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Abstract— For robotic interaction in environments shared
with other agents, access to volumetric and semantic maps
of the scene is crucial. However, such environments are in-
evitably subject to long-term changes, which the map needs
to account for. We thus propose panoptic multi-TSDFs as a
novel representation for multi-resolution volumetric mapping
in changing environments. By leveraging high-level information
for 3D reconstruction, our proposed system allocates high
resolution only where needed. Through reasoning on the object
level, semantic consistency over time is achieved. This enables
our method to maintain up-to-date reconstructions with high
accuracy while improving coverage by incorporating previous
data. We show in thorough experimental evaluation that our
map can be efficiently constructed, maintained, and queried
during online operation, and that the presented approach can
operate robustly on real depth sensors using non-optimized
panoptic segmentation as input.

I. INTRODUCTION

Having a geometric and semantic understanding of the
world is a crucial capability for autonomous systems to
interact with their environment in tasks ranging from colli-
sion avoidance and path planning to mobile manipulation or
object search. In many applications, these tasks are desirable
in environments that are shared with other agents. However,
these inevitably induce long-term dynamic changes in the
environment that the robot map needs to account for.

In particular, volumetric representations such as occu-
pancy [1] or Truncated Signed Distance Fields (TSDF) [2]
have found a lot of success. By dividing the map into a dense
grid of voxels, they are able to explicitly represent free space
and differentiate between known and unknown regions in the
map, which is crucial for online planning. However, this fixed
grid structure makes these methods very memory intensive
and renders them inflexible when trying to account temporal
changes.

Recently, a number of works extended dense maps to also
provide semantic information [3]–[9]. Typically, semantic
image predictions obtained by Convolutional Neural Net-
works (CNN) are fused into a global map to estimate the
maximum a posteriori labels for each voxel. However, these
methods still assume that the environment is static in order
to integrate semantics into the fixed geometry.
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(a) Monolithic map. (b) Panoptic multi-TSDFs
(Ours).

Fig. 1: Qualitative comparison. Our method shows persistent and
absent meshes in solid and shaded red, respectively. Our object-
oriented approach preserves semantic consistency over time, accu-
rately capturing new objects (left sofa) and removing absent objects
(right sofa) as a whole. In contrast, the voxel-based approach keeps
artifacts in the map and fails to capture up-to-date geometry. In
addition, individual objects (on the table) are not merged together
and can be reconstructed at higher resolutions.

In this work, we aim to invert this paradigm and explore
how semantic information can be leveraged to improve the
modeling of geometry and achieve temporal consistency. The
central idea of our approach is that the world typically does
not change at random but in a semantically consistent way.
We thus propose a novel semantic volumetric map represen-
tation that uses the object as the minimal unit of change,
rather than the voxel. Based on the panoptic segmentation
paradigm [10], we differentiate between object instances,
background classes, and free space. In light of recent success
of submapping approaches for spatially consistent volumetric
mapping [11,12] and moving object reconstruction [5,6,13],
we represent the world as a collection of submaps. Each
submap contains a locally consistent panoptic entity, i.e. each
object, piece of background, or free space is reconstructed
individually, such that the collection of submaps together
recovers the full volumetric map. We show that this panoptic
map representation enables memory efficient multi-resolution
volumetric mapping and is able to capture long-term dynamic
scene changes during online mapping. We make the follow-
ing contributions:

• We propose panoptic multi-TSDFs as a novel, flexible
multi-resolution volumetric map representation to cap-
ture long-term object-level scene changes.

• We present a method for panoptic multi-TSDF inte-
gration and map management for temporally consistent
mapping during online operation.

• We thoroughly evaluate our approach in simulation and
on real world datasets. The code and data is available
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as open-source1.

II. RELATED WORK

A. Dense Semantic Mapping

Dense semantic mapping aims at estimating the seman-
tic label of each surface element. Early works [14] fuse
frame-wise geometric segmentations into a global surfel-
map. McCormac et al. [4] extend surfel-based mapping [15]
by fusing 2D semantic predictions and refining using a global
Conditional Random Field (CRF).

Similarly, [9] fuse CNN predictions in a Bayesian way into
a volumetric map based on voxblox [2]. Grinvald et al. [8]
extend [2] by combining geometric segmentation with in-
stance predictions from MaskRCNN [16] to refine label
boundaries. A panoptic approach also based on [2] is pre-
sented in [3], where CNN background labels are com-
bined with instance predictions [16] to achieve the panoptic
labeling. While the TSDF-based methods can supply the
volumetric information needed for planning, all of the above
approaches make the limiting assumption that the environ-
ment is static.

B. Object-centric Mapping

A different family of approaches focuses on reconstruct-
ing selected individual objects. This was pioneered in
SLAM++ [17], where models of known objects are fitted to
sensor data and act as nodes in graph-based sparse SLAM.
This constraint is relaxed in Fusion++ [18]. Similar to us,
each object is reconstructed in its own TSDF volume and
segmented by estimating a foreground probability, giving
flexibility to the system to account for pose estimation errors.
However, only selected objects are reconstructed, thus not
providing the volumetric information required for planning.
Furthermore, the environment is considered static.

A number of works leverage this approach to capture
short-term dynamics, i.e. objects moving in front of the
camera. Rünz et al. [6] track objects using geometric and
photometric alginment. They are segmented based on mo-
tion cues or semantic segmentation and reconstructed us-
ing surfel fusion. In a similar approach, MaskFusion [7]
combines geometric and instance segmentation [16] for im-
proved object recognition. Strecke et al. [5] extend [18]
to moving objects, estimating camera and object poses in
an expectation-maximization scheme. In a TSDF approach
based on [19], MID-Fusion [13] combines the segmentation
of [7] with motion cues to reconstruct multiple moving
objects. Long et al. [20] additionally include motion tracking
to reconstruct a single large moving object.

While significant progress in reconstructing selected in-
dividual objects was made, these approaches are usually
confined to small environments with few tracked objects.
Non-moving objects and background are not considered and
assumed static, thus making these approaches not well suited
to capture long-term changes.

1https://github.com/ethz-asl/panoptic_mapping

Fig. 2: System overview.
C. Change Detection

TSDFs have also found success in capturing long-term
changes. Finman et al. [21] generate multiple reconstructions
[22] and identify changes via surface point cloud differenc-
ing. Fehr et al. [23] directly combine different observations
into a multi-layer TSDF and use volumetric differencing to
extract the static background and movable objects. A recent
approach [24] additionally leverages semantic information
to identify support surfaces and movable objects to improve
change detection. However, all of these methods can only
operate post-hoc and are computationally demanding, mak-
ing them unsuitable for online operation of robots in shared
environments.

D. Online Long-term Mapping

Another line of works tackles the problem of incremental
long-term mapping. Krajnı́k et al. [25] augment 2D oc-
cupancy maps to estimate the temporal presence of each
voxel as a frequency. Lázaro et al. [26] represent the world
as 2D point cloud submaps and apply a map management
strategy, similar measurements are fused and differing data
is overwritten by the most recent estimate. Tang et al. [27]
build a graph of submaps connected by their poses. When
new submaps can not be re-localized, they are also added
as temporal information to the spatial graph. Alternatively,
Macenski et al. [28] add a temporal decay to voxels. As
old voxels are removed the map is kept up to date but also
loses previous information. Mason and Marthi [29] propose
an object-based approach, where an object is any point cloud
supported by a plane. Persistence of these sparse objects is
then tracked by comparing their convex hulls projected onto
the support plane.

A limitation of these approaches is that they lack the
expressiveness, i.e. volumetric and semantic information,
needed for robot interaction and do not provide semantic
consistency when accounting for changes, thus leaving un-
desirable artifacts in the map.

III. APPROACH

The central idea of our approach is to leverage panoptic
segmentation information as the governing factor in repre-
senting, building, and maintaining volumetric maps during
online operation. The goal of our work is not to optimize
the semantic labeling, but rather to explore how high-level
information can be leveraged for multi-resolution 3D re-
construction and temporal consistency. An overview of our
system is given in Fig. 2. The inputs to our pipeline are
depth and color images, e.g. from a RGBD sensor. We take

https://github.com/ethz-asl/panoptic_mapping


robot poses from an external estimator, allowing for a broad
range of sensors and systems, e.g. [30]–[32], to be employed.
Lastly, panoptic segmentation can be predicted from the color
and depth information. To demonstrate the robustness of our
method with respect to imperfect segmentation, we directly
use the output of [33] as input to our system. Nonethe-
less, our method can readily integrate other segmentation
improvements such as [3,4,7,8,13,14].

A. Map Representation

Our map representation is based on the observation that
the world typically does not change at random but in a
semantically consistent way. To capture this feature, we
use the object as the minimal unit of change and propose
to represent the world as a collection of panoptic entities,
structured as submaps. In this formulation, we differentiate
between three panoptic labels, being objects, background,
and free space. Each submap contains the geometry of one
entity, i.e. of an object instance, a background class, or
free space, such that all submaps together constitute the full
volumetric map. To guarantee temporal consistency of each
submap, we further differentiate between active and inactive
submaps, denoting active those currently being tracked and
built, and inactive submaps from past observations.

For efficient processing, a hierarchical structure illustrated
in Fig. 3 is employed. On the highest level lies the submap
collection, where a spatial index is maintained for con-
stant time scaling in large-scale environments. Each submap
contains all related data such as panoptic, instance, and
class labels, as well as transformation and tracking data.
To represent geometry, we choose to use TSDF grids [2]
for their ability to fuse multiple observations. The space
containing an object is partitioned into blocks, where only
blocks containing surface information are allocated, except
for free space submaps. For efficient traversal of the submap
collection, each object has a sphere spanned by the blocks
as bounding volume. Each block contains a dense grid of
voxels that store the TSDF values representing the surface.

This hierarchical structure allows for efficient queries
of the submap collection at all stages of the pipeline. In
addition, each object can be reconstructed at a different
resolution and only takes up the memory required to rep-
resent its surface, while the full volumetric information
can be recovered from the collection. Most importantly,
semantic consistency is maintained by performing reasoning,
e.g. about persistence over time, on the object level. This
further makes our approach very flexible to also account
e.g. for short-term dynamics via object tracking [5]–[7,13]
or global consistency [11,12]. However, this is left for future
work. Finally, because all submaps are fully data-parallel, the
following operations can be distributed over multiple cores.

B. Label Tracking

To ensure the consistency of instance labels over multiple
frames and temporal consistency of the map, incoming
frames are tracked against the current map. Since ray-
casting into many submaps quickly becomes intractable, we

Fig. 3: Hierarchical map representation. Each submap (color) con-
tains locks of TSDF voxel grids (colored pink to green based on
the TSDF values). Submap bounding volumes and a global spatial
index are maintained for efficient map traversal.

incrementally compute the iso-surface of each submap using
Marching Cubes [34]. All active submaps whose bounding
volume intersects with the view frustum are gathered and
iso-surface points of blocks in the view frustum are projected
into the image plane. Points whose rendered depth lies within
a tolerance of ξd = ν, where ν denotes the voxel size of
the TSDF, of the measured depth are considered valid and
fill in a patch of size ν. Each input segment is associated
to the submap that has the highest Intersection over Union
(IoU) between predicted and rendered mask and the same
class label. To avoid spurious associations, a minimum IoU
of ξIoU = 0.1 is required.

For masks that were not associated, a new submap is
allocated. Compared to other approaches [5,13,18] that al-
locate a fixed grid size such that the object is contained in
it, we choose ν as a function of the semantic label of each
detection. This allows to select ν e.g. between [νsmall ∈
{2 . . . 4}, νlarge ∈ {5 . . . 10}] cm based on how complex
the expected geometry of the object class is and leave the
efficiency optimization to our hierarchical map structure. We
keep νfreespace = 30 cm for all settings. To guarantee
local consistency, submaps are only active as long as they
are successfully tracked, leading to multiple submaps with
potentially varying resolutions describing the same object
in case of detection or tracking failure. These submaps are
later filtered during map management. To avoid instantiating
too many false positives, submaps need to be tracked for
τnew = 3 frames to be kept. Similarly, submaps that have not
been detected for τactive = 5 frames are deactivated. This
ensures that data is only integrated into currently tracked
submaps and previous data can not be corrupted when e.g.
changes in the environment have occurred.

C. Integration

To update the volumetric map, each measurement is fully
integrated into all active submaps. Since ray-casting as in
[2] quickly becomes intractable for many submaps, we
use our hierarchical map representation for fast projective
updates. For each submap, all blocks within the truncation
distance δ = 2ν of points belonging to their masks are
allocated. Similar to [18], we separately reconstruct geometry
and semantics. To best estimate the surfaces, we perform
TSDF updates to all allocated voxels, adapting the weighting
function of [2]:



win(v) =
fx ∗ fy ∗ ν2

z(v)4
(1)

Where fx and fy are the focal lengths of the camera and
z(v) is the depth of voxel v in the image.

To refine which surfaces are part of the submap, each voxel
v has a belonging probability Pb(v). Since network proba-
bilities can be overconfident [5,18], we employ a memory
efficient binary estimate Pb(v) of the count probability P ?

b (v)
using weights p:

P ?
b (v) =

1

|Ft|

|Ft|∑
f=1

I{label(uf (v))=label(S(v))} (2)

Pb(v) =

∑|Ft|
f=1 p(|Ft| − f)I{label(uf (v))=label(S(v))}∑|Ft|

f=1 p(|Ft| − f)
(3)

p(f) = 1/2bf/128c (4)

where Ft is the set of frames where submap S(v) was
tracked, uf (v) is v projected into image f , and I is the
indicator function. This way, Pb(v) can always be efficiently
stored in only 16 bits.

Blocks that do not contain relevant information, i.e. @
voxel v s.t. |sdf(v)| < δ ∧ Pb(v) > 0.5, are pruned.

D. Map Management

Inactive submaps are frozen except for their change state
C(S) ∈ {persistent, unobserved, absent}. To compare two
submaps, we interpolate the SDF distance sdf(p) and weight
w(p) of each iso-surface point p ∈ P of the reference map in
the other map. For each observed point, the distance should
be close to 0 if the point is a surface. If |sdf(p)| < ξsdf ,
where ξsdf = ν is the error tolerance, the point counts
as agreeing with the surface. Otherwise, sdf(p) < −ξsdf
indicates intersections with object maps and sdf(p) > ξsdf
indicates conflicts with free space maps. Each point is
weighted with the combined TSDF weight:

ŵ(p) =

√
min

(
w(p)

ξw
, 1

)
∗min

(
wref (p)

ξw
, 1

)
(5)

We empirically set the max weight ξw = 100. Submaps
count as conflicting or matching if the weight-adjusted num-
ber of points exceeds a threshold τabs = 20 or τrel = 2% of
|P|.

When performing change detection, all inactive submaps
that overlap with active submaps are compared against the
latter. If they conflict with any of them, their state is set
to absent. Otherwise, if they match with any of them, their
state is set to persistent. This way, erroneous matches or
rejections, e.g. through sensing noise, are corrected for later
on. Far back in time submaps are unknown, and can become
absent or persistent again when observed.

When submaps are deactivated and match with inactive
submaps of the same class, they are fused together, allowing
re-use of prior measurements and connections of components
separated by e.g. occlusions or missed detections.

Fig. 4: Flat dataset. Run 1 (left), run 2 (center), and changes (right),
showing new (green), removed (red), and modified (blue) objects.

E. Map Queries

To utilize the map for robotic interaction, efficient
queriesare important. To achieve this, we make use of our hi-
erarchical map representation to only consider submaps and
blocks that intersect with a query point p. Similarly, we use
a temporal hierarchy to query spatio-temporal information.
If the point is observed in an active submap, we directly
use the highest resolution submap. Otherwise, sdf(p) is the
minimum of the distances to the surface of any persistent
submap. Lastly, free space submaps are queried before re-
sorting to yet unobserved submaps to predict expectations.
Only present, i.e. active or persistent submaps, are counted
for evaluation.

IV. EVALUATIONS

To properly evaluate temporal consistency, the true geome-
try of the whole scene needs to be known at every time step.
Since this is hard to obtain in the real world, we employ
a simulated environment, where complete ground truth is
available. This data, termed the flat dataset, consists of two
trajectories in a flat, where 8 objects are moved, 5 are added
and 4 are removed between the runs, highlighted in in Fig. 4.
The data was generated using the high fidelity simulation of
[12]. We make this dataset available for future comparisons.
To verify our method using real sensors and scenes, we
perform experiments on the RIO dataset [35] with the limited
ground truth available. We use the provided ground truth or
optimized poses for state estimation.

A. Multi-resolution

Fig. 5 shows the reconstruction error as Mean Absolute
Distance (MAD) versus the map size for varying voxel sizes,
evaluated in the flat dataset. We compare against Voxblox [2]
and Supereight2 [19], which are the geometry representa-
tions of many semantic mapping frameworks [3,8,9,13]. We
further compare against the sensor-based multi-resolution
approach of [36].

The use of Ground Truth (GT) segmentation highlights
the potential capabilities of our method, almost cutting the
reconstruction error in half while consuming similar memory
to Supereight for low resolutions, and achieving similar
quality to [36] while reducing the memory ×23 for high
resolutions. This suggests significant benefits of semantically
informed multi-resolution over the purely geometry-based

2We thank Emanuele Vespa for support and discussion while setting up
Supereight.



Fig. 5: Error vs map size for different voxel sizes indicated as text.
For Supereight (multires) the minimum voxel size is given.

Fig. 6: Long-term mapping performance shown for the second run
in the flat dataset, starting from a map of the first.

approach. Even with naive segmentation inputs, where only
few small objects are detected and reconstructed precisely
and false detections increase the memory consumption, our
hierarchical map still saves memory compared to the base-
lines.

B. Long-term Temporal Consistency

Fig. 6 shows the MAD error and coverage as percentage
of ground truth points with an error <5 cm during the second
trajectory of the flat dataset, given a prior map from the first
run. We compare against a monolithic map as in [3,8,9] and
consider both continueing mapping based on the previous
state, or starting from scratch. This separation is only done
for comparison, as our system accounts for changes contin-
uously. We further compare against our implementation of
[26] for volumetric maps, labeled Long-term fusion, where
voxels that have a distance update >5 cm are overwritten. For
fair comparisons that only focus on the temporal component,
we use identical TSDF integration and constant ν = 5 cm
for all approaches.

By including only active or persistent submaps, the re-
construction accuracy of our approach remains consistently
at the discretization accuracy of ∼ 1.4 cm. The map built
from scratch initially shows a lower error, since the second
run starts in a kitchen with few complex surfaces. When

Fig. 7: Spatio-temporal map queries. Meshes of present submaps are
drawn in solid and points observed as occupied or free are shown
in solid red and blue, respectively. Yet unobserved points are shown
in orange if they are occupied by persistent objects, or in shaded
red and blue if they are expected to be occupied or free based on
previous data (shaded meshes). Unknown points are gray.

starting from the previous map, none of the changes are
captured, resulting in high errors. As more observations
are made, the error is reduced. This happens faster when
for long-term fusion strategy. However, due to the lack of
semantic consistency, artifacts in the map keep the error well
above the discretization level. Through inclusion of previous
data that match current observations, our method explores
significantly faster, converging to full coverage. The small
gap between GT and Detectron highlights the robustness of
our method to imperfect segmentation, since it only assumes
semantic consistency of each submap and does not require
completeness or accuracy.

C. Semantic Consistency

Qualitative comparisons are shown in Fig. 1. Since in our
formulation semantically consistent submaps are the minimal
unit of change, object consistency is preserved over time. In
comparison, the voxel-based approach results in artifacts in
the map and objects being merged together.

D. Spatio-temporal Look-ups for Online Planning

Fig. 7 shows spatio-temporal occupancy look-ups on our
proposed map representation. Although our map can be
queried at any point in space, a 2D slice is visualized.
Fig. 7 highlights both the spatio-temporal information re-
trieved from single map queries, as well as multi-resolution
preserving thin geometry. Map look-ups on this collection
consisting of 130 submaps took an average of 3µs.

E. Real World Experiments

Experiments on the RIO dataset [35] verify our method
on real world data. We randomly chose reference scans
466 and 27 for evaluation, where different parts of indoor
scenes are reconstructed over 2 and 4 runs, respectively.
To account for the increased sensor noise and the reduced
Detectron2 detections, we set ξsdf = 2ν and τnew = 1. All
other settings remain unchanged. Since no complete ground
truth is available as in simulation, we evaluate two different
approximations.

We approximate a ground truth point cloud by combining
all optimized meshes of the runs. To compensate for the
temporal changes, we compute the coverage as the number
of ground truth points that are observed in the map, and



Fig. 9: Adapted average error and coverage over all runs, separated
by dashed lines, for scan 466 (top) and 27 (bottom). Like in
simulation, our method quickly covers the scene while keeping the
error low.

the reconstruction accuracy as the distance from each iso-
surface point to the closest ground truth point. Fig. 9 shows
the findings, which for both scenes are very similar. During
the first run all errors are comparable. For our method, the
reconstruction quality can be increased by eliminating high
error observations that disagree with other measurements.
This is particularly pronounced when using ground truth
segmentation, further highlighting the potential of leveraging
semantic information for scene reconstruction. Like the sim-
ulated results, the temporal evolution after the first session
demonstrates the capability of our method to represent the
scene with similar or better quality than when starting from
scratch, while extrapolating to a significantly larger coverage
based on previous observations. The monolithic methods
using the previous map show high errors and coverage.
However, the coverage overestimates the true value since all

TABLE I: Computation times per operation in ms.

Setting Resolution Tracking Integration Management FPS∗

Flat,
ground truth

2-5 cm 70.2 ± 8.4 104.3 ± 14.4 199.1 ± 54.1 5.1
4-10 cm 63.9 ± 4.4 89.2 ± 7.8 182.1 ± 44.3 5.8

Flat,
detectron

2-5 cm 57.8 ± 5.5 91.1 ± 11.1 192.1 ± 54.3 5.9
4-10 cm 54.7 ± 5.1 80.3 ± 7.4 183.5 ± 49.2 6.5

RIO,
detectron

2-5 cm 21.8 ± 4.6 21.8 ± 5.9 33.2 ± 23.8 21.3
4-10 cm 16.8 ± 3.4 13.3 ± 3.5 9.5 ± 4.5 32.2

∗ Final frame rate is computed performing change detection every 10 frames.

points from all times are included in the ground truth. The
temporal consistency of our method is further illustrated in
qualitative comparisons in Fig. 8.

F. Computational Performance

Tab. I shows the mean and standard deviation of exe-
cution times per operation. Data is obtained in the second
run of Sec. IV-B, with a sensor resolution of 640 × 480.
Computation was performed on a laptop grade Intel Core i7-
8550U CPU @1.80GHz. We do not account for the panoptic
segmentation, which runs at 66ms per frame according to
[33], although on a NVIDIA V100 GPU.

Even though our implementation is not thoroughly opti-
mized, we achieve frame rates around 5 to 6 Hz, making
our system amenable for real time operation on compute
constrained mobile robots. The frame rates using real seg-
mentation are slightly higher, since typically fewer objects
are detected. Since RIO uses a sensor resolution of 224 ×
172 and fewer objects, our method speeds up significantly,
highlighting the flexibility of our approach to adapt to various
settings.

V. CONCLUSIONS

In this work, we proposed panoptic multi-TSDFs, a novel
representation for multi-resolution volumetric mapping. By
leveraging higher-level information for 3D reconstruction,
our proposed system allocates high resolution only where
needed. Our submap-based approach achieves semantic con-
sistency over time, enabling high reconstruction accuracy
while increasing coverage by incorporating and fusing pre-
vious data where appropriate. We showed in thorough ex-
perimental validation that our map representation can be
efficiently constructed, maintained, and queried during online
operation on compute constrained hardware and operates

(a) Monolithic no map. (b) Monolithic with map. (c) Ours (ground truth). (d) Ours (detectron).
Fig. 8: Reconstructed meshes after run 2 in scan 466. For (c) and (d), persistent submaps are drawn solid and unknown submaps are
shaded. Notably, (b) fails to fully reconstruct the moved table (red), which is only about half the size as in (a). New objects (green), such
as the chairs near the table, are not captured in (b) whereas they are preserved in (c) and (d). Multiple observations at different times
are merged into a blob (yellow) in (b), where our method preserves individual objects. The thin pole on (blue) is not captured by any
method. The mesh in (d) appears more noisy due to the noisy Detectron2 detections.



robustly on real depth data and imperfect segmentation. We
make our framework and data availables as open-source.

In future work, our approach can be readily combined with
methods for segmentation refinement and to also account
for short-term dynamics. Recognition and re-localization of
changed objects could further boost performance.
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