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1 Introduction

Large-scale generative models are increasingly being used in tooling applications. As one prominent
example, code generation models, such as Copilot [8]], CodeWhisperer [[1], and AlphaCode [7],
recommend code completions within an IDE to help programmers author software. However, since
these models are imperfect, their erroneous recommendations can introduce bugs or even security
vulnerabilities into a code base if not overridden by a human user [14]. In order to override such
errors, users must first detect them. This can be challenging as even experts may be susceptible
to automation bias and automation-induced complacency [13}[17]]. To help users detect errors in
medical [5,|11], legal 2| 9], and other high-stakes domains, conveying Al uncertainty and providing
explanations has become of paramount importance [4} 3]]. However, prior scenarios focus on decision
support (e.g., a single classification or diagnosis), and it is not clear how to translate these strategies
to generative scenarios where every generation may include dozens or hundreds of small decisions
(e.g., each token of recommended code). Likewise, it is unclear how best to convey the uncertainty of
generative models to human operators or if doing so will positively impact human-AlI collaboration.

To make progress on these questions, through a mixed-methods, preregistered (https://osf.io/tymah)
study with N = 30 participants, we explore the value of token-level highlighting in a code generation
scenario. Similar to in-line spell-check in text editors, highlighted tokens are meant to draw operator
attention to regions of the code that would benefit most from human oversight. In our study, we
explore two possible highlighting strategies, together with a baseline without highlights. Our first
strategy highlights tokens with lowest probabilities, as output directly from the underlying language
model. The intuition is that low-probability sequences are non-conventional, and therefore may
indicate an error. This highlighting strategy has been proposed in past work [[15] and is implemented
in OpenAlT’s online “Playground” interface [12]. Conversely, our second highlighting strategy directly
predicts the need for intervention by predicting which tokens of a suggestion are likely to be edited.
For this paper, we learn an edit model for a closed-world set of programming tasks, but argue that
there are clear paths to generalize the approach by learning from existing large-scale data, including
telemetry. From our study, we find the edit model strategy results in significantly faster task
completion time, significantly more localized edits, and was strongly preferred by participants.
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Figure 1: (a): Time spent on task (max. 10 mins). (b): Survival of tokens in each condition, separated
by whether the token was highlighted or not. (¢): Self-reported preference for highlights.

2 Study and Results

We conducted an interview study with 30 participants. All were employees of a large technology
company located in the United States and have experience coding in Python. Participation was
voluntary and participants were paid $50. Interviews lasted approximately one hour. Participants
were asked to complete three coding tasks, selected from Leetcode’s “easy” setting [10], with three
Al-powered code completion tools. In actuality, all three tools used OpenAI’s Davinci-002 Codex
model [6], and differed only in how completions were presented: One tool showed only the generated
code completion (Prediction only). Another showed the completion with highlights on tokens that
were most uncertain (threshold at 71%) as output by Codex (Generation probability). The final
tool highlighted tokens that were most likely to be edited (threshold at 66%) according to our edit
model (Edit model). The edit model was built using data collected from nine coders in a preliminary
data collection phase: Coders were asked to edit the Codex output until the task was completed
properly. We chose the highlighting thresholds such that the total number of highlights shown across
all three tasks for each condition were equivalent. The order of tasks as well as assignments of tools
to tasks were randomized. Participants were able to run their code for debugging, and also run a
set of provided unit tests. Once participants were satisfied with their solution, or after a limit of 10
minutes, participants were asked a series of questions rating their experience.

Our results show that token-level highlighting meaningfully impacts user behavior, and further that the
choice of highlighting strategy yields critical differences. For instance, participants were fastest in the
edit highlighting condition (x4 = 8.59 minutes), and slowest in the generation probability condition
(r = 9.61 minutes), with the prediction only condition occupying the middle-ground (u = 9.27
minutes) (Fig[Th). The difference between the two highlighting conditions is highly significant
(p = 0.003), while the difference between the edit condition and the prediction only condition shows
a promising trend in this direction (p = 0.06). Echoing this finding, our results also indicate that
our edit model steers people towards making more precise edits (Fig[Tp). Non-highlighted tokens
are significantly more likely to remain untouched by the participant in the edit model condition
(Usurvives = 0.87), than in both the generation probability condition (fsyrvives = 0.81, p < .0001),
and the prediction only condition ((syrvives = 0.79, p < .0001). Conversely, tokens that are
highlighted in the edit model condition survive significantly less often (tsyrvives = 0.35) than tokens
highlighted in the generation probability condition (ftsyrvives = 0.74, p < .0001), meaning that the
edit model is a stronger signal of what will be edited by people. Finally, this preference is echoed in
participants’ subjective ratings to the following 7-point Likert items: “I found the AI’s highlights
helpful in determining what to edit”; “I would be willing to pay to access the Al’s highlights”; and “I
found the AI'’s highlights distracting” (reverse coded). Here we find an average response of 3.94 for
the edit conditions vs 2.88 for generation probability condition (Fig[Ik), and this difference is again
significant with p = 0.001.

3 Conclusion and Future Work

Together our findings demonstrate that highlighting appropriate tokens in generated code can mean-
ingfully impact and improve operator behavior, and point a clear path in favor of edit models for
this purpose. However, important research questions and challenges remain. First, our work relies
on a closed-world edit model, learned on the very Al-generations evaluated in our study. This
clearly represents a best-case perfectly-calibrated scenario. It remains to be demonstrated that we can



learn an open-world general-purpose edit model, and that such a model would similarly impact user
interaction. Fortunately, systems like GitHub Copilot already consider edits to Al-generations as a
form of performance metric [18]] and this product-scale data stream could be directly repurposed to
this end. Secondly, it remains to be demonstrated that the observed benefits (task completion time,
targeted edits, preference), translate to important high-level outcomes such as more accurate human
oversight and reduced automation bias. However, past work has shown that reducing the effort needed
to interpret model explanations, or expressions of uncertainty, can increase the likelihood of people
overriding Al-induced errors [[16]. We hope to explore these questions in immediate future work.
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