𝑞⊥ ∈ 𝑄 . For example in Figure 7.1(a), we have that 𝑞⊤ = 𝑞1 and 𝑞⊥ = 𝑞2. This will simplify our

formal treatment of semantics. Let 𝑘 = |𝑄 |.

Example 7.1. We revisit the earlier LTL modulo A formula𝜓 = (𝑥 < 1) R (0 < 𝑥) from Example 3.3 where A is a

linear rational arithmetic solver. In this case D is the set all possible valuations for variables, for example (𝑥=51) ∈ D
and (𝑥=51) ∈ [[(0 < 𝑥)]] . The classical analogy is that classically D = 2

𝑃
for some finite set 𝑃 of propositions and the

traditional formulation 𝑝 ∈ 𝑎 for 𝑝 ∈ 𝑃 and 𝑎 ∈ D, means that 𝑎 is a truth assignment that makes 𝑝 true, in other words

3
In the classical case 𝜌 is allowed to be partial but here 𝜌 must be total because D can be infinite, and maps elements whose transitions would otherwise

not be defined to a false sink state 𝑞⊥ ∉ 𝐹 such that 𝜌 (𝑞⊥ ) = 𝑞⊥ .
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𝑎 ∈ [[𝑝]] is saying the same thing in the modulo A context, where [[𝑝]] is the set of all models (truth assignments for

𝑝). Thus, the statement (𝑥=51) ∈ [[(0 < 𝑥)]]A should be clear, typically also written (𝑥=51) |=A (0 < 𝑥).
Without going into the details of the construction itself, we illustrate the equivalent Büchi automaton modulo A for

𝜓 in Figure 3 the automaton is:

B = (A, {𝑞0, 𝑞1, 𝑞2}, 𝑞0, {𝑞0 ↦→ ite((0 < 𝑥), ite((𝑥 < 1), 𝑞1, 𝑞0), 𝑞2), 𝑞1 ↦→ 𝑞1, 𝑞2 ↦→ 𝑞2}, {𝑞0, 𝑞1})

Then𝑤 ∈ D𝜔 such as𝑤 = (𝑥=2)·(𝑥= 1

2
)·(𝑥=0)𝜔 is accepted by the automaton because the state 𝑞1 is reached and visited

infinitely often after 𝑥 = 1

2
and the valuation for 𝑥 may remain forever 0 after that.

Let us consider the translation of B to the classical case B̂ (see proof of Theorem 7.3). Consider 𝑃 as the set of

all minterms of predicates in 𝜌 , i.e., all the predicates in {(0<𝑥)&(𝑥<1), (0<𝑥)&(𝑥≥1), (0≥𝑥)&(𝑥<1), (0≥𝑥)&(𝑥≥1)}
that are satisfiable in A. These are 𝑝1 = (0<𝑥)&(𝑥<1), 𝑝2 = (0<𝑥)&(𝑥≥1), and 𝑝3 = (0≥𝑥)&(𝑥<1). In this case, by

coincidence, they also happen be the combined paths in the conditional, making the comparison easy. Here A is

detached from the semantics of B̂ and one would consider the classical view where for 𝑎 ∈ 2
𝑃
and 𝑝 ∈ 𝑃 , then 𝑝 ∈ 𝑎

semantically (in terms of A) means here that 𝑝 implies
∨
𝑟 ∈𝑎 𝑟 . See Figure 4. □

Before continuing with the formal development we need additional background on infinite trees that is only used in

this section.

7.1 Infinite trees

Let 𝐼 = {𝑖 ∈ N|𝑖 < 𝑘} be a set of indices. Elements in 𝐼∗ (the Kleene closure of 𝐼 ) are called nodes where the empty

sequence 𝜖 is called the root and if 𝑥 ∈ 𝐼∗ and 𝑖 ∈ 𝐼 then 𝑥𝑖 ∈ 𝐼∗ is the 𝑖’th child of 𝑥 . A 𝑄-labeled infinite 𝑘-tree, or tree

for short, is a function 𝜏 from 𝐼∗ to 𝑄 .

Let 𝑞 ∈ 𝑄 and let (𝜏𝑖 )𝑖<𝑘 be a given sequence of 𝑘 trees 𝜏𝑖 : 𝐼∗ → 𝑄 . We use the shorthand notation ⟨𝑞, (𝜏𝑖 )𝑖<𝑘⟩ below
to denote the following tree:

⟨𝑞, (𝜏𝑖 )𝑖<𝑘⟩ = 𝜆𝑥.

{
𝑞, if 𝑥 = 𝜖 ;

𝜏𝑖 (𝑢), else where 𝑥 = 𝑖𝑢.

This is not a representation for a tree but a way of succinctly denoting the function. Let 𝜏⊤ be the tree 𝜆𝑥.𝑞⊤ that maps

all nodes to 𝑞⊤. In particular ⟨𝑞⊤, (𝜏⊤)𝑖<𝑘⟩ = 𝜏⊤. If we view N as unary numbers in {0}∗ and 𝑘 = 1 then 𝑄-labeled

infinite 1-trees are just infinite sequences in 𝑄𝜔
.

7.2 Runs and Languages

In the following it is useful to view a disjunction
∨

𝑖<𝑛𝜓𝑖 as the set {𝜓𝑖 }𝑖<𝑛 . Let 𝑎𝑤 ∈ D𝜔 and 𝑞 ∈ 𝑄 . A run from 𝑞 for

𝑎𝑤 is a tree ⟨𝑞, (𝜏𝑖 )𝑖<𝑘⟩ – an infinite unwinding of the transition function – where for some

∧
𝑖<𝑛 𝑞𝑖 ∈ DNF(𝜌 (𝑞) (𝑎))

and all 𝑖 < 𝑛, 𝜏𝑖 is a run from 𝑞𝑖 for𝑤 , and 𝜏𝑖 = 𝜏⊤ for 𝑛 ≤ 𝑖 < 𝑘 . Let R𝑤 (𝑞) be the set of all runs from 𝑞 for𝑤 . Then we

have:

R𝑎𝑤 (𝑞) =
{⟨𝑞, (𝜏0, . . . , 𝜏𝑛, 𝜏⊤, . . . , 𝜏⊤)⟩ | (𝑞0 ∧ · · · ∧ 𝑞𝑛) ∈ DNF(𝜌 (𝑞) (𝑎)),

𝜏0 ∈ R𝑤 (𝑞0), . . . , 𝜏𝑛 ∈ R𝑤 (𝑞𝑛)}
(32)

Observe that taking the disjunctive normal form of 𝜌 (𝑞) (𝑎) does not affect the semantics because the semantics is

invariant under any equivalent Boolean combination of states (e.g. by taking the conjuctive normal form instead), but it
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simplifies the statement of (32) that would alternatively have to reason about all the truth assignments to 𝜌 (𝑞) (𝑎) as is
done in [45].

4
For example, (𝑞1 ∨ 𝑞2) ∧ 𝑞3 is equivalent to (𝑞1 ∧ 𝑞3) ∨ (𝑞2 ∧ 𝑞3).

For example, for all𝑤 , R𝑤 (𝑞⊤) = {𝜏⊤} and for 𝛼 ∈ Ψ, if 𝑎 ∈ [[𝛼]] , then R𝑎𝑤 (𝛼) = {⟨𝛼, (𝜏⊤)𝑖<𝑘⟩}.
A branch is an infinite sequence 𝛽 ∈ (𝐼∗)𝜔 such that 𝛽 (0) = 𝜖 and, for all 𝑛 ∈ N, 𝛽 (𝑛 + 1) = 𝛽 (𝑛)𝑖 for some 𝑖 ∈ 𝐼 . For

all 𝑞 ∈ 𝑄 , the language of 𝑞 in B is the set of all words𝑤 ∈ D𝜔 such that R𝑤 (𝑞) contains an accepting run 𝜏 , meaning

that all branches of 𝜏 visit 𝐹 infinitely often, formally:

Accepting(𝜏) def

= ∀𝛽 ∈ Branches : ∀𝑛 ∈ N : ∃𝑚 ≥ 𝑛 : 𝜏 (𝛽 (𝑚)) ∈ 𝐹 (33)

LB (𝑞) def

= {𝑤 ∈ D𝜔 | ∃𝜏 ∈ R𝑤 (𝑞) : Accepting(𝜏)} (34)

We now lift the definition of L to B(𝑄) as in Section 2.3. It follows in particular for all p, q ∈ B+(𝑄):

LB (p ∨ q) def

= LB (p) ∪ LB (q) (35)

LB (p ∧ q) def

= LB (p) ∩ LB (q) (36)

L(B) def

= LB (𝑞0) (37)

Next, we prove the transition theorem of B. This theorem plays a key role in many formal arguments and proofs going

forward. It is the analogue of the derivation Theorem 6.1 of LTLA .

Theorem 7.2 (Transition Theorem). For all 𝑞 ∈ 𝑄 , LB (𝑞) = ⋃
𝑎∈D 𝑎·LB (𝜌 (𝑞) (𝑎)).

Proof. ⊆: Let 𝑎𝑤 ∈ LB (𝑞). From (34) it follows that there exists a run 𝜏 ∈ R𝑎𝑤 (𝑞) that is accepting, so all branches

of 𝜏 visit 𝐹 infinitely often. From (32) it follows that there exists (𝑞𝑖 )𝑖<𝑛 ∈ 𝜌 (𝑞) (𝑎) such that 𝜏 = ⟨𝑞, (𝜏𝑖 )𝑖<𝑛⟩ and
𝜏𝑖 ∈ R𝑤 (𝑞𝑖 ). So all branches of each 𝜏𝑖 visit 𝐹 infinitely often. It follows by (34) that𝑤 ∈ LB (𝑞𝑖 ) for all 𝑖 < 𝑛 and thus

by (36) that𝑤 ∈ LB (∧𝑖<𝑛 𝑞𝑖 ) and finally by (35) that𝑤 ∈ LB (𝜌 (𝑞) (𝑎)).
⊇: Let 𝑤 ∈ LB (𝜌 (𝑞) (𝑎)). It follows by the DNF assumption of 𝜌 (𝑞) (𝑎) and by using (35,36) that there exists

(𝑞𝑖 )𝑖<𝑛 ∈ 𝜌 (𝑞) (𝑎) such that𝑤 ∈ LB (𝑞𝑖 ) for all 𝑖 < 𝑛. So there are accepting runs 𝜏𝑖 ∈ R𝑤 (𝑞𝑖 ) for all 𝑖 < 𝑛. Therefore

the run 𝜏 = ⟨𝑞, (𝜏𝑖 )𝑖<𝑛⟩ ∈ R𝑎𝑤 (𝑞) is also accepting because if all branches of all the 𝜏𝑖 visit 𝐹 infinitely often then so do

all branches of 𝜏 . Thus, 𝑎𝑤 ∈ LB (𝑞) by using (34). □

7.3 Reduction to classical alternating Büchi automata

We make use of an effective encoding of B into a classical alternating Büchi automaton, that is formally defined,

following [45], as a tuple 𝐴 = (Σ, 𝑄, 𝑞0, 𝜌, 𝐹 ) where Σ is a nonempty finite alphabet, 𝑄 is a finite set of states with

𝑞0 ∈ B+(𝑄) as an initial state combination
5
, 𝐹 ⊆ 𝑄 as a set of accepting states, and 𝜌 : 𝑄 × Σ → B+(𝑄) is a transition

function. Then𝑤 ∈ L(𝐴) is defined as in (34,37) except that D = Σ, so L(𝐴) ⊆ Σ𝜔 .

We say that B is nonempty iff L(B) ≠ ∅.

Theorem 7.3. Nonemptiness of B is decidable if A is effective.

Proof. Let B = (A, 𝑄, 𝑞0, 𝜌, 𝐹 ) and let Γ = {𝛾𝑖 }𝑖<𝑘 be a finite set of all 𝛼 ∈ Ψ that occur in 𝜌 . Let Σ = Minterms(Γ)
(see Section 2.2). So Σ is computable because A is effective.

So Σ is a finite set of size at most 2
𝑘
that we now treat as a finite alphabet. For each minterm 𝛼 ∈ Σ let 𝛼 represent

some fixed member of [[𝛼]] , and conversely for all 𝑎 ∈ D, let 𝑎 denote the unique minterm 𝛼 ∈ Σ such that 𝑎 ∈ [[𝛼]] . Now
4
This is more of a matter of style of presentation rather than anything else, and in particular has no affect on the semantics.

5
Here using the standard generalization that 𝑞0 ∈ B+(𝑄 ) instead of 𝑞0 ∈ 𝑄 .
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let B̂ def

= (Σ, 𝑄, 𝑞0, 𝜌, 𝐹 ) where 𝜌 (𝑞, 𝛼) def

= 𝜌 (𝑞) (𝛼) for all 𝛼 ∈ Σ and 𝑞 ∈ 𝑄 . It follows that for all 𝑎 ∈ D, 𝜌 (𝑞, 𝑎) = 𝜌 (𝑞) (𝑎)
because for any 𝑓 = ite(𝛾, 𝑔, ℎ) that occurs in 𝜌 , we have 𝛾 ∈ Γ so 𝑓 (𝑎) = 𝑓 (𝑏) if 𝑎 = 𝑏 because, by definition of

minterms, [[𝛼 ∧ 𝛾]] ≠ ∅ iff [[𝛼]] ⊆ [[𝛾]] for all 𝛼 ∈ Σ and 𝛾 ∈ Γ.

It follows that, for all𝑤 ∈ D𝜔 :𝑤 ∈ L(B) iff𝑤 ∈ L(B̂) where, for all 𝑖 ∈ N,𝑤 (𝑖) def

= 𝑤𝑖 . So L(B̂) ≠ ∅ iff L(B) ≠ ∅.
The theorem follows now from reduction of nonemptiness from alternating Büchi automata to nonemptiness of

nondeterministic Büchi automata [30] and decidability of nonemptiness of nondeterministic Büchi automata [34] as the

special case of nondeterministic Büchi {1}-tree automata. □

An immediate question that arises here concerns the cost and implications of reducing B to B̂, as defined above, and

then using the algorithms developed for classical (alternating) Büchi automata also for the symbolic case. For many

decision problems this would introduce an upfront worst-case exponential cost, recall that the cost of computing Σ is

𝑂 (2𝑂
sat

A (𝑛) ) where 𝑛 is the size of B, rendering the translation impractical in general, while working directly with B
could avoid that cost completely. (The example in Figures 3 and 4 is too small to illustrate that aspect, but can very

easily be made larger involving tens of predicates or even more.) The next section illustrates a particular case.

7.4 Nondeterministic Büchi automata modulo A

We say that an alternating Büchi automaton modulo A, B = (A, 𝑄, 𝑞0, 𝜌, 𝐹 ) is a nondeterministic Büchi automaton

modulo A if conjunction does not occur in 𝜌 . In other words, when 𝜌 (𝑞) (𝑎) is a disjunction of states in 𝑄 for all 𝑞 ∈ 𝑄

and 𝑎 ∈ D. We then view 𝜌 (𝑞) (𝑎) as a nonempty subset of𝑄 . In this setting the use of infinite trees becomes unnecessary

because only one branch of the tree ever matters. The simplified definition of acceptance of runs in A is as follows. For

𝑎𝑤 ∈ D𝜔 the set of all runs R𝑎𝑤 (𝑞) ⊆ 𝑄𝜔
has the property (38), and where accepting runs are defined as follows:

R𝑎𝑤 (𝑞) = {𝑞𝜏 | 𝑝 ∈ 𝜌 (𝑞) (𝑎), 𝜏 ∈ R𝑤 (𝑝)} (38)

Accepting(𝜏) def

= ∀𝑛 ∈ N : ∃𝑚 ≥ 𝑛 : 𝜏 (𝑚) ∈ 𝐹 (39)

The definitions (34,37) remain otherwise the same, but equivalently, rely on (38,39) instead.

Example 7.4. Consider the automaton in Example 7.1 and recall it is modulo rational (not integer) arithemetic. Let

𝑤 = (𝑥=2)·(𝑥= 1

2
)·(𝑥=0)𝜔 . Then the run from 𝑞0 for 𝑤 is the infinite sequence 𝑟 such that 𝑟 (0) = 𝑞0 then 𝑟 (1) = 𝑞0

because 𝜌 (𝑞0) = ite((0<𝑥), ite((𝑥<1), 𝑞1, 𝑞0), 𝑞2) where (𝑥=2) ∈ [[0<𝑥]] and (𝑥=2) ∉ [[𝑥<1]] . Then 𝑟 (2) = 𝑞1 because

(𝑥= 1

2
) ∈ [[0<𝑥]] and (𝑥= 1

2
) ∈ [[𝑥<1]] . The rest 𝑟3.. = 𝑞𝜔

1
. So this is an accepting run. □

The following theorem follows by adapting the corresponding results from [19, 20] that nonemptiness of nondeter-

ministic Büchi Automata is decidable in linear time. Here checking satisfiability of predicates of A is needed to ensure

feasibilty of transitions. Here, the size |B| of B is the total size of the representation, which also depends, not only on

the number of states, but ultimately on the size of the transition function, that depends on the size of the representation

of predicates in A.

Theorem 7.5. Nonemptiness of a nondeterministic Büchi AutomataBmoduloA is decidable in time𝑂 ( |B|2+𝑂sat
A ( |B|)).

This is one of many other decision problems, such as product, showing that first constructing B̂ from B adds an

upfront exponential cost 𝑂 (2𝑂
sat

A ( |B | ) ) of the alphabet Σ, as in the proof of Theorem 7.3, that may not be needed.
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~([A-Z+)

([A-Z]+) (\d+)

⊤

⊤
~(\d+)

G(([A-Z]+) → X(\d+)) (\d+) ⊤

⊥

Fig. 5. Alternating Büchi automaton modulo ERE for G(([A-Z]+) → X(\d+))

7.5 Deterministic Büchi automata modulo A

We say that an alternating Büchi automaton modulo A, B = (A, 𝑄, 𝑞0, 𝜌, 𝐹 ) is a deterministic Büchi automaton modulo

A if 𝑞0 ∈ 𝑄 and each 𝜌 (𝑞) is a (nested) conditional whose leaves are individual states. Complementation of classical

Büchi automata is by itself a problem area that has been studied, with an exponential algorithm that works for for the

nondeterministic case [2] in general, to a polynomial time algorithm for the deterministic case [28]. The question here

is: Can one make use of the NNF Theorem by dualizing states and their transition terms so that 𝑞 def
= 𝜌 (𝑞) for 𝑞 ∈ 𝑄 in

order to complement B? The main problem is that the notion of accepting states gets lost in this translation. We will

revisit this question in Section 8.3 when looking at deterministic Büchi automata modulo A that can arise from LTLA ,

and where this connection between states 𝑞 and their duals 𝑞 is built-in. For example the automaton in Figure 3 is

deterministic. If we dualize the transition terms as well as the states, we will in this case obtain a deterministic Büchi

automaton modulo linear arithmetic for the formula (𝑥 ≥ 1) U (0 ≥ 𝑥), that is the correct.

8 FROM LTLA TO ABAA

We adapt the classical translation [46] using symbolic derivatives as follows. Given a start formula 𝜙 ∈ LTLA that is in

NNF, let 𝑄 consist exhaustively of all subformulas of 𝜙 and their duals as well as ⊤ and ⊥. For all 𝑞 ∈ 𝑄 let 𝜌 (𝑞) = 𝛿 (𝑞).
Observe that all leaves of 𝛿 (𝑞) also belong to 𝑄 . Hence |𝑄 | is linear in the size of 𝜙 . Also, 𝜌 (𝑞) ∈ 𝑇𝑇 +

A,𝑄
for all 𝑞 ∈ 𝑄 ,

when both R and U are built-in operators, in which case complement never occurs and so 𝜌 is well-defined as a transition

function. Let the set of accepting states 𝐹 contain ⊤ as well as all release-formulas 𝜑 R 𝜓 in𝑄 . The resulting alternating

Büchi automaton modulo A for 𝜙 is then

B𝜙
def

= (A, 𝑄, 𝜙, 𝜌, 𝐹 )

The LL theorem of the construction shows that the intended language semantics is preserved.

Theorem 8.1 (LL Theorem). For all 𝜙 ∈ LTLA and 𝑞 ∈ 𝑄B𝜙
: LB𝜙

(𝑞) = L(𝑞).

The following corollary makes it explicit that complement is built into the automaton itself through dual states using

their dual transition terms because 𝜌 (𝑞) = 𝜌 (𝑞).

Corollary 8.2 (Duality Theorem). Let B = B𝜙 . For all 𝑞 ∈ 𝑄B , LB (𝑞) = ∁
(
LB (𝑞)

)
.

Proof. LB (𝑞) (Thm 8.1)

= L(𝑞) = L(¬𝑞) (13)

= ∁(L(𝑞)) (Thm 8.1)

= ∁
(
LB (𝑞)

)
. □

Example 8.3. Recall the derivatives starting from the LTLERE formula𝜓 = G(([A-Z]+) → X(\d+)) from Example 6.2.

The ABAERE automaton for𝜓 (see Figure 5) is:

B𝜓 = (ERE, {𝜓, (\d+),⊤,⊥},𝜓, 𝜌, {𝜓,⊤})

where 𝜌 (⊤) = ⊤, 𝜌 (⊥) = ⊥, 𝜌 (𝜓 ) = ite(~([A-Z]+),𝜓, (\d+) ∧𝜓), and 𝜌 ((\d+)) = ite((\d+),⊤,⊥). □
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Lost in Translation: from Linear Temporal Logic to Büchi Automata

𝑝

¬𝑝
¬𝑝

𝑝

𝑝 ∨ 𝑟

¬𝑝 ∧ ¬𝑟
¬𝑟

𝑟

GE𝑝 GE𝑝 ∧ E𝑝

E(¬𝑝 ∧ G¬𝑟 ) G¬𝑟 ∨ E(¬𝑝 ∧ G¬𝑟 )

Fig. 6. Alternating Büchi automaton for E(¬𝑝 ∧ G¬𝑟 ) ∧ GE𝑝 equivalent to the one in [52, Figure 1].

8.1 LL-invariance

Here we investigate rewrite rules that can be applied to further optimize transition terms while simultaneously

maintaining their semantics in both worlds of LTLA as well as ABAA . The rewrite rules will maintain the following

invariant, given B = (A, 𝑄, 𝜙, 𝜌, 𝐹 ) that has been translated from an LTLA formula,

LL-invariant: ∀𝑞 ∈ 𝑄 : LB (𝑞) = L(𝑞)

We believe maintaining this invariant is critical to developing a powerful system of rewrite rules for LTL that can be

freely composed and applied in any context. We also want to make precise the following corollary of the LL Theorem

and [46, Theorem 22].

Corollary 8.4 (Vardi Derivative). The LTL to ABA construction in [46] preserves LL-invariance.

Our rewrite rules will be used to optimize transition terms 𝜌 (𝑞) on-the-fly, thus transforming B as it is being

constructed. The main purpose of the rewrite rules is to simplify and minimize the representation of the transition

terms so as to reduce the number of states, then avoid alternation, and finally, to avoid nondeterminism.

While Vardi’s construction [46] itself guarantees this invariant, subsequent work on simplifications has focused on

optimizations on the automata level while throwing away the LTL view [22, 52]. In our world, the semantics of B𝜙 are

defined in terms of derivatives of 𝜙 instead of being just constructed from 𝜙 , which means that the only way to modify

the semantics of B is to rewrite the transition terms.

Let us consider some rewrite rules from [39]. The rule 𝜑 ≤ 𝜓 ⇒ (𝜑 ∧𝜓 ) ≡ 𝜑 where 𝜑 ≤ 𝜓 (𝜓 subsumes 𝜑) means that

if L(𝜑) ⊆ L(𝜓 ) then L(𝜑 ∧𝜓 ) = L(𝜑) ∩ L(𝜓 ) = L(𝜑). Subsumption can often be detected syntactically, as for example in

the Boolean subsumption rule in Section 5. Another example is (GE𝜓 ) ∧ E𝜓 that is LTL-equivalent to GE𝜓 . However,

in B the state GE𝜓 is accepting while E𝜓 is not accepting.

Therefore, applying general subsumption that relies on LTL semantics alone, to replace (GE𝜓 ) ∧ E𝜓 by GE𝜓 would in

fact violate LL-invariance (see Example 8.9). Some rules that preserve LL-invariance are: X𝜓 ∧ X𝜑 = X(𝜓 ∧ 𝜑) and
EX𝜑 = XE𝜑 . A full analysis of which rules in [39] preserve LL-invariance and which don’t is beyond the scope of this

work, but we identify a new class of rules next.

Example 8.5. To give a taste of what these rewrites enable, consider the LTL formula in [52, Example], which in

NNF is E(¬𝑝 ∧ G¬𝑟 ) ∧ GE𝑝 . Figure 6 shows the corresponding alternating Büchi automaton with the rules from

Sections 8.2 and 8.3. Notice that the automaton is co-deterministic – its complement is deterministic – apart from the

conjunctive initial state the remaining parts are deterministic, while the one in [52, Figure 1] has both alternation and

nondeterminism in the transitions themselves. Observe that deciding nonuniversality of the co-deterministic case can

be achieved by deciding nonemptiness of its complement. □
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8.2 Suspension

We take the definition of suspendable formulas as a practically important syntactic subclass of LTL formulas from [5]

(originally called alternating formulas in [6]) to LTLA . We make use of the following lemma that carries over to LTLA ,

as suspendability does not depend on any properties of A:

Lemma 8.6 ([6, Lemma 2]). If 𝜉 is suspendable then𝑤 |= 𝜉 ⇔ 𝑤𝑛.. |= 𝜉 for all 𝑛 ∈ N and𝑤 ∈ D𝜔 .

In particular, it follows that any suspendable formula 𝜉 is equivalent to X𝜉 , which interacts well with the derivative

of 𝜉 that can now also be suspended because 𝛿 (X𝜉) = 𝜉 .

We use Theorem 8.8 below to reduce alternation in B, using the concept of suspendable formulas. We introduce a

variant of 𝛿 that applies the following rules when it encouters the cases when the first argument of ⋄ ∈ {∧,∨} is any
U-formula, R-formula, or X-formula, and the second argument 𝜉 is suspendable:

𝛿 ((𝜑 U 𝜓 ) ⋄ 𝜉) def

= 𝛿 (𝜓 ⋄ 𝜉) ∨ (𝛿 (𝜑 ⋄ 𝜉) ∧ ((𝜑 U 𝜓 ) ⋄ 𝜉))

𝛿 ((𝜑 R 𝜓 ) ⋄ 𝜉) def

= 𝛿 (𝜓 ⋄ 𝜉) ∧ (𝛿 (𝜑 ⋄ 𝜉) ∨ ((𝜑 R 𝜓 ) ⋄ 𝜉))

𝛿 ((X𝜑) ⋄ 𝜉) def

= 𝜑 ⋄ 𝜉

Correctness of the rule for the X-formula follows immediately from suspendability of 𝜉 by Lemma 8.6 that essentially

states that L(𝜉) = D·L(𝜉) in a slightly more generalized form. For U and R we use the following lemma.

Lemma 8.7. If 𝜉 is suspendable, ⋄ ∈ {∧,∨}, and ♦ ∈ {U,R} then L((𝜑 ♦ 𝜓 ) ⋄ 𝜉) = L((𝜑 ⋄ 𝜉) ♦ (𝜓 ⋄ 𝜉)).

In terms of alternating Büchi automata this implies that we can treat (𝜑 ♦ 𝜓 ) ⋄ 𝜉 consisting of two states the same

way as the single state (𝜑 ⋄ 𝜉) ♦ (𝜓 ⋄ 𝜉), which is precisely the effect of the variant of 𝛿 when used to define 𝜌 .

Theorem 8.8 (Suspension Theorem). If 𝜙 is a state then for any suspendable state 𝜉 and ⋄ ∈ {∧,∨}, if 𝑞 = 𝜙 ⋄ 𝜉 is
included as a state of B with the transition term 𝜌 (𝑞) = 𝛿 (𝑞) with the variant of 𝛿 then LB (𝑞) = L(𝑞).

When we apply the suspension theorem then the corresponding Boolean combinations 𝑞 = 𝜙 ⋄ 𝜉 are elevated to the

status of being states, meaning that 𝜌 (𝑞) is now defined, and in this way we reduce the correponding alternation of

Boolean operations between states. Elevation of states is related to promotion of formulas to states [43] but it is natural

here to treat the states themselves as formulas in order to maintain reuse of all the 𝑇𝑇A algebra simplification rules. In

general, certain positive Boolean combinations of states can now themselves be elevated to states. Therefore, we need

to be clear about the accepting condition of an elevated state in B+(𝑄). We consider states in normalized form where in

particular (𝜑 R 𝜓 ) ⋄ 𝜉 is normalized to (𝜑 ⋄ 𝜉) R (𝜓 ⋄ 𝜉) and is therefore an accepting state. All other states besides ⊤
that in normalized form are not R-states are nonaccepting.

We illustrate suspension in the following example, where 𝑝 ∈ Ψ and both GE𝑝 as well as (E𝑝) ∧GE𝑝 are suspendable

formulas (cf [5]).

Example 8.9 (Infinitely often 𝑝). Consider 𝜙 = GE𝑝 for some 𝑝 ∈ Ψ. The derivation steps of 𝜙 are as follows:

𝛿 (E𝑝) = 𝛿 (⊤ U 𝑝) = 𝛿 (𝑝) ∨ (𝛿 (⊤) ∧ E𝑝) = ite(𝑝,⊤,⊥) ∨ E𝑝 = ite(𝑝,⊤, E𝑝)

𝛿 (𝜙) = 𝛿 (⊥ R E𝑝) = 𝛿 (E𝑝) ∧ (𝛿 (⊥) ∨ 𝜙) = ite(𝑝,⊤, E𝑝) ∧ 𝜙 = ite(𝑝, 𝜙, (E𝑝) ∧ 𝜙)

Observe here that rewriting (E𝑝) ∧𝜙 into 𝜙 , by using the LTL semantics that L((E𝑝) ∧GE𝑝) = L(GE𝑝), would collapse
the transition term 𝛿 (𝜙) into an incorrect self-loop.
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𝑝

¬𝑝

¬𝑝

𝑝

⊤

GE𝑝 E𝑝 ⊤

(a) Alternating

𝑝

¬𝑝
¬𝑝

𝑝
GE𝑝 E𝑝 ∧ GE𝑝

(b) Deterministic

Fig. 7. Büchi automata for GE𝑝

~([A-Z]+)

([A-Z]+)

(\d+)

~(\d+)

⊤

G(([A-Z]+) → X(\d+)) (\d+) ∧ G(([A-Z]+) → X(\d+)) ⊥

Fig. 8. Deterministic Büchi automaton modulo ERE for G(([A-Z]+) → X(\d+))

See Figure 7a where GE𝑝 is illustrated as ABAA . Here 𝜙 is suspendable, so we can treat 𝜓 = (E𝑝) ∧ 𝜙 as a

(non-accepting) state. We get the following derivation steps for 𝜓 by using the updated variant of 𝛿 and Boolean

simplifications:

𝛿 (𝜓 ) = 𝛿 ((⊤ U 𝑝) ∧ 𝜙) = 𝛿 (𝑝 ∧ 𝜙) ∨ (𝛿 (⊤ ∧ 𝜙) ∧𝜓 )

= (𝛿 (𝑝) ∧ 𝛿 (𝜙)) ∨ (𝛿 (𝜙) ∧𝜓 )

= (ite(𝑝,⊤,⊥) ∧ ite(𝑝, 𝜙,𝜓)) ∨ (ite(𝑝, 𝜙,𝜓) ∧𝜓 )

= ite(𝑝, 𝜙,⊥) ∨ ite(𝑝, 𝜙 ∧𝜓,𝜓)

= ite(𝑝, 𝜙 ∨ (𝜙 ∧𝜓 ),𝜓) = ite(𝑝, 𝜙,𝜓)

We have eliminated alternation fully and have obtained a deterministic automaton with initial state 𝜙 , states 𝑄 = {𝜙,𝜓 },
final states 𝐹 = {𝜙} and transition function 𝜌 such that 𝜌 (𝜙) = ite(𝑝, 𝜙,𝜓) and 𝜌 (𝜓 ) = ite(𝑝, 𝜙,𝜓). See Figure 7b. □

In the following we illustrate use of a specific class of a non-suspendable formulas:𝜓 = G(𝛼 → X𝛽) where 𝛼, 𝛽 ∈ ΨA
and 𝛼 & 𝛽 is unsatisfiable then 𝛽 ∧𝜓 can also be elevated to a state and maintains the LL-invariant. This illustrates that
one can develop domain specific rules for state elevation that go beyond the suspendable case.

Example 8.10. We revisit the automaton constructed in Example 8.3 (Figure 5) and observe that the conjunction

(\d+) ∧ 𝜙 , where 𝜙 = G(([A-Z]+) → X(\d+)), can be elevated as it fits the pattern above. We get the following

composed transition term for (\d+) ∧ 𝜙 :

𝛿 ((\d+) ∧ 𝜙) = 𝛿 ((\d+)) ∧ 𝛿 (𝜙)

= ite((\d+),⊤,⊥) ∧ ite(~([A-Z]+), 𝜙, (\d+) ∧ 𝜙)

= ite((\d+), ite(~([A-Z]+), 𝜙, (\d+) ∧ 𝜙),⊥)

= ite((\d+), 𝜙,⊥)

The last step uses the DeadEnd2 rule and the step before uses the ConjProp2 rule (see Figure 1) in combination

with basic Boolean rewrite rules from Figure 2. We have now reached a fixpoint and the resulting deterministic Büchi

automaton modulo ERE is shown in Figure 8 with (\d+) ∧ 𝜙 as the middle state. □
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⊤

𝑟

𝑟

¬𝑟

⊤

EG𝑟 G𝑟 ⊥

(a) Nondeterministic

¬𝑟
𝑟

𝑟

¬𝑟
EG𝑟 G𝑟 ∨ EG𝑟

(b) Deterministic

Fig. 9. Büchi automata for EG𝑟

Theoretically, deciding nonemptiness in ERE is nonelementary [15, 42], which implies that LTLERE is also nonele-

mentary. However, we believe that typical use cases fall in the much smaller sublass B(RE) where RE is the class of

standard regular expressions (without complement or intersection). The complexity of B(RE) it is not nonelementary

but it is PSPACE-hard [26, 27].

8.3 Elevated states

Here some of the states of B = (A, 𝑄, 𝑞0, 𝜌, 𝐹 ) can in general be elevated formulas and thus in general𝑄 ⊂ NNF(LTLA )
with the definition of accepting states as defined above, thus 𝐹 is defined as the accepting states in 𝑄 (as opposed to an

arbitrary subset of 𝑄). Let the dual of B be the automaton B:

𝑄
def

= {𝑞 | 𝑞 ∈ 𝑄}

for 𝑞 ∈ 𝑄 : 𝜌 (𝑞) def

= 𝜌 (𝑞)

B def

= (A, 𝑄, 𝑞0, 𝜌, {𝑝 ∈ 𝑄 | 𝑝 is accepting})

It follows from the LL-invariant of B and elvation of states that for all elevated states 𝑞 ∨ 𝑝 and 𝑞 ∧ 𝑝 , also 𝑝 and 𝑞 are

states and that LB (𝑝∨𝑞) = LB (𝑝) ∪LB (𝑞) and LB (𝑝∧𝑞) = LB (𝑝) ∩LB (𝑞). Moreover, for all 𝑞 ∈ 𝑄 , LB (𝑞) = L(𝑞).
Recall from Section 7.5 that B being deterministic means that the transition term 𝜌 (𝑞) for each state is a nested

conditional whose leaves are again states, here considering leaves as elevated states, i.e., viewing 𝜌 as a function from

B+(𝑄) to 𝑇𝑇A,B+(𝑄 ) and if 𝜌 (𝑞) is defined then 𝑞 is considered as a state.

Theorem 8.11 (Elevated Duality Theorem). If B = (A, 𝑄, 𝑞0, 𝜌, 𝐹 ) is a Büchi automaton for LTLA then B is a

Büchi automaton for LTLA such that, for all 𝑞 ∈ 𝑄 , LB (𝑞) = ∁
(
LB (𝑞)

)
. If B is deterministic then B is deterministic.

Proof. B is clearly well-defined. The main argument, based on the invariant above, is that 𝜌 (𝑝1∨𝑞2) ≡ 𝜌 (𝑝1)∨𝜌 (𝑞2)
and 𝜌 (𝑝1 ∧ 𝑞2) ≡ 𝜌 (𝑝1) ∧ 𝜌 (𝑞2). We can therefore lower B into an equivalent alternating Büchi automaton whose only

accepting states are ⊤ and R-formulas. We then apply the Duality Theorem (Corollary 8.2) to dualize all these terms,

effectively flipping ∧ and ∨, ⊤ and ⊥, R and U in that process. We then symmetrically elevate the dualized transition

terms back into 𝜌 and observe also that the dualization is captured precisely by the definition of accepting states in B.

Determinism is preserved because ite(𝛼, 𝑓 , 𝑔) = ite(𝛼, 𝑓 , 𝑔), i.e., the dual of any nested conditional remains a nested

conditional, essentially with an identical branching structure. The statement follows. □

As an immediate consequence we get a linear, essentially trivial, complementation algorithm that, moreover, preserves

determinism.
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Example 8.12 (Stable 𝑟 ). Consider EG𝑟 for some 𝑟 ∈ Ψ. We here make use of the duality that EG𝑟 = GE𝑝 when 𝑝 = ~𝑟 .

We get, reusing Example 8.9, that

𝛿 (EG𝑟 ) = 𝛿 (GE𝑝) = ite(𝑝,GE𝑝, (E𝑝) ∧ GE𝑝) = ite(𝑝,GE𝑝, (E𝑝) ∧ GE𝑝) = ite(~𝑟, EG𝑟, (G𝑟 ) ∨ EG𝑟)

𝛿 ((G𝑟 ) ∨ EG𝑟 ) = 𝛿 ((E𝑝) ∧ GE𝑝) = ite(𝑝,GE𝑝, (E𝑝) ∧ GE𝑝) = ite(~𝑟, EG𝑟, (G𝑟 ) ∨ EG𝑟)

where the formula (G𝑟 ) ∨ EG𝑟 is treated as an accepting state (the dual state of (E𝑝) ∧GE𝑝) rather than two states. □

Example 8.12 makes use of Theorem 8.11 to essentially trivially complement the deterministic automaton in Figure 7b

to obtain the deterministic automaton in Figure 9b, that can now be contrasted against the equivalent nondeterministic

automaton in Figure 9a.

Observe that Theorem 8.11 can potentially also be applied in the context of classical symbolic LTL as LTLA where

A is a SAT solver (or BDD solver) over a set 𝑃 of atomic propositions, where ΨA = B(𝑃) and D = 2
𝑃
.

This assumes that no other transformation has broken LL-invariant, which would cause the link between

states and formulas to be lost in translation.

In particular, for each state 𝑞, each single transition 𝜌 (𝑞, 𝑟 ) ∈ B+(𝑄) for 𝑟 ∈ 𝑃 becomes the conditional ite(𝑟, 𝜌 (𝑞, 𝑟 ),⊥)
and the disjunction of all such conditionals can be rewritten into a single nested conditional, e.g. by applying the

simplification rules from Section 5.1, that is then used as the definition of 𝜌 (𝑞) in BA .

9 RELATEDWORK

9.1 Derivatives

Transition regexes for extended regular expressions [41], a symbolic generalization of Brzozowski derivatives [9], is one

of the inspirations behind our work here. In analogy we view transition terms for LTL as a symbolic generalization

of Vardi’s derivatives for LTL (see Section 8). However, there are fundamental differences between finite and infinite

sequences, which carry over to the theory here. First, as an example, the complement law in Theorem 4.1(c) that is used

frequently in many proofs, does not hold for 𝐿 over finite sequences (because 𝜖 is missing from the right side). Second,

one of the key derivation steps for regular expressions is for loops, 𝛿 (𝑅∗) = 𝛿 (𝑅)·𝑅∗, and introduces concatenation

and special lift rules to propagate concatenation, which must now interact correctly with complement also. Here

concatenation does not arise, while the derivation rules for U and R give rise to loops (analogously to 𝑅∗) but with very

different semantic properties.

The main theorems regarding infinite sequences are Theorem 4.1(e) and the negation-normal-form (NNF) Theorem 4.2

for transition terms. For transition regexes [41, Lemma 4.2], negation-normal-form comes from a simple observation

that any negated ite-term ¬ite(𝛼, 𝑟1, 𝑟2) in SMT whose type is a regular expression has (by definition) the same

interpretation as ite(𝛼,¬𝑟1,¬𝑟2). Many simplification laws in regular expressions are also easier to apply because the

language semantics of regular expressions and automata go hand-in-hand, so there is no need for any special treatment

as in Section 8.1 (in particular any form of subsumption can always be applied).

Here LL-invariance must be maintained by rewrite rules. Our DNF form of transition terms is on the surface

similar to the DNF of transition regexes in [41], but with the crucial difference that alternation (if any) has been

incrementally eliminated in the latter and often amounts to dealing with incremental unfolding into NFAs, as a symbolic

generalization of Antimirov derivatives [3]. Such incremental unfolding is now integrated into the core of the regex

decision procedure in Z3 [16]. Whether an analogous alternation elimination procedure exists for LTLA based ABAA
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is an active research topic for us, and we are currently investigating possible generalizations from works on classical

alternation elimination algorithms [8, 30] that would ideally also integrate incrementally with derivation rules for

LTLA and maintain LL-invariance.

9.2 Monitoring

LTL based monitoring is studied in [38] that introduces a coalgebraic method where monitoring-equivalence of LTL

formulas is based on experimental indistinguishability and coinduction is used for proving monitoring-equivalence.

The method is further used to generate monitors in the form of deterministic finite automata. Moreover, in its core, the

work also uses derivatives of LTL [24], although not in the generalized form of symbolic derivatives modulo A, but

for a finite set of atomic propositions. This work uses the decision procedure from [25] to canonicalize propositional

formulas through a rewrite-system that is Church-Rosser and terminating (modulo associativity and commutativity of

Boolean operators, including exclusive-OR).

9.3 Comparison with Standard Construction

Vardi [44, Theorem 14, Proof] is the first LTL to alternating Büchi automata construction defined in terms of a step-wise

unwinding with a similar structure to our derivatives. This construction is not symbolic, as it uses the next element to

directly compute a Boolean combination of successor states.

Gastin and Oddoux [22] modify Vardi’s construction to produce alternating co-Büchi automata instead, and they take

a step towards a symbolic representation by representing transitions as relations, although treatment of the alphabet

is still non-symbolic. This representation allows them to develop simplifications based on relational reasoning for

eliminating implied transitions and equivalent states on-the-fly. In the context of our work, since these simplifications

operate directly on the representation of the transition relation, the direct correspondence between formulas and states

is lost. Even if LL-invariance (see Section 8.1) would be maintained in some form, it is unclear how these rules would

compose with the syntactic LTL-level simplifications presented in this paper.

Wulf et al. [52] define symbolic alternating Büchi automata (sABW) where transition relations are Boolean combina-

tions of literals and successor states. They further develop incremental satisfiability and model checking methods using

BDDs both as the alphabet theory and to represent sets of states. They do not give the construction from LTL to sABW,

but instead refer to the presentations in [22, 46].

Tsay and Vardi [43] give a full construction of LTL to symbolic alternating co-Büchi automata. To compare their style

of construction with the one in this paper, we show the following example of LTL to sABW for 𝜑 = GE𝑎. The example

uses the style of [43], but uses the acceptance of the construction in [44] to produce a Büchi instead of a co-Büchi

automaton.

Example 9.1. Transition semantics are defined using a one-step expansion function exp [43, Definition 12], which plays

a similar role as Equations 25-31, factoring out requirements for the current input element. The relevant expansions for

𝜑 are exp(GE𝑎) = (𝑎 ∨ XE𝑎) ∧ XGE𝑎 and exp(E𝑎) = 𝑎 ∨ XE𝑎.
States are labeled by elementary subformulae, i.e., literals and temporal operators, but not Boolean combinations

thereof. For 𝜑 the states are ”GE𝑎” (the initial state) and ”E𝑎”. The transition relation is then formed by replacing X
operators with states in the one-step expansions:

𝛿 (”GE𝑎”) = (𝑎 ∨ ”E𝑎”) ∧ ”GE𝑎” 𝛿 (”E𝑎”) = 𝑎 ∨ ”E𝑎”
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”GE𝑎” is the only final state. The resulting automaton is similar to the one Figure 7a, although less deterministic as

𝛿 (”GE𝑎”) includes ”E𝑎” ∧ ”GE𝑎” as a successor for all input elements. An explicit ”⊤” state is also not present, as sABW

are allowed to be non-total.

While the construction above is quite similar to the one in our work, there is a key difference in how the transitions

are represented: total functions built on ite-terms cleanly separate evaluation of transitions the target state formulas.

We believe that our use of ite-terms makes developing simplifications based on a system of syntactic rewrite rules

natural. For example, Theorem 8.8 does not directly apply to (𝑎 ∨ ”E𝑎”) ∧ ”GE𝑎”. While the opportunity could be

exposed in DNF form, we find imposing that cumbersome. □

Muller, Saoudi and Schupp [31] were the first to state and prove the theorem that LTL can be translated to Büchi

automata. The proof, however, does not use an inductive unwinding of LTL formula but composes automata from

subformulas instead, which makes it quite different from our derivatives. Moreover, the construction uses weak

alternating automata over trees and a further result from [32] to then reduce weak alternating automata to Büchi

automata. As far as we know, derivatives have not been studied for finite or infinite tree languages, so the concept of

what a transition term would mean in the context of tree languages or tree automata is unclear.

9.4 Duality

A general question that arises is how transition terms and their built-in duality principle can be taken advantage of

or shed new light on other areas of reasoning with classical Büchi automata when cast in terms of modulo A. This

could impact algorithms for deterministic Büchi automata [7, 21], deterministic generalized Büchi automata [4], as

well as generalized Büchi automata [36] and transition-based generalized Büchi automata [13] where the latter arise

naturally from LTL [18] and could thus potentially directly benefit from duality. Importance of duality is also studied in

the context of weak alternating automata in [31] with key relationships established to Büchi automata. The latter work

is also related to study of duality in the context of infinite tree automata [33].

9.5 Tableau

Tableau based techniques for LTL were initially studied by Wolper [49–51]. A further extension of tableau based

technique for LTL is introduced in [12] using on-the-fly expansion of transition Büchi automata. The key technique

there is also rooted in what we call here Vardi derivatives, that are called fundamental identities of Boolean variables

in that context, that reflect how the variables for the subformulas are created inductively. The if-the-else aspect of

transition terms is not present there.

LTLA is fundamentally an automata-based based technique assisted by A as a solver. We do not believe it is possible

in general to take an arbitrary effective Boolean algebra A and view it as part of a generic tableau procedure modulo

A. It is an open and active research area, part of a general effort to combine first-order deduction with modulo theories

with many open challenges of its own [10].

9.6 General

One question that has eluded us is if Theorem 4.1(e) can be deduced from the general theory of 𝜔-languages [40, 48].

The recent work in [23] studies LTL modulo theories but over finite strings, so we believe that the work in [41] could

be a possible link to transition terms over D∗ in that study. First-Order LTL is introduced in [1] that is in general

undecidable. LTL-EF [11] is a recent extension of First-Order LTL with event freezing functions operators, the logic
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can be interpreted with different models of time using SMT techniques. In contrast, LTLA is not first-order LTL, in

particular, predicates from A can not be related at the level of individual variables accross state boundaries.

10 CONCLUSION

We have shown how the concept of symbolic derivatives can be used to define a symbolic semantics for linear

temporal logic (LTL) and alternating Büchi automata, via a shared representation of transition terms. The semantics is

parameterized by an effective Boolean algebra for the base alphabetic domain, which enables it to apply to 𝜔-languages

and infinite alphabets in an algebraically well-defined and precise manner. This framework allows syntactic rewrite

rules for LTL to be applied on-the-fly during automata construction when they simultaneously respect semantics of LTL

formulas and their alternating Büchi automata. We present several of these rules and believe there is a rich landscape of

optimization to be discovered.
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A PROOFS

Proofs of all theorems and properties that have been omitted from the main body of the paper.

Proofs of Section 3

Equations (8,9) are well-known properties of LTL, we include a proof of (8) here for clarity.

Proof of (8). (⇒): Let 𝑤 |= 𝜑 U 𝜓 . Fix 𝑗 ∈ N such that (7) holds. If 𝑗 = 0 then 𝑤0.. = 𝑤 |= 𝜓 and we are done. If

𝑗 > 0 then, for all 𝑖 < 𝑗 ,𝑤𝑖 .. |= 𝜑 and𝑤 𝑗 .. = (𝑤1..) 𝑗−1.. |= 𝜓 . In partcular𝑤0.. = 𝑤 |= 𝜑 and there exists 𝑘 = 𝑗 − 1 ∈ N
such that (𝑤1..)𝑘.. |= 𝜓 and for all 𝑖 < 𝑘 , (𝑤1..)𝑖 .. |= 𝜑 . So, by (7),𝑤1.. |= 𝜑 U 𝜓 .

(⇐): If𝑤 |= 𝜓 then𝑤 |= 𝜑 U 𝜓 follows immediately from (7). If𝑤 |= 𝜑 and𝑤1.. |= 𝜑 U 𝜓 then there exists 𝑘 ∈ N such

that, by (7), (𝑤1..)𝑘.. |= 𝜓 and for all 𝑖 < 𝑘 , (𝑤1..)𝑖 .. |= 𝜑 . It follows that for 𝑗 = 𝑘 + 1,𝑤 𝑗 .. |= 𝜓 and for all 𝑖 < 𝑗 ,𝑤𝑖 .. |= 𝜑 .

So𝑤 |= 𝜑 U 𝜓 by (7). □

Proofs of Section 4

Let |𝑓 | stand for the number of 𝑇𝑇 constructors in a transition term 𝑓 . For any 𝑞 ∈ 𝑄 , |𝑞 | = 0 and |𝑞 | = 0. Otherwise

|¬𝑓 | = 1 + |𝑓 | and |𝑓 ∧ 𝑔 | = |𝑓 ∨ 𝑔| = 1 + |𝑓 | + |𝑔|. Finally, |ite(𝛼, 𝑓 , 𝑔) | = 1 + |𝑓 | + |𝑔|.

Proof of Theorem 4.2. We prove the statements

(i) T(𝑓 ) = T(NNF(𝑓 ))
(ii) T(𝑓 ) = ∁(T(𝑓 ))

by induction over |𝑓 |. It clearly follows from the definitions that |NNF(𝑓 ) | ≤ |𝑓 | and |𝑓 | ≤ |𝑓 | that allows us to use the

IH accordingly.

Base case 𝑄 : From L(NNF(𝑞)) = L(𝑞) it follows that

T(𝑞) = D · L(𝑞) = D · L(NNF(𝑞)) = T(NNF(𝑞)).

We also have that L(𝑞) = L(¬𝑞) = ∁(L(𝑞)). Hence, by Equation 4.1(c) ,

T(𝑞) = D·L(𝑞) = D·∁(L(𝑞)) = ∁(D·L(𝑞)) = ∁(T(𝑞))

Induction case ∨: By using the definitions and the IH,

T(𝑓 ∨ 𝑔) = T(𝑓 ) ∪ T(𝑔) (IH)

= T(NNF(𝑓 )) ∪ T(NNF(𝑔)) = T(NNF(𝑓 ) ∨ NNF(𝑔)) = T(NNF(𝑓 ∨ 𝑔)) .

And we also get, by using the IH and de Morgan’s laws, that

T(𝑓 ∨ 𝑔) = T(𝑓 ∧ 𝑔) = T(𝑓 ) ∩ T(𝑔) (IH)

= ∁(T(𝑓 )) ∩ ∁(T(𝑔)) = ∁(T(𝑓 ) ∪ T(𝑔)) = ∁(T(𝑓 ∨ 𝑔)) .

Induction case ∧: Analogous to the case of ∨.

Induction case ¬: For (i) we get, by using the definitions and the IH for (ii), because |𝑓 | ≤ |𝑓 | < |¬𝑓 |,

T(NNF(¬𝑓 )) = T(𝑓 ) (IH)

= ∁(T(𝑓 )) = T(¬𝑓 )

For (ii) we get, by using the IH for (i), that

T(¬𝑓 ) = T(NNF(𝑓 )) (IH)

= T(𝑓 ) = ∁
(
∁(T(𝑓 ))

)
= ∁(T(¬𝑓 )) .
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Induction case ite(𝛼,𝑔, ℎ): By using the definitions and the IH, let [[𝛼]] = 𝐴,

T(NNF(ite(𝛼,𝑔, ℎ))) = T(ite(𝛼,NNF(𝑔),NNF(ℎ)))

= ((𝐴·D𝜔 ) ∩ T(NNF(𝑔))) ∪ ((∁(𝐴)·D𝜔 ) ∩ T(NNF(ℎ)))
(IH)

= ((𝐴·D𝜔 ) ∩ T(𝑔)) ∪ ((∁(𝐴)·D𝜔 ) ∩ T(ℎ))

= T(ite(𝛼,𝑔, ℎ))

Finally, by using the IH and 4.1(e) ,

T(ite(𝛼,𝑔, ℎ)) = T(ite(𝛼,𝑔, ℎ))

= (𝐴·D𝜔 ∩ T(𝑔)) ∪ (∁(𝐴)·D𝜔 ∩ T(ℎ))
(IH)

= (𝐴·D𝜔 ∩ ∁(T(𝑔))) ∪ (∁(𝐴)·D𝜔 ∩ ∁(T(ℎ)))
(4.1(e) )

= ∁
(
(𝐴·D𝜔 ∩ T(𝑔)) ∪ (∁(𝐴)·D𝜔 ∩ T(ℎ))

)
= ∁(T(ite(𝛼,𝑔, ℎ)))

The Theorem follows by the induction principle. □

Proofs of Section 6

Proof of Theorem 6.1. We prove the following stement for all 𝑎 ∈ D and by induction over 𝜙 ∈ LTLA :

D𝑎 (L(𝜙)) = L(𝛿 (𝜙) (𝑎)) .

We need only to consider the following core constructs. The first base case is:

D𝑎 (L(𝛼))
(10)

= (if 𝑎 ∈ [[𝛼]] then D𝜔 else ∅) (21,20)

= L(ite(𝛼,⊤,⊥) (𝑎)) (25)

= L(𝛿 (𝛼) (𝑎))

The second base case is for X because of the simple nature of the derivation rule:

D𝑎 (L(X𝜑))
(14)

= D𝑎 (D·L(𝜑)) = L(𝜑) (20)

= L(𝜑 (𝑎)) (29)

= L(𝛿 (X𝜑) (𝑎))

We have the following induction cases. For 𝜙 = 𝜑 ∨𝜓 :

D𝑎 (L(𝜙))
(11)

= D𝑎 (L(𝜑)) ∪ D𝑎 (L(𝜓 ))
(IH)

= L(𝛿 (𝜑) (𝑎)) ∪ L(𝛿 (𝜓 ) (𝑎)) (12)

= L(𝛿 (𝜑) (𝑎) ∨ 𝛿 (𝜓 ) (𝑎)) (23,27)

= L(𝛿 (𝜙) (𝑎))

For 𝜙 = 𝜑 ∧𝜓 : Analogous to the case of ∨.
For 𝜙 = ¬𝜑 :

D𝑎 (L(𝜙))
(13)

= D𝑎 (∁(L(𝜑)))
(19)

= ∁(D𝑎 (L(𝜑)))
(IH)

= ∁(L(𝛿 (𝜑) (𝑎))) (13)

= L(¬(𝛿 (𝜑) (𝑎))) (24)

= L((¬𝛿 (𝜑)) (𝑎)) (28)

= L(𝛿 (𝜙) (𝑎))
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For 𝜙 = 𝜑 U 𝜓 :

D𝑎 (L(𝜙))
(15)

= D𝑎 (L(𝜓 ) ∪ (L(𝜑) ∩ (D · L(𝜙))))

= D𝑎 (L(𝜓 )) ∪ (D𝑎 (L(𝜑)) ∩ D𝑎 (D · L(𝜙)))

= D𝑎 (L(𝜓 )) ∪ (D𝑎 (L(𝜑)) ∩ L(𝜙))
(IH)

= L(𝛿 (𝜓 ) (𝑎)) ∪ (L(𝛿 (𝜑) (𝑎)) ∩ L(𝜙))
(11,12)

= L(𝛿 (𝜓 ) (𝑎) ∨ (𝛿 (𝜑) (𝑎) ∧ 𝜙))
(20)

= L(𝛿 (𝜓 ) (𝑎) ∨ (𝛿 (𝜑) (𝑎) ∧ 𝜙 (𝑎)))
(22,23)

= L((𝛿 (𝜓 ) ∨ (𝛿 (𝜑) ∧ 𝜙)) (𝑎))
(30)

= L(𝛿 (𝜙) (𝑎))

The statement follows by the induction principle. □

Proofs of Section 7

Recall Theorem 7.5: Nonemptiness of a nondeterministic Büchi Automata B modulo A is decidable in time 𝑂 ( |B|2 +
𝑂sat

A ( |B|)).

Proof. Let B = (A, 𝑄, 𝑞0, 𝜌, 𝐹 ). For each 𝑞 ∈ 𝑄 consider the transition term 𝜌 (𝑞). Replace all the nested conditionals
ite(𝛼, 𝑓 , ite(𝛽, 𝑔, ℎ)) in 𝜌 (𝑞) equivalently by ite(𝛼, 𝑓 ,⊥) ∨ ite(~𝛼 & 𝛽,𝑔,⊥) ∨ ite(~𝛼 & ~𝛽, ℎ,⊥). Analogously for

ite(𝛼, ite(𝛽, 𝑔, ℎ), 𝑓 ). Then remove all the disjuncts ite(𝛼, 𝑞,⊥) such that 𝛼 is unsatisfiable inA. The resulting transition

function, say 𝜌′ is such that 𝜌′ (𝑞) ≡ 𝜌 (𝑞) for all 𝑞 ∈ 𝑄 and the size of 𝜌′ is still linear in the size of 𝜌 . Moreover, without

loss of generality, for all 𝑞 ∈ 𝑄 , 𝜌′ (𝑞) = ∨
𝑖<𝑛 ite(𝛼𝑖 , 𝑞𝑖 ,⊥) for some 𝑛 ≤ |𝑄 | and where each 𝛼𝑖 is satisfiable so that all

the target states are indeed reachable from 𝑞. Let 𝑛 = |B|.
It follows that the overall cost of deciding satisfiability of the predicates above in A is 𝑂sat

A (𝑛) because there are
linearly many branches in any nested conditional.

Now treat all 𝛼 ∈ Ψ that occur in 𝜌′ as a finite alphabet Σ. It follows that the size of Σ is also linear in 𝑛. Let

𝐴 = (Σ, 𝑄, 𝑞0, 𝜎, 𝐹 ) be the classical nondeterministic Büchi automaton such that, for all 𝑞 ∈ 𝑄 and 𝛼 ∈ Σ, 𝜎 (𝑞, 𝛼) = {𝑝 |
ite(𝛼, 𝑝,⊥) ∈ 𝜌′ (𝑞)}. One can show that 𝐴 is nonempty iff B is nonempty.

We know from [19, 20] that nonemptiness of 𝐴 is decidable in time 𝑂 ( |Σ| |𝑄 |) thus 𝑂 (𝑛2), that is, although linear in

the size of 𝑄 , but where the size of the alphabet in [19, 20] is treated as a constant whereas here it depends linearly on

the size of B. In summary, nonemptiness of B is decidable in time 𝑂 (𝑛2 +𝑂sat

A (𝑛)). □

Proofs of Section 8

Recall Theorem 8.1: For all 𝜙 ∈ LTLA and 𝑞 ∈ 𝑄Bex

𝜙
: LBex

𝜙
(𝑞) = L(𝑞).

Proof. Let Bex

𝜙
= (A, 𝑄, 𝜙, 𝜌, 𝐹 ). Proof is by induction over the size |𝑞 | of 𝑞 ∈ 𝑄 . Observe that for 𝛼 ∈ ΨA ,

|𝛼 | = |~𝛼 | = 1, i.e., all predicates of A are treated as atomic units. We abbreviate LBex

𝜙
(𝜓 ) by L(𝜓 ).
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Base case 𝑞 = 𝛼 ∈ ΨA : Observe that L(⊤) = D𝜔 and L(⊥) = ∅ because ⊤ ∈ 𝐹 and ⊥ ∉ 𝐹 and 𝜌 (⊤) = ⊤ and

𝜌 (⊥) = ⊥, so ⊤ is visited infinitely often in Bex

𝜙
. Then

𝑤 ∈ L(𝑞)
(Thm 7.2)

⇔ 𝑤1.. ∈ L(𝜌 (𝑞) (𝑤0))
(25)

⇔ 𝑤1.. ∈ L(ite(𝛼,⊤,⊥) (𝑤0))
(21)

⇔ 𝑤1.. ∈ L(if𝑤0 ∈ [[𝛼]] then ⊤ else ⊥) ⇔ 𝑤 ∈ [[𝛼]] ·D𝜔 ⇔ 𝑤 ∈ L(𝑞)

Induction case 𝑞 = X𝜓 : Then

𝑤 ∈ L(𝑞)
(Thm 7.2)

⇔ 𝑤1.. ∈ L(𝜌 (𝑞) (𝑤0))
(29)

⇔ 𝑤1.. ∈ L(𝜓 (𝑤0))
(20)

⇔ 𝑤1.. ∈ L(𝜓 )
(IH)

⇔ 𝑤1.. ∈ L(𝜓 )
(5)

⇔ 𝑤 ∈ L(𝑞)

Induction case 𝑞 = 𝜑 ∧𝜓 : Then𝑤 ∈ L(𝑞)
(36)

⇔ 𝑤 ∈ L(𝜑) ∩ L(𝜓 )
(IH)

⇔ 𝑤 ∈ L(𝜑) ∩ L(𝜓 )
(2)

⇔ 𝑤 ∈ L(𝑞).

Induction case 𝑞 = 𝜑 ∨𝜓 : Then𝑤 ∈ L(𝑞)
(35)

⇔ 𝑤 ∈ L(𝜑) ∪ L(𝜓 )
(IH)

⇔ 𝑤 ∈ L(𝜑) ∪ L(𝜓 )
(3)

⇔ 𝑤 ∈ L(𝑞).
Induction case 𝑞 = 𝜑 U 𝜓 : Then 𝜌 (𝑞) = ˆ𝛿 (𝑞) = ˆ𝛿 (𝜓 ) ∨ ( ˆ𝛿 (𝜑) ∧ 𝑞) = 𝜌 (𝜓 ) ∨ (𝜌 (𝜑) ∧ 𝑞).

Direction ⊆: Let 𝑤 ∈ L(𝑞) and let 𝜏 ∈ R𝑤 (𝑞) be accepting; 𝜏 cannot visit 𝑞 infinitely often in any branch

of 𝜏 or else it would keep choosing the right disjunct (𝜌 (𝜑) ∧ 𝑞), that would create one branch 𝛽 labeled

by 𝑞 that would not be accepting because 𝑞 ∉ 𝐹 . Therefore, 𝜏 can only follow (𝜌 (𝜑) ∧ 𝑞) along 𝛽 a finite

number of steps 𝑗 and then choose the left disjunct 𝜌 (𝜓 ). Along that branch, simultaneously in each step 𝑖

for 𝑖 < 𝑗 , 𝑤𝑖+1.. ∈ L(𝜌 (𝜑) (𝑤𝑖 )) must hold, implying, by Theorem 7.2, that 𝑤𝑖 .. ∈ L(𝜑). Finally, at step 𝑗 ,

𝑤 𝑗+1.. ∈ L(𝜌 (𝜓 ) (𝑤 𝑗 )) must hold, implying, by Theorem 7.2, that 𝑤 𝑗 .. ∈ L(𝜓 ). By using the IH it follows

that for all 𝑖 < 𝑗 , 𝑤𝑖 .. ∈ L(𝜑) and 𝑤 𝑗 .. ∈ L(𝜓 ). In other words, there exists 𝑗 ∈ N such that 𝑤 𝑗 .. |= 𝜓 and

∀𝑖 < 𝑗 : 𝑤𝑖 .. |= 𝜑 . Therefore, by (7),𝑤 |= 𝜑 U 𝜓 , and so𝑤 ∈ L(𝑞).
Direction ⊇: Let𝑤 ∈ L(𝑞). By reversing the steps in the above argument by using the IH and Theorem 7.2 one

can construct an accepting run for𝑤 in R𝑤 (𝑞) showing that𝑤 ∈ L(𝑞).
Induction case 𝑞 = 𝜑 R 𝜓 : Then 𝜌 (𝑞) = ˆ𝛿 (𝑞) = ˆ𝛿 (𝜓 ) ∧ ( ˆ𝛿 (𝜑) ∨ 𝑞) = 𝜌 (𝜓 ) ∧ (𝜌 (𝜑) ∨ 𝑞).

Direction ⊆: Let𝑤 ∈ L(𝑞) and let 𝜏 ∈ R𝑤 (𝑞) be accepting. There are two cases.

(1) 𝜏 never chooses the left disjunct 𝜌 (𝜑) and thus has the label 𝑞 ∈ 𝐹 in all the branches of the run occuring

infinitely often. Then simultaneously, for all 𝑗 ∈ N,𝑤 𝑗+1.. ∈ L(𝜌 (𝜓 ) (𝑤 𝑗 )), which by Theorem 7.2, implies

that𝑤 𝑗 .. ∈ L(𝜓 ) and by the IH that𝑤 𝑗 .. ∈ L(𝜓 ). We now have that ∀𝑗 ∈ N : 𝑤 𝑗 .. |= 𝜓 .

(2) 𝜏 chooses the left disjunct 𝜌 (𝜑) at some step 𝑗 . Then ∀𝑖 < 𝑗 : 𝑤𝑖+1.. ∈ L(𝜌 (𝜓 ) (𝑤𝑖 )), that by Theorem 7.2,

implies that𝑤𝑖 .. ∈ L(𝜓 ), and by the IH, that𝑤𝑖 .. ∈ L(𝜓 ). We also have that, at step 𝑗

𝑤 𝑗+1.. ∈ L((𝜌 (𝜓 ) ∧ 𝜌 (𝜑)) (𝑤 𝑗 ))
(22)

⇔ 𝑤 𝑗+1.. ∈ L(𝜌 (𝜓 ) (𝑤 𝑗 ) ∧ 𝜌 (𝜑) (𝑤 𝑗 ))
(36)

⇔ 𝑤 𝑗+1.. ∈ L(𝜌 (𝜓 ) (𝑤 𝑗 )) ∩ L(𝜌 (𝜑) (𝑤 𝑗 ))
(Thm 7.2)

⇔ 𝑤 𝑗 .. ∈ L(𝜓 ) ∩ L(𝜑)
(IH)

⇔ 𝑤 𝑗 .. ∈ L(𝜓 ) ∩ L(𝜑)

It follows that there exists 𝑗 such that for all 𝑖 ≤ 𝑗 ,𝑤𝑖 .. |= 𝜓 and𝑤 𝑗 .. |= 𝜑 .

Both cases imply, by using (6), that𝑤 |= 𝜑 R 𝜓 and so𝑤 ∈ L(𝑞).
Direction ⊇: By reversing the steps in the above argument, using the IH and Theorem 7.2.
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The statement follows by the induction principle. □

Proofs of Section 8.1

Recall Lemma 8.7: If 𝜉 is suspendable, ⋄ ∈ {∧,∨}, and ♦ ∈ {U,R} then L((𝜑 ♦ 𝜓 ) ⋄ 𝜉) = L((𝜑 ⋄ 𝜉) ♦ (𝜓 ⋄ 𝜉)).

Proof. The cases are proved separately. The proof also makes use of Boolean laws of distributivity, and the properties

D·𝑋 ∪ D·𝑌 = D·(𝑋 ∪ 𝑌 ) and D·𝑋 ∩ D·𝑌 = D·(𝑋 ∩ 𝑌 ) for all 𝑋,𝑌 ⊆ D𝜔 .

Case ♦ = U and ⋄ = ∧. Let 𝜙 = (𝜑 U 𝜓 ) ∧ 𝜉 , we get, by using (15) and (11) and L(𝜉) = D·L(𝜉), that

L(𝜙) = (L(𝜓 ) ∪ (L(𝜑) ∩ D·L(𝜑 U 𝜓 ))) ∩ L(𝜉) = (L(𝜓 ) ∩ L(𝜉)) ∪ (L(𝜑) ∩ L(𝜉) ∩ D·L(𝜉) ∩ D·L(𝜑 U 𝜓 ))

= L(𝜓 ∧ 𝜉) ∪ (L(𝜑 ∧ 𝜉) ∩ D·(L(𝜉) ∩ L(𝜑 U 𝜓 ))) = L(𝜓 ∧ 𝜉) ∪ (L(𝜑 ∧ 𝜉) ∩ D·L(𝜙))

Case ♦ = R and ⋄ = ∧. Let 𝜙 = (𝜑 R 𝜓 ) ∧ 𝜉 , we get, by (16), (11), and L(𝜉) = D·L(𝜉), that

L(𝜙) = (L(𝜓 ) ∩ (L(𝜑) ∪ D·L(𝜑 R 𝜓 ))) ∩ L(𝜉) = L(𝜓 ) ∩ L(𝜉) ∩ ((L(𝜑) ∩ L(𝜉)) ∪ (D·L(𝜑 R 𝜓 ) ∩ L(𝜉)))

= L(𝜓 ∧ 𝜉) ∩ (L(𝜑 ∧ 𝜉) ∪ (D·L(𝜑 R 𝜓 ) ∩ D·L(𝜉))) = L(𝜓 ∧ 𝜉) ∩ (L(𝜑 ∧ 𝜉) ∪ D·L(𝜙))

Case ♦ = U and ⋄ = ∨. Let 𝜙 = (𝜑 U 𝜓 ) ∨ 𝜉 , we get, by using (15) and (12) and L(𝜉) = D·L(𝜉), that

L(𝜙) = (L(𝜓 ) ∪ (L(𝜑) ∩ D·L(𝜑 U 𝜓 ))) ∪ L(𝜉) = (L(𝜓 ) ∪ L(𝜉)) ∪ ((L(𝜑) ∪ L(𝜉)) ∩ (D·L(𝜑 U 𝜓 ) ∪ L(𝜉)))

= L(𝜓 ∨ 𝜉) ∪ (L(𝜑 ∨ 𝜉) ∩ (D·L(𝜑 U 𝜓 ) ∪ D·L(𝜉))) = L(𝜓 ∨ 𝜉) ∪ (L(𝜑 ∨ 𝜉) ∩ D·L(𝜙))

Case ♦ = R and ⋄ = ∨. Let 𝜙 = (𝜑 R 𝜓 ) ∧ 𝜉 , we get, by (16), (12), and L(𝜉) = D·L(𝜉), that

L(𝜙) = (L(𝜓 ) ∩ (L(𝜑) ∪ D·L(𝜑 R 𝜓 ))) ∪ L(𝜉) = (L(𝜓 ) ∪ L(𝜉)) ∩ ((L(𝜑) ∪ L(𝜉)) ∪ (D·L(𝜑 R 𝜓 ) ∪ D·L(𝜉)))

= L(𝜓 ∨ 𝜉) ∩ (L(𝜑 ∨ 𝜉) ∪ D·(L(𝜑 R 𝜓 ) ∪ L(𝜉))) = L(𝜓 ∨ 𝜉) ∩ (L(𝜑 ∨ 𝜉) ∪ D·L(𝜙))

Now consider 𝜙 ′ = (𝜑 ⋄ 𝜉) U (𝜓 ⋄ 𝜉) in the U-cases above. Then by Equation (15) we get that

L(𝜙 ′) = (L(𝜓 ⋄ 𝜉) ∪ (L(𝜑 ⋄ 𝜉) ∩ D·L(𝜙 ′))).

Next consider 𝜙 ′ = (𝜑 ⋄ 𝜉) R (𝜓 ⋄ 𝜉) in the R-cases above. Then by Equation (16) we get that

L(𝜙 ′) = (L(𝜓 ⋄ 𝜉) ∩ (L(𝜑 ⋄ 𝜉) ∪ D·L(𝜙 ′))) .

The equations for 𝜙 and 𝜙 ′ are semantically identical in all cases, implying that L(𝜙) = L(𝜙 ′) in all cases. □

Recall Theorem 8.8: If 𝜙 is a state then for any suspendable state 𝜉 and ⋄ ∈ {∧,∨}, if 𝑞 = 𝜙 ⋄ 𝜉 is included as a state of
B with the transition term 𝜌 (𝑞) = 𝛿 (𝑞) with the variant of 𝛿 then LB (𝑞) = L(𝑞).

Proof. By induction over 𝜙 , using Theorem 7.2, LL-invariance of the existing states, and Lemma 8.7.

Base case 𝜙 = 𝛼 ∈ Ψ. Then 𝑎𝑤 ∈ L(𝛼 ∧ 𝜉) iff 𝑤 ∈ L(𝜌 (𝛼 ∧ 𝜉) (𝑎)) iff 𝑎 ∈ [[𝛼]] and 𝑎𝑤 ∈ L(𝜉) iff 𝑎 ∈ [[𝛼]] and
𝑎𝑤 ∈ L(𝜉) iff 𝑎𝑤 ∈ L(𝛼 ∧ 𝜉). The case for ⋄ = ∨ is analogous.

Induction case 𝜙 = X𝜓 . Then 𝑎𝑤 ∈ L((X𝜓 ) ∧ 𝜉) iff𝑤 ∈ L(𝜌 ((X𝜓 ) ∧ 𝜉) (𝑎)) iff𝑤 ∈ L((𝜓 ∧ 𝜉) (𝑎)) iff𝑤 ∈ L(𝜓 ∧ 𝜉)
iff (by IH)𝑤 ∈ L(𝜓 ∧ 𝜉) iff (by 𝜉 suspendable) 𝑎𝑤 ∈ L((X𝜓 ) ∧ 𝜉). The case for ⋄ = ∨ is analogous.
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Induction case 𝜙 = 𝜑 ∨𝜓 . Then𝑤 ∈ L((𝜑 ∨𝜓 ) ∧ 𝜉) iff𝑤 ∈ L(𝜑 ∧ 𝜉) ∪ L(𝜓 ∧ 𝜉) iff (by IH)𝑤 ∈ L(𝜑 ∧ 𝜉) ∪ L(𝜓 ∧ 𝜉)
iff𝑤 ∈ L((𝜑 ∨𝜓 ) ∧ 𝜉). The case for 𝜙 = 𝜑 ∧𝜓 as well as the case for ⋄ = ∨ are analogous.

Induction case𝜙 = 𝜑 U 𝜓 . Let 𝑞 = 𝜙⋄𝜉 . Then 𝜌 (𝑞) = 𝜌 (𝜓 ⋄𝜉)∨(𝜌 (𝜑⋄𝜉)∧𝑞). We have thatL(𝑞) = L((𝜑⋄𝜉) U (𝜓 ⋄𝜉))
and by IH L(𝜓 ⋄ 𝜉) = L(𝜓 ⋄ 𝜉) and L(𝜑 ⋄ 𝜉) = L(𝜑 ⋄ 𝜉). It follows that L(𝑞) = L((𝜑 ⋄ 𝜉) U (𝜓 ⋄ 𝜉)), but we also know

that L(𝑞) = L((𝜑 ⋄ 𝜉) U (𝜓 ⋄ 𝜉)) by Lemma 8.7. The state 𝑞 is nonaccepting, essentially 𝑞 is (𝜑 ⋄ 𝜉) U (𝜓 ⋄ 𝜉).

Induction case 𝜙 = 𝜑 R 𝜓 . Let 𝑞 = 𝜙 ⋄ 𝜉 . Then 𝜌 (𝑞) = 𝜌 (𝜓 ⋄ 𝜉) ∧ (𝜌 (𝜑 ⋄ 𝜉) ∨ 𝑞). Analogous to the case of U by using

Lemma 8.7 but here 𝑞 is accepting, essentially 𝑞 is (𝜑 ⋄ 𝜉) R (𝜓 ⋄ 𝜉).
The statement now follows by the induction principle. □
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