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Data scientists require rich mental models of how AI systems behave to effectively train, debug, and work
with them. Despite the prevalence of AI analysis tools, there is no general theory describing how people
make sense of what their models have learned. We frame this process as a form of sensemaking and derive a
framework describing how data scientists develop mental models of AI behavior. To evaluate the framework,
we show how existing AI analysis tools fit into this sensemaking process and use it to design AIFinnity, a
system for analyzing image-and-text models. Lastly, we explored how data scientists use a tool developed
with the framework through a think-aloud study with 10 data scientists tasked with using AIFinnity to pick
an image captioning model. We found that AIFinnity’s sensemaking workflow reflected participants’ mental
processes and enabled them to discover and validate diverse AI behaviors.
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1 INTRODUCTION
Designers make sense of feedback to inform their designs [26], doctors make sense of health records
to guide their diagnoses [84], and programmers make sense of code to debug their software [30].
Similarly, data scientists make sense of their machine learning (ML) or artificial intelligence (AI)
models to improve their performance, decide when to use them, and analyze their real-world
impacts. Having a thorough understanding of how an AI behaves is especially important to detect
and mitigate serious concerns such as fairness [38] and safety [61] issues.

What does it mean to make sense of AI behavior? Let us explore the example of a data scientist
who wants to make a website more accessible by including text descriptions (alt-text) for images.
They find multiple AI services for captioning images and have to pick the option that works best for
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their data. The data scientist compares the options by generating alt text with each AI for a sample
of images and develops a mental model of how each AI behaves: which AI can describe certain
activities, is better in low light, or is more grammatically accurate. With a deeper understanding of
how each AI service behaves, the data scientist can decide which one to use for their data. This is
just one example use case for understanding AI behavior, which is essential for tasks ranging from
training new models to detecting dataset shift and mitigating real-world failures.

While important, behavioral analysis requires significant human attention to ideate, structure,
and test hypotheses of AI behavior. Data scientists instead often resort to limited and ad hoc
methods, such as manually testing edge cases or waiting for end-users to report failures of deployed
models [1, 38, 41, 47]. A number of AI analysis tools aim to improve this process, including
crowdsourcing methods for discovering failures [6, 13], algorithms for finding slices of data with
high loss [21], and checklists of expected model behavior [68]. Although useful for specific tasks,
these tools tend to only address portions of the analysis process and are hampered by challenges
at other stages of the process. For example, methods for creating subgroups of data [14, 21, 42]
do not tell the user which subgroups are the most important, while model checklists do not have
mechanisms for discovering new behaviors.

This article introduces a sensemaking framework describing how data scientists develop mental
models of AI behavior. By framing AI analysis as sensemaking, we aim to provide a language for
describing AI analysis, help developers identify gaps in existing tooling, and encourage analysis
tools supporting the full sensemaking process. Sensemaking is a well-established paradigm that
describes how people structure the unknown by iteratively creating mental models from data [85].
To accurately describe AI analysis as sensemaking, we used abductive analysis to adapt Pirolli and
Card [63]’s framework for data analysis to fit the steps specific to AI development gathered from
empirical studies of practitioners. Our resulting framework (Figure 1) describes how people create
mental models of AI behaviors by organizing instances into meaningful schemas and hypotheses.
The mental models data scientists derive are their internal representations of the behaviors of a
complex, often black-box, AI model.

We evaluated our framework across the three powers of interaction frameworks defined by Beaudouin-
Lafon [9]: descriptive, evaluative, and generative power. To test the framework’s descriptive and
evaluative power, how it can detail and compare a range of existing interfaces, we reviewed AI
analysis tools and showed how they fit into the stages of our framework. We found that most tools
only address half of the sensemaking process, either discovery tools for finding and organizing
instances or evaluation tools for testing known behaviors. Systems that combine discovery and
evaluation could help data scientists effectively validate newly discovered behaviors. Next, to
directly test our framework’s generative power, the ability to inform new designs, we used it to
create an AI analysis tool, AIFinnity, for exploring image-and-text models like visual question
answering and image captioning. Image-and-text models have many complex behaviors, from
stereotypes to grammar issues, that make them a challenging domain for AI analysis.

For our final evaluation of the framework, we explored how data scientists use a full sensemak-
ing system. We conducted exploratory think-aloud studies with 10 professional data scientists
tasked with using AIFinnity to choose between two image captioning AIs. Participants found that
AIFinnity matched their mental process for understanding AI behavior, with some even indepen-
dently describing their processes in sensemaking terms. Additionally, the complementary features
helped participants find numerous significant behaviors and actively think about confirmation bias.

In summary, the main contributions of this work are the following.

• A sensemaking framework describing how people develop mental models of AI behavior.
• An AI analysis tool called AIFinnity designed using the framework.

2



What Did My AI Learn? TOCHI ’22, ,

Instances

& Outputs

organize instances

reevaluategather evidencediscover instances

describe behaviors

Schemas

model use sensemaking model updates

Hypotheses Assessment

Sensemaking Framework of Model Behavior

summarize findings

Understanding 
 is an iterative and 

ongoing process

model 
behavior

Fig. 1. The sensemaking framework describing how data scientists understand model behavior. We derived
the framework from Pirolli and Card [63]’s sensemaking process and empirical studies of data scientist. The
process is iterative and ongoing, with data scientists continuously reevaluating as they update and deploy
their models.

• An exploratory think-aloud study with 10 professional data scientists to understand how
people work with an AI analysis tool for the full sensemaking process.

2 BACKGROUND AND RELATED WORK
2.1 Behavioral Analysis of AI
Along with the growing use of AI systems in the real world, there has been increasing concern
about the behavior of these systems [65]. Analyzing model behavior can uncover more nuanced,
complex patterns not captured by aggregate metrics, such as how a model performs for particular
subgroups or domains.

Behavioral analyses of AI systems in both academia and industry have discovered many real-
world issues, some with significant societal implications. Fairness concerns are one major issue
that plague many models trained on data about people. Notable biased systems include gender
classification models that significantly underperformed for women of color [12] and criminal
recidivism prediction models that classified people of color as higher risk [4]. Better understanding
these models can also inform discussions of whether they should be used at all, such as models that
use binary gender definitions [45]. Another area of concern is potential safety issues. For example,
pedestrian detection systems may not work as well at night or in inclement weather [79], which
when used in self-driving cars can lead to serious accidents [59]. Medical diagnosis models can
have similarly serious errors, for example, a cancer screening model failing to detect a malignant
tumor [61]. A growing number of researchers and practitioners are conducting deeper analyses of
deployed AI systems to discover and mitigate these behaviors.

Knowing how an AI behaves can also be helpful in less critical settings. Improving an existing
AI system often requires developers to know what types of data their model fails on so they can
target their data collection [37]. Consistent failures can also indicate limitations of an AI model’s
architecture and influence the design of future iterations.
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Visual and algorithmic systems can help data scientists describe, detect, and validate the behavior
of their models.These techniques range from tools for slicing and exploring model outputs to testing
specific behaviors. We review several of these systems as we define the sensemaking framework
in Section 4, and explore how they fit into different stages of the framework. By describing a
theoretical framework of how data scientists understand model behaviors, we situate these existing
systems in the broader analysis process and identify stages and domains with limited tooling.

2.2 Sensemaking
Sensemaking was originally formalized by Karl Weick, a social psychologist, in 1995 to describe
how members of organizations come to a collective understanding of their surroundings [85]. At
its most abstract, it can be thought of as “structuring the unknown,” or the “process through which
individuals work to understand new, unexpected or confusing events” [55, 86]. It is an ongoing,
iterative process by which people develop mental models of the world to make decisions and
take actions. Weick’s formalization of sensemaking spurred numerous empirical and theoretical
studies, ranging from how organizations work through crises [3] to how entrepreneurs deal with
failure [81] and even how we should design explainable AI [44].

Sensemaking has since expanded beyond social psychology and has been applied to domains such
as ecology [88] and medicine [17]. Most relevant to this work are the applications of sensemaking to
HCI, where computer and information scientists framed data analysis as sensemaking: constructing
a mental model from extensive unstructured data. One of the earliest formalizations came from
Russell et al. [71], who defined a “learning-loop complex” in which analysts cycle between creating
representations of a system and fitting data to those representations. Russell’s framework was later
expanded by Pirolli and Card [63] to describe the specific steps and representations they observed
data analysts use in practice.

Pirolli and Card [63]’s framework has become a frequent reference for data analysis and visu-
alization research. One application of the framework has been structuring empirical studies of
analysts, such as Grigoreanu et al. [30]’s study of programmers’ processes and challenges when
debugging software. It has also been used to design data analysis tools, including visualizations for
large graph networks [18] or tracking patterns in microblogs such as Twitter [11]. Researchers and
developers have been able to create tools that better fit people’s processes by using Pirolli and Card
[63]’s sensemaking framework.

In this work we adapt Pirolli and Card [63]’s sensemaking framework to AI analysis, as it is the
most widely used framework in the most closely related domain, data analysis. As Pirolli and Card
[63] did with Russell et al. [71]’s framework, we analyze empirical studies of AI practitioners to
derive a new framework that more accurately describes the sensemaking process for understanding
AI behavior. With a formal sensemaking framework specific to AI analysis, we hope to bring
structure to the field, just as the above frameworks did in fields such as organizational psychology
and data analysis.

3 METHODOLOGY
To create a framework that describes AI practitioners’ process we used abductive analysis [80] to
iteratively adapt Pirolli and Card [63]’s sensemaking framework to empirical studies of AI/ML
practitioners. In contrast to inductive methods such as grounded theory [78], which develop a
framework from empirical evidence, and deductive approaches that directly apply existing theories,
abduction extends or develops theory to explain new evidence. We decided that an abductive
approach would be the most appropriate for this work since we adapt theory from a related domain,
data analysis, to describe a new process, how practitioners understand AI behavior.
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We primarily built from Pirolli and Card [63]’s sensemaking framework which describes how
intelligence analysts make sense of large amounts of unstructured data. In their framing, analysts
first go through an information foraging loop, where they filter data sources into a shoebox of
relevant information. Snippets from documents in the shoebox make up the evidence file. Next is
the core sensemaking loop, where analysts create schemas, structured organizations of the data,
from the evidence file which are used to create and support hypotheses. Lastly, these hypotheses
are used to create a final presentation. One can imagine a detective in front of a corkboard, cutting
out and organizing newspaper clippings to pin them up and connect them with red thread.

To adapt Pirolli and Card [63]’s framework to AI analysis, we reviewed empirical studies of how
practitioners work with AI systems in the real world. Since there are no survey papers, to date,
directly covering this area, we relied primarily on academic search engines and citation graphs.
Our review focused on studies with first-hand interviews and surveys to get the most direct look at
data scientists’ processes (Table 1). For our analysis, we coded the empirical studies and used an
affinity diagram to recursively fit the codes to the Pirolli and Card [63] sensemaking stages. During
the abductive analysis, we also updated the stages to better describe AI practitioners’ processes. In
the following section, we describe the resulting framework in detail and describe the key ways in
which it differs from existing frameworks.

4 SENSEMAKING FRAMEWORK
The resulting sensemaking framework for understanding AI behavior is shown in Figure 1. The least
structured stage is gathering (1) instances and model outputs from a variety of sources such as
real-world users or synthetic methods. Data scientists then begin to organize the instances into
general (2) schemas of semantically similar instances and behaviors. Schemas can be either rough
groupings or strict slices of data. Data scientists then define formal (3) hypotheses of AI behaviors
and gather additional evidence to validate their hypotheses. Lastly, data scientists derive a final
(4) assessment of their discoveries, organizing hypotheses to be useful in subsequent tasks like
choosing between AI services or updating a model’s architecture. The sensemaking process does

Table 1. Empirical studies of how practitioners work with AI systems. We synthesized insights from these
studies to develop the sensemaking framework. We limited our search to papers that directly interviewed or
surveyed AI/ML practitioners to study their real-world processes and challenges.

Study Topic Interview # Survey #

Kim et al. [47] Data Scientists in Software Teams 0 793
Wan et al. [82] ML & Software Development 14 342
Serban et al. [73] ML & Software Engineering 0 313
Holstein et al. [38] ML Fairness in Industry 35 267
Zhang et al. [93] Software Engineering & ML 8 195
Yang et al. [90] Interactive ML 24 98
Sambasivan et al. [72] Data Cascades in AI 53 0
Bhatt et al. [10] XAI in Deployment 50 0
Hong et al. [40] Human Factors & XAI 22 0
Muller et al. [57] Data Scientists & Data 21 0
Hopkins and Booth [41] AI Outside Big Tech 17 0
Nascimento et al. [58] Development Processes in ML 7 0
Piorkowski et al. [62] AI in Interdisciplinary Teams 4 0

total 237 2,008
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Table 2. How existing AI analysis systems fit into the sensemaking framework. Some of the tools focus
on specific behaviors, like biases, or domains, like self-driving cars, but they all help data scientists better
understand the behaviors of their AI systems at different points in the sensemaking process.

Venue Paper Instances Schemas Hypotheses Assessment

AAAI Beat the Machine [6]
arXiv Dynabench [46]
ICLR Goodfellow et al. [29]
CVPR StyleGAN [43]
JBD Data Augmentation [76]
VIS CAVA [16]
VLDB Snorkel [66]
WWW Patterned BTM [52]
VIS What-if Tool [87]
HCOMP Pandora [60]
AAAI Lakkaraju et al. [49]
arXiv Spotlight [23]
CVPR Barlow [77]
ICDE Slice Finder [21]
VIS FairVis [14]
CHI ModelTracker [2]
VIS Squares [67]
N/A Facets [64]
IUI AnchorVis [19]
HILDA MLCube [42]
CSCW Deblinder [13]
ACL Errudite [89]
ICLR Domino [24]
VIS HypoML [83]
ASE DeepRoad [92]
ICSE DeepTest [79]
ICSE Structure-Invariant Testing [35]
FAccT Interactive Model Cards [22]
CHI Symphony [8]
arXiv Robustness Gym [28]
ACL Checklist [68]
FAccT Model Cards [56]
IBM JRD FactSheets [5]
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not have to start from the initial stage of instances and outputs. Practitioners may have existing
hypotheses, or may use tools that slice and organize instances into pre-defined schemas.

This adapted framework differs in a few key ways from the Pirolli and Card [63] formalization.
Primarily, it is missing the initial foraging loop with the shoebox and evidence file stages. Unlike
analysts who sort through data sources, such as newspapers, to extract snippets of evidence, AI
analysis starts with instances, model inputs, that are directly relevant to a model’s behavior. While
AI practitioners actively search for new instances to discover hypotheses, they do not have to
further sort and modify instances in their sensemaking process. Next, the instances and outputs in
AI analysis are lower level than the data sources, like research articles, used by analysts. Thus, the
schemas for AI analysis tend to be groupings of instances rather than connections between high-
level patterns or findings. This also means that hypotheses are directly verified using supporting
instances and outputs, and need sufficient, diverse evidence to be accurately evaluated. Overall, the
focus of AI analysis is on creating appropriate schemas and ensuring the validity of hypotheses
rather than foraging for relevant evidence.

The context in which AI analysis occurs also differs significantly from sensemaking in domains
such as data analysis. Sensemaking for AI systems is an iterative and ongoing process, as AI systems
are constantly being updated and applied to new domains. In traditional data analysis, new reports
or research may update existing hypotheses over time but often do not lead to brand new patterns.
Updates to black-box AI systems, on the other hand, can completely change the behavior of an AI
system and require reevaluating all hypotheses. Additionally, new instances are constantly being
received from end users, informing new schemas and hypotheses. The volatility and quick iteration
of AI systems have implications for tools that support the sensemaking process.

In the following sections, we describe in detail the four stages of the sensemaking process for AI
analysis. In each section, we first describe how data scientists currently approach the sensemaking
process and then describe existing tooling available at each stage.

4.1 Instances and Outputs

Instances & Outputs

Diverse sources of model inputs, 
real or synthetic, with their 
associated model outputs Data augmentation Synthetic instancesUser inputs

Fig. 2. The least structured stage of the sensemaking process consists of instances and outputs, model
inputs from a variety of sources along with their associated model predictions. Instances can include both
real-world user inputs and synthetic data.

At the core of the sensemaking process are data instances and their associated model predictions,
the outputs of the model for the given instances (Figure 2). The most convenient source of instances
are datasets collected to train an AI system, often split into training, validation, and testing sets on
which aggregate metrics are calculated. While convenient, initial training datasets are limited and
can lead to misleading performance measures and missed behaviors. For example, one participant
in Wan et al. [82]’s study found significant overlap between their training and testing sets that
produced an inflated model accuracy, while two participants interviewed by Hopkins and Booth
[41] lamented that they needed a much greater diversity of instances than they had to accurately
evaluate the performance of their model.
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To better understand the behavior of their models, data scientists constantly collect new real-
world instances to both update their models and discover new behaviors.This is especially important
due to data drift, with 55% of the data scientists interviewed by Sambasivan et al. [72] describing
factors such as new environmental factors and human patterns leading to model failures or unex-
pected outputs. The data scientists interviewed described monitoring the performance of the model
over time on newly collected instances to identify performance drops or new regressions.

Despite the utility of real-world data, it is often expensive and slow to gather and label real
instances, limiting developer access to data. Instead, data scientists “dogfood” their models, creating
instances they think might be particularly difficult for an AI or show interesting behaviors [47]. Data
scientists interviewed by Hopkins and Booth [41] found that this type of “prodding and probing”
of models helped them better understand and work with black-box systems. Dogfood testing can
be especially important for rare or sensitive behaviors which could have serious consequences in
the real world [1].

Finally, it is not just the quantity and diversity of instances that is important for AI analysis, but
what features are available for each instance. For example, to detect whether a model treats people
of a certain demographic group inequitably, the data instances have to have a feature for that
demographic information. Sensitive information, such as demographic details, is often not collected
or present in a dataset and was one of the primary challenges for data scientists in discovering
biases found by Holstein et al. [38]. In sum, both the number of instances and number of features
of a dataset are important for discovering relevant behaviors.

4.1.1 Data collection and labeling methods. Tools at the instance and output stage often focus on
scaffolding data collection, artificially generating instances, and adding features to a dataset.

Instead of waiting to gather real-world data from users, some techniques proactively use crowd-
workers to gather instances. Beat the Machine (BTM) [6] and DynaBench [46] directly ask end-users
to explicitly find instances for which a model fails, collecting instances that may surface interest-
ing behaviors. Subsequent methods such as Deblinder Cabrera et al. [13] and Patterned Beat the
Machine [52] build on this process by asking users to provide more context for a failure and find
instances relevant for later schemas and hypotheses.

Data is often expensive to collect, so synthetic, artificially generated instances can provide a
useful alternative to real-world instances. A common method for creating synthetic data is data
augmentation, creating new instances by modifying existing ones, e.g., rotating or cropping images
[76]. To create new instances that are not in a dataset, techniques like generative adversarial
networks (GANs) can be used to generate novel examples [29]. StyleGAN is one such technique
that generates new images from high-level semantic descriptions [43]. Synthetic instances are a
low-cost way to augment a dataset, but it is not possible to generate any arbitrary instance, and
synthetic instances are often less diverse than examples found in the real world.

There are also methods for adding new features to a dataset, providing details for each instance
that can surface new behaviors. A separate AI model or heuristic functions are a common way
to extract new features from an instance, such as the noisy labeling functions in Snorkel [66]. A
related system is CAVA, which uses a knowledge graph to extract new attributes for an instance,
such as populations from country names [16]. Additional features, or metadata, are essential for
the subsequent stage of grouping and organizing instances into schemas.

Gathering diverse instances remains a challenging problem, as traditional methods remain
expensive and synthetic techniques are noisy and limited to certain data types. In the context of
the full sensemaking process, tools at the instance and output stage are often not informed by
findings from later stages, such as interesting schemas or new hypotheses. For example, validating
hypotheses requires collecting specific instances, which is often not well supported by current data

8



What Did My AI Learn? TOCHI ’22, ,

collection methods. Data collection or generation techniques that are more closely informed by the
needs of schemas and hypotheses could better support data scientists’ AI analysis process.

4.2 Schemas

Semantically 
meaningful groupings 
of instances

Schemas

Confusion matrix [75] Data slicing [21] Clustering

1
2
3

Fig. 3. Creating schemas is the second major sensemaking stage. Schemas are organizations of instances
into meaningful layouts or groupings. Common schemas for AI outputs include confusion matrices, subgroups
of data, and clusters.

The second sensemaking stage is organizing instances into semantically meaningful groups,
called schemas [33, 63]. Schemas let practitioners hypothesize new model behaviors or collect
evidence for existing hypotheses (Figure 3). There is significant flexibility in how schemas are
created, from formal slices of a dataset to rough groupings of semantically similar instances.

Some of the most common schemas are classic methods for evaluating AI systems, such as the
confusion matrix for classification problems [62, 75] and residual plots for regressions. Yang et al.
[90] described the use of these visualizations as core knowledge required by the data scientists they
spoke with. Splitting a model’s output by predicted and ground truth output lets data scientists
identify numerous metrics related to the model’s behaviors; does the AI have a higher recall than
precision? Is the false positive rate acceptable? These questions of model behavior are often central
for data scientists, such as data scientists in Wan et al. [82]’s study making tradeoffs between
metrics like precision and recall. Residual plots give a similar idea of how well a regression model
behaves, as nonrandom errors can suggest a model is not adequately describing the data.

While these output-based visualizations may be helpful, they are limited to detecting behaviors
described by output groups. Many important behaviors are found in groups defined by a model’s
input features; for example, fairness issues are defined by demographic information that is rarely
the output of a model. Often called ‘subgroup analysis,’ or ‘data slicing,’ splitting and comparing in-
stances by input features can detect such behaviors. Data scientists often look at model performance
across these subgroups to track issues such as biases [38, 41].

For less structured data types such as images it can be challenging to create groups of similar
instances in the first place, such as all images with a specific object in them. Without additional
metadata collected or generated in the instances stage, it is not possible to create clear schemas for
those semantic features. To address this, a data scientist in Holstein et al. [38]’s study wished for
an oracle that would automatically find a hundred other examples of a failure they had found.

4.2.1 Creating schemas. There are myriad tools for creating and visualizing schemas of instances,
from faceted layouts [64] to crowd-powered methods for finding areas of high error [60].

Better encodings of classic visualizations such as the confusion matrix can speed up and improve
model analysis. For example, unit visualizations showing individual failures allow data scientists
to dive deeper into the cause of low performance metrics [2, 67]. Confusion matrices can also be
extended beyond binary classification, such as analyzing hierarchical models [31] or comparing
multiple models [36].
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Novel visualizations can be especially helpful for subgroup analysis. The most direct method is to
look at groups of all combinations of features using, for example, data cube analysis [42]. Since this
can create a countless number of subgroups, other visual systems allow users to create subgroups
from specific features and values [14, 64, 87]. While useful if a data scientist knows what subgroups
they want to create, these systems do not lead users towards interesting groupings. Automatic
slicing algorithms such as Slice Finder can create a more reasonable number of subgroups with
characteristics such as high loss [21]. By slicing data using input features, these visualizations and
algorithms create schemas of subgroups highlighting important AI behaviors.

Beyond explicit data slicing, there are also tools for creating schemas of unstructured data. For
example, clustering instances can surface semantically similar groups that may have interesting
characteristics [7, 49]. Visualizations can also help semantically group data [89]; for example,
AnchorVis [19] lets users define “anchors” that spread the data over different semantic dimensions.

Unfortunately, Holstein et al. [38] and Wan et al. [82] found that knowing what groups of
instances to create and how to group instances are still major challenges for many data scientists.
Current schema methods are mostly focused on highlighting known patterns in well-structured
domains like tabular data. Additionally, few schema methods help data scientists move on to the
hypothesis stage by formally defining hypotheses and gathering diverse supporting evidence.
Schema methods that are better informed by hypotheses and can more meaningfully organize large,
unstructured datasets could better support data scientists.

4.3 Hypotheses

Test cases [79]

Formal descriptions of 
model behaviors with 
supporting evidence

Hypotheses

Checklists [68] 

Fig. 4. Creating hypotheses is the third sensemaking stage. Hypotheses are descriptions of model behavior
with supporting evidence. Hypotheses can come from schemas or existing domain knowledge, like checklists
and unit tests.

The third stage of the framework are hypotheses, formal descriptions of model behaviors (Fig-
ure 4). A hypothesis is a high-level description of a behavior (e.g., the AI fails in low light, or the
AI works best for long sentences) along with supporting evidence. Data scientists test the validity
of their hypotheses by gathering enough diverse data to determine how prevalent a behavior is.
While hypotheses can come directly from schemas, they can also originate from a data scientist’s
own domain knowledge or existing behaviors, such as a data scientist experienced with image
models checking how a model performs in low-light settings.

Hypotheses in deployed settings are often described as unit or regression tests, well-defined
tests of behavior hypotheses [38, 47, 93]. In some cases data scientists even use a test-driven ML
approach in which they first define the behaviors that a model should have before training and
evaluating the model [90]. For example, participants surveyed by Zhang et al. [93] often derive
initial behaviors their models should have from specifications of the AI product they are developing.
When updating their models, data scientists can check these hypotheses to ensure they are not
regressing on important behaviors and monitor any improvements.
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Varied external sources can provide hypotheses of model behavior, such as real-world users
or customer service personnel. Looking through customer bug reports, customer-facing team
members often go through the sensemaking process themselves, finding enough examples of an
AI’s behavior to describe and report a hypothesis. Hong et al. [40] termed the people who find and
test these hypotheses “model breakers”, roles who interact with customers and may have more
direct knowledge of the ways in which a model may behave. From these initial hypotheses, data
scientists or testing engineers can go back to the schema and instances stages to collect more
evidence and validate the prevalence of reported hypotheses.

4.3.1 Defining hypotheses. Hypothesis tools help data scientists understand and test model behav-
iors, especially when tracking multiple hypotheses and assessing supporting evidence.

Visualization systems have shown promise for helping data scientists convert schemas into
formal hypotheses. Errudite is a system for NLP models that lets data scientists slice their data into
schemas and formally define hypotheses of model behavior [89]. Robustness Gym extends this
capacity for NLP models by letting data scientists test a variety of hypotheses, from adversarial
attacks to data augmentation [28]. There are also systems for statistical hypothesis testing, for
example, HypoML is a visual system that lets data scientists statistically test how models perform
across specific concepts [83].

Formal testing methods can help scaffold and evaluate hypotheses of model behavior. Even simple
checklists of expected behaviors can give data scientists an idea of how well their AI performs
in common scenarios [39, 68]. These checklists can be either general descriptions of behaviors or
more specific hypotheses with supporting evidence that can validate if an AI shows a behavior.
Similar to testing in software engineering, data scientists can also test more low-level behaviors
of AI systems [91]. Metamorphic testing, checking if a permutation of an input has an expected
impact on the output, can be used to test behaviors such as the impact of weather conditions on a
self-driving car [92].

Current tools for creating and testing hypotheses tend to focus on specific, predefined behaviors.
They often do not enable data scientists to go back to the schema and instances stages to discover
new behaviors and hypotheses. There is also a more limited set of tools for this stage of the process
compared to the schema stage. Robust hypothesis creation and evaluation tools could help data
scientists more accurately describe and test what real-world behavior their models have.

4.4 Assessment

Summary of hypotheses 
and evidence for further 
analysis and iteration

Assessment

Reporting [27] Model comparison

model A

behavior 1 432

model B

Fig. 5. An assessment of the model’s behavior is the final stage. The assessment provides an actionable
summary of a model that can be used for tasks such as improving the model or choosing between different
AI services.

Lastly, data scientists combine and organize hypotheses into a cohesive assessment of the
behaviors of a model that can be used to make informed decisions (Figure 5). For example, when
choosing between AI services, a data scientist needs a summary of the models’ behaviors to decide
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which AI provides the best overall performance. Or, in AI development, ML practitioners need to
know the most significant failures or areas in which their model can improve the most. Additionally,
Yang et al. [90] found that ML consultants often report direct data insights and model iterations,
assessments, to customers to increase their trust and reliance on a model.

As the most structured stage of the sensemaking process, assessments often act as the starting
point for the other AI development processes. For example, a full assessment can be used to decide
which AI service is the best for a certain dataset. It can also guide future data collection and model
updates to target the areas for which the model performs the worst. Data scientists can then go
back to the assessment to see how their updates have changed model behaviors.

AI teams often attempt to track model behaviors to check for serious issues and understand how
their AI systems evolve over time. Many data science teams often deal with issues on a case-by-case
basis, fixing problems as they are detected in the real world [38]. This introduces its own challenges
of ensuring that model updates do not inadvertently regress on certain behaviors while improving
others [82]. By having a combined central assessment of model behaviors, data scientists can
quickly see their model’s overall performance and make informed decisions [28, 68].

4.4.1 Assessment mediums. Recent work has explored how structured reporting about datasets
and models can improve future iterations. For example, Datasheets for Datasets [56] tracks the
metadata of a dataset, such as provenance and demographic distribution, to inform future model
builders, while Model Cards [27] describe AI models to inform their use and potential downsides.
Checklists of important steps and processes that data scientists should take can also lead data
scientists to more proactively audit the behaviors of their models [54].

Most current assessment tools focus on aggregate metrics and characteristics of a model, whereas
AI teams often end up tracking behaviors in an ad-hoc manner. Systems, especially visualizations,
that can effectively summarize and track changes in behavior over time could provide a useful and
actionable assessment for data scientists. This information can augment documentation methods,
for example, with interactive model cards [22], and provide a holistic view of how an AI system
is working. While assessment is the final sensemaking stage, it is not the end of the process.
Understanding model behavior is an iterative and ongoing process that data scientists continue
going through as they update their AI and see new behaviors in the real world.

5 AIFINNITY SYSTEM
To assess our framework’s generative power, we used it to create a system for analyzing image-and-
text models called AIFinnity. AIFinnity can be used to understand the behavior of a single model
using ground-truth labels or compare two models against each other. In the review of existing
tools for AI analysis we found that there were a lack of systems that covered the full sensemaking
process and helped data scientists move between sensemaking stages. Therefore, our aim was to
design a system that met these two goals, using both new and existing AI analysis techniques.

We focused on image-and-text models since they are growing in use for tasks like image cap-
tioning, visual question answering, and optical character recognition. Although there are many
tools for understanding the behavior of tabular and text models, as described in Section 4, there
are few tools specifically for image models. Image data is often unstructured, making it difficult to
explore instances and create meaningful schemas and hypotheses.

AIFinnity is a Jupyter widget written in Python and Typescript. Jupyter notebooks are one of
the most common data science platforms for data analysis and model training [74]. By making
AIFinnity a widget, we allow data scientists to directly load instances and model outputs from a
computational notebook into the tool. AIFinnity is also model-agnostic, working with common AI
platforms such as PyTorch, TensorFlow, and online services.
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A Image Explorer B Image Preview

C Affinity Diagram

Fig. 6. The AIFinnity system is a Jupyter Widget that consists of three primary panels, shown here for the
image captioning task used in the user study. The (A) Image Explorer shows a sample of images, sorted
by the images with the most different labels. The (B) Image Preview shows the currently selected image.
It lets users see the image’s extracted metadata, use tools find similar images, and create counterfactuals.
Lastly, the (C) Affinity Diagram is where users can organize instances into schemas and hypotheses. The
colored borders represent the quality judgements from users on whether they believe either or both of the
outputs are adequate or not. Data scientists can load AIFinnity with any AI system and image dataset they
are using in a Jupyter Notebook.

Running example: optical character recognition
AIFinnity supports various image-and-text models, but we focus on two primary examples for
this work, optical character recognition (OCR) for the system walkthrough and image captioning
for the user study in Section 6. As a running example of AIFinnity’s workflow, we walk through
the example of an AI developer exploring whether their OCR system works for a new dataset of
storefront signs [20]. This task is common in real-world scenarios such as Google Maps identifying
the names of businesses from streetview data. As we describe AIFinnity, we use block quotes to
describe how a data scientist could use each component in this running example (see Figure 7 for
an overview):

Emma is an ML developer at a startup that provides an OCR service. Her company
has a new client who wants to use the system to read street signs. Emma is unsure
whether their model works for the client’s data, so she loads AIFinnity with a
sample of the client’s storefront images, ground-truth labels, and the AI’s outputs.
Her goal is to explore how well the AI works for this new dataset to decide
whether she needs to collect new data and retrain the model.
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5.1 Instances, Outputs, and Initial Schemas
AIFinnity is implemented as a Jupyter widget primarily to enable data scientists to use it with
diverse, updating data, directly supporting the instances and outputs stage of the sensemaking
process. Users pass to the widget a list or two of model outputs and image paths, which can be
dynamically updated from the Jupyter notebook. AIFinnity explicitly supports two outputs for
each instance for a couple of reasons. When analyzing a single model, one output can be the output
of the AI model, while the other can be ground-truth labels. AIFinnity can also be used for model
comparison, loading the outputs of both models. In both cases, comparing the two outputs provides
a useful metadata feature for creating schemas and hypotheses.

The loaded images are displayed in AIFinnity’s image explorer (Figure 6A), which shows them
in a paginated list. When data scientists hover on a thumbnail or click to select an image, they see
the full size version in the image preview (Figure 6B) on the right, along with the model output.
AIFinnity initially sorts the instance exploration panel to show instances for which the two outputs
are the most different.This creates an initial schema or grouping of the data that provides a sensible
default for finding interesting hypotheses. When two outputs are significantly different, there is
likely some interesting difference between the two. This technique is inspired by common loss
functions for NLP models, namely the BLEU score for measuring sentence similarity [15], which
we use to calculate how similar two labels are.

As data scientists discover interesting instances, they can drag them to the affinity diagram at
the bottom of the interface (Figure 6C). Affinity diagrams are a common data analysis tool used in
industry and research to organize and track data insights, especially in sensemaking processes [32].
Since images are two-dimensional and humans are especially good at 2D spatial cognition [50, 69],
the affinity diagram is a compelling format for spatial organization of images. The affinity diagram
serves two primary purposes in the AIFinnity system, allowing users to create rough schemas
separate from the image list and to create and track hypotheses of behaviors.

As Emma explores the street sign images in the initial list, she finds that her
model does not detect the text in a couple of round signs with text written in a
circle. She drags these example images into the same area of the affinity diagram
to keep track of them, creating an initial schema.

5.2 Schemas With Similar Search and Filtering
Beyond the initial sorted image list, AIFinnity provides a set of sorting and filtering tools to create
new user-defined schemas. Since there is no direct technique to explore a dataset of images, unlike
queries for tabular data, we provide two complementary features for creating new schemas, similar
search and filtering.

AIFinnity’s similar image search enables data scientists to discover instances that may have
similar model behaviors. For a selected image in the image preview panel, a data scientist can click
on the magnifying glass icon to find the most semantically similar images. Since pixels do not
necessarily encode the semantic similarity of two images, AIFinnity instead uses the outputs of a
pre-trained deep learning model to measure similarity. Specifically, AIFinnity runs each image
through the ResNet-18 convolutional neural network (CNN) [34] trained on ImageNet and gets
the second-to-last output layer, a 512-dimensional embedding vector representing the semantic
content of the image. AIFinnity then calculates the cosine similarity between the selected image’s
embedding vector and all other images’ vectors in the dataset and sorts the image exploration panel
by the most similar images. The data scientist can then drag any interesting images into the affinity
diagram. Similar image search acts as a schema of instances that are the most semantically similar
to a reference image.
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Emma wants to find more examples of round signs with text written in a circle.
She selects the first image she found of a round sign and clicks the magnifying
glass, which sorts the image explorer to show the most similar images. She finds
various images of round signs that her model also fails to detect, so she drags
them into the affinity diagram close to the original instance.

While similar image search is a useful heuristic for organizing instances, it is an approximate
method that can be biased and miss related instances. AIFinnity lets data scientists filter images by
various semantic features as a more formal way of schematizing the data. When the images are first
loaded, AIFinnity runs two pre-trained deep learning models to extract metadata from the images.
First, AIFinnity gets the ImageNet class of an image using the same pre-trained ResNet-18 model
used for the similar image search. AIFinnity also runs an object detection model (FasterR-CNN
ResNet-50 FPN [67]) trained on the MS-COCO dataset to extract common objects from the images.
Data scientists can see the extracted metadata for a selected image by hovering over the information
button to the right of the image in the image preview. In addition to the extracted metadata, they
can also filter images by the labels of either source. For even more control, data scientists can also
create custom tags for images that describe any feature of the image.

To filter images by any of these features, data scientists can use the filter bar at the top of the
interface. Data scientists can use the filter bar to logically combine filters and isolate certain types
of instances - for example, a data scientist could filter for images that have a certain object in them
but do not have a keyword in the output. As data scientists add filters to the filter bar, the image
exploration panel is updated to show only the matching images. Filtering is a schema that splits
the dataset by explicit semantic features in contrast to similar search’s rough grouping.

Emma hovers over the information button for a round sign with circular text
and finds that it is incorrectly classified as an “analog clock”. While the class is
incorrect, she thinks other round signs may have also been misclassified and
decides to filter the images by the class “analog clock.” As expected, she finds
various other round signs classified the same way, which she drags into the
affinity diagram.

These image search and filtering techniques give data scientists multiple ways to schematize and
mentally organize their data. From this general organization of images, they can then formulate
and validate concrete hypotheses of AI behaviors.

5.3 Hypotheses and Assessment
In addition to being a medium for creating schemas of images, the affinity diagram also allows
data scientists to create formal hypotheses of model behaviors. To create a hypothesis from the
schemas, a data scientist can either select multiple images and click the “create hypothesis” button
or drag the images into an existing hypothesis. Hypotheses are named rectangles in the affinity
diagram data scientists can create for specific behaviors.

The initial evidence used to create a hypothesis is often not sufficient to fully support the
prevalence of a behavior. To find more supporting evidence for a hypothesis, AIFinnity has a
modified version of similar image search for hypotheses.When themagnifying glass on a hypothesis
is clicked, AIFinnity calculates the average embedding vector of the images in the hypothesis and
sorts the image exploration panel by the most similar images not already in the hypothesis. This
allows data scientists to go back to the schema stage to find more supporting evidence.

To help data scientists get a more quantitative idea of how prevalent each behavior is, AIFinnity
provides quality judgements that can be used to track whether an output is adequate for an instance.
For each output on a given instance, a data scientist can indicate whether the output is correct
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Fig. 7. An overview of the typical sensemaking process used by participants in the user study with AIFinnity.
Participants often started by finding interesting instance in the Image Explorer. They then used the schema
tools to find similar behaviors, and dragged them into the Affinity Diagram. Lastly, they created formal
hypotheses from the schemas to find more evidence and organized their final assessment. The figure is shown
for the optical character recognition task described in Section 5

by giving a thumbs up or thumbs down. Each hypothesis then shows the overall percentage of
instances for which the data scientist indicated the labels are correct. This gives data scientists a
quick quantitative view of how well their AI(s) perform for each hypothesis.

Emma has dragged various images of round signs into the affinity diagram and
decides to create a formal hypothesis. She selects the images, clicks on the create
hypothesis button, and names the resulting rectangle. To find more evidence,
she uses the group similar image search by clicking the magnifying glass on the
group. She finds a few more round signs and drags them into the hypothesis. She
provides quality judgments for each image in the hypothesis and finds that her
AI fails for more than 50% of the signs with circular text.

Since the original dataset may not have enough instances to adequately validate a hypothesis,
AIFinnity also provides a counterfactual feature to allow the creation of more evidence and the
refinement of hypotheses. Data scientists can click and drag to draw a black rectangle over an
image in the image preview, occluding regions of the image to create a new instance. AIFinnity
then runs the model on the newly modified image and shows the changed text output below the
original output. The counterfactual tool allows data scientists to go back to the instances stage and
create specific synthetic instances to test their hypotheses.

Most of the round signs with circular text that Emma found have logos in the
center of the circle. Emma is worried that the AI system might actually be failing
due to the logo, so she uses the counterfactual tool to create more evidence. She
draws a black box in the center of a few of the images to remove the logos and
adds the new images as evidence to her hypothesis. She finds that her AI is still
not able to detect the text in the new images, further validating her hypothesis.

Lastly, data scientists can organize the affinity diagram with their evidenced conclusions into a
final assessment of their model behavior, depending on the end goal of the analysis. These insights
can then be saved and exported to share with other stakeholders and make actionable decisions.

Emma organizes the affinity diagram with the main hypotheses she has found,
grouping them by the type and prevalence of each behavior. She exports the
findings to save the results and uses them to improve her AI’s performance for
street signs by gathering more data and iterating on the AI’s architecture.

16



What Did My AI Learn? TOCHI ’22, ,

6 USER STUDY
As a final evaluation of our framework, we conducted an exploratory think-aloud study with 10
professional data scientists tasked with using AIFinnity to choose between two image captioning
models. This study aimed to understand how people use a complete sensemaking system, including
how the different stages interact and how data scientists approach the process. We believe that
these initial empirical insights can highlight the primary benefits and key features of AI analysis
systems grounded in the sensemaking framework.

To recruit participants, we sent an email to 200 data scientists at Microsoft. We continued to
invite participants in order of their responses until the qualitative themes in our iterative analysis
converged at 10 participants (8 male, 2 female, mean age 32). The participants had an average
of 6.8 years of data science experience and worked with various domains and models, including
recommendation systems, search, captioning, and cybersecurity. The study lasted between 40 and
60 minutes, for which we compensated the participants with a $25 Amazon gift card.

6.1 Study Procedure and Analysis
We started the study with a few background questions about the data scientist’s experience with
AI and behavioral analysis. The researcher then spent 10 to 20 minutes walking participants
through AIFinnity, specifically for a task comparing two optical character recognition models used
to read street signs, the same as the example in Section 5. The researcher explained the primary
features and components of AIFinnity, and had the participant create at least one schema and
hypothesis. We used a different domain and task for the introduction to not bias the behaviors that
the participants looked for in the last part of the study.

In the final andmain part of the study, which lasted 30 to 40minutes, participants were taskedwith
using AIFinnity to choose between two image captioning models on a dataset of outdoor activities.
This task was motivated by a common use case for image captioning, making photos accessible to
people who are visually impaired or blind, for example, on social networks [53]. The task focused on
model comparison to give participants a concrete goal, but since comparison requires participants
to understand each model’s behavior, our discoveries encompass understanding the behavior of
one model. The first model, model A, was Microsoft’s Cognitive Services image captioning system1,
and the second model, model B, was a pre-trained, off-the-shelf captioning model2. Participants
analyzed the behavior of the models on the UIUC Sports Event dataset [51], a collection of images
from various indoor and outdoor sports. We chose this dataset as it has a wide variety of conditions,
scenarios, and actions, while being a limited enough domain to explore in 30 to 40 minutes. To not
limit or cherry pick the types of behaviors participants searched for, we gave them the general task
of understanding the two models well enough to describe to a client, with supporting evidence,
which model they should use for the given sports dataset.

As we conducted the studies, we transcribed the recordings and did iterative open coding of the
results [70]. We also summarized the schemas and hypotheses of the participants as additional
data on how the participants analyzed the two AI systems. With 10 participants, we found that the
themes of how data scientists use a complete sensemaking system converged with significantly
overlapping interaction patterns and hypotheses. After completing all the interviews, we conducted
selective coding of the transcripts focused on the main themes identified in the open coding. We
separate the findings into broader insights that are likely to generalize to other sensemaking
systems and findings specific to the AIFinnity system.

1https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
2https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning
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6.2 Results
Making sense of model behavior
The challenges and goals described by the participants for AI analysis matched those identified
in the empirical studies reviewed in Section 4. When describing their AI analysis workflow, all
10 participants talked about taking steps to better understand their AI systems beyond aggregate
metrics. One participant (P8), a manager of an AI team, actually described their primary role as
“metric development” : conducting behavioral analyzes on a deployed AI system and converting
those insights into metrics to track and improve the system. Another participant (P5) described
behavioral analysis as necessary because metrics like “precision and recall can lie”, but found that
this deeper analysis is “a very challenging problem.”

Many of the strategies that participants use for AI analysis also reflect those described in the
sensemaking framework. Five participants use human judges to label or gather instances, while
two participants mostly rely on ad hoc spot checking like dogfooding to check if the AI is behaving
as expected. Some data scientists have developed their systems for unit testing and validating
model behaviors, with four participants using a form of “regression sets” that track specific model
behaviors, or hypotheses. They use these sets to ensure that updates to their AI do not cause it
to regress on important behaviors or subgroups of instances. Even the participants with bespoke
tooling found behavioral analysis to be an open challenge, as one participant (P1) stated, “we don’t
really have a way of checking for patterns to see if a problem is a one-off or something more systematic.”
Like data scientists in the empirical studies, our participants tended to perform behavioral analysis
in an ad hoc and post hoc manner, reacting to discovered failures.

Process and strategy
When the participants used the AIFinnity system, we noticed differences in how participants
approached the sensemaking process. The first pattern we found was that participants started the
AI analysis process from different stages. Since AIFinnity does not provide preexisting hypotheses,
most of the participants (8) began their analysis by looking at the initial schema of instances
with the largest output differences. The other two participants, who train image models in their
work, started the analysis with their own preexisting hypotheses. They created these hypotheses
from their experience and knowledge of how image models are most likely to fail. For example, a
participant (P2) specifically created hypotheses for “high contrast lighting” and “low light” before
looking at any of the instances. Despite starting at different stages, all participants eventually took
an iterative process, going back to the image explorer to find new instances and using the affinity
diagram to create schemas and hypotheses.

Another significant difference in participants’ processes was whether they took a breadth-first
or depth-first approach. About half of the participants (4) took a breadth-first strategy by exploring
multiple instances in the original schema before creating more specific schemas and hypothe-
ses. The other six participants used a depth-first approach, immediately creating schemas and
hypotheses for the first interesting instance they found. These different techniques led to a trade-off
between the number of hypotheses and the amount of evidence participants found; participants
using the breadth-first technique tended to find more hypotheses with less supporting evidence,
while depth-first participants found fewer hypotheses with more evidence.

Complementary tools
One of the most salient benefits of having an integrated sensemaking system was the complemen-
tarity of tools across stages. As participants progressed through the sensemaking process, they had
tools available to help them at each stage. For example, when participants wanted to validate an
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initial idea of a behavior from a schema, they could create a hypothesis and find evidence using
AIFinnity’s similar image search feature. Participants found the progressions between tools and
stages to be natural as they created schemas and validated hypotheses.

An unexpected benefit of AIFinnity was the complementarity of the features within each sense-
making stage. This complementarity was most apparent in the schema stage with similar search
and filtering tools. The benefit of having both tools was highlighted by one participant (P9), who in
validating the hypothesis that models could not describe large groups of people found that “using
the tool together is useful, because otherwise, I was trying to look at [images with] groups of people
but [similar image search] didn’t give me that, but the object detection model is more specific.” Similar
search is a less structured but quicker schema tool, while filtering can create more specific and
structured schemas. Participants generally started with the similar search tool to get an initial
group of instances for a schema but were concerned about missing evidence with the “black box”
search and so moved on to use the filtering approach. Having a quick heuristic tool combined with
a more deliberate schema method was an essential feature of AIFinnity.

Dealing with confirmation bias
Confirmation bias is a significant challenge when creating and validating any hypothesis; How
does a data scientist know that they have enough diverse instances to support their hypothesis? We
found that having a combined sensemaking system helped data scientists combat confirmation bias.
This was especially true when participants went from the hypothesis stage back to the schema stage
to find more evidence, as they had various techniques at their disposal to discover or create more
evidence. Six of the 10 participants found that at least one of their hypotheses did not hold after
finding additional evidence. For example, a participant (P8) thought model A typically confused
racquets for video game controllers, but quickly disproved their hypothesis by using the similar
image search to find more images of people with racquets that were correctly described. Three
participants also actively reflected on their potential confirmation bias and took steps to counteract
it by proactively looking for disconfirming evidence.

Actionable, evidenced hypotheses
Overall, the participants found various hypotheses with significant supporting evidence. Partici-
pants created 4.1 hypotheses on average, which ranged from specific failures to high-level patterns.
The most specific hypotheses included “model cannot describe images with cliff backgrounds,” and
“model fails to describe large groups of people on boats.” Some of the most general hypotheses included
“model doesn’t describe the central activity,” “the model is often too vague,” and “bad lighting leads to
inaccurate captions.” There was significant overlap in the hypotheses and behaviors the participants
discovered despite the wide range of described behaviors. Five of the 10 participants found that
Model B confused climbing images with snow, skiing or snowboarding. Four participants found
that both models described most of the racquet sports as tennis and did not have badminton in
their language. Lastly, the most common groupings eight participants created were for a specific
activity, for example climbing, boats, or tennis.

At the end of the study, most participants had developed nuanced conclusions about which model
they would choose for a given task. The most common conclusion, which seven of the participants
came to, was that model A is more conservative, less detailed, but often correct, while model B
provides more detailed captions, but is often wrong. Given these findings, they decided to make
different recommendations for which model should be used depending on the risk profile and
domain of the client.

Beyond describing the differences between the two models, some participants also asked ques-
tions about the underlying model and data and came up with potential fixes for the issues they
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saw. Three participants attributed the patterns they found to biases in the training data or labels.
Two of these participants hypothesized that there might be an “alpine” or “snow” bias in the data,
causing model B to describe people climbing as snowboarding or skiing, and they wanted to look at
the training data to verify their hypotheses. Two other participants hypothesized that the models
themselves may be causing the problem by not having certain words in their vocabulary, specifically
“badminton” and “croquet”, which were often described as “tennis” and “baseball.”

Using the AIFinnity system
We also found insights specific to the AIFinnity system and analysis of image and text models.
Participants generally found the affinity diagram to be intuitive and usable, with five participants
specifically stating that it was their favorite part of the interface and one participant (P3) stating that
it “makes total sense, especially for images.” One participant (P8) especially liked the split between
the top and bottom areas of AIFinnity, seeing them as two different representations of the data,
or schemas: “Switching between text and visual representations is very interesting - I can have a
hypothesis and go back and forth.” Affinity diagramming is a prolific sensemaking tool in other
domains [32], which lends another piece of support to taking a sensemaking lens to AI analysis.

A feature that received mixed feedback in AIFinnity was the thumbs up or down quality
judgement. Two participants (P1, P9) used it as the primary way of tracking which model was
performing better, and a third participant (P2) liked that “having them [images] colored gives you a
quantitative feel for how strong your hypothesis is or not.” While more than half of the participants
(6) liked to have a quantitative view of their findings, four participants found that the judgement
was too coarse to be very useful. Both captions were often wrong, but one was slightly better, or
a caption being ‘good’ would depend on the situation. The participants would have liked more
detailed descriptions to capture these nuances, such as scale or text descriptions.

Participants thought the counterfactual feature was useful but found that AIFinnity’s implemen-
tation of drawing black boxes was too simple. The participants wanted more image manipulation
tools, such as adding new objects or changing image properties. Counterfactuals are a powerful
tool for generating more evidence, and participants wanted these improved interactions to test
more nuanced and complex behaviors.

7 DISCUSSION AND FUTURE WORK
Through our review of existing studies and tools, the design of AIFinnity, and the exploratory
user study, we found that the sensemaking lens adequately describes how data scientists analyze
AI systems. By describing AI analysis using a formal framework, we hope to give researchers
and tool creators the language to better understand the context of their systems and studies in
data scientists’ overall process. Future work can aim to fill tooling gaps for AI analysis or better
understand the challenges and trade-offs in the different sensemaking stages.

7.1 Applications and Extensions of AIFinnity
The think-aloud study focused on one application of AIFinnity, comparing AI services, but
AIFinnity can be used in various real-world AI analysis scenarios. When working with one
model, data scientists can use AIFinnity to supplement traditional evaluation methods, such as
aggregate metrics, by discovering, formalizing, and testing specific model behaviors on a labeled
dataset. An example of this process is described in Section 5, in which a data scientist tests their
model on a new dataset. When using AIFinnity for model comparison, data scientists can use it on
their models, comparing iterations of an AI system using a new architectures or training set.

Participants found the initial set of schemas and hypothesis testing tools to be useful, but
additional tools would have to be added to AIFinnity to make it widely applicable to real-world
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models. Specifically, there were various behaviors that participants were unable to validate with the
current tool set.Thiswas especially the case for issues regarding bias and fairness, which participants
wanted to test for but AIFinnity does not explicitly support. For example, creating schemas across
demographic information can help identify potential biases, but the existing metadata did not have
those features.

AIFinnity is primarily an exploratory analysis tool for image models and relatively small datasets
that may not generalize to other use cases and domains. The affinity diagramming-based interface
can work for other visual data such as videos but may not be adequate for encoding other data
types such as text or audio. AIFinnity also requires users to manually select, explore, and organize
instances, which cannot be manually done on a scale of thousands or millions of instances. For
formal hypothesis testing on large datasets, especially when comparing models over time, a different
system or extensions to AIFinnity would be required.

7.2 Gaps in Current Tooling
In reviewing the current landscape of AI analysis systems, we found a few significant gaps in
current tooling. The first limitation is the lack of connection between the “discovery” half (instances
↔ schemas) and the “evaluation” half (hypotheses ↔ assessment) of the sensemaking process. There
are many systems focused on the discovery half of the process that help data scientists slice and
explore their data, and many systems for the evaluation half, like checklists and unit tests, that let
data scientists validate known behaviors. There are comparatively few tools that let data scientists
move between these two processes - turning rough groupings into formal hypotheses or discovering
new hypotheses to validate.

There is also a lack of tools for certain types of data domains. Most schema and hypotheses tools
are designed for tabular, timeseries, or text data that can be easily sliced and grouped. Unstructured
data, such as images and videos, are harder to organize and there exist few usable tools for those
domains in most stages of the sensemaking process. With the growing use of image and video
recognition in the real world, behavioral analysis tools will be important in detecting and describing
their behavior, especially for potential safety or fairness concerns.

7.3 Designing and Evaluating Tools With the Framework
The initial patterns found in the user study have some implications for future system design and
empirical studies. For example, we found that there is a trade-off between using a breadth vs.
depth-first approach when analyzing AI behaviors. A breadth-first approach tends to generate more
hypotheses with less evidence, while a depth-first approach leads to fewer hypotheses with more
supporting instances. Further experiments or studies could explore whether this leads to disparate
insights and whether or not analysis systems should guide data scientists toward balancing these
strategies. Other differences in approaches, like starting from certain sensemaking stages, could
also be studied to improve data scientist processes.

The process of AI analysis also interacts significantly with other AI tools and processes. For
example, explainable AI can be a useful tool at different points in the sensemaking process to
both discover and evaluate hypotheses. Model updates and iteration also directly interplay with
sensemaking, as people have to make sense of an updated model’s new or changed behaviors. These
are both complex fields and topics which we did not explore in depth but which interact significantly
with understanding AI behavior. Further studies of data scientists and deeper explorations of these
interactions could identify areas where tools could bridge or better connect processes, for example,
quick feedback loops between model updates and behavioral analysis.

Sensemaking has been applied to domains ranging from organizational psychology to data
analysis. Each of these fields has developed unique techniques and tools to improve sensemaking
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processes that could be used as inspiration for improving AI analysis. For example, there is a
growing body of work on distributed or crowd sensemaking [25, 48], aggregating and reusing
schemas and hypotheses from multiple people. Future work could explore how these concepts
could be applied to improve AI analysis, for example, reusing common schemas and hypotheses
between datasets and models.

7.4 Limitations
It is challenging to validate the usefulness of a theoretical framework, and our initial evaluation
inherently has some limitations. First, when reviewing existing studies and systems, we likely
missed some work that covers stages of our framework or fits the sensemaking process. While we
do not claim that we conducted an exhaustive review of the literature, we believe that we covered
the major works and subfields of AI analysis rigorously enough to support our framework. Second,
to test the generative power of our framework, we implemented only one system for the specific
domain of image and text models. Although it was not feasible to create multiple sensemaking
systems, we believe that the reviewed systems provide a strong foundation for the framework, while
the implementation of AIFinnity serves as a case study of how a complete sensemaking tool can
be created. Lastly, our think-aloud study was conducted with participants at one company. While
some of their procedures and the insights we derived may have been specific to that company’s
processes, we chose participants from different teams and suborganizations that act independently
in order to increase the generalizability of our results.

8 CONCLUSION
This work introduces a sensemaking framework that describes how practitioners develop mental
models of AI behavior. We derived the framework using a sensemaking lens and empirical studies
of AI/ML practitioners. We then designed and implemented AIFinnity, an interactive tool for
analyzing image-and-text models, and explored the dynamics of the sensemaking process in an
exploratory think-aloud study with 10 professional data scientists. Researchers, designers, and tool
creators can use the framework to better understand how people analyze AI systems and develop
systems that are grounded in data scientists’ analysis process.
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