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Abstract

Contrastive Learning has recently achieved state-
of-the-art performance in a wide range of tasks.
Many contrastive learning approaches use mined
hard negatives to make batches more informative
during training but these approaches are ineffi-
cient as they increase epoch length proportional
to the number of mined negatives and require
frequent updates of nearest neighbor indices or
mining from recent batches. In this work, we
provide an alternative to hard negative mining,
Global Contrastive Batch Sampling (GCBS), an
efficient approximation to the batch assignment
problem that upper bounds the gap between the
global and training losses, £L&tbel — £Train in
contrastive learning settings. Through experimen-
tation we find GCBS improves state-of-the-art per-
formance in sentence embedding and code-search
tasks. Additionally, GCBS is easy to implement
as it requires only a few additional lines of code,
does not maintain external data structures such
as nearest neighbor indices, is more computation-
ally efficient than the most minimal hard negative
mining approaches, and makes no changes to the
model being trained.

1. Introduction

Contrastive Learning is used ubiquitously in training large
representation models, such as transformers, and has been
shown to achieve state-of-the-art performance in a wide
range of unimodal and multimodal tasks across language,
vision, code, and audio (Chen et al., 2020a; Gao et al., 2021;
Jiang & Wang, 2022; Guo et al., 2022; Yu et al., 2022; Rad-
ford et al., 2021; Ramesh et al., 2021; Saeed et al., 2021).
In supervised contrastive learning, one is given a paired
dataset (X,Y") each with N samples, where x; ~ y; such as
similar sentences, code and corresponding language descrip-
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tors, or images and their captions is first constructed. Then
batches of rows, B, are sampled from this pair of datasets
and a model f(-) is trained to concurrently maximize in-
ner products for outputs of similar (positive) data inputs,
f(x)T f(y;), and minimize inner product for outputs of dis-
similar (negative) data inputs f(z;)” f(y;),i,j € B,i # j.

Due to batch size constraints from hardware limitations, for
a fixed batch size k, only Nk inner products of the total N2
in f(X)f(Y)T are observed in the training loss for each
epoch of training. Through the rest of this paper, we will re-
fer to this observed training loss over Nk inner products as
LTram and the total loss over N2 inner products as £&1°0!,
It has been observed, both in contrastive metric and repre-
sentation learning (Saunshi et al., 2019; Iscen et al., 2018;
Xuan et al., 2020; Mishchuk et al., 2017; Wu et al., 2017;
Song et al., 2016; Schroff et al., 2015; Harwood et al., 2017;
Ge et al., 2018), that in order for batches to be informa-
tive during training, they should be constructed to contain
“hard-negatives”, or large values of f(z;)7 f(y;),i # j. Ad-
ditionally, it has been shown that including hard negatives in
batches better approximates global losses (Zhang & Stratos,
2021).

Currently, approaches for constructing batches, and control-
ling which inner products of the total N2 should be used
for training, broadly fall into one of two categories. One
either uses random sampling or mines nearest neighbors
of the reference sample x; in order to greedily insert hard
negatives into the same batch as z;. While greedily inserting
hard negatives is effective in practice (Zhang et al., 2018;
Xiong et al., 2021), these methods incur large costs both in
time and resources as mining ! < k hard negatives per refer-
ence sample increases each training epoch by a factor [ and
often requires maintaining and reranking nearest neighbor
indices on expensive accelerated hardware during training.
For instance, if 5 hard negatives from Y are mined for each
sample in X during batch construction one will increase the
training time of a single epoch by a factor 5, not including
time taken for constructing nearest neighbor indices.

Furthermore, hard negative mining often requires frequent
reranking to prevent negative anchors from being sampled
from stale nearest neighbor indices. Work on momentum
based memory banks have found that hard negative min-
ing is especially useful with small lookback intervals (i.e.
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Figure 1. Visualization of inner products of f(X)f(Y)” in global, training with random sampling, and training with permutation

optimized sampling for contrastive losses.

2-4 previous batches) (Wang et al., 2021). In this paper,
we propose a global alternative to hard negative mining,
Global Contrastive Batch Sampling (GCBS), which seeks
to efficiently learn a permutation over samples in X and
Y to increase the likelihood of hard negatives before each
epoch rather than through greedy insertion during training.
In Figure 1 above, we visually depict L5194 and £LTT@m
along with the modifications on batches, and therefore the
observed loss, for our proposed approach GCBS.

First, we show theoretically that the upper bound on
LGlobal _ pTrain with no oversampling or assumptions
on the data/model for commonly used scaled cross entropy
losses, such as NT-Xent, (Sohn, 2016), are only dependent
on batch assignments, total samples /N, and batch size k.
We prove that, for fixed NV, k, this upper bound is minimized
as a Quadratic Bottleneck Assignment Problem which seeks
to maximize the number of hard negatives in batches by
learning a permutation 7 € Il on the rows of X and Y.
We then formulate an (’~)(N 2) approximation for optimizing
over this permutation, GCBS, and show that it is more ef-
ficient than any hard negative mining approaches, even for
I = 1, per training epoch. We analyze the loss behavior of
GCBS and show that GCBS better approximates the total
contrastive loss. Lastly, we empirically evaluate GCBS in
the context of supervised contrastive finetuning for sentence
embedding (STS) and code search (CosQA, AdvTest, Code-
SearchNet) and achieve state-of-the-art performance for all
of these tasks.

In this work, we summarize our contributions as follows:

1. We prove that the upper bound of the gap between

the total and observed losses in contrastive learn-
ing for a fixed batch size B without oversampling,
LGlobal _ pTrain g constrained by a Quadratic Bot-
tleneck Assignment Problem and can be relaxed to a
Matrix Bandwidth Minimization problem.

2. We formulate a O(N?) time and O(Nk) space com-
plexity approximation to the Matrix Bandwidth Min-
imization problem, GCBS, using the Cuthill-Mckee
heuristic and implement this algorithm in less than 50
lines of PyTorch.

3. We analyze the loss behavior of GCBS and show that,
in sentence embedding and code-search tasks, GCBS
better approximates the total contrastive loss.

4. We empirically evaluate GCBS and achieve state-of-
the-art performance on the STS taskset for sentence em-
beddings. Additionally, we achieve state-of-the-art per-
formance for the CosQA, AdvTest, and CodeSearch-
Net tasks for joint programming language-natural lan-
guage embeddings.

The rest of this paper is organized as follows. In Section
2 we discuss related work. In Section 3, we derive upper
bounds on the gap between total and observed losses and in
Section 4 formulate these bounds as Quadratic Assignment
Problems. In Section 5, we relax our QBAP to a Matrix
Bandwidth Minimization problem, introduce our proposed
method, GCBS, for approximating global contrastive losses,
and provide implementation details. In Section 6, we pro-
vide experimental results for sentence embedding and code
search tasks using GCBS. Section 7 provides discussion and
Section 8§ concludes the paper.
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2. Related Work

2.1. Contrastive Representation Learning

Contrastive Learning has been used ubiquitously for vi-
sion, language, and audio representation learning. In vision
tasks, SImCLR (Chen et al., 2020a) showed that using aug-
mented views of the same image as positive samples and
the NT-Xent objective (Sohn, 2016) improves performance
of unsupervised classification. MoCo (He et al., 2020; Chen
et al., 2020b) used memory banks of negative samples from
recent batches to increase the effective contrastive batch
size, and (Sylvain et al., 2020; Khosla et al., 2020) show im-
provements using supervised contrastive frameworks. For
sentence embedding tasks, contrastive learning has been
used both in pretraining (Logeswaran & Lee, 2018), fine-
tuning and continuous prompt tuning settings (Gao et al.,
2021; Jiang & Wang, 2022) to provide state-of-the-art per-
formance. Additionally, contrastive learning has been used
extensively to align representations across different modali-
ties for downstream use in multimodal tasks such as those
involving language/code, language/vision, and vision/deci-
sion making (Guo et al., 2022; Feng et al., 2020; Guo et al.,
2021; Radford et al., 2021; Ramesh et al., 2021; Laskin
et al., 2020).

2.2. Hard Negative Mining in Metric and Contrastive
Learning

Selection of hard negatives during batch construction is well-
studied and has been shown, both theoretically and empiri-
cally, to improve metric and contrastive learning (Saunshi
et al., 2019; Iscen et al., 2018; Xuan et al., 2020; Mishchuk
et al., 2017; Wu et al., 2017). Prior work in metric learn-
ing (Song et al., 2016; Schroff et al., 2015; Harwood et al.,
2017; Ge et al., 2018) has observed that “hard negatives”,
or negatives which are difficult to discriminate against with
respect to a particular query’s embedding, are beneficial for
downstream classifier performance. In contrastive learning,
(Zhang et al., 2018) uses Mixup to generate hard negatives
in latent space. (Chuang et al., 2020) proposes a debiased
contrastive loss which approximates the underlying “true’
distribution of negative examples and (Yang et al., 2022)
studies the effect of restricting negative sampling to regions
around the query using a variational extension to the In-
foNCE objective. In (Kim et al., 2020; Ho & Nvasconcelos,
2020) adversarial examples are used to produce more chal-
lenging positives and hard negatives. In (Xiong et al., 2021),
nearest neighbor indices and a secondary model from prior
checkpoints are used to mine hard negatives for text retrieval
tasks.

>

(Robinson et al., 2021) reweights negative samples based
on their Euclidean distance and debiases positive samples in
order to control the level of difficulty in unsupervised con-
trastive learning. (Kalantidis et al., 2020) show that harder

negative examples are needed to improve performance and
training speed in vision tasks and propose adding “’synthetic”
hard negatives in training batches using convex combina-
tions of nearest neighbors.

2.3. Quadratic Assignment Problems

The Quadratic Assignment Problem (QAP), stemming from
facilities locations problems (Koopmans & Beckmann,
1957), in combinatorial optimization seeks to minimize the
total cost of assigning n facilities to n locations. Formally,
one seeks to optimize min e, Tr(WrD7T) over I1,,, the
set of n X n permutation matrices, for a given cost matrix
W € R™*" and distance matrix D € R™*™. The Quadratic
Bottleneck Assignment Problem (QBAP), (Steinberg, 1961)
takes a similar form but minimizes the maximum cost rather
than the total cost, mingep, max; j(WrDnrT); ;. The
Graph Bandwidth Minimization Problem, seeks to mini-
mize the dispersion of nonzero costs from the main diagonal
for a sparse distance matrix D and is a special case of
QBAP in which the cost matrix W increases monotonically
in |¢ — j|. In this paper, we prove that minimizing the upper
bound between the total and the observed training losses
LGlobal _ pTTain gyer a pair of datasets X, Y is bounded
by Quadratic Assignment Problems and approximated by a
Graph Bandwidth Minimization Problem. This connection
is shown visually in Figure 1. As all of the aforementioned
problems are NP-Hard, we utilize the Cuthill-McKee algo-
rithm (Cuthill & McKee, 1969) a O(N?) approximation for
bandwidth minimization.

3. Global and Training Losses for
Cross-Entropy based Contrastive
Objectives

In this section, we characterize the gap between training and
global losses in supervised contrastive learning for the Nor-
malized Temperature-scaled Cross Entropy (NT-Xent) loss
(Sohn, 2016). The NT-Xent loss is a ubiquitous contrastive
objective used in state-of-the-art models for sentence embed-
ding, code-language tasks and vision-language tasks (Gao
et al., 2021; Jiang & Wang, 2022; Guo et al., 2022; Chen
et al., 2020a; Radford et al., 2021).

Let X,Y € R"*9 be the output representations for two
paired datasets each with N samples. Consider a super-
vised setting where z;, y; are considered “’positive” pairs
and x;,y; are considered negative pairs Vi # j. Note that
the analysis we provide can be modified to incorporate mul-
tiple positives, such as those from class information, which
will have tighter bounds in terms of the number of samples
N and the batch size k. Additionally, let 7 € R, be a
tunable temperature parameter which scales logit values in
the objective. When 7 is small, the NT-Xent loss is a proxy
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for the hard maximum loss. Assume that all representations
have been normalized, that is ||z;]|2, |yi||2, = 1 V.

3.1. The Global and Training NT-Xent objectives,
EGlobal and £T7*az’n

First, we provide the contrastive loss over all N2 pairs of
inner products between X and Y. We call this the global
objective as it contains all pairwise contrastive information
and, in the absence of resource constraints, is the loss one
would seek to minimize. The Global NT-Xent objective is
given as follows:

Definition 3.1 (Global NT-Xent objective). The
Global NTXent objective is given as follows:
-1
Global __ eXP x yiT )
L =-% Zl —.
o oxp(a] yg )

+ log Z exp(aciTij_l).
j=1

% Z —x] yir !
i=1

Due to memory constraints, during training one does not
make all N2 comparisons over pairs in X and Y during a
training epoch. Instead, each sample z; is only contrasted
against k in-batch samples in Y, its positive anchor y; and
k — 1 negative anchors. This observed loss during training
will be strictly less than the global loss as it makes k& compar-
isons out of the total N for each sample. For a fixed batch
assignment B, let B; be the indices of rows in Y contained
in a batch with z;. The training NT-Xent objective is given
as follows:

Definition 3.2 (Training NT-Xent objective). The
Training NTXent objective is given as follows:

ETrain — Zl eXp .13 YiT 1)
N JEB exp(zly;7=1)

1 T -1
- el
N i=1

+ log Z exp(zly;71).
JEB;

3.2. Minimizing the gap between £&°%% and £T7*"

For a fixed set of batches B, we will first provide upper
bounds on £&°%% and lower bounds on £77%" using Log-
Sum-Exp properties (Calafiore & El Ghaoui, 2014). Using
the upper bound for Log-Sum-Exp, the following bound on
LGlobal can be obtained where equivalence is attained when
all inner products have the same value.

3.2.1. UPPER BOUND ON LG!lobal

Lemma 3.3 (Upper bound on £&/°%!), With Log-Sum-Exp
properties (Calafiore & El Ghaoui, 2014), LE'°%! with the
NT-Xent contrastive objective can be upper bounded as:

N N
1 - _
[ Global _ N > —alyir' +log ) exp(a]y;m )
i=1 J=1
<1 g: —z] yir " +log(N maxexp(x;] y;7 ')
<5 2 T Yi : 1 Jd)

N
1 1/ T -1 T
=— > 7 (—z;yT ~ +maxz;y;)+ log V.
N §:1 (—ziy axz; y;) + log

3.2.2. LOWER BOUNDS ON £TTain

Two lower bounds can be derived for £17%" first using the
translation identity property (Nielsen & Sun, 2016) and then
using the standard lower bound for Log-Sum-Exp (Calafiore
& El Ghaoui, 2014).

Lemma 3.4 (First lower bound on £77%" using Trans-
lation Identity). With the Log-Sum-Exp translation
identity property (Nielsen & Sun, 2016), LT with
the NT-Xent contrastive objective can be bounded as:

N
) 1
L:Trmn _ N Z —l‘;ryi'r_l + log Z eXp(szij_l)
i=1 J€B;
N
1
ZN >l

; y;7 ' 4 log(k min exp(x?ij_l))
JEB;

@
Il
—

I
2| =
-

Tﬁl(f:czwyi + min x?yj) + log k.
JEB;

=1

Lemma 3.5 (Second lower bound on £77%" using stan-
dard Log-Sum-Exp bound). With Log-Sum-Exp properties
(Calafiore & El Ghaoui, 2014), LTran \yith the NT-Xent
contrastive objective can be bounded as:

N
. 1
LTrain _ N Z 71;?%7-*1 + log Z G‘Xp(ﬂfzrijfl)
i=1 J€B;
L
>+ ; —xl gy 4 log(jné%)f exp(z] y;771))

Y (—alyr

I
2| =
-

Il
—

T maxay;).
J i

3

3.2.3. UPPER BOUNDS ON LGlobal _ pTrain

We can now bound the gap between the global and training
losses of the NT-Xent objective for a fixed batch set of
batches B. The diagonal terms are included in both the
global and training losses and will therefore not factor into
characterizing the gap.

Theorem 3.6 (First upper bound on L£&!ebal _ pTrainy
An upper bound on LGP — LTTan for the NT-Xent

objective using the lower bound from Lemma 3.4 is:
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N
) 1
Global Train —1 T . T
L —L < N E T (mjaxxi yj—;rég;xi )
i=1 ‘

+1 N
0g 7

Theorem 3.7 (Second upper bound on LEebel — £Train),
An upper bound on LGP — £Train for the NT-Xent
objective using the lower bound from Lemma 3.5 is:

N
. 1
Global Train —1 T T
L - L §N§ 77 (maxayy; — max; y;)
i=1 ‘

+ log N.

4. Minimizing L6l — £T7ain a5 Quadratic
Assignment over Batches

Note that from Theorems 3.6 and 3.7 we have bounded
the gap between LG/l — £TTan without making any
assumptions on data distribution or models. Additionally,
we can see that the bounds are dependent on the batch
assignments j € B;, batch size k, and total number of
samples N.

4.1. Batches assignment as optimization over row
permutations

We will now rewrite our optimization problems over per-
mutations m € Il instead of sets of batch assignments
{B}, an equivalent formulation. First, recognize that our
bounds are dependent only on batch assignments of nega-
tives j € B;. Without loss of generality assume that batches
are constructed sequentially after applying a row permuta-
tion m € IIy on X and Y. That is, batches are constructed
over m(X),m(Y) such that j € B; <= || = |+]. Rec-
ognize that this batch construction can be written as a block
diagonal matrix of the form A € {0,1}*N and 4, ; =1
if || = | +]. Note this sequential constraint is not restric-
tive as it accommodates all possible batch assignments on
X,Y with the appropriate permutation 7 € 1I. When
introducing a fixed sequential batching, we can rewrite the
minimizer of the upper bound on £&°%@ — £Train from
Theorems 3.6 and 3.7 as an optimization problem over per-
mutations 7 € IIy on X, Y rather than explicitly on { B}.
The form of these optimizations problems are the Quadratic
Bottleneck Assignment Problem and the Quadratic Assign-
ment Problem (Koopmans & Beckmann, 1957). These are
well-known NP-Hard combinatorial optimization problems
and in the following two sections we will discuss their for-
mulation and efficient approximations.

4.2. Bounds related to Quadratic Bottleneck
Assignment Problems

The upper bound in Theorem 3.6, for the sum (L£L&°b —
LErainy g (pGlobal _ pTrainy g minimized when the small-

est inner product over in-batch negatives is maximized over
7 € ly. Denote Z;; £ min{zy;,ylz;} and © as the
Hadamard product. This is a QBAP, the proof of which
is deferred to Appendix A.l, as we are interested in the
minimizing the maximum value of the elementwise product
of two symmetric matrices 7Z7 ! and A.

Theorem 4.1 (Formulation of QBAP for bound in Theorem
3.6). The following Quadratic Bottleneck Assignment Prob-
lem, minimizes the upper bound provided in Theorem 3.6
summed over X and Y :

min max—A @ nZr’.
welly 4,7

4.3. Bounds related to Quadratic Assignment Problems

The upper bound in Theorem 3.7, for the sum (£&°bl —
LErainy 4 (LGlobal _ pTrainy ig minimized when the sum
of inner products over in-batch negatives is maximized over
permutations 7 € II. This can be formulated equivalently
as either the Frobenius inner product between the symmetric
matrices 7(XY 7T + Y XT)7T and A or the Trace of their
product. These are QAPs, the proof of which is deferred to
Appendix A.2.

Theorem 4.2 (Formulation of QAP for bound in Theorem
3.7). The following Quadratic Assignment Problem mini-
mizes the upper bound in Theorem 3.7:

max Tr(Ar(XYT + Y XT)rT).

welln

Heuristics for both the QAP and QBAP in O(N?) and
@(N 2) time complexity respectively are well-known (Kuhn,
1955; Munkres, 1957; Edmonds & Karp, 1972; Jonker &
Volgenant, 1988; Cuthill & McKee, 1969). In the next sec-
tion, we will formulate approximate solutions to the QBAP
in Theorem 4.1 with O(Nk) space and O(N?) time com-
plexity.

5. Global Contrastive Batch Sampling:
Efficient approximations to the QBAP with
Cuthill-McKee

In practice, when N is large it can be difficult to hold XY™
in memory and approximation algorithms for the QAP prob-
lem (Kuhn, 1955; Munkres, 1957; Edmonds & Karp, 1972;
Jonker & Volgenant, 1988) have O(N?) complexity. There-
fore, in optimizing over m € 1l we will make two mod-
ifications in order to develop a O(Nk) space and O(N?)
worst-case time complexity approximation to the QBAP in
Theorem 4.1. First, we will sparsify the matrix XY 7 on a
quantile ¢ which censors values below the quantile to 0. Sec-
ondly, we use an O(N?) matrix bandwidth minimization
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Figure 2. Visual depiction of connection between minimizing graph and matrix bandwidths.

heuristic commonly used for sparse matrix multiplication
and decomposition (Cuthill & McKee, 1969) to efficiently
attain an assignment over sample permutations.

5.1. Approximating the QBAP: Sparsification and
Matrix Bandwidth Minimization

Previous literature (Burkard, 1984) has shown the QBAP
and Matrix Bandwidth Minimization Problem to be equiv-
alent when the cost matrix is increasing in |i — j| and
(Burkard, 1984) proposes thresholding in order to reduce
coefficients in the matrix XY, First, we sparsify XY on
a threshold quantile g as follows:

~ 1, xly; > qi#j
(XyT)M:{ Ty, >qi#j

0, else.

Note that there exists a minimal quantile ¢* which constructs

a sparse matrix X YT that achieves the same solution as the
dense matrix XY 7. This is due to the fact that since we are
interested in maximizing the minimum inner product over
in-batch negatives, the smallest values of X YT in each row
are not of interest for the batch assignment objective.

5.2. Approximating the QBAP: Cuthill-McKee
Algorithm

. . . vl .
On this sparsified matrix XY, we should seek to maximize

the number of nonzero values in 7 (X v (X YT)T)ﬂ'T ©)
A to minimize the upper bound in 4.1. The QBAP for-
mulations and the Matrix Bandwidth Minimization prob-
lem are approximately equivalent due to the fixed sequen-
tial batching which assigns batches along the main diag-
onal of 7XYTxT. Since {B} is comprised of blocks
on the main diagonal, minimizing the dispersion of non-
zero entries, after sparsification, from the main diagonal
will maximize the probability of large inner product values
within batches. As a result, our algorithm for minimizing
2LGlobal _ plrain 4 plrain GCBS, is an O(N?) relax-
ation to the bound in Theorem 4.1. In Algorithm 1 we detail
the Cuthill-Mckee algorithm for matrix bandwidth mini-
mization (Cuthill & McKee, 1969) along with worst case

Algorithm 1 Cuthill-Mckee algorithm on sparse graph

Require: Sparse Adjacency Matrix G € {0, 1}V <V
(1) Get peripheral vertex v; with lowest degree from the
vertices in G. Set 7 = [v;]. [O(|E|) = O((1 — q)N?) =
O(kN)]
(2) Perform Breadth First Search on the Graph G rooted
at v; excluding elements in 7. [O(N)]
(3) Label each vertex, other than v;, on their distance
from v;, creating "levels”. [O(N)]
(4) Order vertices by level, tiebreaker of ascending vertex
degree and append the first item to . [O(Nlog(N))]
(5) If || < N, return to Step (2) and repeat this process
with the most recently added vertex as the root.
(6) Return permutation 7 = [ig, 41, . - . , in]

runtimes for each step.

Additionally, we note that the Cuthill-Mckee algorithm has
been extensively applied in graph bandwidth problems. In
the directed unweighted graph setting, a linear graph ar-
rangement (Feige, 2000) is applied on an adjacency matrix
G € {0,1}V* gsuch that each node is placed at the cor-
responding row integer value ¢ on the x-axis with edges to
nodes j if G;; # 0. The objective in this case is to minimize
the length of the longest edge. By viewing the batch assign-
ment problem in this graphical setting, one can recognize
that in our sparse implementation GCBS seeks to minimize
the distance between nodes i, j where z] y; is a relatively
large inner product. This connection between minimizing
graph and matrix bandwidths is shown visually in Figure 2.

6. Experimentation

In this section, we detail experiments for sentence em-
bedding and code-search tasks when using GCBS in-
stead of the standard Random Sampling. We find that
GCBS improves state-of-the-art performance for both tasks
while requiring minimal code changes. Three quantiles,
{0.99,0.999,0.9999}, for GCBS were tested across all ex-
periments; no hyperparameters were varied other than the
batch size and learning rate. All experimentation was con-
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Model CosQA ‘ AdvTest | Ruby IS Go Python Java PHP CSN Avg
RoBERTa 60.3 18.3 58.7 517 850 587 599 56.0 61.7
CodeBERT 65.7 27.2 679 620 882 672 67.6 628 69.3
GraphCodeBERT  68.4 35.2 703 644 89.7 692 69.1 649 71.3
SYNCoBERT - 38.3 722 6777 913 724 723 6738 74.0
PLBART 65.0 34.7 67.5 616 887 663 663 61.1 68.5
CodeT5-base 67.8 39.3 719 655 888 69.8 68.6 645 71.5
UniXcoder 70.1 41.3 740 684 915 720 726 67.6 74.4

- with GCBS 71.1 43.3 76.7 706 924 74.6 753 70.2 76.6

Table 1. The performance comparison of supervised models along with a comparison of the best performing model (UniXcoder) (Guo
et al., 2022) when using GCBS vs the standard Random Sampling. The reported score is Mean Reciprical Rank magnified by a factor of
100. GCBS improves previous best MRR when used with UniXcoder by 2.2 points achieving new state-of-the-art results (Row shaded

gray).
Model STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R ‘ Avg
SBERT e 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SBERT,s.-flow 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERT},s.-whitening 69.65 717.57 74.66 82.27 78.39 79.52 76.91 77.00
ConSERT-BERT s 74.07 83.93 77.05 83.66 78.76 81.36 76.77 79.37
SimCSE-BERT} s 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
- with GCBS 75.81 85.30 81.12 86.58 81.68 84.80 80.04 82.19
DCPCSE-BERT}, s 75.58 84.33 79.67 85.79 81.24 84.25 80.79 81.65
- with GCBS 75.39 84.27 79.72 86.03 82.19 84.19 79.65 81.63
SimCSE-RoBERTay . 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
- with GCBS 76.94 85.64 81.87 86.84 82.78 85.87 80.68 82.95
DCPCSE-RoBERTa; 5 76.75 85.86 80.98 86.51 83.51 86.58 80.41 82.94
- with GCBS 76.99 86.11 81.70 87.34 84.17 85.99 80.17 83.21
SimCSE-RoBERTa4;4 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76
- with GCBS 78.90 88.39 84.18 88.32 84.85 87.65 81.27 84.79
DCPCSE-RoBERTa;4,gc  79.14 88.64 83.73 87.33 84.57 87.84 82.07 84.76
- with GCBS 79.89 89.15 84.32 88.16 85.33 87.54 81.53 85.13

Table 2. The performance comparison of supervised models along with a comparison of the best performing models, SImCSE (Gao et al.,
2021) and DCPCSE (Jiang & Wang, 2022), when using GCBS vs the standard Random Sampling. The reported score is Spearman
correlation magnified by a factor of 100. GCBS improves previous best Spearman correlation when used with SimCSE by 1.03 points and
DCPCSE by 0.37 points achieving new state-of-the-art results (Rows shaded gray).

ducted on one NVIDIA A100 GPU with CUDA 11.6 and
PyTorch 1.11.0. The full specification of hyperparameters
are included in Appendix Section H.

6.1. Code Search Experiments

Semantic code search is an important problem in representa-
tion learning that jointly embeds programming and natural
languages (Husain et al., 2019). In this task, one is con-
cerned with returning relevant code when given a natural
language query. This is a problem of great interest due
to the potential for aiding programmers when developing
code and possesses challenges in aligning highly techni-
cal and abbreviated language with the programming lan-

guage modality. Recently, models for this task have been
improved using contrastive learning (Guo et al., 2022) by
enforcing sequence embeddings for code and their corre-
sponding natural language comments to have large inner
products relative to unrelated natural language comments.
GCBS provides further gains and achieves state-of-the-art
performance when used with well-performing contrastive
learning models, UniXcoder (Guo et al., 2022) as shown in
Table 1.

6.2. Sentence Embedding Experiments

Recently, contrastive learning approaches, which enforce
that pretrained sentence embeddings for mined pairs of sim-
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ilar sentences have large inner products relative to the inner
products of random pairs of sentences, have provided state
of the art performance for sentence embedding tasks. GCBS
provides further gains and achieves state-of-the-art perfor-
mance when used with well-performing contrastive learning
models, SImCSE (Gao et al., 2021) and DCPCSE (Jiang &
Wang, 2022), as shown in Table 2

7. Discussion

In this section, we analyze the loss of contrastive learning
models when using GCBS compared to Random Sampling.
We find that Global Contrastive Batch Sampling empirically
reduces the gap £LE°0e! — £Train a5 intended, by 40% in
Code Search Net (Ruby) experiments. Additionally, runtime
for each epoch when using GCBS is approximately 50% that
of the most minimal Hard Negative Mining implementation.

7.1. Runtime comparison for GCBS, Random
Sampling, and Global Hard Negative Mining

Code Search
Step Random [ GCBS | Hard Negative (1)
Fwd+Bkwd Pass 381.45 381.45 | 762.9 (2x batches)
Add’l Fwd Pass - 118.51 118.51
Comp. k-NN - - 1.19
GCBS - 2.31 -
Total Time (s) 381.45 | 502.27 882.61

Table 3. Runtime in seconds per epoch for Random Sampling,
GCBS, and Hard Negative (1) for the Code Search Net (Ruby)
dataset N = 24,927, k = 64 with the UniXcoder model.

We provide runtime comparisons for GCBS, Random Sam-
pling and Hard Negative (1), a global hard negative mining
setting with minimal computational burden relative to ap-
proaches currently used in practice. We find that GCBS is
more efficient per epoch than this minimal implementation
of Hard Negative mining. As in experimentation detailed in
Section 6, runtimes were calculated using a single NVIDIA
A100 GPU with CUDA 11.6 and PyTorch version 1.11.0,
52GB RAM, and 4 vCPUs. Runtime statistics for the Code
Search Net (Ruby) dataset with the UniXcoder model in
Table 3 and the SNLI+MNLI (entailment+hard neg) dataset
for sentence embedding with the Bert-Base-Uncased model
are detailed in Table 4.

7.2. Global and Expected Training loss for GCBS and
Random Sampling

With our empirical findings that both Random Sampling
and GCBS losses are well approximated by the expected
loss at the epoch start we empirically test our theoretical
contributions which claim that Matrix Bandwidth Mini-
mization will reduce the upper bound on the gap between

Sentence Embedding

Step Random | GCBS | Hard Negative (1)
Fwd+Bkwd Pass  442.26 442.26 | 884.52 (2x batches)
Add’l Fwd Pass - 370.31 370.31
Comp. k-NN - - 225.99
GCBS - 140.32 -

Total Time (s) 44226 | 965.03 1480.82

Table 4. Runtime in seconds per epoch for Random Sampling,
GCBS, and Hard Negative (1) for the SNLI+MNLI (entail-
ment+hard neg) dataset N = 275,602, k = 256 for sentence
embedding with the Bert-base-uncased model.

£6/bal and Expected £77™ at Epoch Start: Code Search Net (Ruby)
4338
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Figure 3. and Expected at the start of each epoch
for Random Sampling and GCBS on the Code Search Net (Ruby)

dataset with the UniXcoder model.

LGlobal _ pTrain Ty order to do so, we calculate the

loss for in-batch negatives and the loss over all negatives
for each sample when using either Random Sampling and
GCBS. We conduct this experiment once again on the Code
Search Net (Ruby) dataset with the UniXcoder model. As
shown in Figure 3, we find that using GCBS reduces the gap
LGlobal _ pTrain by 409% when compared to Random Sam-
pling on the final epoch. Additionally, the total loss over
all samples is reduced by 30% and, as shown in Appendix
Section C, yields stronger validation/test performance.

8. Conclusion

In this paper, we introduced Global Contrastive Batch Sam-
pling (GCBS), an efficient algorithm for better approxi-
mating global losses in contrastive learning through global
batch assignments. GCBS is an approximation for classes
of quadratic assignment problems that we prove character-
ize upper bounds for the gap between global and training
losses in contrastive learning. Unlike previous approaches
for improving contrastive learning through hard negative
mining, GCBS does not increase the training length of an
epoch by oversampling and is more computational efficient
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compared to even the most minimal hard negative mining
approaches. We evaluate GCBS on sentence embedding
and code search tasks and in both tasks we achieve state-
of-the-art performance. Our method provides an efficient
alternative to hard negative mining that is simple to imple-
ment, does not maintain additional data structures during
training, provides strong performance, and performs global
batch assignments.
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Global Contrastive Batch Sampling via Optimization on Sample Permutations

A. Derivation of Proofs for Theorems 4.1 and 4.2

In this section, we provide proof derivations of Theorems 4.1 and 4.2.

A.1. Proof of Theorem 4.1

We show that the formulation of the gap between the Global and Training contrastive losses £&!°0% — £TT4in when using
the translation identity lower bound for Log-Sum-Exp (Nielsen & Sun, 2016) is approximated as a Quadratic Bottleneck
Assignment Problem (QBAP). This optimization problem is associated with the lower bound in Theorem 3.6.

Since this formulation is not equivalent over X and Y, we will first denote L&!0bal — £Train apd £Global _ pTrain a4 the
respective gaps over X and Y when using the translation identity lower bound on £rein cTrain.
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Then we will minimize the optimization problem min g 2£&!ebal — £Train _ pTrain iy order to equally weigh the selection
of informative samples for both X and Y. Lastly, denote Z;; £ min{z!y;, y?z;} and ® as the Hadamard product.

Proof. To formulate minp 2£6100al — hrain _ plrain with the translation identity lower bound for Log-Sum-Exp as a
QBAP, we need only use the fact that ZZV x; > N min; z;.
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A.2. Proof of Theorem 4.2

We show that the formulation of the gap between the Global and Training contrastive losses £&1°0% — £TT4in when using
the standard lower bound for Log-Sum-Exp (Calafiore & El Ghaoui, 2014) is approximated as a Quadratic Assignment
Problem (QAP). This optimization problem is associated with the lower bound Theorem 3.7.

Since this formulation is not equivalent over X and Y, we will first denote LE!0bal — £Train and £Global _ pTrain g the
respective gaps over X and Y when using the standard lower bound on £%rain £Train.
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Then we will minimize the optimization problem min g 2L — LErain _ pTrain jn order to equally weigh the selection
of informative samples for both X and Y. Lastly, denote ® as the Hadamard product.

Proof. To formulate ming 2£¢1°bal — £Train _ plrain a5 3 QAP, we need only use the fact that max;e1 0, .k} Ti =
1 k
% Zz ZT;.
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B. Expected loss values at Epoch Start for Random Sampling (10000 trials) in Code Search Net
(Ruby)

Expected £ at Epoch Start: Code Search Net (Ruby)
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Figure 4. Expected £77"™ for Random Sampling (=200) and GCBS on the Code Search Net (Ruby) dataset with the UniXcoder model.

We calculate the expected loss for Random Sampling over 10,000 random batch assignments and compare these loss values
to GCBS. The expected loss values for Random Sampling is clearly differentiated from Global Contrastive Batch Sampling
even when compared with the mean over the 10,000 assignments plus 20 standard deviations as shown in Figure 4. As a
result, the loss incurred by GCBS is a better proxy of the global loss even compared to the largest loss incurred among
10,000 random assignments. Empirically, this shows that GCBS provides improvements in Global batch assignment that are
unlikely to be obtained by selecting across random assignments.
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C. Validation Performance comparison for GCBS, Random Sampling, and Hard Negative
Mining

In this section, we provide validation and test performance for GCBS, Random Sampling, and Hard Negative Mining for the

Code Search Net (Ruby) dataset with the UniXcoder model. We find that GCBS provides validation and test performance

improvements compared to both Random Sampling and Hard Negative (1). In particular, the gap between test performance
for GCBS and Hard Negative (1) is greater than that of Hard Negative (1) and Random Sampling.

Validation and Test Mean Reciprical Rank (MRR) Per Epoch: Code Search Net (Ruby)
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Figure 5. Validation and Test Performance for Random Sampling, Hard Negative (1), and GCBS on the Code Search Net (Ruby) dataset
with the UniXcoder model (Guo et al., 2022).

D. Expected positive class Softmax probability at epoch start for GCBS, Random Sampling,
and Global

In this section, we provide the expected softmax probability at the start of each epoch across in-batch negatives when using
GCBS and Random Sampling and across all negative samples (i.e. Global setting) for the Code Search Net (Ruby) task
with the UniXcoder model. We find that GCBS better approximates the softmax probability of positive classes compared to
random sampling and that random sampling results in loss saturation within a small number of epochs.

E. Complexity Analysis of Global Contrastive Batch Sampling

E.1. Quantile Estimation

First, it is necessary to compute the value at the quantile ¢ in order to sparsify XY ™. For large datasets in our experiments,
this operation is estimated over chunks of XY 7 and the median quantile value over the chunks is used. For each chunk
of size I, this requires computing values of XY T, performing a sort on these values and getting the index of the sorted
values for the specified quantile. We denote matrix multiplication time complexity between two matrices as M M (-, -) and
show that this estimation has time complexity approximately equivalent to the matrix multiplication XY”. We make the
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Softmax Probability at Epoch Start for Random Sampling, GCBS, and Global: Code Search Net (Ruby)
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Figure 6. Expected positive anchor Softmax Probability for Code Search Net (Ruby) task using the UniXcoder model (Guo et al., 2022).

assumption that d > log(N1).

. _ —1 o
Space Complexity = Nl + Nl = O(NI)
Chunk quantile values  items in each chunk
Time Complexity =2N1~'(O(Nllog(N1))+ MM(Nd,ld) )= O(N?d)

Sort inner products Calculate inner products

3)

E.2. Optimizing over row permutations of X, Y

. . . . . T vl .
After estimating a value at which to sparsify, we need to get a sparsified similarity matrix XY, construct a sparse adjacency
matrix and run the Cuthill McKee algorithm. We assume that N (1 — ¢), or the expected number of entries in each row is a

small multiple of the batch size k. First, we detail the space and time complexity for constructing X YT:

Space Complexity = 3N?(1—q) = O(Nk)
N————r
Row, Column, and Data values of XY " 4)
Time Complexity = NI"'MM(Nd,ld) = O(N?d)

Calculate inner products and threshold

The space and time complexity for running the Cuthill McKee algorithm on X YT is detailed below, we assume the
implementation from (Chan & George, 1980) is used which provides runtime bounded by N? up to logarithmic factors.

Space Complexity = 3N%(1—q) = O(Nk)
———
Row, Column, and Data values of X~YT ( 5)

Time Complexity = O(mN log(m)) < O(N?log(N))

Cuthill-Mckee Runtime Worst case, m = N
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Note that m is the maximum degree over nodes and for a large quantile value will typically be smaller than /N. We find that
Global Contrastive Batch Sampling incurs O(N'k) space complexity and O(N?2d) time complexity.

F. Implementation in PyTorch

In this section, we detail efficient implementation of GCBS in PyTorch. Our implementation computes a permutation over
samples 7 at the beginning of each epoch, requires less than 50 lines of code, makes no changes to the model being trained,
and does not maintain external data structures after being run between epochs.

The PyTorch pseudocode for the implementation of GCBS is contained below. In the case where XY cannot be held in

. . . oL
memory, the value of the quantile g can be approximated over subsamples of entries from XY 7 and the sparse matrix XY
can be constructed similarly.

def compute_perm_bandwidth_min (X, Y, quantile_thresh = 0.999):
# (1) Normalize representations.
X, Y = normalize(X), normalize(Y)

# (2) Get value at quantile threshold on the inner product matrix.
quantile_thresh = torch.quantile(X @ Y.T, quantile_thresh)

# (3) Get inner product matrix hard thresholded on quantile.
row, col, data = [], [], []

# Get rows and columns of indices > estimated quantile value

ret = ((X @ Y.T).flatten() > quantile_thresh) .nonzero
row += ((ret - (ret % num_samples))/num_samples).tolist ()
col += (ret % num_samples).tolist ()

data += [1.0 for _ in range(len(ret))]

# (4) Get perm which minimizes bandwidth of sparsified matrix with Cuthill-McKee.
permutation = list (cuthill_mckee (sparse_matrix((data, (row, col)),

shape= (num_samples, num_samples))))
return permutation

In the next code block, we provide PyTorch pseudocode which, when inserted at the beginning of each epoch, will call the
previous method and apply the permutation over samples before training. Note that the SequentialSampler is utilized to
control batches after samples are reordered.

## (1) At epoch start, run forward pass to get representations X, Y in the paired dataset.
model.eval ()
with torch.no_grad() :
X, ¥ =11, []
for batch in train_dataloader:
X.append (model (inputs=batch[0]))
Y.append (model (inputs=batch[1]))

## (2) Compute an approx to permutation which minimizes bandwidth of \pi XY T \pi’T
for entries greater than quantile g.

permutation = compute_perm_bandwidth_min (X, Y, quantile=q)

## (3) Reorder the dataset on the approximate solution.

train_dataset = torch.utils.data.Subset (train_dataset, permutation)
train_sampler = SequentialSampler (train_dataset)
train_dataloader = Dataloader (train_dataset,

sampler=train_sampler,
batch_size=train_batch_size)

model.train ()
## (4) Continue training.
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G. Dataset Details

In Table 5 and Table 6, we provide details for all Sentence Embedding and Code Search datasets respectively.

Setting Name | # of samples | Source

Train SNLI+MNLI (entailment+hard neg) 275,602 Hugging Face Download
Test STS12 3.1K Hugging Face Download
Test STS13 1.5K Hugging Face Download
Test STS14 3.7K Hugging Face Download
Test STS15 8.5K Hugging Face Download
Test STS16 9.2K Hugging Face Download
Test STS-B 1.4K Hugging Face Download
Test SICK-R 49K Hugging Face Download

Table 5. Description of training and evaluation datasets for sentence embedding tasks, all datasets are from (Gao et al., 2021) and further
details can be found in the repository.

Name Train samples | Validation | Test Samples | # of Candidates | Source

CosQA 20,000 604 1,046 1,046 CodeBERT Repo
AdvTest 251,820 9,604 19,210 19,210 CodeBERT Repo
CSN Go 167,288 7,325 8,122 28,120 CodeBERT Repo
CSN Java 164,923 5,183 10,955 40,347 CodeBERT Repo
CSN JavaScript 58,025 3,885 3,291 13,981 CodeBERT Repo
CSN PHP 241,241 12,982 14,014 52,660 CodeBERT Repo
CSN Python 251,820 13,914 14,918 43,827 CodeBERT Repo
CSN Ruby 24,927 1,400 1,261 4,360 CodeBERT Repo

Table 6. Description of training and evaluation datasets for code search tasks, all datasets are from (Feng et al., 2020) and further details
can be found in the repository.

H. Hyperparameters

In Tables 7 and 8 below, we detail the hyperparameters used for the best performing sentence embedding and code search
models respectively.

Model Learning Rate | Batch Size | Number Epochs ‘ Quantile ¢
SimCSE BERT ¢ 3e—5 256 5 0.999
SimCSE RoBERTay ¢ 3e—5 256 5 0.999
SimCSE RoBERTa; g Te—6 256 5 0.9999
DCPCSE BERT}qe Te—3 256 10 0.999
DCPCSE RoBERTay, ¢ Te—3 256 10 0.999
DCPCSE RoBERTa,4;¢¢ Te—3 256 10 0.999

Table 7. Hyperparameters for best experimental results in Sentence Embedding tasks.

For Sentence Embedding tasks, hyperparameters do not vary significantly, other than the learning rate, between models and
are similar to those used in the original models with random sampling (Gao et al., 2021; Jiang & Wang, 2022). For Code
Search tasks, we do not vary hyperparameters from the default values from the original paper using random sampling (Guo
et al., 2022) and, as a result, we use identical settings to the UniXcoder paper other than batch assignments.

I. Comparison of batch loss values between GCBS, Random Sampling, and Hard Negative
Mining

In Figure 7, we show the loss per sample vs step number in the Code Search Net (Ruby) dataset with the UniXCoder model

for Random Sampling, GCBS, and mining 1 hard negative per sample at the beginning of each epoch which we denote as
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Task Learning Rate | Batch Size | Number Epochs | Quantile ¢
CosQA 2e—5 64 10 0.999
AdvTest 2e—5 64 10 0.999
CSN Ruby 2e—5 64 10 0.999
CSN Go 2e—5 64 10 0.999
CSNJS 2e—5 64 10 0.999
CSN Python 2e—5 64 10 0.999
CSN Java 2e—5 64 10 0.999
CSN PHP 2e—5 64 10 0.999

Table 8. Hyperparameters for best experimental results in Code Search tasks for the UniXcoder model.

Loss per Training Step vs Expected Loss at Epoch Start: Code Search Net (Ruby)
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Figure 7. Loss per sample and expected loss computed at epoch start for GCBS, Random Sampling, and Hard Negative (1) for the Code
Search Net (Ruby) dataset with the UniXcoder model.

Hard Negative (1). This hard mining approach has a smaller computational burden compared with approaches commonly
used in practice but incurs 2x the runtime of GCBS and 3x the runtime of random sampling as detailed in Section 7.1.

Additionally, we compare each training step loss to the expected loss over batches calculated at the beginning of each epoch.
This requires performing a forward pass at the start of each epoch, assigning batches, and then computing the loss over
in-batch negatives for each sample. After the first few epochs, while the expected loss over batches for Random Sampling
and GCBS is well approximated by the expected loss at the epoch start, expected losses for Hard Negative Mining are
substantially overestimated. This corroborates findings in previous literature (Wang et al., 2021; Xiong et al., 2021) which
motivates the need to update nearest neighbor indices frequently within an epoch, further increasing the computational
burden of Hard Negative Mining. Empirically, we find that the observed loss per sample for GCBS is significantly larger
than that of Random Sampling or Hard Negative (1) and, like Random Sampling but not Hard Negative (1), can be well
approximated by the expected loss at the epoch start. Losses are smoothed as a running average over the previous 500
training steps.



