
Tiger: Transferable Interest Graph Embedding for Domain-Level
Zero-Shot Recommendation

Jianhuan Zhuo∗
zhuojianhuan@iie.ac.cn

Institute of Information Engineering,
Chinese Academy of Sciences &

School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China

Jianxun Lian
jianxun.lian@outlook.com
Microsoft Research Asia

Beijing, China

Lanling Xu
xulanling_sherry@163.com
Gaoling School of Artificial

Intelligence, Renmin University of
China

Beijing, China

Ming Gong
Linjun Shou
Daxin Jiang

migon@microsoft.com
lisho@microsoft.com
djiang@microsoft.com
Microsoft STC Asia

Beijing, China

Xing Xie
xingx@microsoft.com
Microsoft Research Asia

Beijing, China

Yinliang Yue†
yueyinliang@iie.ac.cn

Institute of Information Engineering,
Chinese Academy of Sciences &

School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China

ABSTRACT
Recommender systems play a significant role in online services and
have attracted wide attention from both academia and industry.
In this paper, we focus on an important, practical, but often over-
looked task: domain-level zero-shot recommendation (DZSR). The
challenge of DZSR mainly lies in the absence of collaborative behav-
iors in the target domain, which may be caused by various reasons,
such as the domain being newly launched without existing user-
item interactions, or users’ behaviors being too sensitive to collect
for training. To address this challenge, we propose a Transferable
InterestGraph Embedding technique forRecommendations (Tiger).
The key idea is to connect isolated collaborative filtering datasets
with a knowledge graph tailored to recommendations, then prop-
agate collaborative signals from public domains to the zero-shot
target domain. The backbone of Tiger is the transferable interest
extractor, which is a simple yet effective graph convolutional net-
work (GCN) aggregating multiple hops of neighbors on a shared
interest graph. We find that the bottom layers of GCN preserve
more domain-specific information while the upper layers represent
universal interest better. Thus, in Tiger, we discard the bottom lay-
ers of GCN to reconstruct user interest so that collaborative signals
can be successfully propagated to other domains, and retain the
bottom layers of GCN to include domain-specific information for
items. Extensive experiments with four public datasets demonstrate
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that Tiger can effectively make recommendations for a zero-shot
domain and outperform several alternative baselines.
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1 INTRODUCTION
Recommender systems play a critical role for online platforms in
connecting users with their interested items. In the past decades,
numerous methods have been proposed around how to leverage
users’ historical behaviors for better recommendations, such as
collaborative filtering [13, 20], feature interactions [10, 29], sequen-
tial recommendations [15, 19], and multi-interest user modeling
[21, 24]. However, the line of research on how to cold start a recom-
mender system is almost blank. Different from user/item cold-start
problems [1, 33, 50] which make recommendations for new users
or items in a mature domain, recommender system cold-starting
means the target domain is brand new without any user-item in-
teractions. In this paper, we call the task of recommender system
cold-starting as domain-level zero-shot recommendation.

The domain-level zero-shot recommendation (DZSR) is an im-
portant and practical task, typical applications of which include: (1)
when an online service provider intends to launch a new domain
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that needs recommendations, e.g., a news provider such as MSN
wants to insert a few personalized advertisements into the content
feed. It only has user-news interactions but no user-ads interactions
just yet; a video-focused content provider such as TikTok wants to
expand its business to e-commerce recommendations, but currently
it does not have user-commodity interaction logs. (2) when the
target domain’s user behavior data is too sensitive to collect for
model training since the strict privacy protection policy. Hence,
users’ data, such as email history or passwords from their input
methods, can only be used on their own devices for inferring but
not be uploaded to the server for model training.

In order to provide high-quality recommendations for a zero-
shot domain, a promising and intuitive way is to represent users’
preference by their behaviors from some available source domains,
and represent target domain’s items with attributes. The key point
lies in finding an intermediary, so that users’ preference can be
propagated to the target domain in a zero-shot manner. Some earlier
works [7, 44, 46] use text as the intermediary, since language is a
kind of universal knowledge that can be shared across domains.
However, the drawbacks of text as intermediary are mainly two-
fold: (1) recommendations based on language models demonstrate
strong linguistics bias [46]. In many cases, items’ true meaning
cannot be reflected by their literal name. For example, 12 monkeys
is actually a thriller and science fiction film; Fantastic Beasts and
Where to Find Them turns out to be a prequel to the Harry Potter
series. (2) learning a text encoder for universal item representation
still requires specific domains as proxy supervised learning tasks
[7, 44], which is prone to overfitting the training signals and makes
it hard to propagate collaborative signals to zero-shot domains.

In this paper, we advocate to utilize knowledge graph (KG) as the
intermediary for user preference propagation. The basic assumption
is that, from the perspective of common sense, users’ behaviors are
universally connected and associated by high-level interest, so that
users’ preference can be propagated even though the item sets of
original domains do not have direct overlap, which is intuitively
reasonable. A KG, which contains massive structural and semantic
triples to connect entities, can serve as a type of common knowledge
to bridge items. For example, for two domains, movie and book,
their items are closely connected by high-level concepts such as
Science Fiction, Romance, and Historical. However, traditional KG
embedding methods such as TransE [3] and TransR [41] are trained
towards reconstructing the structural information of a KG. As a
result, users’ collaborative signals are neither incorporated nor
propagated on the graph. A proper KG embedding model for our
task should possess these properties: (P1: recommendation-oriented)
the model can reflect preference similarity, e.g., like-minded users’
interacted items should be similar in the embedding space; (P2:
preference propagation) the generated embeddings are universal and
transferable, so that collaborative preference can be propagated
to different domains which are connected on the KG; (P3: domain
adaptation) the model can perform domain adaptation, i.e., when
making recommendations for a target domain, distinctive patterns
of the target domain can be preserved.

To this end, we propose Transferable Interest Graph Embedding
forRecommendations (Tiger) to address the domain-level zero-shot
problem. The backbone of Tiger is a simple yet effective graph con-
volutional network (GCN) over a KG, which aggregates multiple

hops of neighbors on the KG to represent an entity. The GCN is
trained with datasets of collaborative user-item interactions, which,
on the one hand, satisfies the recommendation-oriented property;
on the other hand, has the flexibility to absorb any public dataset
derived from real-world recommender systems for facilitating train-
ing, as long as items in the dataset can be linked to the KG. The
most challenging part for Tiger is how to ensure the preference
propagation property. We empirically find that a naive GCN cannot
perform zero-shot inference, which tends to fit in-domain relation-
ship well but fails to learn transferable information. To overcome
this problem, we propose to discard bottom layers of GCN and
only aggregate high-level ones to reconstruct user interest. As for
items, we retain the bottom layers of GCN so that item embeddings
are a combination of universal patterns (which is carried by the
high-level layers of GCN) and domain-specific patterns (which is
carried by the bottom layers of GCN), which eventually fulfills the
domain adaptation property. To verify the effectiveness of Tiger,
we conduct extensive experiments with four public datasets, with
several interesting observations highlighted as follows:
(1) Bottom-layer discarding is the key to propagate collaborative

signals to a boarder range of the shared interest graph, resulting
in better transferring capability. Within a reasonable threshold
(such as 4 in Amazon Movie dataset), the performance improves
as the number of discarded layers increase.

(2) Unlike traditional GCNs which quickly fall into over-smoothing
problems, in Tiger, the item GCN equipped with the layer dis-
carding mechanism can go much deeper, e.g., in the Amazon
Movie dataset, the number of GCN layers can be as many as 10.

(3) Out-domain dataset, in which both users and items have no
overlap with the source and target domain, can be easily ad-
sorbed by Tiger to further improve zero-shot performance.

(4) Tiger’s zero-shot performance can approach about 50% accuracy
of the oracle model in Hit@100, which is far better than a ran-
dom guess (4% of oracle model) and significantly outperforms
several content-based baselines.

(5) Besides the zero-shot scenario, Tiger can also improve warmed-
up recommendation, thanks to its ability in encoding collabora-
tive signals from different domains into the interest graph.
The main contributions of this paper are summarized as follows:

• Wehighlight the importance aswell as challenges of domain-level
zero-shot recommender systems. To the best of our knowledge,
our proposed Tiger is the first work to pre-train an interest graph
for zero-shot recommendation.

• We design simple yet effective modules in Tiger, including trans-
ferable interest extractor, user interest reconstructor and domain
adaptation, to facilitate information propagation to new domains.

• We conduct extensive experiments with four real-world datasets.
Experimental results demonstrate that Tiger can achieve reason-
able zero-shot recommendations and significantly outperform
several competitive baselines 1.

2 PRELIMINARY
In this paper, we formulate the domain-level zero-shot recommen-
dation (DZSR) task as follows: In DZSR, we consider two kinds of

1https://github.com/JianhuanZhuo/Tiger-Code-and-Dataset-for-CIKM2022
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domains, denoted as target domain T and source domain S. The
target domain T is the cold-start goal of the DZSR task, while the
source domain S is used to characterize the potential interest of
users. For simplicity,D ∈ {T ,S} is used to indicate one of domains
involved throughout this paper. User sets and item sets involved are
denoted asUD andVD respectively, where the user set of target
domain is the subset of source domain, i.e., UT ⊂ US , but item
sets on two domains are totally different, i.e.,VT ∩VS = ∅.

All possible interaction set between users and items is ID =

UD ×VD , where × denotes Cartesian product. Among them, the
observed interaction history of users in D domain are collected as
P+
D = {(𝑢, 𝑣) |𝑦 (𝑢, 𝑣) = 1, 𝑢 ∈ U, 𝑣 ∈ VD } ⊂ ID , where 𝑦 : ID →

{0, 1} is the labeling function to indicate if the user has interacted
with the item (e.g. view, click, purchase). Oppositely, the unobserved
interactions are collected as P−

D = {(𝑢, 𝑣) |𝑦 (𝑢, 𝑣) = 0, 𝑢 ∈ U, 𝑣 ∈
VD } ⊂ ID . For convenience, HD

𝑢 = {𝑣 |𝑦 (𝑢, 𝑣) = 1, 𝑣 ∈ VD } is
used to indicate the item set that user 𝑢 has interacted in domain
D. Interactions on the target domain are also collected to evaluate
the performance of models under the DZSR setting.

The aim of DZSR is to make cold-start recommendations on the
target domain by absorbing universal and transferable knowledge
from the source domain. To distinguish the DZSR task from other
related tasks introduced in Section 5, a comparison is conducted
in Table 1, from which we can see that the unique characteristic of
DZSR is that user-item interactions are totally unavailable in the
target domain in the training stage.

Table 1: A comparison of DZSR with related tasks.

Task interactions used to train
source domain target domain

In-domain Rec. [30, 34, 39] × ✓
Cold-start Rec. [1, 26, 33] ✓ partial
Cross-domain Rec. [25, 51] ✓ ✓
Domain-level ZSR [this paper] ✓ ×

3 METHODOLOGY
In this section, we introduce our solution to DZSR based on training
transferable representation with the help of knowledge graphs.
We start by introducing the overall framework of interest graph
embedding, and then we will describe the key components in detail.

3.1 Interest Graph Framework
As items from different domains have no overlaps, the critical chal-
lenge of DZSR is how to guide the model to learn users’ transferable
interest embeddings beyond the concrete item-relevant preference
limited to the source domain. The “transferable” means the gen-
erated embedding from the source domain should be generalized
enough to model items in the target domain. For example, if a user
has interacted with the book Harry Potter and the Philosopher’s
Stone, models under the DZSR task should capture the user’s inter-
est like “things about Wizarding World”. The high-level interest is

KG connected among items

Figure 1: Interest graph: connecting isolated user-item
datasets with an knowledge graph

suitable for cold-start domains, which realizes the zero-shot rec-
ommendation of Fantastic Beasts and Where to Find in the movie
domain or Hedwig’s Theme in the music domain.

Hence, we advocate the interest graph framework, a KG-based
universal framework for the domain-level zero-shot recommenda-
tion. The core of our framework is to connect items of all datasets
by a tailored knowledge graph (KG) and build the transferable em-
beddings of users’ interest from the common-sense perspective.
Therefore, the interest graph can be used to propagate users’ pref-
erences even though the item sets of original domains do not have
overlap. To achieve this objective, we introduce a KG as the interme-
diary for user preference propagation as the dashed box in Figure 1.
Concretely, knowledge graph G is provided in the form of entity-
relation-entity triplet set G = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑟 ∈ E, 𝑟 ∈ R}, where
(ℎ, 𝑟, 𝑡) denotes the head entity ℎ and the tail entity 𝑡 are connected
by a relation 𝑟 . To describe the attributes of items with rich side
information of KG, we introduce an alignment set A = {(𝑣, 𝑒) |𝑣 ∈
V, 𝑒 ∈ E}, where (𝑣, 𝑒) denotes that item 𝑣 in recommendations
and entity 𝑒 in KG is the same object conceptually.

The aim of our interest graph framework becomes to establish
the prediction function 𝑦 = 𝑓 (T |G,S,Θ∗), where parameter Θ∗ is
estimated only from the source domain S as Eq. (1). In other words,
the collaborative signals can be effectively propagated from source
domains to the zero-shot target domain.

Θ∗ = argmin
Θ

L(𝑦 (S),S;G) (1)

To train the parameter Θ∗, the interest graph framework im-
proves from two fundamental subjects: item and user. For item, we
extract the transferable representation of items by decomposing the
semantic representation into different levels and aggregating high-
order GCN layers. For user, we reconstruct the interest represen-
tation of users by transferring interests from interaction histories
in the source domain. Corresponding to the above two steps, our
framework contains two well-designed modules: the transferable
interest extractor and the user interest reconstructor. An overview
of our model is offered in Figure 2.

3.2 Transferable Interest Extractor
The transferable interest extractor aims to discover the deeper hid-
den interest carried by items, which are transferable via knowledge
graph to items in new domains. Specifically, a multi-layer GCN is
applied on items’ knowledge graph to decompose items’ semantic
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Figure 2: An overview of the proposed Tiger model

features into different levels, in which the embeddings of high-order
GCN layers that fuse higher hop neighbor entities are expected to
be more transferable.

To obtain embeddings fused with 𝐿 hop neighborhood informa-
tion, the GCN needs to perform graph convolutional operation 𝐿

times on the knowledge graph to generate 𝐿+1 refined embeddings
[z(0)
𝑖

, z(1)
𝑖

, . . . , z(𝐿)
𝑖

], where z(𝑙)
𝑖

∈ R𝑑 is the GCN output of item 𝑖

on layer 𝑙 and 𝑑 is the dimensional size of embedding. At the input
layer, we directly use the learnable embedding of an entity as the
input of the graph convolutional network:

z(0)
𝑖

= e𝑖 (2)

where e𝑖 ∈ R𝑑 is the original embedding vector of entity 𝑖 . From
1-st to 𝐿-th layers, following the traditional GCN pattern, we use
the message passing mechanism to aggregate neighborhood infor-
mation of the given node to obtain the enhanced representation.

z(𝑙)
𝑖

=
1

|N𝑖 |
∑︁
𝑗 ∈N𝑖

z(𝑙−1)
𝑗

(3)

where z(𝑙)
𝑖

∈ R𝑑 denotes the output vector of entity 𝑖 at layer 𝑙 .
With 𝐿 + 1 refined embeddings generated by GCN, we guide

the model to learn transferable interest beyond the concrete item-
relevant preference limited to the source domain. Empirically, about
98% of items in the source domain take at least two hops in KG to
connect to items in the target domain, which means the embeddings
of the low-hop GCN are too specific to be shared with the target
domain. Furthermore, the lower layers are prone to overfitting the
training signals and make it hard to effectively propagate collab-
orative signals to zero-shot domains. Hence, besides pooling all
layer output embeddings of entities as Eq. (4) to obtain the complete
semantic representation, we discard the lower output embeddings
by a hyper-parameter 𝐶 to obtain the transferable interest graph
embedding from high-order GCN layers as Eq. (5).

z∗𝑖 =
1

𝑁 + 1

𝑁∑︁
𝑗=0

z𝑗
𝑖

(4)

z#𝑖 =
1

𝑁 −𝐶 + 1

𝑁∑︁
𝑗=𝐶

z𝑗
𝑖

(5)

Since all items are linked well to the KG in the DZSR task, the
representation of item 𝑣 is directly assigned by its corresponding
entity embedding of 𝑖 in the KG, i.e., z∗𝑣 = z∗

𝑖
and z#𝑣 = z#

𝑖
.

3.3 User Interest Reconstructor
Via mining interaction histories in the source domain, the user
interest reconstructor aims to reconstruct users’ transferable in-
terest representation, which also works in the target domain for
predicting interaction behaviors. Typically, an intuitive approach
is characterizing each user as an embedding (UserAsEmb), that is,
users are represented by a learnable parameter vector:

h𝑢 = e𝑢 (6)

where e𝑢 ∈ R𝑑 . Since the target domain is unavailable during the
training stage, the single user embedding only trained in the source
domain leads to a sub-optimal result under the domain-level cold-
start setting. To narrow the semantic gap between the source and
target domain, we dynamically reconstruct the representation of
users from their historical behaviorsHS

𝑢 in the source domain S,
which can be formulated as follows:

hS𝑢 =
1

|HS
𝑢 |

∑︁
𝑣∈HS

𝑢

z#𝑣 (7)

In Eq. (7), z#𝑣 is used to reconstruct the user’s interest rather than
z∗𝑣 since bottom layers of GCN encode more item-relevant informa-
tion while high-layer ones are more general interest-relevant. For
the user representation under the domain-level cold-start setting,
Tiger is encouraged to learn the potential general interest rather
than the preference for specific items, improving the generalization
ability of the learned user representation across different domains.

3.4 Domain Adaptation
Based on the layered design of the interest graph framework, we
can achieve domain adaptation naturally and intuitively. When pre-
dicting a user’s preference score for an item, we adopt the operation
of inner product between the full semantic representation h∗𝑣 of
item 𝑣 and the transferable interest graph embedding zS𝑢 of user 𝑢
reconstructed from domain 𝑆 . The full semantic representation h∗𝑣
of items are used as a combination of universal patterns (which is
carried by the upper layers of GCN) and domain-specific patterns
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(which is carried by the bottom layers of GCN). Given the candidate
pair (𝑢, 𝑣), the predicted score is calculated as follows:

𝑦𝑢𝑣 = z∗⊤𝑣 hS𝑢 (8)

During model evaluation in the target domain, Eq. (8) is also used
to infer users’ preferences on items. Finally, we use the popular
BPR [30] loss function to optimize the whole model.

L = −
∑︁
𝑢∈U

∑︁
𝑣∈HS

𝑢

∑︁
𝑣′∉HS

𝑢

ln𝜎 (𝑦𝑢𝑣 − 𝑦𝑢𝑣′) (9)

4 EXPERIMENT
We conduct comprehensive experiments to answer the following
research questions:
• RQ1 How powerful is Tiger for the DZSR task?
• RQ2 What are the most difficult challenges of DZSR and how
Tiger addresses them?

• RQ3 How can Tiger benefit from the out-domain dataset?
• RQ4 Can Tiger continue to assist recommender systems after
their cold-start stage?

4.1 Dataset
To fully evaluate the performance of Tiger in a real-world setting,
we conduct experiments on four public representative datasets
including different overlap levels of users and items:
• Amazon Movies & TV (AM) and Amazon Books (AB) are two
subsets of the Amazon datasets 2, which contain product reviews
and metadata from Amazon [12] and nowadays have become
popular benchmark datasets for recommender systems. We use
“reviewerID” to bridge users across the two datasets.

• Movielens(ML) 3 dataset [11] contains anonymous movie ratings
to describe users’ preferences on movies, which is widely used
in the evaluation of recommender systems.

• LastFM(LFM) [4] dataset contains music listening information
from the world’s largest online music service Last.fm 4. The ML
and LFM datasets are used to extend the source domain and verify
if Tiger can benefit from the public datasets without overlapping
entities in the target domain.
For AB and AM datasets, we only keep users with more than

three historical interactions on the both datasets. The domain-level
cold-start performance is evaluated on the target domain with
users represented by their behaviors on the source domain. User
behaviors in the target domain are only used for evaluation, not for
training or user modeling. For ML and LFM datasets, their users
have no overlap with two Amazon datasets’ users. Both datasets
are filtered and reduced from giant versions (ML20M and LFM1B)
into about a million records. All datasets are split by the popular
One-Leave-Out strategy [13, 30]. Specifically, for each user, we
randomly select two historical interactions from the dataset, one for
validation, the other for testing. The rest of the dataset is regarded
as the training set. Importantly, dataset of the target domain is also
split into training, validation and test sets, in which the training
set is only used for training the oracle models and not available for
2https://jmcauley.ucsd.edu/data/amazon/
3https://grouplens.org/datasets/movielens/
4https://grouplens.org/datasets/hetrec-2011/

models under the zero-shot setting. The validation and test sets are
shared for all models to ensure fair evaluations.

All items involved are linked to Freebase5, an online knowledge
base containing massive structured triples. To link items in the
recommendation dataset to entities in the knowledge graph, we
follow the suggestion of KB4Rec [48] to obtain the corresponding
entity of items in a retrieval fashion: for each item, we collect the
product title from the metadata and use the title as the query to
receive the top-1 entity by the Google Knowledge Graph Search
API6, in which only the first 64 characters of the title are used to
form the keyword due to the limitation of API. The KG linkage
for AmazonBook is taken from the public data of KB4Rec directly.
To facilitate research, items that get empty results from API or do
not exist in Freebase are filtered in our experiments. We extract a
sub-graph from the full Freebase version with the entities linked
by items mentioned above as seeds to reduce computing costs.
Specifically, the inter-linkages between the linked entity seeds and
their neighbors are collected to form a sub-graph with 3,599,000
entities and 32,372,637 edges. All experiments in this paper are
conducted on the same sub-KG dataset. The detailed statistics of
datasets are shown in Table 2. Both the dataset and source code
will be released upon acceptance of this paper.

Table 2: Some basic dataset statistics

Dataset AB AM ML LFM

#User 11,240 11,240 6,040 18,029
#Item 47,377 16,100 3,655 311,994
#Interaction 202,223 142,395 997,580 1,006,639

#Entity 3,599,000
#Relation 2,089
#Triple 32,372,637

4.2 Baselines
In terms of baselines, we compare Tiger with a series of models,
including existing methods and their alternates. Specifically, the
random and oracle baselines are used to indicate the lower and up-
per bounds of performance. We carefully reproduce these baselines
according to their original papers and open-source codes, and try
our best to ensure fair comparisons in our experiment. The baseline
models involved in our experiment are as follows:
• Random. As the lower bound, the random baseline directly rec-
ommends a random item for the given user. Any valuable model is
expected to perform better than random results.
• Oracle. As the upper bound, the oracle baseline is trained with
the full interactions of the target domain. BPR [30] is a classical
and robust baseline in the in-domain recommendation field. Since
it performs well in many situations, we use it as the oracle.
• NLP-based. Textual content is another alternative side informa-
tion to represent items in a universal way. For instance, [7, 44, 46]
utilize pre-trained language models to encode items with descrip-
tions for zero-shot predictions. Thus, we collect the review text

5https://developers.google.com/freebase
6https://developers.google.com/knowledge-graph
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of items and employ SBert [28] to generate items’ embeddings.
SBert is pre-trained with sentence representation tasks. We do not
fine-tune SBert on the source domain’s user-item interactions data
because in our experiments it leads to a worse performance.
•KGE-based. Since traditional knowledge graph embedding (KGE)
models learn entity embeddings in a fully self-supervised way based
on the KG structure, they can be naturally regarded as competitive
baselines for zero-shot recommendations. Thus, we use TransE [3]
to generate representations of items, which are used to replace the
extractor module in Section 3.2. Fundamentally, KGE belongs to
content-based recommendation models, with content being the KG
embedding rather than raw attributes.
• GCN-based. The GCN-based approaches are widely used to
integrate knowledge graph information into the collaborative sig-
nals to improve the generalization ability. KGCN [37] is a classical
knowledge graph enhanced GCN-based recommender system. To
compare fairly, we use the mean-aggregator version of KGCN to
evaluate its performance under the DZSR setting.
• Tiger (UserAsEmb). The UserAsEmb alternative of Tiger di-
rectly uses the ID-embedding to represent users as Eq. (6) instead
of our reconstructed interest graph embeddings from historical
interactions in the source domain as Eq. (7).

4.3 Evaluation and Other Settings
We use two popular measures to evaluate all models: Hit Ratio
(H@K) and Normalized Discounted Cumulative Gain (N@K), where
K is selected from classical settings {10, 100} in consideration of both
the precision and recall property. The higher value of all measures
means the better performance. In the test phase, all models are
asked to rank all items that each user has not interacted with. In
order to reduce the impact of random noise, each experiment is
independently repeated three times on the same condition, and the
average performance is reported in this paper.

We use PyTorch [27] and Adagrad [8] optimizer to implement
all models. For reproducibility and scalability, we use the popular
framework DGL [38] to construct the graph convolutional network
and perform the message passing mechanism. To ensure a fair
comparison, the dimension𝑑 is assigned as 32 and batch size is set to
8192 for all experiments. In the training stage, we select the learning
rate 𝜇 ∈ {0.001, 0.003, 0.01, 0.03, 0.3, 1.0}, the number of GCN layers
𝑁 ∈ {1, 2, 4, 6, 8, 10}, and the number of discarded layers𝐶 ∈ {0, 1, 2,
4, 6, 8, 10}. Each experiment runs 100 epochs for all datasets. Grid
search with early stop strategy on NDCG@100 of the validation set
is adopted to determine the best hyper-parameter configuration as
follows: the learning rate 𝜇 is 0.3, the number of GCN layers 𝑁 is
6 for AmazonMovie, 6 for AmazonBook, the number of discarded
𝐶 is 4 for AmazonMovie and 2 for AmazonBook. All experiments
are trained on the source domain and evaluated on the validation
set of the target domain, then performances on the test set of the
target domain are reported.

4.4 Overall Performance (RQ1)
The performance of different models is summarized in Table 3.
Since we have two datasets with overlapping users, i.e., the AB and
AM, we switch their roles acting as the zero-shot target domain
(abbreviated as target-AB and target-AM), so that we have two

groups of results in Table 3, from which we have the following
observations: (1) In general, our proposed Tiger and its variants,
significantly outperform the other baselines (Random, NLP-based,
TransE, and KGCN ) in the zero-shot setting, on both target-AB
and target-AM scenarios. Compared with the oracle BPR model,
the best setting of Tiger can perform as well as about 50% perfor-
mance of the oracle results in terms of N@100, which indicates
how powerful Tiger is in making recommendations for a com-
pletely new domain. (2) Both NLP-based and TransE are content-
based zero-shot methods. On both target-AB and target-AM, TransE
consistently outperforms NLP-based, which indicates that knowl-
edge graph is a better intermediary for cross-domain information
transferring in the recommendation scenario. (3) KGCN is better
than TransE, which demonstrates that training entity embeddings
with the source domain’s user behaviors can help to distill the use-
ful recommendation-oriented knowledge from the task-agnostic
structure-oriented knowledge graph. (4) Compared with TransE
and KGCN, the Tiger methods demonstrate absolute advantages
in performance. Note that all these methods consume the same
type of data, which is the interest graph. This phenomenon proves
the effectiveness of Tiger, as well as its key components including
GCN layers discarding and domain item adaptation. (5) By com-
paring Tiger(UserAsEmb) with Tiger(normal), we can observe that
reconstructing users’ interest from their history behaviors is better
than directly learning user latent embeddings as their interest. (6)
The out-domain datasets, such as ML and LFM, can be easily ab-
sorbed into Tiger and boost the final performance significantly. This
phenomenon positively supports our claim – Tiger is an effective
approach to facilitate collaborative signals distributed in various
domains to propagate on the interest graph. The detailed analysis
of the out-domain will be carried out in section 4.6.

4.5 Ablation study (RQ2)
In this section, we provide some in-depth analysis of how each key
component in Tiger contributes to solving the challenges of DZSR.

(a) AmazonMovie (b) AmazonBook

Figure 3: Performance comparison between different settings.
The darker means the better.

4.5.1 What is the best setting of GCN layers? As mentioned in Sec-
tion 3.2, one of the biggest challenges for DZSR is to facilitate collab-
orative signals to be propagated on the interest graph, and the key
solution is bottom-layer discarding. Thus, 𝑁 and 𝐶 become critical
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Table 3: Performance comparison. The higher value of all measures means the better performance. The best zero-shot result is
highlighted in bold and the runner-up is underlined, the same below. * indicates the oracle result.

Model Source Target H@10 N@10 H@100 N@100

Random - AM 0.0620 0.0282 0.6211 0.1300
BPR (Oracle) - AM 2.8440* 1.4066* 14.1040* 3.5393*
NLP-based AB AM 0.1307 0.0488 1.2900 0.2586
TransE AB AM 0.3203 0.1580 1.4858 0.3719
KGCN AB AM 0.5368 0.2491 3.6032 0.8155
Tiger (UserAsEmb) AB AM 0.7711 0.4198 4.7242 1.1510
Tiger (normal) AB AM 0.9312 0.3751 7.3072 1.5401
Tiger (+ out domain) ML+LFM+AB AM 1.0854 0.7484 7.1886 1.8811

Random - AB 0.0211 0.0096 0.2111 0.0442
BPR (Oracle) - AB 0.7859* 0.4051* 3.9472* 1.0014*
NLP-based AM AB 0.0505 0.0202 0.4580 0.0948
TransE AM AB 0.0623 0.0293 0.3915 0.0913
KGCN AM AB 0.0860 0.0487 0.7117 0.1657
Tiger (UserAsEmb) AM AB 0.2343 0.1185 1.2604 0.3100
Tiger (normal) AM AB 0.3055 0.1370 1.9692 0.4519
Tiger (+ out domain) ML+LFM+AM AB 0.5872 0.3392 2.5178 0.5659

hyper-parameters. We vary their values, with 𝑁 ∈ {1, 2, 4, 6, 8, 10},
𝐶 ∈ {0, 1, 2, 4, 6, 8, 10} and satisfy the condition 𝑆 ≤ 𝑁 to see how
Tiger will be impacted. We plot the NDCG@100 score of Tiger in
the form of heat map in Figure 3, in which a joint cell indicates
the model score under the specific joint configuration of 𝐶 and
𝑁 , and a marginal bar on the row (or column) indicates the best
score (we called it margin score hereinafter) for a specific 𝐶 (or 𝑁 ).
From Figure 3 we can observe that: (1) From 𝑁 horizontal margin
scores, a larger 𝑁 brings better performance in both datasets be-
cause a bigger size of GCN layers can carry more universal interest.
However, with the 𝑁 growing up more than 6, the gain becomes
not statistically significant by increasing 𝑁 . Hence, 𝑁 should be
a trade-off between computing cost and performance. (2) The 𝐶
vertical margin scores demonstrate a trend that, within a certain
threshold, e.g., 𝐶 = 4 for AmazonMovie and 𝐶 = 2 for Amazon-
Book, the performance increases significantly with the increase of
𝐶 , which means that bottom layers of item GCN capture more local
domain’s information, so discarding them can force information to
be propagated to a broader range on the interest graph. However,
after the proper threshold, further increasing 𝐶 will lead to a per-
formance drop. This is because the aggregated graph embedding is
too coarse to carry the precise interest of users when𝐶 is too large.

4.5.2 Are users’ preferences really decomposed? The ablation study
in Section 4.5.1 has shown that the upper GCN layers capture
general preferences, while the lower GCN layers preserve local
representations. To further verify such assumption, analytical ex-
periments are conducted to determine if the user’ preference is
really decomposed into different levels. Based under the optimal
setting provided in Section 3, we alter GCN levels of users and items
with two model settings: (1) D4U: whether to use z#𝑣 to discard the
lower GCN embedding of historical items when reconstructing the
user interest in Eq. (7) or z∗𝑣 ; (2) D4I: whether to use z#𝑣 when pre-
senting the item itself in Eq. (8) or z∗𝑣 ; We evaluate all four settings of

D4U and D4I combinations on the same experiment condition and
report their performances on NDCG@100. For intuitive analysis,
we visualize the comparison in Figure 4.

(a) AmazonMovie (b) AmazonBook

Figure 4: Result comparison of decomposed representations

As shown in Figure 4, we observe that (1) The result is terrible
when both D4U and D4I settings are false in all datasets, confirming
the necessity of discarding operation on GCN output embeddings
of items to extract more transferable information. (2) As the setting
of discarding for user reconstruction and keeping for the item itself
performs best, we learn that lower GCN layer embeddings encode
the item-relevant information and facilitate accurate predictions.

4.5.3 Does a larger size of Knowledge Graph help? How does the
size of knowledge graph affect the performance and parameter
behavior of our model? First, several “sparse” versions of knowledge
graph dataset with a size of 𝑝 are conducted by random dropping
triplets of original KG, where 𝑝 ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Then,
models with the same training strategy described in Section 4 are
trained on different sparse sizes of KG. Finally, performances are
reported and reorganized in Figure 5. From Figure 5, we observed:
our model does generate a transferable representation with the
help of knowledge graph. With a larger size of knowledge graph
trained on, the model performs better, which suggests researchers
collecting more KG data to better serve in the industrial scenario.
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(a) AmazonMovie (b) AmazonBook

Figure 5: Performance under different sparse levels of KG

4.6 Tiger with out-domain datasets (RQ3)
Besides the datasets on the same platform, there are numerous
public datasets collected in different ways available for training
recommender systems, which we call the out-domain datasets. As
the training of Tiger does not include any domain-specific param-
eters but the shared graph embedding E = {e𝑣 |𝑣 ∈ G}, another
interesting question raises: does Tiger benefits from public datasets
without overlapped users or items to propagate collaborative sig-
nals to the target domain? To answer this question, we set up two
domain-level cold-start settings with out-domain datasets. Then
models are trained on the two settings respectively and tested on
the source and target domain datasets as before.

4.6.1 History available setting (HAS). In this setting, out-domain
datasets are jointly trained with the source domain. Concretely, we
extend source domain S of Eq. (1) with out-domain datasetsZ as:

Θ∗ = argmin
Θ

L(𝑦 (S + Z),S +Z;G) (10)

4.6.2 History protected setting (HPS). For some purposes like the
access limitation, privacy protection policy, or real-time response
requirement at the mobile endpoint, it is a practical consideration
that the historical interactions of users are available in the stage
of testing but not in training, which means the model has to be
trained in out-domain datasets without any overlapping users or
items. Concretely, we replace source domain S of Eq. (1) with out-
domain datasets Z as:

Θ∗ = argmin
Θ

L(𝑦 (Z),Z;G) (11)

From the results in Table 4, we observe that: (1) With out-domain
datasets in HAS, the models on extended training datasets achieve
a better performance, which confirms Tiger to absorb the universal
knowledge from public datasets to improve prediction accuracy of
the DZSR task. (2) The setting trained on the HPS without any user
overlapped, still achieves promising performance, which makes it
possible for pre-trained Tiger to cold-start unrelated recommender
systems as long as items in the dataset can be linked to the KG.

4.7 Tiger for normal recommendation (RQ4)
With discussion and verification above, the Tiger model has been
proved competent for the DZSR task. In need of industrial practice,
a follow-up question is whether Tiger still plays a role after the cold-
start stage. Thus, experiments are conducted on the oracle setting,
where models are trained on the training set of the target domain to
represent a recommender system that has already warmed up. From

Table 4: Performance comparison of Tiger trained on differ-
ent datasets

Training Target H@10 N@10 H@100 N@100

AB AM 0.9312 0.3751 7.3072 1.5401
ML AM 0.6139 0.2391 7.3577 1.4408
LFM AM 0.9253 0.4784 6.3968 1.4474
ML+AB AM 1.1210 0.5418 6.7438 1.6184
LFM+AB AM 1.1121 0.3882 7.2598 1.4984
ML+LFM+AB AM 1.0854 0.7484 7.1886 1.8811

AM AB 0.3055 0.1370 1.9692 0.4519
ML AB 0.3203 0.1456 1.7527 0.4121
LFM AB 0.1275 0.0397 2.1501 0.4275
ML+AM AB 0.5397 0.3013 2.0848 0.6007
LFM+AM AB 0.4938 0.3211 1.6770 0.5434
ML+LFM+AM AB 0.5872 0.3392 2.5178 0.5659

Table 5, we can see that Tiger can not only work on domain-level
cold-start recommendation but also achieve promising performance
in the subsequent optimization. From Figure 6, we get consistent
observations with related literature on knowledge-aware recom-
mendations: when 𝐶 = 0, using more GCN layers can fuse more
semantic KG information and therefore lead to a better performance.
Different from the behavior analysed in Section 4.5.3, 𝐶 is discour-
aged because the in-domain scenario asks for more item-relevant
clues, which confirms that the performance of Tiger is exactly based
on the transferable interest discussed in Section 4.5.2.

Table 5: Performance comparison in the subsequent opti-
mization

Model Target H@10 N@10 H@100 N@100

Random AM 0.0620 0.0282 0.6211 0.1300
BPR AM 2.8440 1.4066 14.1040 3.5393
KGCN AM 4.2912 2.1425 20.1097 5.1583
Tiger AM 5.0445 2.5381 21.9781 5.7812

Random AB 0.0211 0.0096 0.2111 0.0442
BPR AB 0.7859 0.4051 3.9472 1.0014
KGCN AB 3.3007 1.8283 12.0196 3.5146
Tiger AB 4.8221 2.5774 15.3203 4.6344

5 RELATEDWORK
5.1 Knowledge-enhanced Recommendations
Knowledge graphs (KGs) contain massive structural information of
entities. As an external data source, KGs have great potentials to im-
prove the accuracy, interpretability and diversity of recommender
systems. DKN [35] introduces knowledge-aware convolutional neu-
ral networks (KCNN), which inject external information from KGs
into text in news articles to get better news representations. KRED
[23] is a more flexible and efficient framework, which can refine an
arbitrary base article representation with knowledge, and the re-
fined representation can benefit multiple downstream tasks related
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(a) AmazonMovie (b) AmazonBook

Figure 6: Performance with different settings of GCN layer
for the normal recommendation

to news recommendations. Considering that a KG naturally pro-
vides closer connections between entities, [34] tries to propagate a
user’s preference over a KG, so that the user-item interaction spar-
sity problem can be alleviated. The proposed method, RippleNet, is
basically a memory network which captures the user’s multi-hop
preference on the KG. In contrast to RippleNet, KGCN [37] and
KGAT [39] leverages knowledge gragh convolution networks to
integrate neighborhood representation for items. [36] and [5] use a
multi-task training framework to train the recommendation task
and the knowledge graph embedding task. Another line of research
is KG reasoning, in which the goal is to find high-quality paths
on the KG to connect two nodes. KPRN [40] enumerates all the
possible connecting paths, then uses a path encoder to select best
paths among all the path candidates. Next, PGPR [45] and ADAC
[47] formulate the KG reasoning as a path finding task rather than a
path enumeration task, and use reinforcement learning techniques
to learn navigation policies. [22] learns a subgraph generator to
extract the most important subgraph on the KG for a given item, the
the relations of two items can be inferred from their corresponding
generated subgraph. Different from all the aforementioned works,
in this paper, we discuss how to connect isolated users’ collabora-
tive behaviors from different domains with the help of KGs, and
perform zero-shot recommendations in a new domain.

5.2 Cross-domain Recommendations
To alleviate the prevalent data sparsity problem in recommender
systems, cross-domain recommendation (CDR) [2] has emerged to
utilize information across domains. Based on different approaches
of knowledge transfer, previous works can be roughly divided
into content-based methods [9, 14, 32], embedding-based methods
[6, 18, 25, 51] and model-based methods [16, 17]. Content-based ap-
proaches mainly leverage attribute-level relevance across domains
by linking features of users and items, such as user reviews [32],
item tags [9] and knowledge graphs [14]. The second category fo-
cuses on embedding sharing [6, 51] or embedding mapping [18, 25]
of overlapping users/items. DTCDR [51] shares the embedding of
common users in the combination layer to integrate multi-domain
knowledge, while HeroGRAPH [6] combines in-domain embedding
and heterogeneous graph embedding connecting multiple domains
to obtain the enhanced representation of entities. Another research

direction of embedding-based methods is to learn a mapping func-
tion from the source to the target domain such as EMCDR [25], SS-
CDR [18]. As for model-based CDR approaches, like XPTRANS [17],
the core idea is collaborative training through cross-connections
between models. Conventional CDR still requires sparse interactive
data in the target domain. In other words, existing CDR methods
can not solve the proposed domain-level cold-start problemwithout
any interactions, which is the main contribution of our work.

5.3 Cold-start Recommendations
How to make predictions for newly join users/items that have no
or very few interaction logs is a challenging task. In this line of re-
search, the key is to effectively leverage side information to make up
the missing signals of collaborative behaviors. Existing approaches
mainly include transforming from content-based (CB) embeddings
to collaborative filtering (CF) embeddings [1, 43, 49, 52], adaptive
fusion of CB and CF embeddings [31, 33], and warm-up CF embed-
ding with meta learning [26, 42, 50]. For example, [1] learns a deep
neural network (DNN) to transform items’ content, including tags,
numeric features, and textual content, into their CF representations.
[43] uses contrastive learning to better align items’ content signals
with collaborative signals. [33] uses a dropout mechanism to train
user/item DNNs, so that content information and collaborative sig-
nals can be fused adaptively according to each specific input data.
[31] learns attention components to adaptively fuse CB and CF sig-
nals in an explicit manner. In addition to inferring CF embeddings
from items’ side information, [26] introduces a meta-learning-based
method that can generate good initial CF embeddings and speed up
CF embeddings’ refinement process. However, all these methods
assume that there exist some collaborative behaviors in the target
recommendation domain. The goal is to build a desirable bridge
or fusion method between content information and collaborative
behaviors, which is not a domain-level zero-shot problem.

6 CONCLUSION
This paper discusses the task of domain-level zero-shot recom-
mendation (DZSR). Unlike user/item cold-start or cross-domain
recommendation tasks, in DZSR, we cannot access user-item inter-
action logs in the target domain.We propose a solution named Tiger,
which aims to project and fuse users’ universal preferences into a
common interest graph bridging different domains’ collaborative
behaviors. The embeddings learned by Tiger are transferable to the
target domain in a zero-shot prediction manner. Through extensive
experiments, we verify that some fundamental mechanisms in Tiger,
such as bottom-layer discarding operation, domain adaptation, and
connection of out-domain datasets, play an essential role in learn-
ing meaningful transferable embeddings. Tiger is essentially a type
of knowledge graph pre-training model for recommender systems.
Pre-training with large-scale universal datasets has been proven
to be an effective approach for language models. Tiger acts as a
prior work to leverage knowledge graph for bridging isolated rec-
ommender system datasets. In future works, we will develop better
entity linking tools so that more recommendation datasets can be
linked to the interest graph, and perform truly large-scale interest
graph pre-training for recommender systems to further shrink the
gap between Tiger’s and the oracle model’s performance.



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Jianhuan Zhuo et al.

REFERENCES
[1] Oren Barkan, Noam Koenigstein, Eylon Yogev, and Ori Katz. 2019. CB2CF:

A Neural Multiview Content-to-Collaborative Filtering Model for Completely
Cold Item Recommendations. In Proceedings of the 13th ACM Conference on
Recommender Systems (Copenhagen, Denmark) (RecSys ’19). Association for
Computing Machinery, New York, NY, USA, 228–236. https://doi.org/10.1145/
3298689.3347038

[2] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. 2007. Cross-Domain Medi-
ation in Collaborative Filtering. In User Modeling 2007, 11th International Con-
ference, UM 2007, Corfu, Greece, June 25-29, 2007, Proceedings (Lecture Notes in
Computer Science, Vol. 4511), Cristina Conati, Kathleen F. McCoy, and Georgios
Paliouras (Eds.). Springer, 355–359. https://doi.org/10.1007/978-3-540-73078-
1_44

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-Relational
Data. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2 (Lake Tahoe, Nevada) (NIPS’13). Curran Associates
Inc., Red Hook, NY, USA, 2787–2795.

[4] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. 2nd Workshop on
Information Heterogeneity and Fusion in Recommender Systems (HetRec 2011).
In Proceedings of the 5th ACM conference on Recommender systems (Chicago, IL,
USA) (RecSys 2011). ACM, New York, NY, USA.

[5] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. 2019.
Unifying Knowledge Graph Learning and Recommendation: Towards a Better
Understanding of User Preferences. In The World Wide Web Conference, WWW
2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu, Ryen W. White, Amin
Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila
Zia (Eds.). ACM, 151–161. https://doi.org/10.1145/3308558.3313705

[6] Qiang Cui, Tao Wei, Yafeng Zhang, and Qing Zhang. 2020. HeroGRAPH: A
Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommen-
dation. In Proceedings of the 3rd Workshop on Online Recommender Systems and
User Modeling co-located with the 14th ACM Conference on Recommender Systems
(RecSys 2020), Virtual Event, September 25, 2020 (CEUR Workshop Proceedings,
Vol. 2715), João Vinagre, Alípio Mário Jorge, Marie Al-Ghossein, and Albert Bifet
(Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-2715/paper6.pdf

[7] Hao Ding, Yifei Ma, Anoop Deoras, Yuyang Wang, and Hao Wang. 2021. Zero-
shot recommender systems. arXiv preprint arXiv:2105.08318 (2021).

[8] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. Journal of Machine Learning
Research 12, 61 (2011), 2121–2159.

[9] Ignacio Fernández-Tobías and Iván Cantador. 2014. Exploiting Social Tags in Ma-
trix Factorization Models for Cross-domain Collaborative Filtering. In Proceedings
of the 1st Workshop on New Trends in Content-based Recommender Systems co-
located with the 8th ACM Conference on Recommender Systems, CBRecSys@RecSys
2014, Foster City, Silicon Valley, California, USA, October 6, 2014 (CEUR Workshop
Proceedings, Vol. 1245), Toine Bogers, Marijn Koolen, and Iván Cantador (Eds.).
CEUR-WS.org, 34–41. http://ceur-ws.org/Vol-1245/cbrecsys2014-paper06.pdf

[10] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[11] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[12] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Vi-
sual Evolution of Fashion Trends with One-Class Collaborative Filtering. In
Proceedings of the 25th International Conference on World Wide Web (WWW
’16). International World Wide Web Conferences Steering Committee, 507–517.
https://doi.org/10.1145/2872427.2883037

[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[14] Benjamin Heitmann and Conor Hayes. 2016. SemStim: Exploiting Knowledge
Graphs for Cross-Domain Recommendation. In IEEE International Conference on
Data Mining Workshops, ICDM Workshops 2016, December 12-15, 2016, Barcelona,
Spain, Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi, Josep Domingo-
Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu (Eds.). IEEE Com-
puter Society, 999–1006. https://doi.org/10.1109/ICDMW.2016.0145

[15] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with
top-k gains for session-based recommendations. In Proceedings of the 27th ACM
international conference on information and knowledge management. 843–852.

[16] Guangneng Hu, Yu Zhang, and Qiang Yang. 2018. CoNet: Collaborative Cross
Networks for Cross-Domain Recommendation. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management, CIKM 2018,
Torino, Italy, October 22-26, 2018, Alfredo Cuzzocrea, James Allan, Norman W.
Paton, Divesh Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki,
K. Selçuk Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang
(Eds.). ACM, 667–676. https://doi.org/10.1145/3269206.3271684

[17] Meng Jiang, Peng Cui, Nicholas Jing Yuan, Xing Xie, and Shiqiang Yang. 2016.
Little Is Much: Bridging Cross-Platform Behaviors through Overlapped Crowds.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA, Dale Schuurmans and Michael P. Wellman
(Eds.). AAAI Press, 13–19. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/
paper/view/12009

[18] SeongKu Kang, Junyoung Hwang, Dongha Lee, and Hwanjo Yu. 2019. Semi-
Supervised Learning for Cross-Domain Recommendation to Cold-Start Users.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019, Wenwu
Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel,
Qi He, and Jeffrey Xu Yu (Eds.). ACM, 1563–1572. https://doi.org/10.1145/3357384.
3357914

[19] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[20] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[21] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei Huang,
Guoliang Kang, Qiwei Chen, Wei Li, and Dik Lun Lee. 2019. Multi-interest
network with dynamic routing for recommendation at Tmall. In Proceedings of
the 28th ACM international conference on information and knowledge management.
2615–2623.

[22] Danyang Liu, Jianxun Lian, Zheng Liu, Xiting Wang, Guangzhong Sun, and
Xing Xie. 2021. Reinforced Anchor Knowledge Graph Generation for News
Recommendation Reasoning. In KDD ’21: The 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18,
2021, Feida Zhu, Beng Chin Ooi, and Chunyan Miao (Eds.). ACM, 1055–1065.
https://doi.org/10.1145/3447548.3467315

[23] Danyang Liu, Jianxun Lian, Shiyin Wang, Ying Qiao, Jiun-Hung Chen,
Guangzhong Sun, and Xing Xie. 2020. KRED: Knowledge-Aware Document
Representation for News Recommendations. In Fourteenth ACM Conference on
Recommender Systems (Virtual Event, Brazil) (RecSys ’20). Association for Com-
putingMachinery, New York, NY, USA, 200–209. https://doi.org/10.1145/3383313.
3412237

[24] Zheng Liu, Jianxun Lian, Junhan Yang, Defu Lian, and Xing Xie. 2020. Octopus:
Comprehensive and elastic user representation for the generation of recommen-
dation candidates. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 289–298.

[25] Tong Man, Huawei Shen, Xiaolong Jin, and Xueqi Cheng. 2017. Cross-Domain
Recommendation: An Embedding and Mapping Approach. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, Carles Sierra (Ed.). ijcai.org, 2464–2470.
https://doi.org/10.24963/ijcai.2017/343

[26] Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. 2019. Warm
Up Cold-Start Advertisements: Improving CTR Predictions via Learning to Learn
ID Embeddings. In Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval (Paris, France) (SIGIR’19).
Association for Computing Machinery, New York, NY, USA, 695–704. https:
//doi.org/10.1145/3331184.3331268

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
and et al. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems, Vol. 32.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[28] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[29] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[30] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI’09).
AUAI Press, 452–461.

[31] Shaoyun Shi, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Attention-Based
Adaptive Model to Unify Warm and Cold Starts Recommendation. In Proceedings
of the 27th ACM International Conference on Information and Knowledge Man-
agement (Torino, Italy) (CIKM ’18). Association for Computing Machinery, New
York, NY, USA, 127–136. https://doi.org/10.1145/3269206.3271710

[32] Shulong Tan, Jiajun Bu, Xuzhen Qin, Chun Chen, and Deng Cai. 2014. Cross
domain recommendation based on multi-type media fusion. Neurocomputing 127
(2014), 124–134. https://doi.org/10.1016/j.neucom.2013.08.034

[33] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. DropoutNet: Address-
ing Cold Start in Recommender Systems. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, California,
USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 4964–4973.

https://doi.org/10.1145/3298689.3347038
https://doi.org/10.1145/3298689.3347038
https://doi.org/10.1007/978-3-540-73078-1_44
https://doi.org/10.1007/978-3-540-73078-1_44
https://doi.org/10.1145/3308558.3313705
http://ceur-ws.org/Vol-2715/paper6.pdf
http://ceur-ws.org/Vol-1245/cbrecsys2014-paper06.pdf
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1109/ICDMW.2016.0145
https://doi.org/10.1145/3269206.3271684
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12009
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12009
https://doi.org/10.1145/3357384.3357914
https://doi.org/10.1145/3357384.3357914
https://doi.org/10.1145/3447548.3467315
https://doi.org/10.1145/3383313.3412237
https://doi.org/10.1145/3383313.3412237
https://doi.org/10.24963/ijcai.2017/343
https://doi.org/10.1145/3331184.3331268
https://doi.org/10.1145/3331184.3331268
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/1908.10084
https://doi.org/10.1145/3269206.3271710
https://doi.org/10.1016/j.neucom.2013.08.034


Tiger: Transferable Interest Graph Embedding for Domain-Level Zero-Shot Recommendation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

[34] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. RippleNet: Propagating User Preferences on the Knowledge
Graph for Recommender Systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh
Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk
Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang (Eds.). ACM,
417–426. https://doi.org/10.1145/3269206.3271739

[35] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep
Knowledge-Aware Network for News Recommendation. In Proceedings of the
2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France,
April 23-27, 2018, Pierre-Antoine Champin, Fabien L. Gandon, Mounia Lalmas,
and Panagiotis G. Ipeirotis (Eds.). ACM, 1835–1844. https://doi.org/10.1145/
3178876.3186175

[36] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo.
2019. Multi-Task Feature Learning for Knowledge Graph Enhanced Recommen-
dation. In The World Wide Web Conference, WWW 2019, San Francisco, CA, USA,
May 13-17, 2019, Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri,
Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia (Eds.). ACM, 2000–2010.
https://doi.org/10.1145/3308558.3313411

[37] HongweiWang,Miao Zhao, Xing Xie,Wenjie Li, andMinyi Guo. 2019. Knowledge
Graph Convolutional Networks for Recommender Systems. In The World Wide
Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu,
Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo
Baeza-Yates, and Leila Zia (Eds.). ACM, 3307–3313. https://doi.org/10.1145/
3308558.3313417

[38] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[39] XiangWang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin
Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM,
950–958. https://doi.org/10.1145/3292500.3330989

[40] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng
Chua. 2019. Explainable reasoning over knowledge graphs for recommendation.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 5329–5336.

[41] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence (Québec City, Québec, Canada)
(AAAI’14). AAAI Press, 1112–1119.

[42] Tianxin Wei, Ziwei Wu, Ruirui Li, Ziniu Hu, Fuli Feng, Xiangnan He, Yizhou
Sun, and Wei Wang. 2020. Fast adaptation for cold-start collaborative filtering
with meta-learning. In 2020 IEEE International Conference on Data Mining (ICDM).
IEEE, 661–670.

[43] Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, and Tat-Seng
Chua. 2021. Contrastive Learning for Cold-Start Recommendation. In Proceedings

of the 29th ACM International Conference on Multimedia (Virtual Event, China)
(MM ’21). Association for Computing Machinery, New York, NY, USA, 5382–5390.
https://doi.org/10.1145/3474085.3475665

[44] Tao Wu, Ellie Ka-In Chio, Heng-Tze Cheng, Yu Du, Steffen Rendle, Dima Kuzmin,
Ritesh Agarwal, Li Zhang, John Anderson, Sarvjeet Singh, Tushar Chandra, Ed H.
Chi, Wen Li, Ankit Kumar, Xiang Ma, Alex Soares, Nitin Jindal, and Pei Cao. 2020.
Zero-Shot Heterogeneous Transfer Learning fromRecommender Systems to Cold-
Start Search Retrieval. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (Virtual Event, Ireland) (CIKM ’20).
Association for Computing Machinery, New York, NY, USA, 2821–2828. https:
//doi.org/10.1145/3340531.3412752

[45] Yikun Xian, Zuohui Fu, S Muthukrishnan, Gerard De Melo, and Yongfeng Zhang.
2019. Reinforcement knowledge graph reasoning for explainable recommenda-
tion. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval. 285–294.

[46] Yuhui Zhang, Hao Ding, Zeren Shui, Yifei Ma, James Zou, Anoop Deoras, and
Hao Wang. 2021. Language Models as Recommender Systems: Evaluations and
Limitations. In I (Still) Can’t Believe It’s Not Better! NeurIPS 2021 Workshop.

[47] Kangzhi Zhao, Xiting Wang, Yuren Zhang, Li Zhao, Zheng Liu, Chunxiao Xing,
and Xing Xie. 2020. Leveraging Demonstrations for Reinforcement Recommenda-
tion Reasoning over Knowledge Graphs. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
239–248.

[48] Wayne Xin Zhao, Gaole He, Kunlin Yang, Hong-Jian Dou, Jin Huang, Siqi Ouyang,
and Ji-Rong Wen. 2019. KB4Rec: A Data Set for Linking Knowledge Bases
with Recommender Systems. Data Intelligence 1, 2 (2019), 121–136. https:
//doi.org/10.1162/dint_a_00008

[49] Jiawei Zheng, Qianli Ma, Hao Gu, and Zhenjing Zheng. 2021. Multi-View De-
noising Graph Auto-Encoders on Heterogeneous Information Networks for
Cold-Start Recommendation. In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining (Virtual Event, Singapore) (KDD
’21). Association for Computing Machinery, New York, NY, USA, 2338–2348.
https://doi.org/10.1145/3447548.3467427

[50] Yujia Zheng, Siyi Liu, Zekun Li, and Shu Wu. 2021. Cold-start Sequential Rec-
ommendation via Meta Learner. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. 4706–4713.
https://ojs.aaai.org/index.php/AAAI/article/view/16601

[51] Feng Zhu, Chaochao Chen, Yan Wang, Guanfeng Liu, and Xiaolin Zheng. 2019.
DTCDR: A Framework for Dual-Target Cross-Domain Recommendation. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowl-
edge Management, CIKM 2019, Beijing, China, November 3-7, 2019, Wenwu Zhu,
Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel,
Qi He, and Jeffrey Xu Yu (Eds.). ACM, 1533–1542. https://doi.org/10.1145/3357384.
3357992

[52] Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, and James Caverlee. 2020. Recom-
mendation for New Users and New Items via Randomized Training and Mixture-of-
Experts Transformation. Association for Computing Machinery, New York, NY,
USA, 1121–1130. https://doi.org/10.1145/3397271.3401178

https://doi.org/10.1145/3269206.3271739
https://doi.org/10.1145/3178876.3186175
https://doi.org/10.1145/3178876.3186175
https://doi.org/10.1145/3308558.3313411
https://doi.org/10.1145/3308558.3313417
https://doi.org/10.1145/3308558.3313417
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3474085.3475665
https://doi.org/10.1145/3340531.3412752
https://doi.org/10.1145/3340531.3412752
https://doi.org/10.1162/dint_a_00008
https://doi.org/10.1162/dint_a_00008
https://doi.org/10.1145/3447548.3467427
https://ojs.aaai.org/index.php/AAAI/article/view/16601
https://doi.org/10.1145/3357384.3357992
https://doi.org/10.1145/3357384.3357992
https://doi.org/10.1145/3397271.3401178

	Abstract
	1 Introduction
	2 Preliminary
	3 Methodology
	3.1 Interest Graph Framework
	3.2 Transferable Interest Extractor
	3.3 User Interest Reconstructor
	3.4 Domain Adaptation

	4 Experiment
	4.1 Dataset
	4.2 Baselines
	4.3 Evaluation and Other Settings
	4.4 Overall Performance (RQ1) 
	4.5  Ablation study (RQ2)
	4.6 Tiger with out-domain datasets (RQ3) 
	4.7 Tiger for normal recommendation (RQ4) 

	5 Related Work
	5.1 Knowledge-enhanced Recommendations
	5.2 Cross-domain Recommendations
	5.3 Cold-start Recommendations

	6 Conclusion
	References

